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The measurement error problem that we consider in this paper is concerned with
the situation where time series data of various kinds—short memory, long mem-
ory, and random walk processes—are contaminated by white noise+We suggest a
unified approach to testing for the existence of such noise+ It is found that the
power of our test crucially depends on the underlying process+

1. INTRODUCTION

It is sometimes the case that observations are contaminated by noise so that
the true relationship between variables is somewhat obscured+ This is usually
called the measurement error problem, and it has been treated under various
circumstances+

In this paper we focus on the time series situation and consider the model

yt � xt � ut ~t � 1, + + + ,T !, (1)

where only $ yt % is observable, $xt % is an underlying process or a signal, and
$ut % is a measurement error+ We assume that $xt % and $ut % are independent of
each other+Moreover, $ut % is assumed to be independent and identically distrib-
uted with mean 0 and variance rs2, which is abbreviated as i+i+d+~0, rs2! here-
after, where r is a nonnegative constant whereas s 2 is a positive constant that
is the variance of the innovation driving the signal $xt % + The signal process
$xt % is dependent and will be specified later+

The purpose of the present paper is to test if the measurement error really
exists+ To this end we consider the testing problem

H0 : r � 0 vs+ H1 : r � 0+ (2)

Note that there exists no measurement error under H0, whereas H1 implies some
indication of the measurement error with its degree increasing with r+
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To devise a test we need to specify the signal $xt % in ~1!, which will be done
in Section 2, where three typical processes are considered, namely, stationary
short memory, stationary long memory, and random walk processes+ For these
three cases we suggest the Lagrange multiplier ~LM! test+ The test statistics
will be derived and interpreted in a systematic way+ It will be shown that the
statistics follow normality notwithstanding the null hypothesis being on the
boundary of the parameter space+

Section 3 discusses asymptotic properties of the test by deriving limiting
powers under a sequence of local alternatives of the form r � c��MT with c a
positive constant, whereas some simulations are conducted in Section 4 to dem-
onstrate our methodology+ It will be noticed that the identification problem
emerges as the alternative deviates further from the null+ This occurs in the
case of both the stationary short and long memory signals, whereas it does
not in the random walk signal+ This is because the signals in the former are
dominated by the measurement error, which tends to invalidate the estimation
of the signal parameters+ In particular, the identification problem turns out to
be serious in the long memory signal, which may be one source of difficulties
in estimating fractional autoregressive integrated moving average ~denoted as
ARFIMA hereafter! models+ Some concluding remarks appear in Section 5,
and proofs of theorems and lemmas are given in the Appendix+

2. THE LM TEST FOR THE MEASUREMENT ERROR

In this section we derive the LM test for the testing problem ~2!+ For this pur-
pose we specify the signal process $xt % in ~1! as one of the following three
processes:

Case 1+ b~L!xt � «t , (3)

Case 2+ ~1 � L!xt � «t , (4)

Case 3+ ~1 � L!dxt � «t , (5)

where $«t % follows i+i+d+~0, s 2!, whereas

b~L! � 1 � b1 L � {{{� bp L p

is a polynomial of the lag operator L+ We assume that b~z! � 0 has all roots
outside the unit circle+ Thus $xt % in Case 1 is a stationary AR~ p! process+ The
testing problem for this case was dealt with earlier in Tanaka ~1983!+ Case 2
corresponds to the random walk process, whereas, in Case 3, we assume that
the differencing parameter d is unknown and lies between 0 and 1

2
_ + Thus $xt % in

Case 3 follows a stationary ARFIMA~0,d,0! process+
In subsequent discussions we derive the LM test for each of the preceding

three cases+ For this purpose we impose normality on $«t % and $ut % so that the
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observable process $ yt % is normal+ We, however, note that normality is not re-
quired for asymptotic arguments ~for Cases 1 and 2, see McLeod, 1978, for
case 3, see Giraitis and Sargailis, 1990!+

It might be thought that the LM test is easily derived in the present situa-
tion+ It, however, turns out that the usual procedure for deriving the LM test
cannot be applied directly+ To see this let us consider the log-likelihood for
y � ~ y1, + + + , yT !

' in ~1!, which is given, under normality, by

L~ r,s 2,u! � �
T

2
log~2ps 2 !�

1

2
log6V~u!� rIT 6

�
1

2s 2 y '~V~u!� rIT !
�1 y,

where u is a vector of parameters associated with the signal $x~t !% , s 2V~u! is
the covariance matrix of x � ~x1, + + + , xT !

' , and IT is the T � T identity matrix+
We now have

]L~ r,s 2,u!

]r �
H0

� �
1

2
tr~V�1~ Zu!!�

1

2 [s 2 y 'V�2~ Zu!y,

where [s 2 and Zu are the MLE’s of s 2 and u, respectively, evaluated under H0+
Then we can devise a one-sided LM test based on ]L0]r6H0

, but it is not easy,
in general, to compute this statistic+

One exception is Case 2, where V~u! � CC ' with

C � �
1 0 { { { 0

1 1 {

{ { {

{ { {

{ { 0

1 1 { { { 1

� , C�1 � �
1 0 { { { 0

�1 1 {

0 �1 { {

{ { { {

{ { { 0

0 { { { �1 1

� +
Then we have

tr~V�1~ Zu!! � 2T � 1, [s 2 �
1

T (t�1

T

~ yt � yt�1!
2,

y 'V�2~ Zu!y � (
t�1

T�1

~ yt�1 � 2yt � yt�1!
2 � ~ yT � yT�1!

2,
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where y0 � 0+ Thus we obtain, putting [«t � yt � yt�1,

]L

]r �H0

� �
2T � 1

2
�

T

2

(
t�1

T

[«t
2 �(

t�2

T

[«t
2 � 2(

t�2

T

[«t�1 [«t

(
t�1

T

[«t
2

� �T

(
t�2

T

[«t�1 [«t

(
t�1

T

[«t
2

�
1

2
�

T

2

[«1
2

(
t�1

T

[«t
2

� �Tr1 � Op~1!,

where r1 is the first-order autocorrelation of $ yt � yt�1% + We can now conduct
the LM test that rejects H0 when MT r1 takes small values, noting that MT r1r

N~0,1! under H0+
The preceding derivation of the LM test for Case 2 is simple but excep-

tional+ In subsequent discussions we take an alternative approach, which en-
ables us to derive the LM test for the three cases in a unified way+

2.1. Case 1

It follows from ~1! and ~3! that

b~L!yt � «t � b~L!ut � d~L!at ~t � 1, + + + ,T !, (6)

where d~L!� 1 � d1 L � {{{� dp L p with all the roots of d~z!� 0 outside the
unit circle, whereas $at % follows i+i+d+~0, sa

2! random variables+ The parameters
d � ~d1, + + + ,dp!

' and sa
2 can be determined uniquely from the equation

s 2 @1 � rb~L!b~L�1 !# � sa
2d~L!d~L�1 !+ (7)

By assuming normality of $at % , the log-likelihood for ~6! may be given by

L~ r,sa
2 ,b,d! � �

T

2
log~2psa

2!�
1

2sa
2 (

t�1

T � b~L!
d~L!

yt�2

+ (8)

Then we have

]L

]r �H0

� (
i�1

p ]L

]di
�

H0

]di

]r �
H0

, (9)
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where it is not hard to see

]L

]di
�

H0

� �
1

[s 2 (
t�i�1

T

[«t�i [«t � �T [ri + (10)

Here [s 2 � (t�1
T [«t

20T and [«t � yt � Zb1 yt�1 � {{{ � Zbp yt�p with Zbi being the
least squares estimator ~LSE! of bi in the AR~ p! process b~L!yt � «t + Thus [ri

is the ith-order autocorrelation of the residual process $ [«t % +
As for ]di 0]r6H0

in ~9!, we obtain the following lemma+

LEMMA 1+ For the process (6), it holds that, under H0 : r � 0 ,

]di

]r �
H0

� Zbi � Zb1 Zbi�1 � {{{� Zbp�i Zbp � Zli ~i � 1, + + + , p!+ (11)

It now follows from ~9!–~11! that

]L

]r �H0

� �T(
i�1

p

Zli [ri � T [a ' [r,

where [a � �~ Zl1, + + + , Zlp!
' and [r � ~ [r1, + + + , [rp!

' + Using the results of Box and
Pierce ~1970! ~see also McLeod, 1978!, we have, under H0,

MT [rr N~0, Ip � s 2J�1~b!Gp
�1 J�1~b!' !, (12)

where

J ~b! � �
�1 0 { { { { 0

b1 �1 {

b2 b1 �1 {

{ { { { {

{ { { { {

{ { { { 0

bp�1 bp�2 { { { b1 �1

� ,
Gp �

s 2

2p
�

�p

p 1

6b~e iv !62
~~e i ~ j�k!v !! dv : p � p+

Note that Gp is the covariance matrix for yt�1, + + + , yt�p under H0+
Therefore the LM statistic we suggest here takes the form

ST1 � MT [a ' [r0~ [a '~Ip � [s 2J�1~ Zb! ZGp�1 J�1~ Zb!' ! [a!102

� MT (
i�1

p

[ai [ri��(
i�1

p

[ai
2 � [s 2 Zb ' ZGp�1 Zb	102

, (13)
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where ZGp is a consistent estimator of Gp under H0+ It evidently holds that ST1r

N~0,1! under H0, and H0 should be rejected when ST1 takes large values+ Tanaka
~1983! derived ST1 via somewhat a complicated route+

The statistic ST1 is, apart from a normalization factor, a linear combination
of the residual autocorrelations of the first p lags, where the weight [ai � � Zbi �
Zb1 Zbi�1 � {{{� Zbp�i Zbp can be interpreted as follows+ Put ai � �bi � b1bi�1 �
{{{ � bp�ibp and consider an auxiliary process zt � b~L!«t , which is an in-
verse process of the signal $xt % satisfying b~L!xt � «t + Then we have

ai � Cov~zt , zt�i !0s 2 ~i � 1, + + + , p!+ (14)

A similar interpretation will be given to the LM statistics derived from Cases 2
and 3+

In Section 3 we shall obtain the asymptotic distribution of ST1 under a se-
quence of local alternatives+

2.2. Case 2

Following the approach taken in the previous section, we can easily obtain the
LM statistic for Case 2, whose signal is given in ~4!+ Because we have, from
~1! and ~4!,

~1 � L!yt � «t � ~1 � L!ut � d~L!at ~t � 1, + + + ,T !, (15)

where d~L! � 1 � dL with 6d6 � 1, the log-likelihood for ~15! is given by

L~ r,sa
2 ,d! � �

T

2
log~2psa

2!�
1

2sa
2 (

t�1

T � 1 � L

d~L!
yt�2

+

It is now an easy matter to obtain

]L

]r �H0

�
]L

]d �H0

]d

]r �H0

� �Tr1,

where r1 is the first-order autocorrelation of ~1 � L!yt + Because MT r1 r

N~0,1! under H0, the LM test for the present case rejects H0 when

ST 2 � MTa1 r1 (16)

takes large values, where a1 � �1 and ST 2 r N~0,1! under H0+
It is noticed that the statistic ST 2 is of a similar form to ST1 in ~13!, although

the former is much simpler+ In fact, ST 2 is based only on the first-order auto-
correlation of residuals+ This is because the signal in the present case follows a
random walk that is a special case of AR~1!, whereas it follows AR~ p! in Case 1+
The coefficient a1~� �1! in ~16! also has the same interpretation as in ~14!,
that is, a1 � Cov~zt , zt�1!0s 2 , where zt � ~1 � L!«t +
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We note in passing that the test based on ST 2 in ~16! is asymptotically uni-
formly most powerful and invariant ~UMPI!+ In fact, the testing problem in the
present case is invariant under the group of scale transformations, and y��My 'y
is a maximal invariant+ Then it can be shown ~Tanaka, 1996, Ch+ 9; Tanaka,
1999! that the MPI test of H0 : r � 0 against H1 : r � c��MT with c a fixed
positive constant is asymptotically the same as the test based on ST 2+

2.3. Case 3

This case is most complicated but can be dealt with in the same way as before+
We first have, from ~1! and ~5!,

~1 � L!d yt � «t � ~1 � L!dut � d~L!at ~t � 1, + + + ,T !, (17)

where 0 � d � 1
2
_ and d~L! is now a lag polynomial of infinite order deter-

mined from

s 2 @1 � r~1 � L!d~1 � L�1 !d # � sa
2d~L!d~L�1 !+

Note here that

~1 � L!d �
1

G~�d ! (j�0

` G~ j � d !

G~ j � 1!
L j+

We then consider the log-likelihood L~ r,sa
2 ,d,d! for ~17! given by

L~ r,sa
2 ,d,d! � �

T

2
log~2psa

2!�
1

2sa
2 (

t�1

T � ~1 � L!d

d~L!
yt�2

,

which leads us to obtain

]L

]r �H0

� T (
i�1

T�1

[ai [ri , (18)

where [ri is the ith order autocorrelation of [«t � ~1 � L! Zdyt with Zd being the
MLE of d under H0+ It is known that MT ~ Zd � d ! r N~0,60p2! under H0+ On
the other hand [ai is a consistent estimator, under H0, of

ai � Cov~~1 � L!d«t , ~1 � L!d«t�i !0s 2

�
~�1!iG~1 � 2d !

G~1 � i � d !G~1 � i � d !

�
G~i � d !G~1 � 2d !

G~�d !G~1 � d !G~1 � i � d !
+ (19)

Here the second equality is due to Adenstedt ~1974!, whereas the last is due to
Hosking ~1981!+
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The asymptotic null distribution of [r � ~ [r1, + + + , [rm!
' for a fixed integer m is

given by the following lemma, which is essentially due to Li and McLeod ~1986!+

LEMMA 2+ Suppose that

~1 � L!d yt � «t , 0 � d �
1

2
~t � 1, + + + ,T !, (20)

where $«t % ; i+i+d+N~0,s 2! , and let Zd be the MLE of d. Define also [«t �
~1 � L! Zdyt and [r � ~ [r1, + + + , [rm!

' with [ri being the ith-order autocorrelation
of $ [«t % . Then it holds that, for any fixed m,

MT [rr N�0, Im �
6

p2 gm gm
' 	, (21)

where gm � ~1, 12_ , + + + ,10m!' .

We note in passing that the preceding result holds true without imposing nor-
mality on $«t % ~see Giraitis and Surgailis, 1990!+ Then we obtain the following
theorem+

THEOREM 1+ The LM test for H0 : r � 0 vs. H1 : r � 0 in the model (17)
rejects H0 when

ST 3 � MT (
i�1

T�1

[ai [ri��(
i�1

T�1

[ai
2 �

6

p2 �(
i�1

T�1 1

i
[ai	2	102

(22)

takes large values, where ST 3 r N~0,1! under H0.

We have derived the LM tests based on ST1, ST 2, and ST 3 for Cases 1–3,
respectively+ These statistics are, apart from the normalizing factor, a linear com-
bination of residual autocorrelations, where the weights are autocovariances of
the inverse process to the signal+ In the next section we examine the asymptotic
properties of these tests under a sequence of local alternatives+

3. ASYMPTOTIC LOCAL POWERS OF THE LM TESTS

In this section we investigate the asymptotic properties of the LM tests derived
in the last section+ For this purpose we compute the limiting powers of the tests
under a sequence of local alternatives, which takes the form of

H1 : r �
c

MT
, (23)

where c is a positive constant+
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3.1. Case 1

We consider the asymptotic distribution of ST1 in ~13! as T r ` under r �
c��MT + Let us define by ri~b,r! the ith-order autocorrelation of the true inno-
vation $at % in ~6!+ Then we have, by the Taylor expansion,

[ri � ri ~ Zb,0!� ri ~b,r!�(
j�1

p ]ri ~b,r!

]bj

~ Zbj � bj !�
]ri ~b,r!

]r
~�r!

� op� 1

MT
	+ (24)

The partial derivatives on the right side of ~24! can be evaluated by using
the following lemma+

LEMMA 3+ For the model (6) with r � c��MT , it holds that, as T r ` ,

]ri ~b,r!

]bj

r 

�1 i � j

ci�j i � j

0 i � j,

in probability, where ci’s are the coefficients in the expansion 10b~L! � 1 �
c1 L � c2 L2 � + + + , and

]ri ~b,r!

]r
r �ai � bi � b1bi�1 � {{{� bp�i bp ,

in probability.

It follows from ~24! and Lemma 3 that

MT [ri � MT ri ~b,r!�(
j�1

p

fi�jMT ~ Zbj � bj !� cai � op~1!, (25)

where fi�j � �1 for i � j, ci�j for i � j, and 0 for i � j+ Note also that the
asymptotic distribution of Zbj is affected by r � c��MT + Then we obtain the
following theorem+

THEOREM 2+ For the LM statistic ST1 in (13) associated with the model in
(6), it holds that, as T r ` under r � c��MT ,

ST1r N~cv,1!,

where v � ~a 'a � s 2b 'Gp
�1b!102 with Gp given in (12).

It now follows that the limiting local power of the ST1-test can be computed
from

P~ST1 � x!r P~Z � x � cv!,

where Z ; N~0,1!+
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3.2. Case 2

Let us consider the model in ~15!, for which the LM statistic takes the form
ST 2 � �MT r1 in ~16!+We define by r1~ r! the first-order autocorrelation of the
true innovation $at % in ~15!+ Then we have

r1 � r1~0!� r1~ r!�
]r1~ r!

]r
~�r!� op� 1

MT
	

� r1~ r!�
c

MT
� op� 1

MT
	+ (26)

Thus we obtain the following theorem+

THEOREM 3+ For the LM statistic ST 2 in (16) associated with the model in
(15), it holds that, as T r ` under r � c��MT , ST 2 r N~c,1! .

It follows that the power of the ST 2-test can be computed from

P~ST 2 � x!r P~Z � x � c!+

3.3. Case 3

Let us deal with the LM statistic ST 3 in ~22! for the model in ~17!+ Defining by
ri~d,r! the ith-order autocorrelation of the true innovation $at % in ~17!, we have

[ri � ri ~ Zd,0!� ri ~d,r!�
]ri ~d,r!

]d
~ Zd � d !�

]ri ~d,r!

]r
~�r!� op� 1

MT
	

� ri ~d,r!�
1

i
~ Zd � d !�

c

MT
ai � op� 1

MT
	, (27)

where ai is defined in ~19!+ We note here that the asymptotic distribution of
MT ~ Zd � d ! is affected by r � c��MT , like that of MT ~ Zb � b! in Case 1+

The following theorem can be established by using ~27!+

THEOREM 4+ For the LM statistic ST 3 in (22) associated with the model in
(17), it holds that, as T r ` under r � c��MT ,

ST 3r N~cv,1!,

where v � �(
i�1

`

ai
2 �

6

p2 �(
i�1

` 1

i
ai	2	102

+

It follows that the power of the ST 3-test can be computed from

P~ST 3 � x!r P~Z � x � cv!+

In the next section we examine the finite sample powers of the LM tests,
comparing them with the theoretical results obtained in this section+
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4. SOME SIMULATIONS

In this section we examine, by simulations, the finite sample properties of the
present test+ Our main concern here is the power performance of the test when
the data generating process ~DGP! is made up of the signal that follows one of
Cases 1–3 discussed in Section 2 and measurement error+ For this purpose we
take up DGP’s 1– 4 subsequently+ We are also interested in how the test is sen-
sitive to misspecification of the signal that follows a different process from
those considered in this paper+ For this purpose we take up DGP’s 5–10+

Let us first consider DGP’s 1– 4 given by

DGP 1+ yt �
«t

1 � bL
� ut , b� 0+5,0+8,

DGP 2+ yt �
«t

1 � b1 L � b2 L2 � ut ~b1,b2 !� ~0+5,�0+2!, ~0+8,�0+5!,

DGP 3+ yt �
«t

1 � L
� ut ,

DGP 4+ yt �
«t

~1 � L!d
� ut , d � 0+1,0+3,0+45,

where $«t % ; i+i+d+N~0, 1!, $ut % ; i+i+d+N~0, r!, and these two sequences are
independent of each other in all DGP’s+ Note that DGP’s 1 and 2 correspond to
Case 1 dealt with before, whereas DGP 3 corresponds to Case 2 and DGP 4 to
Case 3+

Table 1 is concerned with DGP 1 and reports the powers at the nominal 5%
significance level, where the sample sizes examined are T � 100, 200, and 500
and the results are based on 5,000 replications+ It is seen that the powers do not
increase as r gets large, although they increase with T for r fixed+ In fact, for
the DGP with b � 0+8 and T � 500, the power under r � 1 is 99+6%, whereas

Table 1. Percentage powers of the LM test for DGP 1 at the 5% level

r � 0 0+5 1 5 10 20 50

b � 0+5

T � 100 3+8 11+3 12+1 8+9 6+3 5+3 4+5
200 4+0 18+0 20+8 12+3 9+1 6+2 4+9
500 4+6 33+5 41+6 22+0 13+3 8+5 6+1

b � 0+8

T � 100 3+6 38+7 52+2 41+9 26+0 14+8 7+1
200 4+0 65+6 82+5 66+9 43+7 23+6 10+7
500 4+8 96+2 99+6 96+3 78+7 43+9 16+7
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it is 43+9% under r � 20+ The reason may be that the signal $«t 0~1 � bL!%
becomes negligible and is dominated by $ut % as r gets large, which causes un-
identification of b+ The power performance is worse for the signal with b �
0+5 than for b � 0+8+ This is because the former is closer to white noise and is
consistent with the approximation formula for the local powers derived in Sec-
tion 3, which reduces, in the present case, to

P~ST1 � x! � P~Z � x � cb2 !,

where x is the upper 5% point of N~0, 1!, Z ; N~0,1!, and c � rMT + Because
this approximation cannot capture the nonmonotonic nature of the actual power,
it is evidently very poor as an overall approximation+

Table 2 is concerned with DGP 2, where two models of the AR~2! signal are
examined+ The general feature is the same as in Table 1, but the situation is
worse in the present case because the test is powerful only in a very small
region of r+ The approximation to the limiting local power is given by

P~ST1 � x! � P~Z � x � c 6b2 6Mb2
2 � 4b1

2!,

which implies that the test is more powerful for the signal with ~b1,b2! �
~0+8,�0+5! than for ~b1,b2!� ~0+5,�0+2!+ The simulation results are in accord
with this, but the approximation turns out to be quite poor+

The situation is somewhat different in the case of the random walk signal as
Table 3 reports on DGP 3, where the sample sizes T � 100, 200 and 300 are
examined at the 5% level+ The powers are increasing with r and also with T+ In
the present case the signal $«t 0~1 � L!% is nonstationary and is not dominated
by $ut % as r gets large+ The approximation to the power obtained in Section 3
is P~ST 2 � x! � P~Z � x � c!, where c � MT r+ For example, it is 63+9% for
r � 0+2 and T � 100, whereas the actual power is 40+6%+ When r � 0+2 and
T � 300, the approximate power is 96+6%, whereas the actual power is 81+0%+
As a whole the approximation gives upward bias+

Table 2. Percentage powers of the LM test for DGP 2 at the 5% level

r � 0 0+5 1 5 10 20 50

b1 � 0+5, b2 � �0+2

T � 100 4+7 7+0 6+8 4+1 4+2 4+3 3+5
200 4+4 9+8 9+5 4+4 4+4 4+3 4+3
500 4+9 14+7 16+5 4+6 5+0 4+8 4+6

b1 � 0+8, b2 � �0+5

T � 100 5+4 25+9 34+4 3+6 4+2 4+4 3+5
200 4+7 43+4 61+0 4+6 4+5 4+2 4+3
500 5+1 77+2 92+5 5+4 4+8 4+5 4+5
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Table 4 reports the powers for DGP 4 with the ARFIMA~0, d, 0! signal at
the 5% level, where T � 100, 200, and 500 are examined+ It is seen that the
powers crucially depend on the value of d and that the test is almost useless
when d is small+ This is because the signal $«t 0~1 � L!d% looks like white
noise when d is close to 0, which is one source of unidentification of d+ The
nonmonotonic behavior of the power is also observed even for d large+ This is
another source of unidentification of d+ It is really difficult to correctly iden-
tify the long memory model+ The approximation to the power is given by
P~ST 3 � x! � P~Z � x � cv!, where v � 0+019 for d � 0+1, � 0+098 for d �
0+3, � 0+176 for d � 0+45, although it is very poor+

We next examine how the present test is sensitive to the misspecification of
the signal process+ For this purpose we first consider testing AR~1! against DGP’s
5 and 6:

Table 3. Percentage powers of the LM test for DGP 3 at the 5% level

r � 0 0+2 0+5 1 2 10 50

T � 100 4+7 40+6 81+0 97+0 99+8 100+0 100+0
200 4+8 64+7 97+8 99+9 100+0 100+0 100+0
300 4+9 81+0 99+7 100+0 100+0 100+0 100+0

Table 4. Percentage powers of the LM test for DGP 4 at the 5% level

r � 0 0+5 1 5 10 20 50

d � 0+1

T � 100 2+0 1+7 1+1 0+6 0+4 0+3 0+3
200 2+4 2+6 2+3 1+1 0+6 0+7 0+6
500 3+5 4+0 3+8 1+9 1+7 1+6 1+0

d � 0+3

T � 100 3+6 6+3 5+8 4+8 2+3 1+2 0+7
200 3+1 8+9 10+9 8+9 5+6 3+3 1+4
500 4+0 13+2 17+9 18+4 11+1 6+1 2+7

d � 0+45

T � 100 3+8 10+3 12+0 15+5 10+5 6+3 2+4
200 3+5 15+3 22+7 27+7 22+6 13+2 5+4
500 4+8 27+8 42+2 54+7 45+3 30+5 12+9
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DGP 5+ yt �
~1 � aL!«t

1 � bL
, b� 0+6, a� �0+2,�0+1,0,0+1,0+2,

DGP 6+ yt �
«t

1 � bL � aL2 , b� 0+6, a� �0+2,�0+1,0,0+1,0+2+

We also consider testing the random walk against DGP’s 7 and 8:

DGP 7+ yt �
~1 � aL!«t

1 � L
, a� �0+2,�0+1,0,0+1,0+2,

DGP 8+ yt �
«t

~1 � L!~1 � aL!
, a� �0+2,�0+1,0,0+1,0+2+

Finally we consider testing the ARFIMA~0,d,0! against the DGP’s 9 and 10:

DGP 9+ yt �
~1 � aL!«t

~1 � L!d
, a� �0+2,�0+1,0,0+1,0+2, d � 0+3,

DGP 10+ yt �
«t

~1 � L!d~1 � aL!
, a� �0+2,�0+1,0,0+1,0+2, d � 0+3+

Tables 5–7 report the rejection probability of the present test against DGP’s
5–10, where Table 5 is concerned with DGP’s 5 and 6, Table 6 with DGP’s 7
and 8, and Table 7 with DGP’s 9 and 10+ Note that the null model for DGP’s 5
and 6 is AR~1!, that for DGP’s 7 and 8 it is the random walk, and that for
DGP’s 9 and 10 it is the ARFIMA~0,d,0!+ It is seen from these tables that the

Table 5. Percentage powers of the LM test for DGP’s 5 and 6 at the 5% level

a � �0+2 �0+1 0 0+1 0+2

DGP 5

T � 100 0+1 0+8 3+8 10+4 17+8
~27+4! ~9+3! ~4+5! ~6+4! ~11+3!

200 0+0 0+5 4+4 15+8 29+2
~49+4! ~16+7! ~4+8! ~9+7! ~18+8!

500 0+0 0+0 4+5 29+5 59+6
~88+1! ~32+6! ~5+0! ~19+5! ~47+2!

DGP 6

T � 100 0+0 0+3 3+8 21+7 57+0
~51+1! ~17+1! ~4+5! ~13+2! ~43+7!

200 0+0 0+1 4+4 37+5 85+2
~80+6! ~31+0! ~4+8! ~25+7! ~77+0!

500 0+0 0+0 4+5 69+5 99+5
~99+6! ~62+9! ~5+0! ~57+8! ~99+2!

Note: The entries in the parentheses are the percentage powers of the two-sided test+
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Table 6. Percentage powers of the LM test for DGP’s 7 and 8 at the 5% level

a � �0+2 �0+1 0 0+1 0+2

DGP 7

T � 100 0+0 0+3 5+0 24+4 61+7
~47+3! ~14+8! ~4+5! ~15+1! ~47+8!

200 0+0 0+1 5+0 39+8 86+5
~78+1! ~28+1! ~4+8! ~27+5! ~77+8!

500 0+0 0+0 5+0 70+8 99+6
~99+1! ~59+9! ~5+0! ~58+5! ~99+1!

DGP 8

T � 100 62+9 24+8 5+0 0+6 0+0
~49+8! ~16+2! ~4+5! ~15+7! ~49+6!

200 87+0 40+3 5+0 0+1 0+0
~79+7! ~28+5! ~4+8! ~29+1! ~80+1!

500 99+8 72+6 5+0 0+0 0+0
~99+3! ~61+4! ~5+0! ~61+7! ~99+5!

Note: The entries in the parentheses are the percentage powers of the two-sided test+

Table 7. Percentage powers of the LM test for DGP’s 9 and 10 at the 5%
level

a � �0+2 �0+1 0 0+1 0+2

DGP 9

T � 100 0+2 0+8 3+8 9+5 19+1
~11+5! ~3+4! ~2+5! ~5+6! ~12+1!

200 0+0 0+4 4+3 15+5 36+0
~29+0! ~7+9! ~3+0! ~10+1! ~26+6!

500 0+0 0+1 3+9 29+3 69+4
~72+8! ~20+9! ~3+7! ~19+9! ~59+0!

DGP 10

T � 100 21+6 9+9 3+6 0+7 0+1
~14+2! ~6+2! ~2+6! ~3+2! ~8+6!

200 40+3 16+7 4+1 0+3 0+0
~30+7! ~10+5! ~3+0! ~7+0! ~23+1!

500 75+3 32+4 3+9 0+1 0+0
~66+4! ~23+1! ~3+7! ~19+5! ~63+8!

Note: The entries in the parentheses are the percentage powers of the two-sided test+
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rejection of the null hypothesis of no measurement error can be caused by small
misspecification of the signal process as likely as by the existence of measure-
ment error+ This fact, in turn, leads us to use the present test for testing AR~ p!
against general ARMA, testing ARIMA~0,1,0! against general ARIMA, and test-
ing ARFIMA~0,d,0! against general ARFIMA+ From this point of view, the two-
sided test that rejects the null when the statistic becomes large in absolute value
may be more appropriate+ The entries in the parentheses in each table are per-
centage powers of the two-sided test at the 5% level+ It is seen that the two-
sided test captures a small departure from the null that the one-sided test fails
to detect+ Therefore it is dangerous to ascribe the rejection of the null only to
the existence of measurement error+

5. CONCLUDING REMARKS

We have suggested a unified approach to testing for the existence of measure-
ment error in time series models+ The signal processes we considered were short
memory, long memory, and random walk processes, for which we suggested
the LM test+ It was found that the power of the test crucially depends on the
signal+When the signal is stationary, it is quite difficult to detect measurement
error because of the poor performance of the test+ This fact is closely related to
unidentification, and the test loses its power when the signal is dominated by
the measurement error+ In particular, it emerges that the stationary long mem-
ory model is really difficult to correctly specify+ Our approximation to the power
turned out to be very poor for the stationary signals because it could not cap-
ture the nonmonotonic behavior of the actual power+

We also found that the present test has nonnegligible power against the mis-
specification of the signal process, so that it should be used with care unless
we have strong prior knowledge about the signal process+

REFERENCES

Adenstedt, R+K+ ~1974! On large-sample estimation for the mean of a stationary random sequence+
Annals of Statistics 2, 1095–1107+

Box, G+E+P+ & D+A+ Pierce ~1970! Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models+ Journal of the American Statistical Association
65, 1509–1526+

Giraitis, L+ & D+ Surgailis ~1990!A central limit theorem for quadratic forms in strongly dependent
linear variables and its application to asymptotical normality of Whittle’s estimate+ Probability
Theory and Related Fields 86, 87–104+

Hosking, J+R+M+ ~1981! Fractional differencing+ Biometrika 68, 165–176+
Li, W+K+ & A+I+ McLeod ~1986! Fractional time series modelling+ Biometrika 73, 217–221+
McLeod, A+I+ ~1978! On the distribution of residual autocorrelations in Box-Jenkins models+ Jour-

nal of the Royal Statistical Society (B) 40, 296–302+
Tanaka, K+ ~1983! The one-sided Lagrange multiplier test of the AR~ p! model vs the AR~ p! model

with measurement error+ Journal of the Royal Statistical Society, Series B 45, 77–80+

MEASUREMENT ERROR PROBLEM 293



Tanaka, K+ ~1996! Time Series Analysis: Nonstationary and Noninvertible Distribution Theory+ New
York: Wiley+

Tanaka, K+ ~1999! The nonstationary fractional unit root+ Econometric Theory 15, 549–582+

APPENDIX

Proof of Lemma 1. We have from ~7! that

s2 @1 � r~1 � b1
2 � {{{� bp

2!# � sa
2~1 � d1

2 � {{{� dp
2!,

s2r~�bi � b1bi�1 � {{{� bp�i bp ! � sa
2~�di � d1di�1 � {{{� dp�i dp !

for i � 1, + + + , p+ Noting that r � di � 0 and sa
2 � s2 under H0, we take the partial

derivative of

di �
rs2

sa
2 ~bi � b1bi�1 � {{{� bp�i bp !� d1di�1 � {{{� dp�i dp

with respect to r and evaluate it under H0+ Then we can deduce ~11!+ �

Proof of Lemma 2. Let ri~d ! be the ith-order autocorrelation of ~1 � L!dyt and put
r~d ! � ~r1~d !, + + + , rm~d !!' + Then we have

[r � r~ Zd !� r~d !�
]r~d !

]d
~ Zd � d !� op� 1

MT
	

� r~d !� gm~ Zd � d !� op� 1

MT
	,

so that

MT [r � MT r~d !� gmMT ~ Zd � d !� op~1!,

where Zd is the MLE of d that minimizes

L~d ! � �
1

2s2 (
t�1

T

$~1 � L!d yt %
2+

It is not hard to see

Zd � d � �� ]2L~d !

]d 2 	�1 ]L~d !

]d
� op� 1

MT
	

�
6

p2 (
i�1

T�1 1

i
ri ~d !� op� 1

MT
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and MT ~ Zd � d ! r N~0, 60p2!+ Because it is known that MT r~d ! r N~0, Im!, we
obtain

� MT r~d !

MT ~ Zd � d !	r N �0, � Im

6

p2 gm

6

p2 gm
'

6

p2
�� ,

so that

MT [r � ~Im ,� gm !� MT r~d !

MT ~ Zd � d !	� op~1!

r N�0, Im �
6

p2 gm gm
' 	,

which establishes the lemma+ �

Proof of Theorem 1. It follows from ~21! that

MT (
i�1

T�1

ai [ri r N�0, (
i�1

`

ai
2 �

6

p2 �(
i�1

` 1

i
ai	2	+

Then we can deduce that ST 3 in ~22! tends to N~0,1! because [ai converges to ai in
probability, which establishes the theorem+ �

Proof of Lemma 3. Putting ri � ri~b,r! we first have

]ri

]bj

�
]

]bj
(

t�i�1

T

at�i at�(
t�1

T

at
2 �

1

Tsa
2 (

t�i�1

T ]at

]bj

at�i � op~1!,

where

]at

]bj

�
]

]bj

b~L!yt

d~L!
� �

at�j

b~L!
+

This gives the expression for ]ri 0]bj in the lemma+ Similarly we have

]ri

]r
�

1

Tsa
2 (

t�i�1

T ]at

]r
at�i � op~1!,

where

]at

]r
� (

j�1

p ]at

]dj

]dj

]r
�(

j�1

p at�j

d~L! ��aj � O� 1

MT
		+

Then we have the expression for ]ri 0]r given in the lemma+ �
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Proof of Theorem 2. Putting
I
yt�1 � ~ yt�1, + + + , yt�p!

' we have

Zb � �(
I
yt�1
I
yt�1
' 	�1

(
I
yt�1 yt � b� �(

I
yt�1
I
yt�1
' 	�1

(
I
yt�1~«t � b~L!ut !,

which yields, under r � c��MT ,

MT ~ Zb� b! � Gp
�1� 1

MT ( Ixt�1«t � cs2b	� op~1!

r N~�cs2Gp
�1b, s2Gp

�1!,

where
I
xt�1 � ~xt�1, + + + , xt�p!

' + Substituting this into ~25!, we obtain in matrix notation

MT [r � MT r � J�1~b!MT ~ Zb~0!� b!� c~a� s2J�1~b!Gp
�1b!� op~1!,

where Zb~0! is the LSE of b under H0+ Then, noting that a 'J�1~b! � b ' and using the
arguments in McLeod ~1978!, we can establish the theorem+ �

Proof of Theorem 3. It follows from ~26! that

MT r1 � MT r1~ r!� c � op~1!,

which evidently yields the theorem because ST 2 � �MT r1+ �

Proof of Theorem 4. Putting

L~d,r! � �
T

2
log sa

2 �
1

2sa
2 (

t�1

T � ~1 � L!d

d~L!
yt�2

,

we have

0 �
]L~ Zd,0!
]d

�
]L~d,r!

]d
�
]2L~d,r!

]d 2 ~ Zd � d !� r
]2L~d,r!

]d]r
� Op~1!,

which yields

MT ~ Zd � d ! � ��
1

T

]2L~d,r!

]d 2 	�1 1

MT
� ]L~d,r!]d

�
c

MT

]2L~d,r!

]d]r 	
�

6

p2 �MT (
i�1

T�1 1

i
ri ~d,r!� c(

i�1

T 1

i
ai	+

Substituting this into ~27!, we obtain

MT (
i�1

T�1

ai [ri � MT (
i�1

T�1�ai �
6

ip2 (
j�1

T 1

j
aj	 ri ~d,r!� c�(

i�1

T

ai
2 �

6

p2 �(
i�1

T 1

i
ai	2	,

which establishes the theorem+ �
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