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1. Introduction

The Free boundary problems are boundary value problems de�ned on domains whose
boundaries are unknown and must be determined as the solutions. Due to nonlinearity
they easily involve chaotic phenomena. Free boundary problems often arise from the
practical situations, so investigation of chaotic phenomena is very important.

The investigation is carried out via analysis of bifurcation and attractors[10]. In the
previous work bifurcation phenomena in a free boundary problem related to natural con-
vection were analyzed numerically[13]. Attractors in free boundary porblems were ana-
lyzed theoretically[1]. However, concrete analysis was not carried out, because attractors
were considered in the in�nite-dimensional space.

Attractors of the ODE system are very important. This is because they are useful
for concrete analysis[4, 5, 7]. For autonomous ODE systems numerical computation of
Lyapunov exponents is easily carried out. If there exist positive Lyapunov exponents,
chaotic phenomena exist. However, it is diÆcult to derive the autonomous ODE system
which approximates the PDE system describing a free boundary problems.

In the paper a method for numerical computation of attractors in free boundary prob-
lems and Lyapunov exponents is presented. To see the procedure of the method a free



boundary problem with some parameters is considered. It is of the type of a two-phase
Stefan problem. The method consists of SCM(Spectral Collocation Method) [3], the
�xed domain method[12] and transformation from the nonautonomous system into the
autonomous one[2]. For one-dimensional free boudary problems it facilitates derivation
of ODE systems.

2. Test problem

We consider the following one-dimensional free boundary problem with some param-
eters.

Problem 1. For parameters j��j; j�j; js0j < 1; 0 � r � 1; q and !�, �nd u�(x; t) and
s(t) such that

u+t (x; t) = u+xx(x; t) + g+(x; t); 0 < t; �1 < x < s(t); (2.1)

u+(�1; t) = h+(t); 0 � t; (2.2)

u+(s(t); t) = 0; 0 � t; (2.3)

u+(x; 0) = f+(x); �1 < x < s0; (2.4)

u�t (x; t) = u�xx(x; t) + g�(x; t); 0 < t; s(t) < x < 1; (2.5)

u�(1; t) = h�(t); 0 � t; (2.6)

u�(s(t); t) = 0; 0 � t; (2.7)

u�(x; 0) = f�(x); s0 < x < 1; (2.8)

d

dt
s(t) = �k+(t) u+x (s(t); t) + k�(t) u�x (s(t); t); 0 < t; (2.9)

s(0) = s0 (2.10)

where

k�(t) = r + (1� r)
1

2

1� � sin t

�1 + �� sin t
� cos t; (2.11)

h�(t) = �1 + �� sin(!�t); (2.12)

g�(x; t) = q

�
�
(� � ��) cos t

(1� � sin t)2
(x� � sin t)�

�1 + �� sin t

1� � sin t
� cos t

�
; (2.13)

f+(x) = (x� s0)

�
a(x+ 1)�

1

s0 + 1

�
; (2.14)

f�(x) = (x� s0)

�
b(x� 1) +

1

s0 � 1

�
: (2.15)

Parameters a; b should be determined such that f+(x) � 0; f�(x) � 0:

Remark 1. For a = b = s0 = r = 0; !� = 1 and q = 1, there are exact solutions as



follows:

s(t) = sp(t) � � sin t; (2.16)

u�(x; t) =
�h�(t)

1� sp(t)
(x� sp(t)) = �

�1 + �� sin t

1� � sin t
(x� � sin t): (2.17)

3. Our method

In analysis of chaotic phenomena attractors play a very important role. Attractors
in the PDE system are not so useful for concrete analysis. Therefore, derivation of the
ODE system which approximates the PDE system becomes important. However, for free
boundary problems it is not easy.

In this section a method for derivation of the ODE system is presented. It consists
of the �xed domain method, the spectral (collocation) method and transformation from
the nonautonomous system into the autonomous one. To see its procedure it is applied
to Problem 1.

3.1. Spectral collocation method

The spectral methods are superior in accuracy[3]. In particular, SCM( Spectral Col-
location Method) is preferable to nonlinear problems.

In the paper, SCM using Chebyshev Polynomials and Chebyshev-Gauss-Lobatto case's
collocation points are used. In SCM it is easy to increase the order of the approximation
by increasing the number of collocation points. This feature is quite remarkable and
di�erent from other discretization methods. The application of SCM is similar to that of
FDM. So, it is easily applied to nonliear problems.

3.2. Fixed domain method

SCM can not be applied directly to a free boundary problem due to the unknown
shape of the domain. To avoid this diÆculty, we use the �xed domain method[6, 12].
Mapping functions are introduced for mapping the unknown domain to the �xed rectan-
gular domain.

We use the following mapping function (variable transformation) : (x; t)! (�; ~t) such
that

t = t(~t) = ~t; 0 � t; (3.18)

x = x(�; ~t) =

8><
>:

~s(~t) + 1

2
(� + 1)� 1; 0 � t; �1 � x � s(t);

1� ~s(~t)

2
(� � 1) + 1; 0 � t; s(t) � x � 1:

(3.19)

Using these mapping functions, we de�ne

~s(~t) = s(t(~t)); (3.20)

~u+(�; ~t) = u+(x(�; ~t); t(~t)); (3.21)

~u�(�; ~t) = u�(x(�; ~t); t(~t)): (3.22)



Then, Problem 1 is transformed into the following �xed boundary problem.

Problem 2. Find ~u�(�; ~t) and ~s(~t) such that

~u+
~t
(�; ~t) = �k+(~t)

2(� + 1)�
~s(~t) + 1

�2 ~u+� (1; ~t)~u+� (�; ~t)
� k�(~t)

2(� + 1)

~s(~t)2 � 1
~u�� (�1; ~t)~u

+

� (�; ~t) +
4�

~s(~t) + 1
�2 ~u+��(�; ~t)

+ q

(
(� � �+) cos ~t

(1 + � sin ~t)2

 
~s(~t) + 1

2
(� + 1)� 1� � sin ~t

!

+
(1 + �+ sin ~t)� cos ~t

1 + � sin ~t

�
; 0 < ~t; �1 < � < 1; (3.23)

~u+(�1; ~t) = 1 + �+ sin(!+~t); 0 � ~t; (3.24)

~u+(1; ~t) = 0; 0 � ~t; (3.25)

~u+(�; 0) =
1

4
(� � 1)fa(s0 + 1)2(� + 1)� 2g; �1 < � < 1; (3.26)

~u�~t (�;
~t) = �k+(~t)

2(� � 1)

~s(~t)2 � 1
~u+� (1; ~t)~u

�

� (�; ~t)

� k�(~t)
2(� � 1)�
~s(~t)� 1

�2 ~u�� (�1; ~t)~u�� (�; ~t)+ 4�
~s(~t)� 1

�2 ~u���(�; ~t)
+ q

(
�
(� � ��) cos ~t

(1� � sin ~t)2

 
1� ~s(~t)

2
(� � 1) + 1� � sin ~t

!

+
(1� �� sin ~t)� cos ~t

1� � sin ~t

�
; 0 < ~t; �1 < � < 1; (3.27)

~u�(�1; ~t) = 0; 0 � ~t; (3.28)

~u�(1; ~t) = �1 + �� sin(!�~t); 0 � ~t; (3.29)

~u�(�; 0) =
1

4
(� + 1)fb(s0 � 1)2(� � 1)� 2g; �1 < � < 1; (3.30)

d

d~t
~s(~t) = �k+(~t)

2

~s(~t) + 1
~u+� (1; ~t)� k�(~t)

2

~s(~t)� 1
~u�� (�1; ~t); 0 < ~t; (3.31)

~s(0) = s0: (3.32)

3.3. ODE system

Numerical computation of attractors in the ODE system can be carried out by the
applicaiton of SCM in space and time to Problem 2[6, 8]. However, this procedure is not
proper for numerical computation of Lyapunov exponents which are computed for the



ODE system. The ODE system is very important not only in numerical computation of
Lyapunov exponents but also in theoretical analysis. For its derivation SCM not in time
but in space is �rst applied.

By applying SCM in space with the following Chebyshev-Gauss-Lobatto points:

�i = cos
i�

Nx

; i = 0; 1; � � � ; Nx (3.33)

to Problem 2, we obtain the following ODE system : Problem 3. For simplicity we
substitute the symbol t for the symbol ~t.

Problem 3. Find ~u�i (t); i = 1; 2; � � � ; Nx � 1 and ~s(t) such that

d

dt
~u+i (t) = �k+(t)

2(�i + 1)�
~s(t) + 1

�2
�Nx�1X

k=1

(Dx)0;k ~u+k (t) + (Dx)0;Nx

�
�+ sin(!+t) + 1

��
�Nx�1X

k=1

(Dx)i;k ~u+k (t) + (Dx)i;Nx

�
�+ sin(!+t) + 1

��

� k�(t)
2(�i + 1)

~s(t)2 � 1

�Nx�1X
k=1

(Dx)Nx;k ~u�k (t) + (Dx)Nx;0

�
�� sin(!�t)� 1

��
�Nx�1X

k=1

(Dx)i;k ~u+k (t) + (Dx)i;Nx

�
�+ sin(!+t) + 1

��

+
4�

~s(t) + 1
�2
�Nx�1X

k=1

(Dxx)i;k ~u+k (t) + (Dxx)i;Nx

�
�+ sin(!+t) + 1

��

+ q

�
(� � �+) cos t

(1 + � sin t)2

�
~s(t) + 1

2
(�i + 1)� 1� � sin t

�

+
(1 + �+ sin t)� cos t

1 + � sin t

�
; 0 < t; (3.34)

d

dt
~u�i (t) = �k+(t)

2(�i � 1)

~s(t)2 � 1

�Nx�1X
k=1

(Dx)0;k ~u+k (t) + (Dx)0;Nx

�
�+ sin(!+t) + 1

��
�Nx�1X

k=1

(Dx)i;k ~u�k (t) + (Dx)i;0
�
�� sin(!�t)� 1

��

� k�(t)
2(�i � 1)�
~s(t)� 1

�2
�Nx�1X

k=1

(Dx)Nx;k ~u�k (t) + (Dx)Nx;0

�
�� sin(!�t)� 1

��
�Nx�1X

k=1

(Dx)i;k ~u�k (t) + (Dx)i;0
�
�� sin(!�t)� 1

��

+
4�

~s(t)� 1
�2
�Nx�1X

k=1

(Dxx)i;k ~u�k (t) + (Dxx)i;0
�
�� sin(!�t)� 1

��

+ q

�
�
(� � ��) cos t

(1� � sin t)2

�
1� ~s(t)

2
(�i � 1) + 1� � sin t

�



+
(1� �� sin t)� cos t

1� � sin t

�
; 0 < t; (3.35)

d

dt
~s(t) = �k+(t)

2

~s(t) + 1

�Nx�1X
k=1

(Dx)0;k ~u+k (t) + (Dx)0;Nx

�
�+ sin(!+t) + 1

��
;

�k�(t)
2

~s(t)� 1

�Nx�1X
k=1

(Dx)Nx;k ~u�k (t) + (Dx)Nx;0

�
�� sin(!�t)� 1

��
; 0 < t; (3.36)

~u+i (0) =

�
a

4
(s0 + 1)2(�i + 1)�

1

2

�
(�i � 1); (3.37)

~u�i (0) =

�
b

4
(s0 � 1)2(�i � 1)�

1

2

�
(�i + 1); (3.38)

~s(0) = s0: (3.39)

Of course, it is easy to change Nx. This means original attractors of the PDE system
can be approximated arbitrarily by the method. This feature of the method is very
important from the theoretical view point. For Nx = 2 the ODE system becomes as
follows.

Problem 4. Find ~u�1 (t) and ~s(t) such that

d

dt
~u+1 (t) = �

k+(t)

2
�
~s(t) + 1

�2 �4~u+1 (t)� �+ sin(!+t)� 1
��
�+ sin(!+t) + 1

�

+
k�(t)

2
�
~s(t)2 � 1

��4~u�1 (t)� �� sin(!�t) + 1
��
�+ sin(!+t) + 1

�

�
4�

~s(t) + 1
�2 �2~u+1 (t)� �+ sin(!+t)� 1

�

+ q

�
(� � �+) cos t

(1 + � sin t)2

�
~s(t)� 1

2
� � sin t

�

+
(1 + �+ sin t)� cos t

1 + � sin t

�
; 0 < t; (3.40)

d

dt
~u�1 (t) = �

k+(t)

2
�
~s(t)2 � 1

��4~u+1 (t)� �+ sin(!+t)� 1
��
�� sin(!�t)� 1

�

+
k�(t)

2
�
~s(t)� 1

�2 �4~u�1 (t)� �� sin(!�t) + 1
��
�� sin(!�t)� 1

�

�
4�

~s(t)� 1
�2 �2~u�1 (t)� �� sin(!�t) + 1

�

+ q

�
�
(� � ��) cos t

(1� � sin t)2

�
~s(t) + 1

2
� � sin t

�



+
(1� �� sin t)� cos t

1� � sin t

�
; 0 < t; (3.41)

d

dt
~s(t) =

k+(t)

~s(t) + 1

�
4~u+1 (t)� �+ sin(!+t)� 1

�

�
k�(t)

~s(t)� 1

�
4~u�1 (t)� �� sin(!�t) + 1

�
; 0 < t; (3.42)

~u+1 (0) =
1

2
�

a

4
(s0 + 1)2; (3.43)

~u�1 (0) = �
1

2
�

b

4
(s0 � 1)2; (3.44)

~s(0) = s0; 0 < t: (3.45)

3.4. Transformation into the autonomous system

The ODE systems in Problems 3, 4 are not autonomous. So, transformation into the
autonomous system is necessary for numerical computation of Lyapunov exponents. It
can be done by introducing a new parameter �[2]. Problem 4 is transformed into the
following autonomous system.

Problem 5. Find ~u�1 (t); ~s(t) and �(t) such that

d

dt
~u+1 (t) = �

k+(t)

2
�
~s(t) + 1

�2 �4~u+1 (t)� �+ sinf!+�(t)g � 1
��
�+ sinf!+�(t)g+ 1

�

+
k�(t)

2
�
~s(t)2 � 1

��4~u�1 (t)� �� sinf!��(t)g+ 1
��
�+ sinf!+�(t)g+ 1

�

�
4�

~s(t) + 1
�2 �2~u+1 (t)� �+ sinf!+�(t)g � 1

�

+ q

�
(� � �+) cosf�(t)g

(1 + � sinf�(t)g)2

�
~s(t)� 1

2
� � sinf�(t)g

�

+
(1 + �+ sinf�(t)g)� cosf�(t)g

1 + � sinf�(t)g

�
; 0 < t; (3.46)

d

dt
~u�1 (t) = �

k+(t)

2
�
~s(t)2 � 1

��4~u+1 (t)� �+ sinf!+�(t)g � 1
��
�� sinf!��(t)g � 1

�

+
k�(t)

2
�
~s(t)� 1

�2 �4~u�1 (t)� �� sinf!��(t)g+ 1
��
�� sinf!��(t)g � 1

�

�
4�

~s(t)� 1
�2 �2~u�1 (t)� �� sinf!��(t)g + 1

�

+ q

�
�
(� � ��) cosf�(t)g

(1� � sinf�(t)g)2

�
~s(t) + 1

2
� � sinf�(t)g

�



+
(1� �� sinf�(t)g)� cosf�(t)g

1� � sinf�(t)g

�
; 0 < t; (3.47)

d

dt
~s(t) =

k+(t)

~s(t) + 1

�
4~u+1 (t)� �+ sinf!+�(t)g � 1

�

�
k�(t)

~s(t)� 1

�
4~u�1 (t)� �� sinf!��(t)g+ 1

�
; 0 < t; (3.48)

d

dt
�(t) = 1; 0 < t; (3.49)

~u+1 (0) =
1

2
�

a

4
(s0 + 1)2; (3.50)

~u�1 (0) = �
1

2
�

b

4
(s0 � 1)2; (3.51)

~s(0) = s0; 0 < t: (3.52)

Of course, this procedure is applicable to the general system : Problem 3.
Then SCM in time[6, 11] is applied for computing Lyapunov exponents.

4. Numerical results

In this section, numerical results are shown. We performed numerical simulation for
Nx = 2; q = 0; r = 1; � = � = 0:5 and !+ = 1: For time integration we used SCM with
11 Chebyshev-Gauss-Lobatto collocation points in the interval �t = 0:1[6, 11].

Figs. 1 - 4 show attractors in the solution space (the three-dimensional space) and
Lyapunov exponents. Attractors are computed from Problem 4. Lyapunov exponents are
computed from both Problem 5 and its linearized problem[9].
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Fig. 4. Attractor in Problem 4 for !� =
p
2. Lyapunov exponents for Problem 5 : �1 = �1:289; �2 =

�7:228; �3 = �15:75; �4 = 0:000:

For parameters investigated above attractors are not strange. So, there are no positive
Lyapunov exponents.

5. Conclusion

In the paper a method for numerical computation of attractors in free boundary
problems and their Lyapunov exponents is presented. The method consists of SCM(
Spectral Collocation Method), the �xed domain method and transformation from the
nonautonomous system into the autonomous system. To see the procedure of the method
it is applied to a free boundary problem with some parameters which is of the type of
a two-phase Stefan problem. Various attractors are found numerically and Lyapunov
exponents are computed.

For one-dimensional free boudary problems the method facilitate the derivation of
ODE systems which approximate PDE systems describing free boundary problems. SCM
is used in the method, so original attractors of the PDE system can be approximated
arbitrarily. This means the method plays a very important role in theoretical analysis.

Our next goal is to �nd strange attractors (i.e. positive Lyapunov exponents) in free
boundary problems by using our method.
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