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Abstract

The author proposes a new single-stock generalization of the Black-
Scholes model. The stock price process is Markovian, the volatility is
time-varying, and the market is complete. We also consider the option
pricing based on our model and a connection with the equilibrium theory.
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1 Introduction

To uniquely determine the arbitrage-free price of derivative securities such as
options, we need to model the price behavior of the underlying asset. The
celebrated Black-Scholes model [1] formulates the stock price process as

St := S0 exp
(
σWt + μt

)
and the riskless bond price as

Bt := ert,

where W is a one-dimensional standard Brownian motion, and σ, μ, and r are
constants. The model has good mathematical tractability, but it is often pointed
out that the following assumptions of the model do not fit the real-world data:

• the volatility process is constant in time;

• for every fixed time t > 0, the logarithmic rate of return 1
t log

(
St

S0

)
is

normally distributed.

More realistic continuous-time models have also been proposed, such as the CEV
model [2], the Hull-White model [6] (including the Heston model [3]), and some
jump diffusion models (e.g. Merton [10]). The books of Hull [5] and Musiela
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& Rutkowski [11] provide good references for those generalizations. For many
of those generalized models – among the above cited papers, all but the CEV
model – the market is incomplete and thus the absence of arbitrage is not a
sufficient criterion for giving the unique price of the derivative securities.

In the present article, we propose another simple single-stock generalization
of the Black-Scholes model based on the author’s working paper [13]. Our
models have the following properties:

• the stock price process is Markovian;

• the volatility is time-varying;

• the market is complete, i.e. there exists a unique risk neutral measure;

• the right and the left tails of the distribution of rate of return are asym-
metric.

This paper is organized as follows. In Section 2 we give our first model
and some examples. Some properties of our model are explained in Section 3,
and option pricing is discussed in Section 4. Section 5 gives an equilibrium
characterization of our model. In Section 6 we give our second model, the
reciprocal of the first one. The appendix is a technical note on the applicability
of the stochastic Fubini theorem for the proof of Propositions 3.1 and 3.3.

The author wishes to thank Akihiko Takahashi, Takahiko Fujita, Naoyuki
Ishimura, Marc Yor, and the anonymous referees for helpful comments. The
author would also like to acknowledge financial support from Mizuho Securities
Co., Ltd.

Notation. Throughout this paper, R++ is defined as the open interval
(0,∞).

2 Our first model and some examples

We model the stock price process S and the riskless bond price B as

St := S0 ert

∫ ∞

0

exp
{

σ(Wt + Ct) − σ2

2
t
}

λ(dσ),

Bt := ert.

Here

• W is a one-dimensional standard Brownian motion on a filtered probability
space

(
Ω, F , (Ft)t≥0, P

)
, where the filtration (Ft)t≥0 is generated by

W ;
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• λ is a deterministic measure on
(

R++, B(R++)
)

such that

λ(R++) = 1 and
∫ ∞

0

σ λ(dσ) < ∞ ;

• r and C are constants.

The stochastic process S is thus a weighted average of geometric Brownain
motions. Note that the average is taken over σ and not over t. The assumption∫∞
0

σ λ(dσ) < ∞ is a sufficient condition for the applicability of the stochastic
Fubini theorem for the proof of Propositions 3.1 and 3.3: see the Appendix for
details.

The measure λ determines the stock price dynamics. We give several exam-
ples.

Example 2.1. If the measure λ is concentrated on one point, then S is
a constant-volatility geometric Brownian motion, i.e. the Black-Scholes stock
price model.

Example 2.2. The recent paper of Ishimura & Sakaguchi [7] has pointed
out that, for the case where λ has mass 1

2 on each of the two points σ̄ ± ε, the
process becomes

St = S0 ert exp
{

σ̄ (Wt + Ct) − σ̄2+ε2

2 t
}

cosh
{

ε (Wt + Ct) − ε σ̄ t
}
.

This particular model is thoroghly investigated in their paper.

Example 2.3. Suppose λ is uniformly distributed over the interval [a, b].
Then

St = S0 ert 1
b − a

√
2π

t
exp
( (Wt + Ct)2

2t

)
·
{

Φ
(

b
√

t − Wt + Ct√
t

)
− Φ

(
a
√

t − Wt + Ct√
t

)}
,

where Φ(·) is the cumulative standard normal distribution function.

Example 2.4. Suppose λ has the following density w.r.t. the Lebesgue
measure:

dλ(σ)
dσ

=
1
Z

exp
( − a

2 σ2 + b σ
)
.

Here a > 0 and b ∈ R are both constants, and Z := 1√
a

f
(

b√
a

)
is the

normalizing constant where the deterministic function f : R → R++ is defined
by

f(x) :=
√

2π exp( x2

2 )Φ(x).
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Then

St = S0 ert · 1
1√
a

f
(

b√
a

) · 1√
a + t

f

(
(Wt + Ct ) + b√

a + t

)
.

Example 2.5. Suppose that the density of λ is

b exp
{− b (σ − �)

}
1{σ>� },

where b > 0 and � ≥ 0 are both constants. Then

St = S0 ert exp
{

� (Wt + Ct ) − �2

2
t
}

· b√
t

f

(
(Wt + Ct ) − �t − b√

t

)

with the function f(·) defined in the previous example.

3 Some properties of the stochastic process S

Proposition 3.1 There exisits a unique probability measure Q under which
the discounted stock price process

S̃t :=
St

Bt

is a martingale.

Proof. Since

S̃t = S0

∫ ∞

0

exp
{

σ(Wt + Ct) − σ2

2
t
}

λ(dσ),

we see from the Itô formula and the stochastic Fubini theorem (see the Ap-
pendix) that

dS̃t =
[

S0

∫ ∞

0

σ exp
{

σ(Wt + Ct) − σ2

2
t
}

λ(dσ)
] (

dWt + C dt
)
.

The process S̃ is thus a martingale only under the measure Q with Radon-
Nikodym density

dQ

dP

∣∣∣
Ft

= exp
( − CWt − C2

2 t
)
. �

Remark . Let WQ
t := Wt + Ct, a Q-Brownian motion. We then have

d S̃t

S̃t

=

∫∞
0

σ exp
(

σWQ
t − σ2

2 t
)

λ(dσ)∫∞
0 exp

(
σWQ

t − σ2

2 t
)

λ(dσ)
dWQ

t .
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It follows that the volatility at time t, i.e. the coefficient of dWQ
t in the above

expression, equals ∫ ∞

0

σ λt(dσ),

where the measure λt is defined by

λt(dσ) :=
exp
(

σWQ
t − σ2

2 t
)

λ(dσ)∫∞
0

exp
(

σWQ
t − σ2

2 t
)

λ(dσ)
.

(Note that λ0 = λ.) The volatility process is therefore time-varying unless the
measure λ is concentrated on one point.

Proposition 3.2 The process S is Markovian both under P and under Q.

Proof. We define the deterministic function

g(x, t) := S0 ert

∫ ∞

0

exp
{

σ(x + Ct) − σ2

2
t
}

λ(dσ);

then we see that St = g(Wt, t). The function g is strictly increasing w.r.t the
first argument, so, if we know the value of St at time t, then we also see the value
of Wt and the future dynamics of W as well. It follows that S is Markovian
under P. For the measure Q our assertion can be proved similarly with the
function

g̃(x, t) := S0 ert

∫ ∞

0

exp
{

σ x − σ2

2
t
}

λ(dσ). �

The next proposition shows a relationship between the moments of the mea-
sure λ and the variation of a “single path” of S, which is relevant to the cali-
bration of λ.

Proposition 3.3 Let n ∈ N and suppose
∫∞
0

σn λ(dσ) < ∞. Define recur-
sively

I
(0)
t :=

St

S0 ert
,

I
(k)
t :=

√
d〈I(k−1)

t 〉
dt

for k = 1, 2, . . . , n,

where 〈 · 〉 denotes the quadratic variation. Then we have that, for k = 0, 1, . . . , n,

I
(k)
t =

∫ ∞

0

σk exp
(

σWQ
t − σ2

2
t
)

λ(dσ)

and ∫ ∞

0

σk λ(dσ) = I
(k)
0 .
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Proof. The Itô formula together with the stochastic Fubini theorem proves
the assertion. See Appendix for details. �

Remark 3.4 For every fixed time t > 0, it is not hard to show the following
properties.

• Let M be the supremum of the support of the measure λ. If M < ∞
then the right tail of the distribution of the logarithmic rate of return
1
t log

(
St

S0

)
is roughly the same as that of the normal distributions with

variance M2

t . If M = ∞ then the right tail is heavier than the normal
distributions.

• Let m be the infimum of the support of λ. If m > 0 then the left tail of
the distribution of 1

t log
(

St

S0

)
is roughly the same as that of the normal

distributions with variance m2

t . If m = 0 then the left tail is thinner than
the normal distributions.

• Unless the measure λ is concentrated on one point, the tail distribution
of 1

t log
(

St

S0

)
is strictly heavier on the right than on the left.

For the model of Example 2.4, it holds that

f(x) ∼ √
2π exp( x2

2 ) (x → ∞),

f(x) ∼ 1
|x| (x → −∞),

and we can thus recover the above assertion that the distribution of 1
t log

(
St

S0

)
has a heavier right tail than the normal distributions and a thinner left tail.

For our second model of Section 6, things are completely opposite for the
right and the left tails.

4 Option pricing based on our model

Consider the European call option of S with maturity T > 0 and strike price
K > 0. Assume that no dividend is paid to the stockholders until time T.

Proposition 4.1 The call option price at time 0 ≤ t < T is

EQ
[ (ST − K)+

er(T−t)

∣∣∣Ft

]
= St

∫ ∞

0

Φ
(
− x̂t√

T − t
+ σ

√
T − t

)
λt(dσ) − K e−r(T−t) Φ

(
− x̂t√

T − t

)
,

where the measure λt is defined in the remark after Proposition 3.1 and x̂t =
x̂t(W

Q
t ) is the unique solution of the equation for x :

St er(T−t)

∫ ∞

0

exp
{

σ x − σ2

2
(T − t)

}
λt(dσ) = K.
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Remark. We can also show that, for the hedging portfolio, the amount of
stocks to hold at time t is∫ ∞

0

Φ
(
− x̂t√

T − t
+ σ

√
T − t

)
λt(dσ),

a property similar to the Black-Scholes case.

Proof of Proposition. Since S is a weighted average of constant-volatility
geometric Brownain motions, it is possible to use Jamshidian’s trick [8], orig-
inally for coupon-bearing bonds, to prove our assertion. In more detail, we
proceed as follows. Since

ST = St er(T−t)

∫ ∞

0

exp
{

σ (WQ
T − WQ

t ) − σ2

2
(T − t)

}
λt(dσ) a.s.,

it follows that

ST > K ⇐⇒ WQ
T − WQ

t > x̂t

almost surely conditioned by Ft, and

EQ
[ (ST − K)+

er(T−t)

∣∣∣Ft

]

= e−r(T−t) EQ
[
ST 1{ST >K }

∣∣ Ft

] − K e−r(T−t) Q
(
ST > K

∣∣Ft

)

= St

∫ ∞

0

EQ
[

exp
{

σ (WQ
T − WQ

t ) − σ2

2
(T − t)

}
1{W Q

T −W Q
t >x̂t }

∣∣∣ Ft

]
λt(dσ)

−K e−r(T−t) Q
(
WQ

T − WQ
t > x̂t

∣∣Ft

)

= St

∫ ∞

0

Φ
(
− x̂t√

T − t
+ σ

√
T − t

)
λt(dσ) − K e−r(T−t) Φ

(
− x̂t√

T − t

)
.

5 An equilibrium characterization

In this section, we will give an equilibrium formulation of stock price processes
and will discuss how our stock price model S is characterized among the equi-
libria. Suppose that there are two kinds of securities in the market, namely the
stock and the riskless bond. The time horizon T is set to be finite.

The assumptions for our equilibrium formulation are as follows.

• The initial stock price is already given.

• Only the initial endowments are considered. No endowment is given at
time t > 0.
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• No consumption is considered. Each agent is interested only in her fi-
nal wealth realized by her trades together with her initial endowment.
The utility functions are heterogeneous and are either power utilities or
logarithmic utilities.

• For simplicity, we also assume that

– no dividend is paid to the stockholders;
– the interest rate is zero.

Definition 5.1 Let (A,A , ν) be a measure space, where {a} ∈ A for all
a ∈ A. Consider the two measurable functions

V : A → R++,

p : A → (−∞, 1)

and a constant s0 > 0. We assume that∫
A

V (a) ν(da) < ∞ and
∫

A

1
1 − p(a)

V (a) ν(da) < ∞.

The economic interpretation is as follows. The set of all agents in the market
is formulated by the measure space (A,A , ν), which is used for the theory of
large economies, c.f. Hildenbrand [4]. V (a) is interpreted as the value of the
securities endowed initially to agent a, and p(a) is the exponent of the agent’s
power utility, with the convention that the utility is set to be logarithmic if
p(a) = 0. (See Definition 5.3 for deatils.) Also, s0 is interpreted as the initial
total market value of the stock. We can interpret 1

1−p(a) as the risk tolerance for
agent a, so the second assumption of Definition 5.1 says that the risk tolerance
of the entire market is finite.

In the following definitions, St is the total market value process of the stock,
and θ∗t (a) represents the weight of agent a’s portfolio invested in the stock at
time t. Moreover, Vt

(
a, θ∗(a)

)
is the value process for agent a.

Definition 5.2 Let
(

Ω, F , (Ft)t∈[0,T ], P
)

be a filtered probability space,
satisfying the usual conditions, carrying a one-dimensional standard Brownian
motion (Wt)t∈[0,T ]. Assume that the filtration (Ft)t∈[0,T ] is generated by W .
An R++-valued semimartingale (St)t∈[0,T ] is said to be of class S if⎧⎪⎨

⎪⎩
dSt

St
= σ(St, t) dWt + μ(St, t) dt,

S0 = s0,

where the two functions

σ : R++ × [0, T ] → R++,

μ : R++ × [0, T ] → R
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are deterministic and measurable. For notational simplicity, we denote σ(St, t)
and μ(St, t) by σt and μt, respectively.

Definition 5.3 The pair
(
S, { θ∗(a) }a∈A

)
of a stochastic process S ∈ S

and a family of predictable processes θ∗(a) = ( θ∗t (a) )t∈(0,T ] is said to be an
equilibrium if the following two conditions are satisfied.

1. For almost every a ∈ A, the predictable process ( θ∗t (a) )t∈(0,T ] maximises
the expected utility⎧⎨

⎩
1

p(a) E
[

VT (a, θ)p(a)
]

if p(a) = 0,

E
[

log VT (a, θ)
]

if p(a) = 0,

where Vt

(
a, θ
)

is an R++-valued semimartingale defined by the SDE⎧⎪⎪⎨
⎪⎪⎩

dVt(a, θ)
Vt(a, θ)

= θt
dSt

St
,

V0(a, θ) = V (a).

The maximum is taken over all predictable processes θ such that
∫ T

0

θ2
t σ

2
t + |θtμt| dt < ∞ a.s.

2. The market clearing condition:∫
A

Vt

(
a, θ∗(a)

)
θ∗t (a) dν(a) = St, t > 0, a.s.

For many of these settings there is more than one equilibrium. Among the
equilibria, our stock price model is characterized as follows.

Proposition 5.4 Suppose that we have the following two additional assump-
tions:

1. The market price of risk is constant, i.e., there exists a constant C > 0
such that

μt

σt
= C t ≥ 0, a.s.

2. Initially the total amount of the riskless bonds in the entire market is
zero, i.e. ∫

A

V (a) ν(da) = s0.
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Then there is a uniquie equilibrium, for which the stock price process S becomes
our stock price model with the measure λ being the distribution of C

1−p(·) w.r.t.
the measure

V (a) ν(da)∫
A

V (a) ν(da)

Remark. For our equilibrium of the proposition, The second assumption
of 5.1 corresponds to the assumption

∫∞
0 σ λ(dσ) < ∞ of Section 2. The

measure λt, defined in the remark after Proposition 3.1, is the distribution of
C

1−p(·) w.r.t. the measure

Vt

(
a, θ∗(a)

)
ν(da)∫

A
Vt

(
a, θ∗(a)

)
ν(da)

.

Therefore the stock price volatility at time t, i.e. the mean of σ with weight
λt(dσ), equals the market mean of the risk tolerance at time t.

Proof of Proposition. A standard discussion of the stochastic optimization
problems (c.f. Theorem 3.7.6 of Karatzas & Shreve [9]) gives

θ∗t (a) =
C

σt

1
1 − p(a)

and

Vt

(
a, θ∗(a)

)
= V (a) exp

{ C

1 − p(a)
(Wt + Ct) − 1

2
( C

1 − p(a)
)2

t
}
.

Furthermore, since

d
( ∫

A

Vt

(
a, θ∗(a)

)
ν(da)

)

=

∫
A

Vt

(
a, θ∗(a)

)
θ∗(a) ν(da)

St
dSt

(by the definition of Vt

(
a, θ∗(a)

)
)

= dSt (by the market clearing condition),

it follows from our second additional assumption that

St =
∫

A

Vt

(
a, θ∗(a)

)
ν(da)

=
∫

A

V (a) exp
{ C

1 − p(a)
(Wt + Ct) − 1

2
( C

1 − p(a)
)2

t
}

ν(da). �

Remark. In the working paper [13], the author tries to give a kind of “game-
theoretic” formulation of the stock price processes, where even small investors
are not purely price takers: each of them is able to give infinitesimal but direct
impact for the determination of the price at the next moment.
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6 Our second model

In addtion to our model of Section 2, we are also able to define

Xt := X0 ert 1∫∞
0 exp

{
σ(Wt + Ct) − σ2

2 t
}

λ(dσ)

as an alternative stock price model. If the measure λ is concentrated on one
point, then the process X becomes a constant-volatility geometric Brownian
motion, i.e. the Black-Scholes model.

All the properties of Section 3 have their counterparts for the process X. For
example, the counterpart for Remark 3.4 is as follows. As we will see, things are
opposite for the right and the left tails compared with the stochastic process S
of Section 3.

• Let M be the supremum of the support of the measure λ. If M < ∞ then
the left tail of the distribution of the logarithmic rate of return 1

t log
(

Xt

X0

)
is roughly the same as that of the normal distributions with variance M2

t .
If M = ∞ then the left tail is heavier than the normal distributions.

• Let m be the infimum of the support of λ. If m > 0 then the right tail of
the distribution of 1

t log
(

Xt

X0

)
is roughly the same as that of the normal

distributions with variance m2

t . If m = 0 then the right tail is thinner
than the normal distributions.

• Unless the measure λ is concentrated on one point, the tail distribution
of 1

t log
(

Xt

X0

)
is strictly heavier on the left than on the right.

The option pricing for X is not so complicated, because a call option for
X can be considered as a put option for 1

X . In more detail, we do as follows.
The risk neutral measure, with X chosen as the numeraire, is the same as the
measure Q of Sections 3 and 4. The price of the call option at time t is therefore

Xt EQ
[ (XT − K)+

XT

∣∣∣Ft

]
= Xt EQ

[
(1 − K

XT
)+
∣∣∣Ft

]
= EQ

[{
Xt − K e−r(T−t)

∫ ∞

0

exp
(

σ (WQ
T − WQ

t ) − σ2

2
(T − t)

)
λt(dσ)

}+ ∣∣∣Ft

]

= Xt Φ
( x̌t√

T − t

)
− K e−r(T−t)

∫ ∞

0

Φ
( x̌t√

T − t
− σ

√
T − t

)
λt(dσ),

where x̌t is the unique solution of the equation for x :

Xt er(T−t) 1∫∞
0 exp

{
σ x − σ2

2 (T − t)
}

λt(dσ)
= K.
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7 Appendix: Applicability of the stochastic Fu-
bini theorem

For a rigorous proof of Propositions 3.1 and 3.3 we need to apply the stochastic
Fubini theorem. What we want to show is the following proposition. In the
statement, set η := λ for Proposition 3.1 and η(dσ) := σk−1 λ(dσ) for
Proposition 3.3.

Proposition 7.1 Let η be a finite measure on
(

R++, B(R++)
)

such that
∫ ∞

0

σ η(dσ) < ∞.

Then we have∫ ∞

0

exp
(

σWQ
t − σ2

2
t
)

η(dσ)

= η(R++) +
∫ t

0

{∫ ∞

0

σ exp
(

σWQ
u − σ2

2
u
)

η(dσ)
}

dWQ
u , t ≥ 0, a.s.,

where, as defined before, WQ
t := Wt + Ct.

Proof. We use a version of the stochastic Fubini theorem (Theorem IV.46 of
Protter [12]) and reduce the problem to showing that

∫ t

0

du

∫ ∞

0

η(dσ)σ2 exp
{

2σWQ
u − σ2 u

}
< ∞

for all t > 0, a.s. Since

max
σ≥0

σ exp
{

2σ WQ
u − σ2 u

}

=
WQ

u +
√

(WQ
u )2 + 2u

2u
exp

⎧⎨
⎩

(WQ
u )2 + WQ

u

√
(WQ

u )2 + 2u

2u
− 1

2

⎫⎬
⎭ ,

it suffices to show that

∫
0+

WQ
u +

√
(WQ

u )2 + 2u

2u
exp

⎧⎨
⎩

(WQ
u )2 + WQ

u

√
(WQ

u )2 + 2u

2u
− 1

2

⎫⎬
⎭ du < ∞

almost surely. The last inequality holds by the law of the iterated logarithm.
�
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