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Abstract

In the framework of the structural approach of bond pricing, we extend the Fujita-Ishizaka
model by considering more realistic payoffs. The payoff to the bondholder at time of default,
provided that default occurs prior to maturity, depends on the firm value at time of default.
We also find the new measure with the advantage to calculate the value of bond and its
financial interpretation. In addition, we present some numerical exmaples.

1 Introduction

The models for the quantitative analysis of credit risk are usually classified into two groups :
the reduced-form models and the structural models. The present article is concerned with the
latter method.

The structural-model approach is based on the evolution of the firm value and uses the option
pricing theory to determine the value of the firm’s bond. The approach was initiated by Merton
[10] and Black & Scholes [3]. In Merton’s model, the default occurs if, at the maturity of the
bond, the firm value is less than the amount of the firm’s debt. Note that the default in his
model could occur, by definition, only at the maturity.

Black & Cox [2] proposed a more realistic model by allowing premature default. In their
model, the default occurs when the firm value crosses some non-constant barrier. In other
words, the default time is defined by the first passage time of the firm value to some barrier,
corresponding to knock-out options. Later, Longstaff & Schwartz [9] and Cathcart & El-Jahel
[4] extended the Black-Cox model by considering stochastic interest rate. Those models are
called the first passage time models.

The structural approach captures so-called safety covenants in the indenture provisions. A
safety covenant allows the bondholders to force bankruptcy if certain conditions are met. In
the first passage time models, the condition for default is that the firm value falls to default
boundary. The first passage time models facilitate the modeling of safety covenants, but such
safety covenants are often too strict for the company. Recently Fujita & Ishizaka [7] proposed
bonds with more relaxed safety covenants by giving some generalizations of the first passage
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time models. In their model, the first passage time of the firm value to some barrier is only
considered to be the “caution time,” and the default occurs if some conditions are satisfied after
the caution time. This corresponds to Edokko options proposed by Fujita & Miura [8]. The
various conditions for the default considered in the Fujita-Ishizaka model give more flexibility
to the structural-model approach.

However, the Fujita-Ishizaka model has some drawbacks. When the default occurs prior to
maturity, the firm’s value at the default time should be invested in riskless bonds up to maturity,
but the payoffs to the bondholder in the Fujita-Ishizaka model are not made that way.

The purpose of the present article is to consider models with more realistic payoffs and to
value corporate bonds accordingly. The conditions for default considered here are the same as
(part of) Black & Cox [2] and Fujita & Ishizaka [7]. But, contrary to Fujita-Ishizaka model,
we consider that the payoff to the bondholder at time of default, provided that default occurs
prior to maturity, depends on the firm value at time of default. We also find the new measure
with the advantage to calculate the value of bond and its financial interpretation. This paper is
organized as follows. In Section 2 we propose our basic model and explain the difference from
the Fujita-Ishizaka model. In Section 3, we consider four conditions for default and price the
corporate bonds for each condition. In Section 4, some numerical examples of our models are
presented. Section 5 gives a summary.

2 Our basic model

Suppose that (Ω,F ,P) is a probability space, and {Ft}t≥0 is a filtration on (Ω,F). We assume
that trading occurs continuously in a frictionless market with no tax and no transaction cost,
and risk free rate r is a constant.

Consider a firm that issues a single zero coupon bond with face value L and maturity T . The
firm value is modeled by the geometric Brownian motion:

dVt = rVtdt + σVtdWt, t ≥ 0,

V0 = v,

where σ and v are constants and W is a standard Brownian motion. We assume that v ≥ L
Note that P is already the martingale measure, that is, the discounted firm value e−rtVt is a
martingale under P. This assumption is not restrictive after a suitable measure change.

The stopping time τA is defined as the first passage time of V to the level A:

τA := inf{t > 0|Vt = A}, (inf ∅ = ∞)

where A is a positive constant satisfying A < L. We call τA the “caution time.” Moreover, we
specify the “default time” depending on τA and denote by g(τA). Note that g(τA) ≥ τA. We
say that the default occurs if and only if g(τA) ≤ T . Four examples of g(τA) are considered
in the next section, corresponding to four different safety covenants of the corporate bond. As
soon as the default occurs, the firm is forced into restructuring or bankruptcy in which case the
bondholder take over the firm.

The payoff to the bondholder at maturity is modeled as follows.

1. If the default does not occur and if the firm value at maturity is greater than L, then the
payoff is L, where L is a positive constant smaller than v.
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2. If the default does not occur but if the firm value is less than L, then the payoff is β1VT ,
where β1 is a positive constant satisfying 0 ≤ β1 ≤ 1. (This case is essentially a default,
but in this paper we refer to the next case as “default”. )

3. If the default occurs, then the payoff is a constant fraction of the firm value at default
time invested in riskless bonds up to maturity. That is, the payoff is er(T−g(τA))β2Vg(τA),
where β2 is a positive constant satisfying 0 ≤ β2 ≤ 1.

Then, the payoff in our model is

X(T ) = L1{g(τA)>T,VT ≥L} + β1VT1{g(τA)>T,VT <L} + er(T−g(τA))β2Vg(τA)1{g(τA)≤T}. (1)

Note that the third term is different from that of Fujita & Ishizaka [7].
Under this setting, the price of corporate bond at time 0, D(0, T ), is derived as follows(see

Baxter & Rennie [1], for example):

D(0, T ) = E[e−rT X(T )]. (2)

3 Four examples with pricing

In the sequel, we will sometimes use the new measure Q with its Radon-Nikodym density defined
by

dQ
dP

:=
e−rT VT

v
.

Girsanov’s theorem implies that WQ
t := Wt − σt is a Brownian motion under Q. Note the

following points about Q. First, this measure-change from P to Q can simplify the calculation.
Second, Q is the matingale measure, with Vt as a numéraire.

Example 3.1

The default time is defined as
g(τA) := τA.

This is nothing but the first-passage-time model of Black & Cox [2], except for the default
boundary.

In this case, the payoff to the bondholder at maturity is

X(1)(T ) = L1{τA>T,VT≥L} + β1VT1{τA>T,VT <L} + er(T−τA)β2A1{τA≤T}. (3)

Then, the price of corporate bond at time 0 is given by

D(1)(0, T ) = E[e−rT L1{τA>T,VT ≥L}] + E[e−rT β1VT1{τA>T,VT <L}]
+ E[e−rτAβ2A1{τA≤T}]

=: I
(1)
1 + I

(1)
2 + I

(1)
3 ,
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where

I
(1)
1 = E[e−rT L1{τA>T,VT≥L}]

= e−rT L · P{τA > T, VT ≥ L}

= e−rT L

{
Φ

(
log v

L + (r − 1
2σ2)T

σ
√

T

)
− (

A

v
)

2r
σ2 −1Φ

(
log A2

vL + (r − 1
2σ2)T

σ
√

T

)}
, (4)

I
(1)
2 = E[e−rT β1VT1{τA>T,VT <L}]

= β1vE

[
e−rT VT

v
1{τA>T,VT <L}

]

= β1vEQ[1{τA>T,VT <L}]
= β1v ·Q{τA > T, VT < L}

= β1v

[
Φ

(
log L

v − (r + 1
2σ2)T

σ
√

T

)
− Φ

(
log A

v − (r + 1
2σ2)T

σ
√

T

)

− (
A

v
)

2r
σ2 +1

{
Φ

(
log vL

A2 − (r + 1
2σ2)T

σ
√

T

)
− Φ

(
log v

A − (r + 1
2σ2)T

σ
√

T

)}]
, (5)

I
(1)
3 = E[e−rτAβ2A1{τA≤T}]

= β2v ·Q{τA ≤ T}

= β2v

{
Φ

(
log A

v − (r + 1
2σ2)T

σ
√

T

)
+ (

A

v
)

2r
σ2 +1Φ

(
log A

v + (r + 1
2σ2)T

σ
√

T

)}
, (6)

and Φ(·) denotes the standard normal distribution function for a standardized normal variable.
Remark. There are errors in the equations (6) and (7) of Fujita & Ishizaka [7]. They must be
replaced by (4) and (5), respectively, of the present paper.

Example 3.2

The default time is defined as

g(τA) := inf{t ≥ τA|
∫ t

τA

1(−∞,A](Vu)du > αT}, (inf ∅ = ∞)

where α is a positive constant satisfying 0 < α < 1. Under this setting, default does not occur
if the occupation time of the firm value below A is relatively short. This setting corresponds to
the cumulative Parisian option of Chesney, Jeanblanc-Picqué & Yor [5]. This option is a down-
and-out option knocked out if the occupation time of the underlying asset below A exceeds αT .

In this case, the payoff to the bondholder at maturity is

X(2)(T ) = L1{
∫ T

0
1(−∞,A](Vu)du≤αT,VT ≥L}

+ β1VT1{
∫ T

0
1(−∞,A](Vu)du≤αT,VT <L}

+ er(T−g(τA))β2Vg(τA)1{
∫ T

0
1(−∞,A](Vu)du>αT}. (7)
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Then, the price of corporate bond at time 0 is given by

D(2)(0, T ) = E[e−rT L1{
∫ T

0
1(−∞,A](Vu)du≤αT,VT ≥L}]

+ E[e−rT β1VT1{
∫ T

0
1(−∞,A](Vu)du≤αT,VT <L}]

+ E[e−rg(τA)β2Vg(τA)1{
∫ T

0
1(−∞,A](Vu)du>αT}]

=: I
(2)
1 + I

(2)
2 + I

(2)
3 ,

where

I
(2)
1 = E[e−rT L1{

∫ T

0
1(−∞,A](Vu)du≤αT,VT ≥L}]

= e−rT L ·P
{∫ T

0
1(−∞,A](Vu)du ≤ αT, VT ≥ L

}

= e−rT L

∫ T (1−α)

0
du

∫ +∞
1
σ

log L
A

da

∫ αT

0
db exp{r − 1

2σ2

σ
a − (r − 1

2σ2)2(T − u)
2σ2

}

× h
(WT−u,

∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)fτA
(u)

+ e−rT L

∫ T

T (1−α)
duΦ

(
log A

L + (r − 1
2σ2)(T − u)

σ
√

T − u

)
fτA

(u) + I
(1)
1 , (8)

I
(2)
2 = E[e−rT β1VT 1{

∫ T

0
1(−∞,A](Vu)du≤αT,VT <L}]

= β1v ·Q
{∫ T

0
1(−∞,A](Vu)du ≤ αT, VT < L

}

= β1v

∫ T (1−α)

0
du

∫ 1
σ

log L
A

−∞
da

∫ αT

0
db exp{r + 1

2σ2

σ
a − (r + 1

2σ2)2(T − u)
2σ2

}
× h

(WT−u,
∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)f ′
τA

(u)

+ β1v

∫ T

T (1−α)
duΦ

(
log L

A − (r + 1
2σ2)(T − u)

σ
√

T − u

)
f ′

τA
(u) + I

(1)
2 , (9)

I
(2)
3 = E[e−rg(τA)β2Vg(τA)1{

∫ T

0
1(−∞,A](Vu)du>αT}]

= β2v ·Q
{∫ T

0
1(−∞,A](Vu)du > αT

}

= β2v

∫ T (1−α)

0
du

∫ +∞

−∞
da

∫ T−u

αT
db exp{r + 1

2σ2

σ
a − (r + 1

2σ2)2(T − u)
2σ2

}
× h

(WT−u,
∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)f ′
τA

(u), (10)

fτA
(u) =

log v
A√

2πσ2u3
exp{−(log A

v − (r − 1
2σ2)u)2

2σ2u
}, (11)
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h
(Wt,

∫ t

0
1(−∞,0](Ws)ds)

(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

2π

∫ t

b
ds

1√
s3(t − s)3

exp{− a2

2(t − s)
} for a > 0

−a

2π

∫ b

0
ds

1√
s3(t − s)3

exp{−a2

2s
} for a < 0.

(12)

Example 3.3

The default time is defined as

g(τA) := inf{t ≥ τA|
∫ t

τA

1(−∞,A](Vu)du > α(T − τA)}.

This setting is very similar to Example 3.2, except that the default time depends on the caution
time. That is, in this setting, it is less probable that default occurs, as a period between the
caution time and maturity is longer. This condition for default is the same as Section IV.1
of Fujita & Ishizaka [7], corresponding to the cumulative Parisian Edokko option of Fujita &
Miura [8]. This option is also a down-and-out option knocked out if, after the caution time, the
occupation time of the underlying asset below A exceeds α(T − τA).

In this case, the payoff to the bondholder at maturity is

X(3)(T ) = L1{{τA≤T,
∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT≥L}∪{τA>T,VT ≥L}}

+ β1VT1{{τA≤T,
∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT <L}∪{τA>T,VT <L}}

+ er(T−τA)β2Vg(τA)1{τA<T,
∫ T

τA
1(−∞,A](Vu)du>α(T−τA)}. (13)

Then, the price of corporate bond at time 0 is given by

D(3)(0, T ) = E[e−rT L1{{τA≤T,
∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT ≥L}∪{τA>T,VT≥L}}]

+ E[e−rT β1VT1{{τA≤T,
∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT <L}∪{τA>T,VT <L}}]

+ E[e−rg(τA)β2Vg(τA)1{τA<T,
∫ T

τA
1(−∞,A](Vu)du>α(T−τA)}]

=: I
(3)
1 + I

(3)
2 + I

(3)
3 ,

where

I
(3)
1 = E[e−rT L1{{τA≤T,

∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT ≥L}∪{τA>T,VT≥L}}]

= e−rT L · P
{
{τA ≤ T,

∫ T

τA

1(−∞,A](Vu)du ≤ α(T − τA), VT ≥ L} ∪ {τA > T, VT ≥ L}
}

= e−rT L

∫ T

0
du

∫ +∞
1
σ

log L
A

da

∫ α(T−u)

0
db exp{r − 1

2σ2

σ
a − (r − 1

2σ2)2(T − u)
2σ2

}

× h
(WT−u,

∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)fτA
(u) + I

(1)
1 , (14)

I
(3)
2 = E[e−rT β1VT1{{τA≤T,

∫ T

τA
1(−∞,A](Vu)du≤α(T−τA),VT <L}∪{τA>T,VT <L}}]
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= β1v ·Q
{
{τA ≤ T,

∫ T

τA

1(−∞,A](Vu)du ≤ α(T − τA), VT < L} ∪ {τA > T, VT < L}
}

= β1v

∫ T

0
du

∫ 1
σ

log L
A

−∞
da

∫ α(T−u)

0
db exp{r + 1

2σ2

σ
a − (r + 1

2σ2)2(T − u)
2σ2

}

× h
(WT−u,

∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)f ′
τA

(u) + I
(1)
2 , (15)

I
(3)
3 = E[e−rg(τA)β2Vg(τA)1{τA<T,

∫ T

τA
1(−∞,A](Vu)du>α(T−τA)}]

= β2v ·Q
{

τA < T,

∫ T

τA

1(−∞,A](Vu)du > α(T − τA)

}

= β2v

∫ T

0
du

∫ +∞

−∞
da

∫ T−u

α(T−u)
db exp{r + 1

2σ2

σ
a − (r + 1

2σ2)2(T − u)
2σ2

}

× h
(WT−u,

∫ T−u

0
1(−∞,0](Ws)ds)

(a, b)f ′
τA

(u). (16)

Example 3.4

The default time is defined as

g(τA) :=

{
(1 − α)τA + αT if τ ′

B > (1 − α)τA + αT
∞ if τ ′

B ≤ (1 − α)τA + αT,

where
τ ′
B := inf{t ≥ τA|Vt = B},

with B a positive constant greater than A. Under this setting, default does not occur if the
firm value recovers level B within a given peiod depending on the caution time. This condition
for default is the same as in Section IV.2 of Fujita & Ishizaka [7], corresponding to the simple
Parisian like Edokko option of Fujita & Miura [8]. This option is also a down-and-out option
knocked out if, after the caution time, it takes more than α(T − τA) for the underlying asset to
return to another bar B.

In this case, the payoff to the bondholder at maturity is

X(4)(T ) = L1{{τA≤T,τ ′
B
≤(1−α)τA+αT,VT ≥L}∪{τA>T,VT≥L}}

+ β1VT1{{τA≤T,τ ′
B
≤(1−α)τA+αT,VT <L}∪{τA>T,VT <L}}

+ er(1−α)(T−τA)β2V(1−α)τA+αT1{τA≤T,τ ′
B

>(1−α)τA+αT}. (17)

Then, the price of corporate bond at time 0 is given by

D(4)(0, T ) = E[e−rT L1{{τA≤T,τ ′
B≤(1−α)τA+αT,VT≥L}∪{τA>T,VT≥L}}]

+ E[e−rT β1VT1{{τA≤T,τ ′
B≤(1−α)τA+αT,VT <L}∪{τA>T,VT <L}}]

+ E[e−r{(1−α)τA+αT}β2V(1−α)τA+αT1{τA≤T,τ ′
B>(1−α)τA+αT}]

=: I
(4)
1 + I

(4)
2 + I

(4)
3 ,
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where

I
(4)
1 = E[e−rT L1{{τA≤T,τ ′

B
≤(1−α)τA+αT,VT≥L}∪{τA>T,VT ≥L}}]

= e−rT L ·P {{τA ≤ T, τ ′
B ≤ (1 − α)τA + αT, VT ≥ L} ∪ {τA > T, VT ≥ L}}

= e−rT L

∫ T

0
du

∫ (1−α)u+αT

u
dsΦ

(
log B

L + (r − 1
2σ2)(T − s)

σ
√

T − s

)
mτ ′

B
(s − u)fτA

(u)

+ I
(1)
1 , (18)

I
(4)
2 = E[e−rT β1VT1{{τA≤T,τ ′

B
≤(1−α)τA+αT,VT <L}∪{τA>T,VT <L}}]

= β1v ·Q {{τA ≤ T, τ ′
B ≤ (1 − α)τA + αT, VT < L} ∪ {τA > T, VT < L}}

= β1v

∫ T

0
du

∫ (1−α)u+αT

u
dsΦ

(
log L

B − (r + 1
2σ2)(T − s)

σ
√

T − s

)
m′

τ ′
B
(s − u)f ′

τA
(u)

+ I
(1)
2 , (19)

I
(4)
3 = E[e−r{(1−α)τA+αT}β2V(1−α)τA+αT1{τA≤T,τ ′

B
>(1−α)τA+αT}]

= β2v ·Q{τA ≤ T, τ ′
B > (1 − α)τA + αT}

= β2v

∫ T

0
du

{
Φ

(
log B

A − (r + 1
2σ2)α(T − u)

σ
√

α(T − u)

)

−(
B

A
)

2r
σ2 +1Φ

(
log A

B − (r + 1
2σ2)α(T − u)

σ
√

α(T − u)

)}
f ′

τA
(u), (20)

f ′
τA

(u) =
log v

A√
2πσ2u3

exp{−(log A
v − (r + 1

2σ2)u)2

2σ2u
}, (21)

mτ ′
B
(s − u) =

log B
A√

2πσ2(s − u)3
exp{−(log B

A − (r − 1
2σ2)(s − u))2

2σ2(s − u)
}, (22)

m′
τ ′
B
(s − u) =

log B
A√

2πσ2(s − u)3
exp{−(log B

A − (r + 1
2σ2)(s − u))2

2σ2(s − u)
}. (23)

4 Numerical Examples

In this section, some numerical examples of the models proposed above are presented. In paticu-
lar, the effect of level A and α related to default condition on each bond price is investigated. We
use quasi-Monte Carlo simulation with Sobol’ sequence. It aims at improving the performance
of Monte Carlo simulation with regard to the convergence order and is often used for finance
applications (see Press, Teukolsky & Vetterling [11] for details).

Figure 1 describes the effect of level A on the bond prices. The parameters have been cho-
sen: v = 120, r = 0.03, σ = 0.2, T = 5, L = 100,B = 90, α = 0.1, β1 = β2 = 1. As Figure 1
shows, greater A increases D(1). This result seems strange because it becomes more probable
for greater A that “default” occurs. But differently stated, level A(or the default boundary) also
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Figure 1: The effect of A on the bond prices Parameters:v = 120, r = 0.03, σ = 0.2, T =
5, L = 100,B = 90, α = 0.1, β1 = β2 = 1

assures the bondholder of more amount than A, which is related to the third term denoted by
I
(1)
3 . Thus, when the coefficient β2 is chosen on some small level, for example β2 = 0.7, greater

A decreases D(1). Contrary to D(1), greater A decreases D(2) and D(3). These payoffs to the
bondholders at the default time are always less than A. For D(4), the additional parameter B
affects its price differently. As A is lower, each bond price converges to 80.12 which is derived
from the framework of Merton [10] with the same parameters.

Figure 2: The effect of α on the bond prices Parameters:v = 120, r = 0.03, σ = 0.2, T =
5, L = 100,A = 80,B = 90, β1 = β2 = 1

Figure 2 describes the effect of α on the bond prices. The parameters have been chosen:
v = 120, r = 0.03, σ = 0.2, T = 5, L = 100,A = 80,B = 90, β1 = β2 = 1. Greater α, which
implies a relaxation of default condition, decreases each bond price. Each bond price converges
to D(1) with the same parameters, as α is closer to 0.

5 Summary

In this paper, we considered a structural model for corporate default. In our model, if the default
occurs before maturity, then the payoff to the bondholder is a constant fraction of the firm value
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at default time invested in riskless bonds up to maturity. The payoff is thus more realistic than
in the existing models. We also valued corporate bonds according to four examples within our
framework. The measure-change technique considerably simplifies the calculation and the new
measure has a financial interpretation. The prices for some examples are in closed form. In
numerical examples, the effect of A and α related to default condition on each bond has been
presented.

Empirical studies remain to compare our models with existing ones. Also some generalizations
of the model are left for future studies, such as models with caution time different from the first
passage time to some constant barrier, and models with stochastic interest rate.
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Figure 1

Figure 2
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