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Abstract

The author proposes a new equilibrium model for stock price processes.
We first consider our one-period formulation, and then its continuous-time
analogue. The dynamics of the resulting price process is determined by
the distribution of risk tolerance among the agents, and for some special
case we recover the Black-Scholes stock price model.

1 Introduction

The theory of equilibrium under uncertainty was introduced by Arrow [1]. There
is now an extensive literature on the stochastic (or dynamic) equilibria as well,
see e.g. Duffie [4] and Karatzas [7]. Their equilibrium approach is formulated in
an abstract framework, and is capable of dealing with the general case. However,
since only exogenous events are used for contingencies, the theory does not
always seem to be suitable for vividly describing the energy in the stock market.
See also Radner [12].

In order to give more realistic models, there is an increasing interest in the
market microstructure theory. Two of the earliest works of the field are Gross-
man & Stiglitz [5] and Kyle [8]. Here the market mechanism for determining the
stock price is in spotlight, and asymmetric information among the agents often
plays a major role. For references see e.g. O’Hara’s book [10] and an expository
paper of Biais & Rochet [3].

In the present article, we try to give a new type of equilibrium formulation
for stock price processes. For the following three reasons our approach may be
suitable for describing short-term behavior.

∗An earlier version of this work is registered as Working Paper 49, Faculty of Commerce,
Hitotsubashi University (March 2000).
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• The current stock price is assumed to be given, and the probability dis-
tribution of the price at the next moment will be determined only by the
agents’ strategies. The fundamental value of the stock is not considered.

• The agents maximize their utility functions moment by moment, i.e. they
are myopic.

• No consumption, no production is considered.

Our approach also has the following features.

• It is possible to model both a market with the presence of large investors
and a market with small investors only.

• Our formulation is in a sense a game-theoretic one. Even small investors
are not purely price takers: each of them is able to give infinitesimal (but
direct) impact for the determination of the price at the next moment.

• The difference in risk preferences among the agents, rather than informa-
tional asymmetries, is a major factor.

• The resulting stock price process has a time-varying volatility.

This paper is organized as follows. In Section 2 we give our one-period for-
mulation and result. The assertions there are proved in Section 3. A continuous-
time analogue is considered in Section 4, and a possible extension is mentioned in
Section 5. The appendix is a technical note on the applicability of the stochastic
Fubini theorem.

The author wishes to thank Professor Akihiko Takahashi for helpful com-
ments.

2 One-period model and result

Throughout this paper, R+ is defined as the set of all nonnegative real numbers
and R++ the set of all strictly positive numbers. For x ∈ R, define x+ as
max{x, 0}.
Definition 2.1 Let (A,A, ν) be a measure space, where {a} ∈ A for all a ∈ A.
Suppose the three measurable functions are given:

V : A → R++,

ξ : A → R,

γ : A → R++.

For notational simplicity we denote V (a) by Va ; the same rule is applied for all
measurable functions on A.
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Interpretation. The measure space (A,A, ν) is interpreted as the set of all
agents in the market; this setting is used for the theory of large economies, c.f.
Hildenbrand [6]. Each a ∈ A with ν({a}) > 0 is interpreted as a large investor,
and every a ∈ A with ν({a}) = 0 is a small investor. We consider a securities
market where the agents exchange two assets, the stock and the riskless bond.
No consumption is considered, every agent is solely interested in the rate of
return of her portfolio. Assume that the interest rate is zero and that the stock
pays no dividends. We also assume that the initial stock price is already given.
Each agent a ∈ A is initially endowed with the stock worth Vaξa yen and the
bond worth Va

(
1 − ξa

)
yen, in total Va yen. As we will see in Definition 2.2

below, every agent is risk-averse, and γa represents agent a’s willingness to take
risk.

Our price change mechanism is as follows. First each agent a ∈ A decides
how much to trade assets and how much to exert influence. Then the stock
price changes, where the mean µ and the variance σ2 of the rate of change are
determined by the agents’ strategies. Furthermore, for every investor, the return
of her portfolio turns out to maximize her utility Ua given the other agents’
strategies, so things are somewhat like the Nash-equilibrium formulation.

Definition 2.2 Fix c1, c2 ∈ R++ throughout this paper. For each pair of
measurable functions

X : A → R,

ρ : A → R+

satisfying the following three conditions∫
A
|Xa| ρa dν < ∞,∫

A
|Xa| ρ2

a dν < ∞,
0 <

∫
A

X+
a dν < ∞,


 (∗)

we define µ ∈ R, σ ∈ R+, and two R-valued measurable functions θ and U on
A as

µ = µ(X, ρ) def= c1

∫
A

Xaρa dν∫
A

X+
a dν

,

σ2 = σ2(X, ρ) def= c2

∫
A
|Xa| ρ2

a dν∫
A

X+
a dν

,

θa = θa(Xa) def= ξa +
Xa

Va
,

Ua = Ua(X, ρ) def= θa µ − 1
2γa

θ2
a σ2.
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Definition 2.3 A pair ( X∗, ρ∗ ) of measurable functions

X∗ : A → R,

ρ∗ : A → R+,

is said to be an equilibrium (resp. a weak equilibrium) if it satisfies the conditions
(∗) in Definition 2.2 as well as the following (i-1), (i-2), and (ii). Here we use
the notations:

µ∗ def= µ(X∗, ρ∗),

σ∗ def= σ(X∗, ρ∗),

θ∗a
def= θa(X∗

a).

(i-1) For every a ∈ A with ν({a}) > 0, the pair (X∗
a , ρ∗a) ∈ R × R+

maximizes (resp. locally maximizes)

Ua

( { {X∗
b }b �=a, Xa

}
,
{ {ρ∗b}b �=a, ρa

})
subject to Xa ∈ R and ρa ∈ R+.

(i-2) For almost every a ∈ A with ν({a}) = 0, θ∗a solves the problem

max
θa∈R

{
θa · µ∗ − 1

2γa
θ2

a · (σ∗)2
}

with µ∗ and σ∗ considered to be given constants, and ρ∗a solves

max
ρa∈R+

{
θ∗a · c1 X∗

a ρa − 1
2γa

(θ∗a)2 · c2 |X∗
a | ρ2

a

}
.

(ii)
∫

A

X∗
a dν = 0. (Market Clearing Condition)

Interpretation. Each agent a ∈ A buys the stock worth X∗
a yen and ex-

erts influence ρ∗a. After the exchange and before the price change, her portfolio
consists of the stock worth Va · θ∗a yen and the bond worth Va · {1 − θ∗a

}
yen.

Moreover
∫

A
(X∗

a)+ dν = 1
2

∫
A
|X∗

a | dν represents the trading volume.
The condition (i-2) is heuristically derived as follows. Every small investor

wants to maximize the (non-rigorous) expression

θa(Xa) · c1

∫
A

X∗
b ρ∗b dν + Xa ρa ∆ν(a)∫

A
(X∗

b )+ dν + X+
a ∆ν(a)

− 1
2γa

θ2
a(Xa) · c2

∫
A
|X∗

b |(ρ∗b)2 dν + |Xa| ρ2
a ∆ν(a)∫

A
(X∗

b )+ dν + X+
a ∆ν(a)

≈ θa(Xa) ·
{

µ∗ +
c1 Xa ρa − µ∗ X+

a∫
A
(X∗

b )+ dν
∆ν(a)

}

− 1
2γa

θ2
a(Xa) ·

{
(σ∗)2 +

c2 |Xa| ρ2
a − (σ∗)2 X+

a∫
A
(X∗

b )+ dν
∆ν(a)

}
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subject to Xa ∈ R and ρa ∈ R+, which leads to (i-2). It should be remarked
that, for the maximization of utility, the agent here does not have to know all
of the other agents’ strategies; she uses only the values of µ∗ and σ∗.

The greater influence the agent exerts, the more favorable µ will be for
her, but at the same time the more volatile the change will be. The author
believes that the influence ρ∗a can be formulated as the extent of “infinitesimal
randomization” of each agent’s excess demand (hence the source of randomness
is purely endogenous), but to be frank he himself still does not have a 100%
clear vision of ρ∗.

Remark If ν({a}) = 0 for all a ∈ A then, by definition, there is no distinction
between an equilibrium and a weak equilibrium. Note also that in case of
�A < ∞, the number of unknown variables {X∗

a}a∈A and {ρ∗a}a∈A is 2�A,
while the number of equations they have to satisfy to be a (weak) equilibrium
is essentially 2�A + 1.

We proceed with the following three assumptions:

Assumption 1
∫

A

Va |ξa| dν < ∞ and S
def=

∫
A

Vaξa dν > 0;

Assumption 2 Γ def=
∫

A

Vaγa dν < ∞;

Assumption 3
ξa

γa
is not constant in a.

The integral S represents the initial total market value of the stock.

Theorem 2.4
(1) Under the above assumptions, the following (X∗, ρ∗ ) is a weak equi-

librium:

X∗
a = Va

{
S

Γ
γa − ξa

}
;

ρ∗a =




c1
c2

Γ
S if X∗

a > 0,

0 if X∗
a < 0,

any nonnegative number if X∗
a = 0.

For this weak equilibrium, we have that

µ∗ = C2 Γ
S

,
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σ∗ = C
Γ
S

,

Ua(X∗, ρ∗) =
C2

2
γa,

where C
def= c1√

c2
.

(2) Assume further that every a ∈ A satisfies ν({a}) = 0. Then the
above pair ( X∗, ρ∗ ) is the unique equilibrium satisfying σ∗ > 0, except for the
arbitrariness of ρ∗a for a ∈ A with X∗

a = 0. Moreover, there exists an equilibrium
with σ∗ = 0 if and only if ν

( { a ∈ A : ξa < 0 } )
> 0.

The proof will be given in Section 3.

Remarks 1. Suppose a group of agents B ∈ A get together to form a single
large (institutional) investor i with

Vi ν({i}) def=
∫

B

Va dν,

ξi
def=

∫
B

Vaξa dν∫
B

Va dν
,

γi
def=

∫
B

Vaγa dν∫
B

Va dν
.

For this new market, as far as Assumption 3 is satisfied, we get the same values
of S and Γ, and consequently the same µ∗ and σ∗. On the other hand, the
trading volume

∫
A

(X∗
a)+ dν is no longer the same.

2. It is possible to generalize our theorem for a wider class of utility
functions, e.g.

Ua(X, ρ) def= θa µ − 1
ηaγa

|θa σ|ηa ,

where ηa > 1.

Example 2.5 Suppose there exists an a ∈ A with ν({a}) > 0 such that
X∗

b > 0 for all b �= a; we will here show that the weak equilibrium (X∗, ρ∗)
of Theorem 2.4 is not an equilibrium. By the market clearing condition (ii) we
have ∫

A\{a}
(X∗

b )+ dν = −X∗
a ν({a})

= Va

{
ξa − S

Γ
γa

}
ν({a})

< Vaξa ν({a}).
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Also if Xa ↑ −Vaξa then θa(Xa) ↑ 0, which implies that

lim
Xa ↑−Vaξa

Ua

( { {X∗
b }b �=a, Xa

}
,
{ {ρ∗b}b �=a, c1

c2

γa

|θa(Xa)|
} )

=
C2

2
γa · Vaξa ν({a})∫

A\{a} (X∗
b )+ dν

>
C2

2
γa

= Ua

(
X∗, ρ∗

)
.

Thus our X∗
a and ρ∗a do not globally maximize agent a’s utility.

We can generalize the above example to give

Proposition 2.6 For each a ∈ A with ν({a}) > 0 :

(1) There exists no (X̃a , ρ̃a) ∈ R × R+ satisfying the following two
properties.

• X̃a ≥ 0 or θa(X̃a) ≥ 0,

• Ua

( { {X∗
b }b �=a, X̃a

}
,
{ {ρ∗b}b �=a, ρ̃a

} )
> Ua

(
X∗, ρ∗

)
,

where (X∗, ρ∗) is the weak equilibrium of Theorem 2.4.

(2) Suppose ξa ≥ 0 and
∫

A\{a} (X∗
b )+ dν > 0. Then, in order that there

exists some (X̃a , ρ̃a) ∈ R × R+ satisfying the following two properties

• X̃a < 0 and θa(X̃a) < 0,

• Ua

( { {X∗
b }b �=a, X̃a

}
,
{ {ρ∗b}b �=a, ρ̃a

} )
> Ua

(
X∗, ρ∗

)
,

it is necessary and sufficient that

Vaξa ν({a})∫
A\{a} (X∗

b )+ dν
+

{( Va
S
Γ γa ν({a})

2
∫

A\{a} (X∗
b )+ dν

− 1
)+

}2

> 1.

The proof uses only standard methods (such as considering some separate
cases and differentiating the utility), so it is omitted here.
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3 Proof of Theorem 2.4

Proof of Theorem 2.4 (1) It is easily seen that the pair (X∗, ρ∗) satisfies
the conditions (i-2) and (ii). The expression for µ∗ is shown as follows:

µ∗ = c1

∫
A

X∗
aρ∗a dν∫

A
(X∗

a)+ dν

= c1 · c1

c2

Γ
S

·
∫

A
(X∗

a)+ dν∫
A
(X∗

a)+ dν

= C2 Γ
S

.

The expression for σ∗ can be proved the same way. Here Assumptions 1 and
2 guarantee the integrability of X∗ and other quantities. X∗

a is not identically
zero by Assumption 3, hence

∫
A
(X∗

a)+ dν > 0.

We will divide the proof of the validity of condition (i-1) into the following
four cases of a ∈ A with ν({a}) > 0.

Case 1: X∗
a > 0 and

∫
A\{a}(X

∗
b )+ dν > 0. We see that

( ∂

∂Xa

)k

µ (X∗, ρ∗) =
( ∂

∂Xa

)k

σ2 (X∗, ρ∗) = 0 (♦)

for every k ∈ N , thus

∂

∂Xa
Ua(X∗, ρ∗) =

∂

∂ρa
Ua(X∗, ρ∗) = 0

and a little more calculation shows( ∂

∂Xa

)2

Ua(X∗, ρ∗) = − 1
V 2

a γa
· C2

( Γ
S

)2

,

( ∂

∂ρa

)2

Ua(X∗, ρ∗) = −
( S

Γ

)2

γa · c2
X∗

a ν({a})∫
A
(X∗

b )+ dν
,

∂2

∂Xa ∂ρa
Ua(X∗, ρ∗) = − c1

Va
· X∗

a ν({a})∫
A
(X∗

b )+ dν
.

The determinant of the Hessian is therefore( c1

Va

)2
{

X∗
a ν({a})∫

A
(X∗

b )+ dν
−

( X∗
a ν({a})∫

A
(X∗

b )+ dν

)2
}

> 0.
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Case 2: X∗
a > 0 and

∫
A\{a}(X

∗
b )+ dν = 0. In this case we see that

X∗
b ≤ 0 for a.e. b �= a, so if Xa > 0 then

Ua

( { {X∗
b }b �=a, Xa

}
,
{ {ρ∗b}b �=a, ρa

} )
= θa(Xa) · c1 ρa − 1

2γa
θ2

a(Xa) · c2 ρ2
a,

which is clearly maximized by our X∗
a and ρ∗a.

Case 3: X∗
a < 0. If Xa < 0 and θa(Xa) > 0, then it is easy to see that

max
ρa∈R+

Ua

( { {X∗
b }b �=a, Xa

}
,
{ {ρ∗b}b �=a, ρa

})

is solved by ρ∗a = 0. Also, given ρ∗a = 0 our X∗
a locally maximizes the utility,

since the equality (♦) in Case 1 holds for this case too.
Case 4: X∗

a = 0. In this case it is trivial that

Ua

(
X∗,

{ {ρ∗b}b �=a, ρa

})
does not depend on ρa. A calculation reveals that the right partial derivative
of Ua with respect to Xa at

(
X∗,

{ {ρ∗b}b �=a, ρa

} )
is

− c2 γa

2
∫

A
(X∗

b )+ dν

(S

Γ

)2 {
ρa − c1

c2

Γ
S

}2

ν({a}),

which is strictly negative if ρa �= c1
c2

Γ
S . Likewise the left derivative can be shown

to be strictly positive if ρa �= 0. We consider the cases ρa = 0, c1
c2

Γ
S as well and

can show that our our X∗
a and ρ∗a locally maximize the utility. �

Proof of Theorem 2.4 (2) The pair (X∗, ρ∗) in the statement of the
Theorem is the unique equilibrium satisfying σ∗ > 0. Indeed, if σ∗ > 0 then it
follows from the condition (i-2) that

θ∗a =
µ∗

(σ∗)2
γa,

X∗
a = Va

{ µ∗

(σ∗)2
γa − ξa

}
.

This together with (ii) implies

µ∗

(σ∗)2
=

∫
A

Vaξa dν∫
A

Vaγa dν
=

S

Γ
,

which gives X∗
a , ρ∗a, and consequently µ∗ and σ∗.
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Next we consider the possibility that there exists an equilibrium satisfying
σ∗ = 0. For such an equilibrium we have X∗ ρ∗ ≡ 0, thus by (i-2)

θ∗a · X∗
a =

(
ξa +

X∗
a

Va

)
· X∗

a ≤ 0

for a.e. a ∈ A. Such an X∗ exists if and only if ν
( { a : ξa < 0 } )

> 0. �

4 Continuous-time analogue

Our one-period model of Section 2 is extended to the multi-period one as follows.
Initially, each agent a is endowed with Va(0) and ξa(0). In this section her risk
preference γa is assumed not to change over time. (For the case of time-varying
γa(t) see Section 5.) The total market value of the stock changes from S(0) to
S(1), where the rate of change S(1)−S(0)

S(0) has mean µ∗(0) and standard deviation
σ∗(0), as we saw in Section 2. The change in price determines Va(1) and ξa(1)
for each agent (no additional endowment is considered), and our equilibrium
argument restarts from there, giving S(2), S(3), · · · successively. Note that each
agent maximizes her utility moment by moment.

Now we consider the continuous-time analogues of the price process S(t) and
the portfolio value Va(t), without rigorously building the model. Assumptions
1 through 3 are modified here as:

Assumption 1′
∫

A

Va(0) |ξa(0)| dν < ∞

and S(0) def=
∫

A

Va(0) ξa(0) dν > 0;

Assumption 2′
∫

A

Va(0) γa dν < ∞;

Assumption 3′ ξa(0)
γa

is not constant in a.

In addition we need

Assumption 4 γa is not constant in a,

otherwise ξa(t)
γa

would be constant in a for t > 0, which would violate the “ t > 0 ”
version of Assumption 3′. It is also convenient to assume that

Assumption 5 S(0) =
∫

A

Va(0) dν,

i.e. the net amount of bond in the market is zero. If S(0) <
∫

A
Va(0) dν then,

as we will see later, S(t) could go negative for some t > 0.
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Under the above five assumptions, the stock price process S(t) satisfies, by
analogy with Section 2,

dS(t)
S(t)

= σ∗(t) dW (t) + µ∗(t) dt

=

∫
A

Va(t) γa dν

S(t)
(
C dW (t) + C2 dt

)
,

where W is a standard one-dimensional Brownian motion starting from the
origin. Furthermore, agent a’s portfolio value Va(t) satisfies

dVa(t)
Va(t)

= θ∗a(t)
dS(t)
S(t)

= γa

(
C dW (t) + C2 dt

)
,

thus

Va(t) = Va(0) exp
{

Cγa W (t) + C2
(
γa − γ2

a

2
)
t
}
.

It follows that if Assumption 2′ is satisfied, then the same property∫
A

Va(t)γa dν < ∞ holds for all t > 0, a.s.
We see that

S(t) = S(0) +
{ ∫

A

Va(t) dν −
∫

A

Va(0) dν
}

(♣)

=
∫

A

Va(t) dν (by Assumption 5)

= S(0)

∫
A

Va(0) exp
{

Cγa W (t) + C2
(
γa − γ2

a

2

)
t
}

dν∫
A

Va(0) dν

(for a rigorous treatment of (♣) see the appendix). The dynamics of S is thus
determined by the distribution of γ with respect to the measure Va(0) dν(a)∫

A
Vb(0) dν(b)

on A. The value of S(t) is increasing with respect to the value of W (t), so the
process S is Markovian. Also,

dS(t)
S(t)

=

∫
A

Va(t) γa dν∫
A

Va(t) dν

(
C dW (t) + C2 dt

)
and hence the volatility of S is C times the market mean of γa weighted by
Va(t). We give three examples.

Example 4.1 Assumption 4 prohibits γ from being constant in a, but if
the distribution of γ is concentrated in a very small neighborhood of one sin-
gle value, then the resulting process is close to a constant-volatility geometric
Brownian motion, i.e. the Black-Scholes stock price model.
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Example 4.2 Suppose the distribution of γ has the density

1
Z

exp(−ηx2 + λx ) for x ∈ R++.

Here η ∈ R++, λ ∈ R, and Z is the normalizing constant. A calculation then
yields that

S(t) = S(0) ·
√

2η

C2t + 2η

1
f
(

λ√
2η

) · f
( CW (t) + C2t + λ√

C2t + 2η

)
,

where
f(x) def=

√
2π exp( x2

2 ) Φ(x)

and Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Moreover,

f(x) ∼ √
2π exp( x2

2 ) (x → ∞),

f(x) ∼ 1
|x| (x → −∞).

This fact implies that the distribution of log S(t) has a fatter tail on the right
than the normal distributions, and a thinner tail on the left.

Example 4.3 Suppose that the density function is

λ exp
{ − λ(x − �)

}
for x > �

and 0 for 0 < x ≤ �, where λ ∈ R++ and � ∈ R+. Then

S(t) = S(0) · λ√
C2t

exp
{

C� W (t) + C2
(
� − �2

2
)
t
}

· f
(

CW (t) + (1 − �) C2t − λ√
C2t

)

with the function f(·) defined in the previous example. If � > 0 then the distri-
bution of log S(t) has roughly the same tail on the left as a normal distribution.

Remarks 1. We can generalize the above observations to show the following.
In general, if ess inf γa > 0 then the left tail of log S(t) is roughly the same
as that of a normal distribution, whereas if ess inf γa = 0 then the left tail
is thinner than the normal distributions. Likewise, if ess sup γa < ∞ then
log S(t) has roughly the same tail on the right as a normal distribution, and
otherwise the right tail is fatter. The right tail of log S(t) cannot be thinner
than the left.

2. The price process S has a unique equivalent martingale measure Q,
under which

WQ(t) def= W (t) + Ct
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is a Brownian motion. The market is thus complete. Since S is the sum (or
integral) of some constant-volatility geometric Brownian motions driven by the
same WQ, we have that ∀T ∈ R++, ∀K ∈ R++, ∃k : A → R++,

(ST − K)+ =
∫

A

{
Va(T ) − ka

}+
dν.

Thus the price of a European call option on S is the sum of some Black-Scholes
formulae, just as Jamshidian’s trick works for options on coupon-bearing bonds
(see e.g. p.170 of Baxter & Rennie [2] or p.298 of Musiela & Rutkowski [9]).

5 Conclusion

In this paper we considered an equilibrium model for describing the short-term
stock price behavior. Under mild assumptions we proved that there exists a weak
equilibrium, which is the unique equilibrium if every agent is a small investor
and her initial endowment of the stock is non-negative. A market with the
presence of large investors is shown to be less stable than a market with small
investors only. The dynamics of the price process depends on the distribution of
risk tolerance among the agents; in particular, if the distribution is concentrated
in a small neighborhood of one single value, then the resulting process is close
to the well-known Black-Scholes model. If a group of agents get together to
form a single institutional investor, then we have the same price dynamics but
the trading volume is no longer the same.

A better understanding of the influence ρ∗, one of the key concepts for our
equilibrium mechanism, is left for future studies.

In Section 4 we considered only the case that each agent’s risk tolerance,
γa, is constant through time, but it is also possible to consider the case of
time-varying γa(t). For instance, γa(t) can be formulated so that it increases
with respect to the value of Va(t). Our equilibrium price process still exists if
Assumptions 1 through 5, appropriately modified, are all satisfied. If one of
those models fails to satisfy Assumption 2 for some finite time t, i.e. if

P
[ ∫

A

Va(t)γa(t) dν = ∞ for some t > 0
]

> 0,

then we can interpret the explosion as the burst of a price bubble.

6 Appendix: Applicability of the stochastic Fu-
bini theorem

The equality (♣) in Section 4 is intuitively clear, but to prove it rigorously we
need to apply the stochastic Fubini theorem (c.f. Protter [11], p.160). Mathe-
matically we formulate our problem as follows.
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Definition A.1 Let
(
w(t)

)
t

be a standard one-dimensional Brownian motion,
starting from the origin, on a certain filtered probability space

(
Ω,F ,Ft, P

)
.

We also consider another measure space (B,B, m) and an R+-valued measurable
function κ on it. For each b ∈ B let

(
Vb(t)

)
t

be an adapted process satisfying

dVb(t) = Vb(t) κb dw(t),

i.e.,

Vb(t) = Vb(0) exp
{

κb w(t) − κ2
b

2
t
}
.

Moreover V·(0) is assumed to be an R+-valued measurable function on B.

Proposition A.2 Suppose the integrals∫
B

Vb(0) dm and
∫

B

Vb(0) κb dm

are both finite. Then

Σ(t) def=
∫

B

Vb(t) dm and
∫

B

Vb(t) κb dm

are both finite for all t > 0, a.s. Furthermore we have that

dΣ(t) =
( ∫

B

Vb(t) κb dm
)

dw(t).

Remark Here κb corresponds to Cγa in Section 4. The Brownian motion
w(t) can be viewed as W (t) + Ct after some appropriate measure change.

Proof It is easy to prove the first half of our assertion, since

sup
b∈B

exp
{

κb w(t) − κ2
b

2
t
}

< ∞

for all t > 0, a.s. To prove the second half, we use a version of the stochastic
Fubini theorem (Theorem IV.46 of [11]) and reduce the problem to showing that∫ T

0

dt

∫
B

dm Vb(0) κ2
b exp

{
2κb w(t) − κ2

b t
}

< ∞

for all T > 0, a.s. Since

sup
b∈B

κb exp
{

2κb w(t) − κ2
b t

}
≤ max

x∈R+

x exp
{

2x w(t) − x2 t
}

=
w(t) +

√
w(t)2 + 2t

2t
exp

{ w(t)2 + w(t)
√

w(t)2 + 2t

2t
− 1

2

}
,

14



it suffices to show that∫
0+

w(t) +
√

w(t)2 + 2t

2t
exp

{ w(t)2 + w(t)
√

w(t)2 + 2t

2t
− 1

2

}
dt < ∞ a.s.

The last inequality holds by the law of the iterated logarithm. �
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