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Optimal Bond Portfolio for Investors
with Long Time Horizons

abstract

We study the optimal bond portfolio for an investor with long

time horizon using Japanese interest rate data. A simple one-

factor term structure model is used for our numerical example.

The optimal portfolio is computed using the technique of stochas-

tic 
ows and Monte Carlo simulation. The hedging portfolio is

not negligible and the mean variance portfolio is very sensitive

to parameter values. The optimal portfolio is highly leveraged

for a typical parameter value. The investor holds a zero-coupon

bond because of the lower bound restriction on investor's wealth.

The lower bound constraint may make the optimal portfolio more

realistic.

1 Introduction

Long-term bonds are one of the most popular securities that are traded for

long time. Many articles about pricing of bonds and �xed-income securities

are published since the 1960's. Models of the term structure of interest

rates have been very successful not only in academic �eld but also in the

application of �nancial models to everyday business problems. However, it

has not been extensively studied about the optimal bond portfolios for long-

term investors using sophisticated term structure models such as Vasicek [27],

Cox, Ingersoll, and Ross [11], Heath, Jarrow, and Morton [16].

This gap in the literature may be due to the diÆculty in obtaining

tractable solutions of dynamic portfolio problem. Optimal portfolio and

consumption choice in multi-period or in continuous-time settings were in-

vestigated by Samuelson [26] and Merton [21] [22]. By assuming a model

with constant coeÆcients and solving the relevant Hamilton-Jacobi-Bellman

equation, Merton [21] produces solutions when the utility function is a mem-

ber of the family of utility functions that is called the Hyperbolic Absolute

Risk Aversion (HARA) family. If coeÆcients are not assumed to be constant,

in other words, the investment opportunity set is time varying, explicit solu-

tions for portfolio weights are available only in the special cases, for example,

where investors have log-utility.

The diÆculty in solving the optimal portfolio problem is particularly un-

fortunate, because we cannot take advantages of sophisticated term structure
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models even though there are considerable evidence of time-varying invest-

ment opportunities in �xed-income security markets. Recently a number of

authors such as Balduzzi and Lynch [1], Barberis [2], Brandt [3], and Bren-

nan, Schwartz, and Lagnando [5], Campbell and Viceira [7], Lynch [20], and

Xia [28] have used numerical methods to solve particular long run portfolio

choice problems. Kim and Omberg [18] and Liu [19] obtain exact analyt-

ical solutions for a range of continuous-time problems with predictability.

All of these papers point out the importance of \hedging portfolio" that is

a demand for the asset as a vehicle to hedge against \unfavorable" shifts

in the investment opportunity set. These papers generally concentrate on

the choice between cash and equities rather than the demand for long-term

bonds.

Campbell and Viceira [8] study inter-temporal portfolio choice in an envi-

ronment with random real interest rates, using an approximation technique

developed in their earlier papers (Campbell [6]). They calibrate their model

to historical data on the US term structure of interest rates, and report opti-

mal portfolios for investors. Investor's preferences are of the form suggested

by Epstein and Zin [14]; the investor has constant relative risk aversion and

constant inter-temporal elasticity of substitution in consumption. In order

to use their approximation results, investor's time horizon is assumed to be

in�nite.

In this paper, we compute the optimal bond portfolio using Monte Carlo

simulation approach. As discussed above, to compute the optimal consump-

tion and portfolio rule is in general diÆcult when the investment opportunity

set is time varying.1 In order to compute the optimal consumption-portfolio

rule, we use Monte Carlo simulation approach in this paper. Our control

problem is converted into the martingale formulation by standard arguments,

since markets are complete from the investor's point of view. The technique

of stochastic 
ows is then applied to facilitate the computation. (See, for

example, Nualart [23] and Protter [25].) It is possible that the result could

be derived as a corollary of the general result of Ocone and Karatzas [24] and

Detemple, Garcia, and Rindisbacher [12], in which the Malliavin calculus is

applied. However any such relation is not transparent, and the stochastic


ow is more directly related to the derivatives of the value function.2

1Brennan, Schwartz, and Lagnando [5] and Xia [28] for example solve non-linear par-

tial di�erential equation which is associated with the Hamilton-Jacobi-Bellman (HJB)

equation. Campbell and Viceira [7] use log-linear approximations to solve the investor's

multi-period discrete-time problem. Kim and Omberg [18] and Liu [19] obtain exact ana-

lytical solutions for the value function of the problem. Brandt [3] uses the investor's Euler

equations to estimate the investor's portfolio allocation to stocks.
2The Malliavin calculus can also be applied to compute option Greeks. See, for example,
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Investors are assumed to have power-utility function that is de�ned on

running consumption and wealth at a �nite time-horizon. We can thus ex-

plicitly study how terminal horizons of investors a�ect their optimal portfolio

choice. For numerical example, we assume that there is no running consump-

tion in order to reduce computational cost. Our numerical procedure however

can be easily applied to the case where investors have more complicated util-

ity functions and there are running consumption. In fact, in the later part of

this paper, we also study the case where investors have power utility function

that is de�ned only for wealth level that exceeds a certain minimum wealth

level at a terminal horizon.

We consider a simple one-factor model of the term structure of interest

rates (Brennan and Schwartz [4]) and calibrate the model to historical data

on the Japanese term structure of interest rates. The data includes the period

of Japanese zero-interest rate policy in late 90's. Nominal short rates that

are close to zero in our sample period cause some diÆculties in parameter

estimations and simulations. Although we decide to use a simple one-factor

model so that numerical computation is easily done, the model may not be

the best choice from empirical point of view. Some aÆne-term-structure

models that have square root terms in its volatility coeÆcients, such as Cox,

Ingersoll, and Ross model, might be problematic in our example, because

the existence of stochastic 
ow is not guaranteed by standard conditions.

Furthermore, to simulate random sample path could be diÆcult because of

the square root term when nominal short rates are close to zero as in our

sample period.

The remainder of this paper is structured as follows. Section 2 formally

describes the model. Properties of the optimal portfolio are discussed in

Section 3. Section 4 discusses the parameter estimation and the calibration

of the term structure model. Section 5 studies numerical solutions of the

optimal portfolio problem. Section 6 concludes.

2 Model

Let B be one dimensional standard Brownian motion in R, restricted to

some time interval [0; T ], on a given probability space (
;F ; P ). We also

�x the standard �ltration F = fFt : 0 6 t 6 Tg of B. We take as given an

adapted short-rate process r with
R T
0
jrtjdt <1. That is, rt is the continually

compounding interest rate on riskless securities at time t. There is a zero-

Fourni�e, Lasry, Lebuchoux, Lions, and Touzi [15]. The relation between the Malliavin

calculus and the stochastic 
ow is also discussed in Colwell, Elliott, and Kopp [9].
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coupon bond maturing at some future time � 6 T . By de�nition, the bond

pays no dividends before time � , and o�ers a �xed lump-sum payment at

time � that we can take without loss of generality to be 1 unit of account.

We suppose that there is an equivalent martingale measure Q and that

there is no arbitrage opportunity. Let B̂ be the standard Brownian motion in

R under Q. Let �t;� be the price of the zero-coupon bond at time t maturing

at time �; t < � < T . It is well known that �t;� is given by

�t;� = E
Q

t

�
exp

�Z �

t

�rudu
��

;

where EQ[ � ] is the expectation under Q. We also assume that there is a

smooth function of two variables g that satis�es

�t;� = g(rt; t):

No arbitrage argument implies that g satis�es the partial di�erential equation

gt(r; t) + �̂rgr(r; t) +
1

2
�̂2rgrr(r; t)� rg(r; t) = 0;

g(r; �) = 1;

where �̂r and �̂r are drift and volatility parameters of the short rate under

an equivalent martingale measure Q. It follows from Ito's lemma that

d�t;� =

�
r(t) + �(t)�r

gr(r(t); t)

g(r(t); t)

�
g(r(t); t)�t;�dt+ �r(r(t); t)

�
gr(r(t); t)

g(r(t); t)

�
�t;�dBt

� ��(t; �)�t;�dt+ ��(t; �)�t;�dB(t):

(1)

In this paper, we consider one factor term-structure models, by which we

mean models of the short rate r given by an stochastic di�erential equation

of the form

drt = �r(rt; t)dt+ �r(rt; t)dBt; (2)

where �r : R+ � [0; T ]! R and �r : R+ � [0; T ]! R are assumed to satisfy

regularity conditions that guarantee a unique strong solution for SDE (2).

Let � be one dimensional, progressively measurable market price of risk

process, which satis�es

Z T

0

j�(t)jdt < +1; P -a.s.
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and

�(t) =
��(t; �)� rt

��(t; �)
:

The positive localmartingale � is then de�ned by

�(t) := exp

�
�
Z t

0

�(s)dBs � 1

2

Z t

0

�s
2ds

�
;

which is in fact martingale. It follows from Girsanov's Theorem that Q

satis�es
dQ

dP
= �(T ):

Under the probability measure Q,

B̂(t) = B(t) +

Z t

0

�(t)dt (3)

is fFtg-standard Brownian motion.

Under the equivalent martingale measure Q, the short rate process satis-

�es the stochastic di�erential equation

dr(t) = �̂r(t)dt+ �̂r(t)dB̂(t); (4)

which means that �̂r(t) + �t�̂r(t) = �r(rt; t) and �̂r(t) = �r(rt; t). Therefore

� satis�es

�t =
�r(rt; t)� �̂r(t)

�r(rt; t)
:

The state price de
ator � is de�ned by

�t =

�
exp

�
�
Z t

0

rsds

��
�t: (5)

It follows from Ito's lemma that � and � satisfy

d�t = ��t�tdBt and d�t = ��t(rtdt+ �tdBt) (6)

with �0 = 1 and �0 = 1.

We consider investors who invest their wealth into a riskless asset and

a zero-coupon bond with maturity � . Her investment horizon is T , where

0 < T < � < T . Utility is de�ned over the space D of terminal wealth

Z, which is an FT -measurable non-negative random variable. Speci�cally,

U : D ! R is de�ned by

U(Z) = E [uT (Z)] ; (7)
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where uT : R+ ! R is the power utility function

uT (Z) =
(Z � �Z)�

�
; (8)

with � < 1, � 6= 0, and �Z � 0. If we set �Z = 0, the utility function is a

usual power utility function. If we set �Z > 0, there is the lower bound below

which terminal wealth is not permitted to fall.

Let ' be a fraction of total wealth held in a zero-coupon bond maturing

at time � . Given an adapted process ', the wealth process W ' satis�es

dW
'
t = (W

'
t 't(��(t)� rt) + rtW

'
t ) dt+W

'
t 't��(t)dBt

= �W (t) dt+ �W (t) dBt;
(9)

withW '(0) = w0. We say that ' is budget feasible, denoted by ' 2 �(w0; r0),

if W '(T ) 2 D and ' is a trading strategy satisfying W '(t) > 0, 0 6 t 6 T ,

P -almost surely, and W '(0) = w0. Investor's problem is de�ned by, for each

initial wealth w0 and initial short rate r0,

V (w0; r0) = sup
'2�(w0;r0)

E [uT (W
'(T ))]

= sup
'2�(w0;r0)

E

�
(W '(T )� �Z)�

�

�
:

(10)

3 Optimal Portfolio Strategy

In this section, we study theoretical properties of the optimal portfolio strat-

egy to problem (10). We �rst consider a power-utility function with no lower

bound on a terminal wealth level and then study a power-utility function with

a certain lower bound on a terminal wealth level. After establishing a general

statement of optimal strategies, we concentrate on one factor model of the

term structure of interest rates (Brennan and Schwartz [4]) and calculate the

optimal strategy.

3.1 Power Utility without Lower Bound

For the case with �Z = 0, the HJB equation for problem (10) is given as

follows:

sup
'2R

Jw(w; r; t)�W + Jr(w; r; t)�r(r; t) + Jt(w; r; t) +
1

2
Jww(w; r; t)�

2
W

+ Jwr(w; r; t)�W�r(r; t) +
1

2
Jrr(w; r; t)(�r(r; t))

2 = 0;

(11)
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with the boundary condition

J(w; r; T ) =
w�

�
: (12)

By standard homogeneity arguments, we can naturally conjecture that the

function J is separable:

J(w; r; t) =
w�

�
f(r; t): (13)

Substituting (13) into the HJB equation (12) and taking the �rst order con-

ditions, the optimal portfolio strategy ' is given by

' =
1

1� �

��(t; �)� r

(��(t; �))2
+

1

1� �

fr(r; t)

f(r; t)

�r(r; t)

��(t; �)
: (14)

The �rst term of (14) is the usual mean-variance portfolio that is held to

control instantaneous risk-return combination of investor's portfolio. The

second term of (14) is the hedging portfolio that is held to hedge against

unfavorable movement of the state variable r. Since the mean variance port-

folio does not depend on investor's terminal horizon, it is sometimes called as

myopic term. The hedging portfolio depends on investor's terminal horizon

through f and fr, whose values are not trivially obtained.

In order to study function f in detail, we apply the martingale approach.

Problem (10) is transformed into

sup
Z2FT

E [uT (Z)]

s.t. E [�TZ] 6 w0:
(15)

The Lagrangian L for this problem is de�ned by

L(Z; �) = sup
Z;�

E

�
Z�

�

�
� � (E[�TZ]� w0) ; (16)

with a scalar Lagrange multiplier � > 0. The complementary slackness

condition is given by E[�TZ] = w0. The �rst-order conditions for optimality

are, state-by-state,

(Z�)��1 � ��T = 0:

Then we have

Z� = (��T )
1

��1 and w0 = E[�TZ
�] = E[�T (��T )

1

��1 ]:
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Solving this equation with respect to �, we have

�� = w0
��1E[�T

�
��1 ]1��:

It then follows that

Z� = w0

�T
1

��1

E[�T
�

��1 ]
: (17)

Substituting (17) into (15), the value V (w0; r0) in (10) is given by

V (w0; r0) = E[u(Z�)] =
w0

�

�
E[�T

�
��1 ]1��: (18)

We can see from (13) that

f(r0; 0) = E[�T
�

��1 ]1��; (19)

which is estimated by evaluating E[�T
�

��1 ]1�� using Monte Carlo simulation.

In order to evaluate optimal portfolio strategy (14), it is necessary to

estimate fr. We can estimate f for many values of r and approximate fr by

taking di�erences between two grid points. However, to evaluate function f

for many points is time consuming. Furthermore it may not be easy to �nd a

good grid size that approximates fr with suÆcient accuracy. We can resolve

these diÆculties by using the stochastic 
ow technique. The value of f and

fr are estimated at the same time.

Let rx be a process that satis�es

drxt = �r(r
x
t ; t) dt+ �r(r

x
t ; t) dB(t) (20)

with rx0 = x. That is, rx is a process that starts at x and satis�es (2). De�ne

Yt = @rxt =@x. Then Y satis�es

dYt =
@�r(r

x
t ; t)

@rxt
Ytdt +

@�r(r
x
t ; t)

@rxt
YtdBt; Y0 = 1: (21)

It follows from (5) that

@�T

@x
= �T

�
�
Z T

0

Yt dt�
Z T

0

@�(rxt ; t)

@rxt
Yt dBt �

Z T

0

�(rxt ; t)
@�(rxt ; t)

@rxt
Yt dt

�
:

(22)

Then we have

fx(x; 0) = (1� �)E
h
�T

�
��1

i��
E

�
�

�� 1
�T

1

��1
@�T

@x

�

and
fx(x; 0)

f(x; 0)
= (1� �)E

h
�T

�
��1

i�1
E

�
�

�� 1
�T

1

��1
@�T

@x

�
:

Using equation (1), the optimal portfolio strategy is given as follows.
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Proposition 3.1. The optimal strategy for problem (10) with �Z = 0 is given

by

'�0 =
1

1� �

�0;�

@�0;�
@x

2
664 �0

�r(r0; 0)
+ (1� �)

E

�
�

��1�
1

��1

T
@�T
@x

�

E
h
�

�
��1

T

i
3
775

=
1

@

@x
log �0;�

�0

(1� �)�r(r0; 0)
+

@

@x
log(E[�

�
��1

T ]1��)

(1� �) @

@x
log�0;�

� MVP + HP1;

(23)

where @�T =@x is given by the system (20), (21), and (22).

Proof. This is a special case of Proposition 3.3, whose proof is in Appendix.

As we can see from (14), MVP is large if expected excess return divided

by the volatility, that is, unit risk premium is large. We can see from (23)

that unit risk premium of the bond is large if market price of risk is large,

the volatility �r of r is small, and log�0;� is not so sensitive with respect to

the current short rate level.

The numerator of HP1 is the derivative of log f(r0; 0) with respect to

initial short rate r0, where f(r0; 0) is the multiplier of the value function in

(19). Both sign and size of HP1 depends on the sensitivity of f with respect

to the short rate. The denominator is the derivative of the rate of return

of bond with respect to r0. Thus HP1 is large when the relative change in

multiplier f is large or the relative change in bond price �0;� is small.

For numerical examples, we specify a model of term-structure. We use

Brennan-Schwartz model (Brennan-Schwartz [4]) in the following numerical

examples. Drift �r and volatility �r of the short rate process is assumed to

satisfy

�r(r; t) = a1 + a2r and �r(r; t) = br; (24)

where a1, a2, and b are constant. It is also assumed that r satis�es

dr(t) = (â1 + â2rt)dt+ b̂ rt dB̂t

under the equivalent probability measure Q, where â1, â2, and b̂ are constant.

Since B̂ satis�es (3), the following equations are satis�ed:

â1 = a1;

â2 + b̂�t = a2;

b̂ = b:
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Thus the market price of risk is constant in our example:

�t =
a2 � â2

b
� �: (25)

Proposition 3.2. In the case of Brennan-Schwartz model, the optimal strat-

egy is given by

'�0 =
1

1� �

�0;�

@�0;�
@x

2
664� 1

b x
+ (1� �)

E

�
�

��1�
1

��1

T
@�T
@x

�

E
h
�

�
��1

T

i
3
775

=
�0;�

@�0;�
@x

�

(1� �) b x
+

�0;�

@�0;�
@x

E

�
�

��1�
1

��1

T
@�T
@x

�

E
h
�

�
��1

T

i
� MVP + HP1;

where the market price of risk � is constant. The system of @�T =@x is given

by (
d�t = ��t(rxt dt + �dBt);

�0 = 1:
(26)

(
drxt = (a1 + a2 r

x
t )dt+ b rxt dBt;

rx0 = x:
(27)

(
dYt = a2 Yt dt+ b Yt dBt;

Y0 = 1:
(28)

@�T

@x
= �T

�
�
Z T

0

Ytdt

�
: (29)

Proof. This is a special case of Proposition 3.3, whose proof is in Appendix.

3.2 Power Utility with Lower Bound

For the case with Z > 0, we assume that E[�T �Z] 6 w0. In other words, we

suppose that �Z is attainable by the current wealth level. Otherwise there is

no solution to investor's problem. For the case with Z > 0, the value function

is not separable with respect to w and r. The optimal portfolio strategy is

more complicated than the case with Z = 0.
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Proposition 3.3. The optimal portfolio strategy '�0 at time 0 of problem

(10) is given by

'�0 =
1

1� �

�0;�

@�0;�
@x

2
664(1� �)�0

1

�r
+ (1� �)

0
BB@(1� �)

E

�
�

��1�
1

��1

T
@�T
@x

�

E
h
�

�
��1

T

i + �
E
�
@�T
@x

�
E[�T ]

1
CCA
3
775 ;

(30)

where � is de�ned by

� =
E[ �Z�T ]

w0

:

@�T =@x is given by the system (20), (21), and (22).

Proof. See Appendix.

In the case of Brennan-Schwartz term structure model, as in proposition

3.2, we get the following result.

Proposition 3.4. In the case of Brennan-Schwartz model, the optimal port-

folio strategy of problem (10) is given as follows:

'�0 =
1

1� �

�0;�

@�0;�
@x

2
4(1� �) �

1

b rt
+ (1� �)

0
@(1� �)

E
h

�

��1�T
1

��1
@�T
@x

i
E
h
�

�
��1

T

i + �
E
�
@�T
@x

�
E[�T ]

1
A
3
5

= (1� �)
�0;�

@�0;�
@x

�

(1� �) b rt
+ (1� �)

�0;�

@�0;�
@x

E
h

�

��1�T
1

��1
@�T
@x

i
E
h
�

�
��1

T

i + �
�0;�

@�0;�
@x

E
�
@�T
@x

�
E[�T ]

� (1� �)MVP + (1� �)HP1 + �HP2:

(31)

The market price of risk �(t) takes constant value

� =
a2 � â2

b
:

The system of @�T =@x is given by (26), (27), (28), and (29).

When there is a lower bound on the terminal wealth level, the mean

variance portfolio is given by (1 � �) times the mean variance portfolio in

(23) for the case Z = 0. If initial wealth level w0 is equal to the present value

of the minimum wealth level Z and � = 1, then the mean variance portfolio

is zero. On the other hand, when � < 1, investors have suÆcient money to

invest in the risky asset so that they can obtain higher expected utility.
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The hedging portfolio consists of two parts:

(1� �)HP1 = (1� �)
@

@x
log(E[�T

�
��1 ]1��)

(1� �) @

@x
log �0;�

and

�HP2 = �
@

@x
logE[�T ]

@

@x
log �0;�

:

The �rst component of the hedging portfolio is also given by (1 � �) times

the hedging portfolio (23) for the case Z = 0. If � is less than one but is

close to one, the �rst component of hedging portfolio is small.

The numerator of HP2 is the relative change in the present value of Z as

r0 changes. The denominator is the relative change in bond price �0;� as r0
changes. Investors hold long-term bond more than w0�, that is, more than

the present value of Z, if the present value of Z is more sensitive to r0 than

to �0;� . Thus HP2 is hedging demand against changes in the present value of

Z. The hedging demand is large if the price of available bond is less sensitive

to the current short rate level.

HP2 is easily interpreted if we consider the bond whose maturity is same

as investor's time horizon, that is, � = T . It follows from �0;T = E[�T ] that

HP2 = �. Therefore HP2 suggests investors to buy the bond with maturity

T so that the bond delivers Z at time T . Then the optimal portfolio is given

by a combination of the bond that delivers Z at T and the optimal portfolio

of the investor whose utility function has no lower bound:

'�0 = (1� �) (MVP + HP1) + �:

The weight between two parts depends on the ratio � of the present value of

Z and the current wealth level w0. If E[�TZ] is close to w0 and the minimum

wealth level Z is not easily attained, then investors spend almost all of their

wealth to buy the bond that delivers Z. On the other hand, if E[�TZ] is

suÆciently smaller than w0, then investors should invest almost all of their

wealth to the mean variance portfolio and HP1.

4 Term Structure Model and Numerical Anal-

ysis

In our numerical examples, we compute the optimal portfolio strategy using

Monte Carlo simulation. Our main purpose is to study properties of the opti-

mal portfolio for reasonable parameter combinations. It is easier to elaborate
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simulation if we choose a simple term structure model. On the other hand,

a simple model is not necessarily good from empirical point of view. Recent

zero-interest-rate-policy by Bank of Japan also makes it diÆcult to choose a

model.

For example, given recent zero-interest-rate-policy by Bank of Japan,

Vasicek [27] model may not be a good choice since simulated sample paths

of nominal interest rates are likely to take negative values under reasonably

estimated parameter values. The term structure model by Cox, Ingersoll,

and Ross (CIR) [11] is less complicated but allows time-varying market price

of risk. However, to generate random sample paths of CIR model is diÆcult

when the short rate is close to zero. Because of the square root coeÆcient

in the volatility of CIR model, a randomly generated sample path often

takes negative value even if we take each time step small. Furthermore, the

existence of the stochastic 
ow of the short rate is not guaranteed by standard

suÆcient conditions if there are square root terms in coeÆcients of the short

rate process. (See, for example, Protter [25].) Since Brennan-Schwartz model

is not only simple but also is not su�ered by these problems, we use it in the

following numerical example.

Unfortunately, Brennan-Schwartz model is not so successful from empir-

ical point of view. For example, Chan, Karolyi, Longsta�, and Sanders [17]

conclude that Dothan [13] and CIR variable-rate securities model (CIR VR) [10]

perform much better than other commonly used models including Brennan-

Schwartz [4]. Our results are in fact consistent to their conclusion, and

estimated parameters are not so stable. However, we use Brennan-Schwartz

model, assigning higher priority to its advantages in numerical simulation.

4.1 The Econometric Approach

Following Chan, Karolyi, Longsta�, and Sanders [17], the parameters of the

continuous-time model are estimated using a discrete-time econometric spec-

i�cation

rt+� � rt = (a1 + a2rt)�t + �t+1
p
�t: (32)

In order to use the Maximum Likelihood (ML) method, it is assumed that

�t+1 = brtZt; Zt � N(0; 1): (33)

Let fYig be the sample data. Let p be the parameter vector with elements

a1; a2, and b. The maximum likelihood estimator p̂ is given as a solution to

the following problem:

p̂ = argmax
�

1

T

TX
i=1

2
4� log((bYi�1)

2)�
 
(Yi � Yi�1)

1p
�t
� (a1 + a2Yi�1)�t

bYi�1

!2
3
5 :
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4.2 The Data

Japanese uncollateralized average overnight call rate data for our study were

obtained from Datastream. We study daily data that cover the period from

10th April 1989 to 30th March 2001, providing 3,125 observations in total.

All interest rates are annualized. Figure 1 presents the time series data of

the call rates. It is obvious that there are some structural breaks during the

sample period. Thus ten sample sets are created, which start at the same

date and end at di�erent date.

Table 1 shows means, standard deviations, and �rst six autocorrelations

of the overnight call rate and daily changes for each sample set. The au-

tocorrelations of daily changes are generally small and are not consistently

positive or negative, which suggest that call rates are stationary.

4.3 Empirical Results of Parameter Estimation

Table 2 reports sample estimates and t-statistics for our ten sample sets.

Parameters k, r�, and � are de�ned as follows:

drt = (a1 + a2rt)dt+ brt dBt

= k(r� � rt)dt+ �rt dBt:

In other words,

k = �a2; r� = �a1
a2
; and � = b:

The hypothesis that a parameter is zero is rejected at the 95% con�dence level

if an absolute value of t-statistic is greater than 1.96. At the 90% con�dence

level, the hypothesis is rejected if an absolute value of t-statistics is greater

than 1.645. In all case, hypotheses are rejected at the 95% con�dence level.

However it is worth noting that parameter k is negative for sample sets 3

and 4. Because k is a mean-reverting speed of the short rate process, negative

k suggests that the short rate is not mean-reverting. For sample sets 8, 9,

and 10, mean-reverting speed parameters k are much larger than other cases.

For these sample cases, the call rates are above 4% at the starting date, but

r� are less than 1%. Changes of monetary policy by Bank of Japan during

the period may be the reason why estimated parameters take these values.3

Unfortunately, estimated parameters are not so stable in our sample cases,

and in the empirical analysis of the optimal portfolio strategy we should pay

careful attention to parameter selection.

3To investigate whether these are structural breaks, we could introduce dummy vari-

ables in our model. See Chan, Karolyi, Longsta�, and Sanders [17].
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4.4 Calibration

Before we compute the optimal portfolio strategy given estimated parameter,

we need to calibrate the model and determine the market price of risk �

in (25). In the following procedure, we �nd a value of � so that the yield

spread is 1%.

� The initial value r0 of the short rate in our simulation is r0 = r�.

� The maturity � of the discount bond is � = 10.

� Given a constant â2, we perform Monte-Carlo integration to calculate

the bond price maturing at � with the following discretized model.

� =
a2 � â2

b
:

8><
>:
��t = ��t(rt�t + �

p
�t �t);

�t+�t = �t +��t;

�0 = 1:8><
>:
�rt = (a1 + a2rt)�t + b rt

p
�t �t;

rt+�t = rt +�rt;

r0 = given.

�0;� =

PN

n=1 ��
(n)

N
;

where n indicates the index of the sample path and N is the number of

simulation. We also Calculate the yield of bond y� by y� = � log �0;�=� .

� We compute �0;� and y� repeatedly, and �nd value â2 so that y� �
r0 + 1%.

Table 3 reports bond prices and yields for sample set 1,2, and 5 { 10. We

omitted the case 3 and 4, because the short rate process is not mean-reverting

in those cases.

5 Empirical properties of the optimal portfo-

lio

In this section, we compute the optimal portfolio strategy using parameters

that are estimated in the previous section. We concentrate on studying
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the properties of the optimal portfolio strategy, in particular of the hedging

demand. Investors maximize expected utility that is obtained from their

terminal wealth. We further assume that the risk aversion coeÆcient is � =

�5:0 and the investment horizon is T = 1.

Since our main purpose is to study properties of optimal portfolio strat-

egy, we choose Brennan-Schwartz model so that computational cost is smaller.

Unfortunately, as we have seen in Table 2, estimated parameters for Brennan-

Schwartz model are not very reasonable for some cases. In order to �nd a

parameter combination that is reasonable from both empirical and theoret-

ical point of view, we compute the optimal portfolio for each case. Table

4 reports the optimal strategy, MVP, and HP1. For sample sets from 5 to

10, MVP is so large that the optimal portfolio is highly leveraged. Although

we do not discuss here whether estimated parameter combinations for these

cases are reasonable or not from the view point of econometrics, such a large

size of MVP suggests that Brennan-Schwartz model is not very appropriate

for those sample periods. In order to get a reasonable portfolio for these

sample periods, we may need to use other term structure models that allow

some structural breaks during sample periods. Sizes of optimal portfolio for

sample set 1 and 2 are relatively reasonable, and we use sample set 2 for the

following analysis.

We �rst consider power-utility function with no lower bound on the ter-

minal wealth level. We �nd that the optimal portfolio strategy with no

lower bound on the terminal wealth is highly leveraged and is not realistic.

In particular, the mean variance portfolio is very large for many parameter

combinations re
ecting that long-term bond is too attractive from myopic

point of view. When there is a lower bound on the terminal wealth level, the

size of optimal portfolio is more realistic, because the lower bound restricts

the size of the mean variance portfolio.

5.1 Power Utility with no Lower Bound

The optimal portfolio strategy as well as bond prices for various parameter

combinations are calculated. Table 5 reports the optimal portfolio of the

investor with � = �5:0 and T = 1 for various values of the current short rate

r0. Since the higher discount rate implies the lower bond price, the bond

price �0;� is low for the higher short rate r0 and the �rst derivative @�0;�=@r0
is negative. We can see that, when the short rate r0 is large, j@�0;�=@r0j is
small and the bond price is less sensitive to the short rate.

It is interesting to see that
�0;�

@�0;�
@r0
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is not very sensitive to r0 in this example. Then it follows from (1) and (24)

that ��(0; �) depends almost linearly on r. The volatility of bond price is

high when the short rate is high. The mean variance portfolio is given by

MVP =
�0;�

@�0;�
@r0

�

(1� �)b r0
; (34)

and � is constant by our assumption. We can thus conclude that the mean-

variance portfolio is small when the short rate is high. In other words, the

bond is less attractive when the short rate is high, because the volatility of

bond price is also high.

The value function f(r0; 0) in the equation

J(w; r; t) =
w�

�
f(r; t)

is decreasing with respect to r0, which implies that the remaining utility level

is low when the short rate is high. It is also interesting to see that fr=f are

negative and almost constant for our example. The hedging portfolio is given

by

HP1 =
1

1� �

�0;�

@�0;�
@r0

fr(r0; 0)

f(r0; 0)
=

�0;�

@�0;�
@r0

E
h

�

��1�T
1

��1
@�T
@r0

i
E
h
�T

�
��1

i :

Since �0;�=
@�0;�
@r0

is negative and is not sensitive to r0, the hedging portfolio

is positive and is not very sensitive to the current short rate level.

Table 6 shows the optimal portfolio for various risk aversion coeÆcients.

As the investor becomes more risk averse and j�j is larger, the mean variance

portfolio is smaller. In particular, the investor with � = �1000 who may

accept little instantaneous risk has small mean-variance portfolio compared

to other cases. It is interesting that the hedging portfolio has a certain size

even for such a risk averse investor with � = �1000. The term fr=f is not

dominated by the term 1=(1��). It is also interesting to see that the hedging
portfolio is positive for � < 0 and negative for � > 0. As is well known, log-

utility investors are `myopic' in the sense that they ignore shifts in the state

variable and care only about the instantaneous risk structure. The log-utility

case is knife-edge case in the sense that more-risk-averse-investor holds the

bond but less-risk-averse-investor sells short the bond.

Table 7 reports how investor's time horizon a�ects the optimal portfolio.

We compute the optimal portfolio for investors with T = 1; 2; 3; 4; 5; and 9.

The mean variance portfolio is same for all cases since it is a myopic term.

The hedging portfolio is increasing with respect to T . We can conclude
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that the hedging portfolio is more important if the investor's time horizon is

longer.

Table 8 reports the sensitivity of the optimal portfolio to parameter b of

the short rate process, which determines a volatility of the short rate. Since

a volatility ��(0; �) = b @

@r0
�0;� of the bond price is negative, the short rate

r and the bond price � is negatively correlated if we simply ignore the drift

terms of both processes. Our results suggest that, when a volatility b of the

short rate is large, the absolute value of ��(< 0) is large. The larger volatility

of the bond price process then implies the smaller size of the mean variance

portfolio, since instantaneous risk is large. On the other hand, the hedging

portfolio is not so sensitive to the volatility b of short rate. This is another

evidence that the hedging portfolio is not held because of the instantaneous

risk structure.

Table 9 also reports the sensitivity of the optimal portfolio to parameter

a2, that is, mean-reverting speed of the short rate r. Although �0;�=
@�0;�
@r0

is not so sensitive to a2 in this example, it follows from (34) and (25) that

the mean variance portfolio is sensitive to the market price of risk � and

thus a2. Thus the mean variance portfolio is sensitive to parameter a2. This

may be one of the reason why the mean variance portfolio is so large for the

parameter sets from 5 to 10 in Table 2. On the other hand, the hedging

portfolio is not so sensitive to a2, which implies that the hedging portfolio is

not very sensitive to a shift in the instantaneous risk structure.

5.2 Power Utility with Lower Bound

Table 10-14 report the optimal portfolio for the case similar to Table 5-9 but
�Z=w0 = 0:9, where �Z is a minimum lower bound on the terminal wealth.

Table 10 reports the optimal strategy of the investor with � = �5:0 and

T = 1 for various short rates r0. As we can expect from (31), the mean

variance portfolio is smaller because of the lower bound �Z. The size of

the hedging portfolio is similar to the case without the lower bound, which

suggests that �HP2 is about the same size that the HP1 is scaled down by

(1� �). Similar to the previous subsection, the higher discount rate implies

the smaller mean-variance portfolio. The hedging portfolio is increasing with

respect to the short rates r0, but it is less sensitive to r0 than the mean-

variance portfolio.

Table 11 shows the optimal portfolio for various �. As in the previous

subsection, the mean variance portfolio is a decreasing function of �, and

the hedging portfolio is an increasing function of � in our parameter set.

The size of the mean variance portfolio is much smaller because of the lower

bound �Z. The size of the hedging portfolio also depends on �Z. The hedging
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portfolio with � = �0:5 and �Z = 0 is smaller than those with � = �5 and

�10. On the other hand, the size of the hedging portfolio with � = �0:5 and
�Z = 0:9w0 is similar to those with � = �5 and �10. This is not surprising
because HP2 hedges against the risk of falling short of �Z and HP2 may not

be so sensitive to the risk aversion as HP1.

Table 12 shows the e�ect of the time horizon. We compute the optimal

portfolio for T = 1; 2; 3; 4; 5, and 9: With the lower bound �Z, the mean

variance portfolio is not constant with respect to the terminal horizon T .

Since � is de�ned by

� =
E
�
�Z�T

�
w0

and is a function of the investment horizon T , the mean variance portfolio

'mvp = (1� �)
�� � r

(1� �)�2�

is also a function of the time horizon T . In this sense, the mean-variance

portfolios is not myopic if there is a lower bound on the terminal wealth.

When T is large, the present value of �Z is small. Thus restrictions on the

optimal portfolio by the lower bound �Z may not be so strong when T is

large. This would be the reason why both the mean-variance portfolio and

the hedging portfolio are increasing with respect to T in our example. The

lower bound �Z, however, still has a strong impact on the optimal portfolio

even for the case with T = 9.

Table 13 reports the sensitivity of the optimal strategy to b. As in the

case without lower bound, the mean variance portfolio is sensitive to b and

is decreasing with respect to b. On the other hand, the hedging portfolio is

not so sensitive to b. Again, this may be an evidence that hedging portfolio

is not held because of the instantaneous risk structure.

Table 14 shows the sensitivity of the optimal portfolios with respect to the

parameter a2, the mean-reverting speed of the short rate process. The mean

variance portfolio is sensitive to the parameter a2. Both the mean variance

portfolio and the hedging portfolio are increasing functions with respect to

a2, but the hedging portfolio is not so sensitive to a2.

6 Conclusion

We study the optimal portfolio strategy for a zero-coupon bond and a riskless

asset, using Japanese interest rate data. A simple one-factor model of the

term structure of interest rates, that is, Brennan and Schwartz model is used

for our numerical example. For numerical examples, investors are assumed
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to have power-utility function that is de�ned on the wealth at a �nite time-

horizon. The optimal portfolio is computed using the technique of stochastic


ows and Monte Carlo simulation. As shown in the previous literature,

the hedging portfolio is not negligible, and the optimal portfolio depends

on investor's terminal horizon. Mean variance portfolio is very sensitive

to parameter values. The hedging portfolio is not so sensitive to model's

parameter values, but depends on investor's attitude towards risk.

We also study the case where investors have minimum bound on their

wealth at terminal horizon. When there is a zero-coupon bond maturing at

investor's terminal horizon, the investor �rst holds the bond so that minimum

wealth bound is guaranteed. This intuitive motivation to hold zero-coupon

bond comes from the hedging portfolio, which also shows the importance of

dynamic optimal portfolio. Then the investor invests remaining money in

the portfolio that is for the case with no lower bound. The optimal portfolio

is less sensitive to parameters and is more realistic.
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This �gure plots Japanese overnight call rate(uncollateralized, average) from 1989/4/10

to 2001/3/30, obtained from Datastream. Daily interest rates are expressed in annualized

form. There are some structural breaks during the period.

Figure 1: The Japan call rate (uncollateral, overnight, middle)
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No. End date Variables N Mean Std. Dev. �1 �2 �3 �4 �5 �6

1 03/31/1992 rt 777 0.067836 0.011163 0.989 0.979 0.973 0.966 0.960 0.955

rt+1 � rt 776 1.45E-05 0.001420 -0.188 -0.179 0.034 -0.047 -0.104 0.166

2 03/31/1993 rt 1038 0.061044 0.015410 0.993 0.989 0.985 0.981 0.978 0.975

rt+1 � rt 1037 -1.54E-05 0.001380 -0.255 -0.121 0.050 -0.042 -0.104 0.135

3 03/31/1994 rt 1299 0.054283 0.019369 0.997 0.995 0.993 0.991 0.989 0.988

rt+1 � rt 1298 0.0000 0.001440 -0.209 -0.087 0.040 -0.032 -0.076 0.098

4 03/31/1995 rt 1560 0.048855 0.021429 0.997 0.996 0.995 0.994 0.993 0.992

rt+1 � rt 1559 -1.76E-05 0.001445 -0.331 -0.082 0.027 -0.024 -0.062 0.078

5 03/29/1996 rt 1820 0.042979 0.024557 0.998 0.997 0.996 0.995 0.994 0.993

rt+1 � rt 1819 -2.20E-05 0.001350 -0.324 -0.082 0.027 -0.026 -0.060 0.077

6 03/31/1997 rt 2081 0.038188 0.026221 0.998 0.998 0.997 0.996 0.996 0.995

rt+1 � rt 2080 -1.82E-05 0.001266 -0.323 -0.082 0.026 -0.027 -0.059 0.076

7 03/31/1998 rt 2342 0.034455 0.026872 0.999 0.998 0.998 0.997 0.997 0.996

rt+1 � rt 2341 -1.62E-05 0.001201 -0.321 -0.083 0.024 -0.027 -0.057 0.074

8 03/31/1999 rt 2603 0.031301 0.027186 0.999 0.998 0.998 0.997 0.997 0.996

rt+1 � rt 2602 -1.71E-05 0.001146 -0.320 -0.083 0.022 -0.027 -0.056 0.074

9 03/31/2000 rt 2865 0.028465 0.027413 0.999 0.998 0.998 0.998 0.997 0.997

rt+1 � rt 2864 -1.56E-05 0.001095 -0.320 -0.082 0.022 -0.027 -0.056 0.074

10 03/30/2001 rt 3125 0.026223 0.027284 0.999 0.999 0.998 0.998 0.998 0.997

rt+1 � rt 3124 -1.40E-05 0.001049 -0.320 -0.082 0.022 -0.027 -0.056 0.073

Each sample set starts at the same date, 4/10/1989, and ends at di�erent date. Means,

standard deviations, and �rst six autocorrelations are presented for rt and rt+1�rt, which

are sampled at daily basis.

Table 1: Summary Statistics for Japan call rate (daily data)
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No. a1 a2 b k r
�

�

1 0.222674 -3.23722 0.381611 3.237215 0.068786 0.381611

(5.643344) (-4.75456) (254.1506)

2 0.031086 -0.57307 0.41342 0.573068 0.054245 0.41342

(1.516653) (-1.3405) (348.9367)

3 -0.03475 0.54069 0.102757 -0.54069 0.064277 0.102757

(-44.3525) (29.19314) (14084.08)

4 -0.0175 0.156607 0.103061 -0.15661 0.111719 0.103061

(-35.1566) (11.03123) (25655.19)

5 0.003292 -0.55671 0.105539 0.556709 0.005913 0.105539

(65.20101) (-109.065) (47704.36)

6 0.006399 -0.76108 0.106818 0.761084 0.008408 0.106818

(180.3298) (-153.773) (47278.52)

7 0.006483 -0.97090 0.117463 0.970897 0.006677 0.117463

(250.5568) (-188.544) (46979.07)

8 0.108104 -10.9635 0.106685 10.96348 0.009860 0.106685

(79937.28) (-7273.83) (92021.86)

9 0.101600 -13.0078 0.100213 13.00781 0.007811 0.100213

(564872.6) (-16722.4) (6448521.0)

10 0.10192 -14.9529 0.100238 14.95294 0.006816 0.100238

(660425.3) (-21392.6) (6879570.0)

These are estimated parameters using ML. The model (Brennan-Schwartz) is as follows:

drt = (a1 + a2rt)dt+ brtdBt

= k(r� � rt)dt+ �rtdBt:

The values in parentheses are t-statistics, testing the hypothesis that the parameter is

equal to 0.

Table 2: Estimates for the Japanese call rates
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sample set r0 = r
�

â2 a1 a2 b2 �� y�

1 6.88 % -2.9870 0.2227 -3.2372 0.3816 0.4546 7.88 %

2 5.42 % -0.4420 0.0311 -0.5731 0.4134 0.5264 6.42 %

5 0.59 % -0.4787 0.0033 -0.5567 0.1055 0.8530 1.59 %

6 0.84 % -0.6822 0.0064 -0.7611 0.1068 0.8318 1.84 %

7 0.67 % -0.8838 0.0065 -0.9709 0.1175 0.8465 1.67 %

8 0.99 % -10.8836 0.1081 -10.8635 0.1067 0.8199 1.99 %

9 0.78 % -12.9327 0.1016 -13.0078 0.1002 0.8366 1.78 %

10 0.68 % -14.8778 0.1019 -14.9529 0.1002 0.8450 1.68 %

In the calibration process, we �nd an â2 so that r0 + 1% = y� with � = 10. Since the

short rate is not mean-reverting, we ommit case 3 and 4.

Table 3: Calibration of the Brennan-Schwartz model for each sample set

sample set r0 ' 'mvp 'hp V (w; r)

1 6.88 % 13.1730 12.3929 0.7800 -0.1155

2 5.42 % 1.4216 1.1083 0.3133 -0.1440

5 0.59 % 96.8309 96.5089 0.3220 -0.1528

6 0.84 % 94.6782 94.2649 0.4133 -0.1509

7 0.67 % 140.3714 139.8829 0.4885 -0.1520

8 0.99 % 1290.1660 1289.3345 0.8316 -0.1490

9 0.78 % 2062.0472 2061.2154 0.8318 -0.1505

10 0.68 % 2717.7672 2716.9353 0.8319 -0.1512

Optimal strategies are calculated for each case in table 3. Investor's terminal horizon is

T = 1 and risk aversion coeÆcient � = �5. There is no lower bound condition on the

terminal wealth and �Z = 0. Maturity of the zero-coupon bond is � = 10. We take 500

periods per unit of time. The number of simulation is 10,000.

Table 4: Optimal strategies for sample sets
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r0 ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

5:25% 1.4574 1.1443 0.3131 -0.1450 0.5284 -1.1241

5:50% 1.4068 1.0934 0.3134 -0.1435 0.5256 -1.1170

5:75% 1.3606 1.0469 0.3137 -0.1421 0.5228 -1.1099

6:00% 1.3183 1.0043 0.3140 -0.1407 0.5200 -1.1029

6:25% 1.2794 0.9652 0.3143 -0.1393 0.5173 -1.0960

6:50% 1.2435 0.9290 0.3146 -0.1379 0.5145 -1.0891

6:75% 1.2103 0.8955 0.3148 -0.1365 0.5118 -1.0823

This table presents the optimal portfolio for investors with the expected utility function

E[W�
T =�], where � = �5:0 and T = 1. â2 = �0:4420: The number of sample path

for Monte Carlo simulation is 10,000, and time length of each step is �t = 1=500. The

maturity of zero-coupon bond is � = 10. The optimal portfolio ' is given by (14). 'mvp
is mean-variance portfolio and 'hp is hedging portfolio:

'mvp =
1

1� �

��(0; �)� r

(��(0; �))2
; 'hp =

1

1� �

fr(r; 0)

f(r; 0)

�r(r; 0)

��(0; �)
:

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 5: Optimal portfolio for various r0

� ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

0.90 64.3387 66.4979 -2.1592 1.7657 0.5264 -1.1191

0.0000001 6.6498 6.6498 0.0000 10000000.1049 0.5264 -1.1191

-0.50 4.4550 4.4332 0.1218 -1.9127 0.5264 -1.1191

-5.00 1.4216 1.1083 0.3133 -0.1440 0.5264 -1.1191

-10.00 0.9478 0.6045 0.3433 -0.0537 0.5264 -1.1191

-1000.00 0.3858 0.0066 0.3792 -0.0000 0.5264 -1.1191

This table presents the optimal portfolio for investors with the expected utility function

E[W�
T =�], where T = 1. â2 = �0:4420; and r0 = 5:42%. The number of sample path

for Monte Carlo simulation is 10,000, and time length of each step is �t = 1=500. The

maturity of zero-coupon bond is � = 10. The optimal portfolio ' is given by (14). 'mvp
is mean-variance portfolio and 'hp is hedging portfolio:

'mvp =
1

1� �

��(0; �)� r

(��(0; �))2
; 'hp =

1

1� �

fr(r; 0)

f(r; 0)

�r(r; 0)

��(0; �)
:

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 6: Optimal portfolio for various �
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T ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

1 1.4216 1.1083 0.3133 -0.1440 0.5264 -1.1191

2 1.6158 1.1083 0.5075 -0.1026 0.5264 -1.1191

3 1.7352 1.1083 0.6269 -0.0721 0.5264 -1.1191

4 1.8098 1.1083 0.7015 -0.0520 0.5264 -1.1191

5 1.8537 1.1083 0.7454 -0.0368 0.5264 -1.1191

9 1.9131 1.1083 0.8048 -0.0086 0.5264 -1.1191

This table presents the optimal portfolio for investors with the expected utility function

E[W�
T =�], where � = �5:0. â2 = �0:4420; and r0 = 5:42%. The number of sample path

for Monte Carlo simulation is 10,000, and time length of each step is �t = 1=500. The

maturity of zero-coupon bond is � = 10. The optimal portfolio ' is given by (14). 'mvp
is mean-variance portfolio and 'hp is hedging portfolio:

'mvp =
1

1� �

��(0; �)� r

(��(0; �))2
; 'hp =

1

1� �

fr(r; 0)

f(r; 0)

�r(r; 0)

��(0; �)
:

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 7: Optimal portfolio for various T

b ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

0.30 2.3695 2.0623 0.3072 -0.1383 0.5210 -1.1304

0.35 1.8357 1.5263 0.3094 -0.1415 0.5240 -1.1287

0.40 1.4926 1.1803 0.3124 -0.1435 0.5260 -1.1216

0.45 1.2602 0.9441 0.3161 -0.1450 0.5276 -1.1115

This table presents the optimal portfolio for investors with the expected utility function

E[W�
T =�], where � = �5:0 and T = 1. â2 = �0:4420, r0 = 5:42%. The number of sample

path for Monte Carlo simulation is 10,000, and time length of each step is �t = 1=500.

The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp =
1

1� �

��(0; �)� r

(��(0; �))2
; 'hp =

1

1� �

fr(r; 0)

f(r; 0)

�r(r; 0)

��(0; �)
:

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 8: Optimal portfolio for various b
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a2 ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

-0.5500 1.2256 0.9121 0.3135 -0.1460 0.5257 -1.1189

-0.5600 1.3104 0.9970 0.3134 -0.1451 0.5261 -1.1192

-0.5700 1.3954 1.0821 0.3133 -0.1442 0.5264 -1.1192

-0.5800 1.4808 1.1675 0.3133 -0.1433 0.5265 -1.1188

-0.5900 1.5665 1.2532 0.3133 -0.1423 0.5266 -1.1179

This table presents the optimal portfolio for investors with the expected utility function

E[W�
T =�], where � = �5:0 and T = 1. â2 = �0:4420, and r0 = 5:42%. The number

of sample path for Monte Carlo simulation is 10,000, and time length of each step is

�t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is

given by (14). 'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp =
1

1� �

��(0; �)� r

(��(0; �))2
; 'hp =

1

1� �

fr(r; 0)

f(r; 0)

�r(r; 0)

��(0; �)
:

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 9: Optimal portfolio for various a2

r0 ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

5.25 % 0.5405 0.1710 0.3694 -0.0217 0.5284 -1.1241

5.50 % 0.5350 0.1653 0.3696 -0.0217 0.5256 -1.1170

5.75 % 0.5299 0.1601 0.3699 -0.0217 0.5228 -1.1099

6.00 % 0.5254 0.1553 0.3701 -0.0218 0.5200 -1.1029

6.25 % 0.5212 0.1509 0.3703 -0.0218 0.5173 -1.0960

6.50 % 0.5173 0.1468 0.3705 -0.0218 0.5145 -1.0891

6.75 % 0.5138 0.1430 0.3708 -0.0218 0.5118 -1.0823

This table presents the optimal portfolio for investors with the expected utility function

E[(Z � Z)�=�], where � = �5:0, T = 1, and Z=w0 = 0:9. â2 = �0:4420. The number

of sample path for Monte Carlo simulation is 10,000, and time length of each step is

�t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is

given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp = (1��)
�� � r

(1� �)�2
�

; 'hp = �
�0;�
@

@x
�0;�

E
�
@�T
@x

�

E [�T ]
+(1��)

�0;�
@

@x
�0;�

E

h
�

��1
�T

1

��1
@�T
@x

i

E
�
�T

�

��1

� :

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 10: Optimal portfolio for various r0 with the lower bound Z
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� ' 'mvp 'hp V (w; r) �0;� @�0;�=@r0

0.90 10.0166 10.0195 -0.0030 0.2660 0.5264 -1.1191

0.0000001 1.3243 1.0020 0.3224 1506744.7685 0.5264 -1.1191

-0.50 1.0087 0.6680 0.3407 -0.2882 0.5264 -1.1191

-5.00 0.5366 0.1670 0.3696 -0.0217 0.5264 -1.1191

-10.00 0.4652 0.0911 0.3741 -0.0081 0.5264 -1.1191

-1000.00 0.3805 0.0010 0.3795 -0.0000 0.5264 -1.1191

This table presents the optimal portfolio for investors with the expected utility function

E[(Z � Z)�=�], where T = 1 and Z=w0 = 0:9. â2 = �0:4420, and r0 = 5:42%. The

number of sample path for Monte Carlo simulation is 10,000, and time length of each step

is �t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is

given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp = (1��)
�� � r

(1� �)�2
�

; 'hp = �
�0;�
@

@x
�0;�

E
�
@�T
@x

�

E [�T ]
+(1��)

�0;�
@

@x
�0;�

E

h
�

��1
�T

1

��1
@�T
@x

i

E
�
�T

�

��1

� :

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 11: Optimal portfolio for various � with the lower bound Z
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T ' 'mvp 'hp V (w; r)

1 0.5366 0.1670 0.3696 -0.0217

2 0.8191 0.2222 0.5969 -0.0206

3 1.0108 0.2772 0.7336 -0.0180

4 1.1415 0.3246 0.8169 -0.0152

5 1.2342 0.3725 0.8617 -0.0124

9 1.4490 0.5459 0.9031 -0.0042

This table presents the optimal portfolio for investors with the expected utility function

E[(Z � Z)�=�], where � = �5:0 and Z=w0 = 0:9. â2 = �0:4420, and r0 = 5:42%. The

number of sample path for Monte Carlo simulation is 10,000, and time length of each step

is �t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is

given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp = (1��)
�� � r

(1� �)�2
�

; 'hp = �
�0;�
@

@x
�0;�

E
�
@�T
@x

�

E [�T ]
+(1��)

�0;�
@

@x
�0;�

E

h
�

��1
�T

1

��1
@�T
@x

i

E
�
�T

�

��1

� :

The optimal portfolio ' is given as the sum of 'mvp and 'hp. � is the function of the

investment horizon, T :

� =
E[ �Z�T ]

w0
:

Therefore, 'mvp is not constant with respect to T .

Table 12: Optimal portfolio for various T with the lower bound Z
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b ' 'mvp 'hp V (w; r)

0.3000 0.6740 0.3115 0.3625 -0.0209

0.3500 0.5952 0.2303 0.3650 -0.0213

0.4000 0.5464 0.1779 0.3685 -0.0216

0.4500 0.5150 0.1422 0.3728 -0.0218

This table presents the optimal portfolio for investors with the expected utility function

E[(Z �Z)�=�], where � = �5:0, T = 1, and Z=w0 = 0:9. â2 = �0:4420, and r0 = 5:42%.

The number of sample path for Monte Carlo simulation is 10,000, and time length of each

step is �t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio

' is given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp = (1��)
�� � r

(1� �)�2�
; 'hp = �

�0;�
@

@x
�0;�

E
�
@�T
@x

�

E [�T ]
+(1��)

�0;�
@

@x
�0;�

E

h
�

��1
�T

1

��1
@�T
@x

i

E
�
�T

�

��1

� :

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 13: Optimal portfolio for various b with the lower bound Z

a2 ' 'mvp 'hp V (w; r)

-0.55 0.5066 0.1373 0.3692 -0.0220

-0.56 0.5195 0.1501 0.3694 -0.0219

-0.57 0.5325 0.1630 0.3695 -0.0217

-0.58 0.5457 0.1760 0.3697 -0.0216

-0.59 0.5590 0.1890 0.3700 -0.0215

This table presents the optimal portfolio for investors with the expected utility function

E[(Z � Z)�=�], where � = �5:0 and Z=w0 = 0:9. â2 = �0:4420, and r0 = 5:42%. The

number of sample path for Monte Carlo simulation is 10,000, and time length of each step

is �t = 1=500. The maturity of zero-coupon bond is � = 10. The optimal portfolio ' is

given by (14).

'mvp is mean-variance portfolio and 'hp is hedging portfolio:

'mvp = (1��)
�� � r

(1� �)�2
�

; 'hp = �
�0;�
@

@x
�0;�

E
�
@�T
@x

�

E [�T ]
+(1��)

�0;�
@

@x
�0;�

E

h
�

��1
�T

1

��1
@�T
@x

i

E
�
�T

�

��1

� :

The optimal portfolio ' is given as the sum of 'mvp and 'hp.

Table 14: Optimal portfolio for various a2 with the lower bound Z
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A Proof of Proposition 3.3

Proof. The Hamilton-Jacobi-Bellman (HJB) equation for the problem (10)

is given by

sup
'2R

Jw(w; r; t)(w'(��(t)� rt) + rtw) + Jr(w; r; t)�r(r; t) + Jt(w; r; t)

+
1

2
Jww(w; r; t)w

2��(t)
2'2 + Jwr(w; r; t)w'��(t)�r(r; t)

+
1

2
Jrr(w; r; t)(�r(r; t))

2 = 0;

(35)

with the boundary condition

J(w; r; T ) = uT (w) =
(w � �Z)�

�
: (36)

We assume that there exists a solution J 2 C2;2;1(R+ � R+ � [0; T ]) to HJB

equation and that J satis�es technical conditions so that

V (w; r) = J(w; r; 0):

It follows from the �rst order condition for the optimality that the optimal

strategy '� satis�es

'�t = � 1

Jww(w; r; t)w��(t)2
(Jw(w; r; t)(��(t)� rt) + Jwr(w; r; t)��(t)�r(r; t))

(37)

At time 0, the solution is given by

'�0 = � 1

Jww(w; r; 0)w��(0)2
(Jw(w; r; 0)(��(0)� r0) + Jwr(w; r; 0)��(0)�r(r; 0)) :

(38)

We can use the martingale approach. By standard arguments, we can rewrite

(10) into

sup
Z2FT

E

�
(Z � �Z)�

�

�
s.t. E [�TZ] 6 w0:

(39)

By the Saddle Point Theorem, the control '� solves (10) if and only if there

is a scalar Lagrange multiplier � > 0 such that '� solves the unconstrained
problem

sup
Z2FT ;�

L(Z; �);
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where

L(Z; �) = E

�
(Z � �Z)�

�
� � (E[�TZ]� w0)

�
:

The �rst order conditions for optimality are, state-by-state,

(Z� � �Z)��1 = ���T :

Then we have

Z� = �Z + (���T )
1

��1 :

By the complementary slackness condition,

w0 = E[�TZ
�]:

Therefore we get

(��)
1

��1 =
w0 � �ZE[�T ]

E[�
�

��1

T ]
:

Then the value V (w; r) of a state (w; r) is given by

V (w; r) = J(w; r; 0) =
1

�

�
E
h
�T

�
��1

i�1��
(w � �ZE[�T ])

�:

In order to compute the optimal portfolio, we need to estimate Vw; Vww, and

Vwr. We consider rx, the short rate process starting at x. Then the �rst and

second derivatives of V are given by:

Vw(w; x) =
�
E
h
�T

�
��1

i�1�� �
w � �ZE [�T ]

���1
;

Vww(w; x) = (�� 1)
�
E
h
�T

�
��1

i�1�� �
w � �ZE [�T ]

���2
;

Vwr(w; x) = (1� �)
�
E
h
�T

�
��1

i���
E

�
�

�� 1
�T

1

��1
@�T

@x

� �
w � �ZE [�T ]

���1
+ (1� �)

�
E
h
�T

�
��1

i�1�� �
w � �ZE [�T ]

���2� �ZE

�
@�T

@x

��
:

In the last equation, we used Fubini's Theorem and stochastic 
ow technique.

@�T =@x is given by the following system.(
drxt = �r(r

x
t ; t)dt+ �r(r

x
t ; t)dBt;

rx0 = x;(
d�t = ��t(rtdt+ �tdBt);

�0 = 1:
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(
dYt =

@�r(r
x
t ;t)

@rxt
Ytdt+

@�r(r
x
t ;t)

@rxt
YtdBt;

Y0 = 1;

@�T

@x
= �T

�
�
Z T

0

Ytdt�
Z T

0

@�(rxt ; t)

@rxt
YtdBt �

Z T

0

�(rxt ; t)
@�(rxt ; t)

@rxt
Ytdt

�
:

We de�ne � by

� =
E
�
�T �Z

�
w0

;

that is, � is a ratio of the present value of �Z to the current wealth level w0.

Then the optimal portfolio at time 0 is given by

'�0 =
1

1� �

�0;�

@�0;�
@x

2
664(1� �)�0

1

�r
+ (1� �)

0
BB@(1� �)

E

�
�

��1�
1

��1

T
@�T
@x

�

E
h
�

�
��1

T

i + �
E
�
@�T
@x

�
E[�T ]

1
CCA
3
775 :
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