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Abstract

We consider a noncooperative coalitional bargaining game with ran-
dom proposers. In a general case that the recognition probability is ar-
bitrary and players have different discount factors for future payoffs, the
existence of a stationary subgame perfect equilibrium (SSPE) is proved,
and the condition for the grand coalition to be formed is provided. We
also prove that the grand-coalition SSPE is a unique symmetric SSPE
for any discount factor in a symmetric game with nonempty core. In
the last part of the paper, we apply the bargaining model to a produc-
tion economy with one employer and multiple workers. When players
are sufficiently patient, the economy has a unique SSPE payoff. The
equilibrium allocation is compared with cooperative solutions such as
the core, the Shapley value and the nucleolus. The SSPE payoff and

the nucleolus have similar distributional properties.
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1 Introduction

Game theory is traditionally divided into two branches, noncooperative game
theory and cooperative game theory. Both theories can be applied to the same
problem of multilateral bargaining which has been one of the central theme in
game theory since the classic work of von Neumann and Morgenstern (1944).
It is desirable to explore similarities and differences of the two theories for
our better understanding of multilateral bargaining problems. Nash (1951)
proposed a research program, now called the Nash program, to unify these two
branches by formulating preplay negotiations in cooperative games as moves
in a larger noncooperative game in extensive form. Since the seminal work of
Rubinstein’s (1982) two-person alternating-offers model, several extensions of
it to an n-person game in coalitional form have been studied in the literature.
Among them is the random-proposer model in which a proposer is randomly
selected in the beginning of every bargaining round. The aim of this paper is
to present some theoretical results of the bargaining model and to apply it to
a production economy of one employer and multiple workers.

The random-proposer model has the following negotiation rule. In the
beginning of every bargaining round, one player is randomly selected as a
proposer among “active” players who have not joined any coalitions in previous
rounds. The probability for each player to be selected as a proposer is called
her recognition probability. The selected player proposes a coalition of active
players and a payoff allocation in the coalition. Thereafter, all other members
in the coalition either accept or reject the proposal sequentially. The proposal
is agreed by the unanimous rule. If it is agreed, then the players outside the
coalition can continue their negotiations in the next round under the same rule.
If the proposal is rejected, then the bargaining round is repeated with the same
set of players. Negotiations stop if all players belong to any coalitions. Players
discount future payoffs.

The results of the paper are as follows. In the first part, we prove the ex-



istence of a behavior-strategy stationary subgame perfect equilibrium (SSPE)
in a general situation where the recognition probability for players is arbitrary
and players may have different discount factors for future payoffs. We next
consider the efficiency of an SSPE. It is shown that the grand coalition is
formed in an SSPE if and only if the expected payoffs of players belong to an
enlarged set of the core (called an e-core in the literature). This enlarged core
shrinks to the usual core in the limit that players’ discount factors for future
payoffs go to one. The expected payoff of every player ¢ in the grand coalition
is proportional to the ratio p;/(1 — 6;) where p; is player i’s recognition proba-
bility and ¢; is her discount factor. The ratio represents the bargaining power
of the player. The uniqueness of an SSPE payoff for a general coalitional game
is an open question. We prove that the grand-coalition SSPE is a unique sym-
metric SSPE in a symmetric game with nonempty core for all discount factors
for future payoffs.

In the last part of the paper, the bargaining model is applied to a pro-
duction economy with one employer and multiple workers. All players have
the same discount factors for future payoffs, and the recognition probability
is uniform. The economy has a non-empty core. We prove that the economy
has a unique SSPE payoff when all players are sufficiently patient. The SSPE
payoff allocation is efficient in the limit that the discount factor is almost equal
to one. The equal distribution is attained if and only if the full-employment
has the highest productivity per capita. The latter condition is equivalent to
that the equity allocation is in the core. If the condition does not hold, the
employer receives the smallest payoff in the core. We compare the SSPE pay-
offs with cooperative solutions of the Shapley value (Shapley, 1953) and the
nucleolus (Schmeidler, 1969). We show that the SSPE payoff and the nucleolus
have similar distributional properties.

The literature on the random-proposer model for coalitional bargaining is
growing. We here review only those which we think are closely related to

the present paper. The random-proposer model has been extensively studied



for legislative bargaining since a seminal paper of Baron and Ferejohn (1989).
Baron and Ferejohn (1989) characterized a unique SSPE payoff of the model
(called a closed rule) for a majority voting game when voters are identical in
recognition probability and discount factors for future payoffs. Eraslan (2002)
proved the existence of an SSPE and the uniqueness of an SSPE payoff in a
general case that voters may be different in recognition probability and dis-
count factors. Eraslan and McLennan (2006) extended the uniqueness result to
a general voting game where a voting rule is given by a class of winning coali-
tions. Norman (2002) studied the finite-horizon version of the Baron-Ferejohn
model. Banks and Duggan (2000) generalized the analysis of Baron and Fer-
ejohn (1989) to the multidimensional voting game with a general voting rule.
They proved the existence of an SSPE and provide a sufficient condition on
preferences for no-delay of an SSPE in the case that voters may be different
in recognition probability and discount factors. When there exist veto players,
they also established the equivalence between the core of the voting game and
no-delay SSPE payoffs when voters are perfectly patient. Montero (2002) con-
sidered a special type of weighted majority voting game (called apex games)
and characterized the kernel as a unique SSPE payoff under two (egalitarian
and proportional) recognition rules. Montero (2006) characterized the nucleo-
lus as a self-confirming power index for a majority voting game in the case that
voters have the same discount factors. Eraslan and Merlo (2002) extended the
analysis of Baron and Ferejohn to a stochastic environment where the total
surplus is a stochastic variable. They proved the existence of an SSPE when
voters have the same discount factors, and showed that the SSPE payoffs need
not be unique under majority rules.

The random-proposer model was applied to an n-person supper-additive
coalitional game with transferable utility in Okada (1996). We showed no-
delay of agreement in an SSPE and characterized a necessary and sufficient
condition for the grand-coalition SSPE to exist in the case that players are iden-

tical in recognition probability and discount factors. Okada (2005) extended



the random-proposer model to an n-person cooperative game in strategic form
and characterized a generalized Nash bargaining solution as the grand-coalition
SSPE payoff in the case of the common discount factor. Okada (2000) incor-
porated the possibility of renegotiations into the random-proposer model, and
showed that successive renegotiations necessarily lead to an efficient agree-
ment, while the equity of the agreement may be distorted. Gomes (2005)
generalized this result to coalitional games with externalities (described in a
partition function form). He showed that, if the grand coalition is not efficient,
bargaining delay may arise in positive-externality games. Gomes and Jehiel
(2004) considered a similar model with finite states where coalitions may break
up. Yan (2002, 2005) proved the uniqueness of an SSPE in the restricted case
that the game stops after one coalition forms (one-stage property) and that
players have the same discount factors. Yan (2002) proved that every core
allocation can be sustained as a unique SSPE payoff if (with normalization) it
is employed as the recognition probability. Yan (2005) proved the uniqueness
result for a symmetric game when players are identical in recognition prob-
ability. Finally, Montero and Okada (2007) showed non-uniqueness of SSPE
payoffs in a three-person coalitional game with discrete feasible payoffs.

The paper is organized as follows. Section 2 presents the random-proposer
model for an n-person coalitional game with transferable utility. Section 3
proves the existence of a behavior-strategy SSPE. Section 4 characterizes the
grand-coalition SSPE in a general game, and proves the uniqueness of a sym-
metric SSPE in a symmetric game with nonempty core. Section 5 analyzes
an production economy with one employer and multiple workers. Proofs are

given in the Appendix. Section 6 concludes the paper.

2 Definitions

We consider an n-person game (N,v) in coalitional form with transferable

utility. N = {1,2,---,n} is the set of players. A nonempty subset S of N is



called a coalition of players. Let C(IV) be the set of all coalitions of N. The
characteristic function v is a real-valued function on C(IV) satistying (1) (zero-
normalized) v({i¢}) = 0 for all i € N, (2) (super-additive) v(SUT) > v(S) +
v(T) for any two disjoint coalitions S and 7', and (3) (essential) v(/N) > 0. For
coalition S, v(S) is interpreted to be a sum of money that the members of S
can distribute in any way if they agree to it.

A payoff allocation for coalition S is a vector z° = (z7);cs of real numbers
where z7 represents a payoff to player i € S. A payoff allocation x° for S
is feasible if Y, ga7 < v(S). Let X° denote the set of all feasible payoff
allocations for S, and let Xf denote the set of all elements in X*° with non-
negative components. For a finite set 7, the notation A(7") denotes the set of
all probability distributions on 7'

As a non-cooperative bargaining procedure for a game (IV,v), we consider
the random proposer model presented in Okada (1996). Let p be a function
which assigns to every coalition A C N a probability distribution p* € A(A).
The interpretation of p is that the distribution p? selects a proposer i € A
randomly when A is the set of all active players in negotiations. Following the
literature on legislative bargaining, we will call p the recognition probability.

The bargaining model has the following rule. Negotiations take place over
a (possibly) infinite number of bargaining rounds ¢ (= 1,2,---). Let N;(C N)
be the set of all “active” players who do not belong to any coalitions in round
t. In the initial round, we put N; = N. The bargaining process in round ¢
runs as follows. In the beginning, a player i € N, is randomly selected as a
proposer according to the probability distribution p™* € A(N;). The selected
player ¢ proposes a coalition S with ¢+ € S C N; and a payoff allocation
z° € Xﬁ. Then, all other members in S either accept or reject the proposal
(S,2%) sequentially. The order of responders do not affect the result in any
critical way. If all responders accept the proposal, then it is agreed-upon, and
negotiations go to the next round ¢ + 1 with N = N' — S, If any one

responder rejects the proposal, then negotiations continue in the next round



t + 1 with N**' = N’. The bargaining process ends when every player in N
joins some coalition.

The payoffs of players are defined as follows. When a proposal (S, z°) is
agreed in round ¢, the payoff of every player i € S is 8! 'z where 6;(0 < 6; < 1)
is player #’s discount factor for future payoffs. When the bargaining does not
stop, all players who fail to join any coalitions receive zero payoffs. In the
model, all players have perfect information about game play when they make
decisions.

The bargaining model above is denoted by I'(V, p, §) where N is the initial
set of players, p the random rule of selecting proposers, and § = (d1,---,9,)
players’ discount factors for future payoffs. Formally, the bargaining model
['(N, p, d) is represented as an infinite-length extensive game with perfect infor-
mation and with chance moves. The rule of the game is the common knowledge
of players.

A (behavior) strategy for player i in I'(N,p,d) is defined in a standard
manner. A history h! before player i’s move in round ¢ is a sequence of all
past actions in I'(N,p,d) including the selections of proposers. Roughly, a
strategy o; of player i is a function which assigns her (randomized) action
o;(ht) to every possible history h!. Specifically, when player i is a proposer in
round ¢, o;(ht) is a probability distribution (with a finite support) on the set
of all possible proposals (S,z%) with i € S C N* and z° € X7. When player
i is a responder in round ¢, o;(h!) is in A({accept,reject}). For a strategy
combination o = (01, -+ ,0,), the expected (discounted) payoff for player i in
['(N,p,d) can be defined in a usual way.

For every coalition S € C(NN), a subgame of the extensive game I'(V, p, d)
which starts after the coalition S has formed is identical to the bargaining
model I'(N — S, p,d). A strategy o; for every player ¢ naturally induces her
strategy in the subgame I'(N — S, p,0). A strategy o; for player i in I'(V, p, )
is called stationary if player ¢’s action depends only on payoff-relevant history,

not on a whole part of the history. A payoff-relevant history for player ¢ consists



of the set Ny of active players in negotiations when she is a proposer, and it
also includes a proposal made in the present period when she is a responder.

The solution concept that we apply to the bargaining model I'(N, p, d) is a
stationary subgame perfect equilibrium.

*

Definition 2.1. A strategy combination o* = (o}, -+ ,0%) of ['(N,p,d) is

called a stationary subgame perfect equilibrium (SSPE) if o* is a subgame

perfect equilibrium of I'(V, p, §) and every player i’s strategy o is stationary

It is well-known that in a broad class of Rubinstein-type sequential multi-
lateral bargaining games including our model I'( NV, p, §), there is a large multi-
plicity of (non-stationary) subgame perfect equilibria when the discount factor
of future payoffs is sufficiently close to one (see Sutton 1986 and Osborne and
Rubinstein 1990). The multiplicity of subgame perfect equilibria holds even
in the n-person pure bargaining game where no subcoalitions are allowed. An
SSPE is the simplest type of a subgame perfect equilibrium and thus it may
be easier for players to coordinate their mutual expectations on it (see Baron
and Kalai 1993 and Chatterjee and Sabourian 2000). The SSPE is a natural

reference point of the analysis in multilateral bargaining models.

3 Equilibrium configuration

For an SSPE o = (04, -+ ,0,) of the game ['(N, p,§) and a coalition S, let v}
be the expected payoff of player i under o in the subgame I'(S, p, d), and let ¢
be the probability distribution with which player ¢ chooses coalitions 1" with
i €T C S under o in I'(S,p,d). Let v° = (v7)ics and ¢° = (¢7)ics. We call

the collection (v°, ¢%)gec(n) the configuration of an SSPE o.

Definition 3.1. A collection (v, ¢%)sec(w) of players’” expected payoffs v®

and their randomized choices ¢° of coalitions for all sets S of active players is



called an equilibrium configuration for I'(N, p,d) if it is a configuration of some

SSPE o for I'(N, p, d).

The next lemma plays a critical role in characterizing an SSPE. The lemma
was first proved in Okada (1996) in the case that all players are identical in

recognition probability and discount factors.

Lemma 3.1. In every SSPE o = (0y,---,0,) for I'(N, p,0), every player’s
proposal is accepted in the initial round of negotiations. In the proposal, all

other members j in the coalition are offered their discounted expected payoffs

N
537)3- )

Proof. For every i € N, let v; be player i’s expected payoff for o in I'( N, p, §).
By the rule of I'(N, p, d), the super-additivity of v yields

Zvi <wv(N) and v; >0 forallie N.
iEN
Consider the maximization problem
max o(S) = >y (1)
JESJ#L
st. (()ieSCN, yeX]

(i) y; > 0;v; forall je S, j#i.

Let m' be the optimal value of (1). Since (N, (d1vq,- -+ ,0,v,)) is a feasible
solution, we have
m' > v(N) — Z djv; > 0;;. (2)
JEN,j#i

If m® = &;v;, then (2) implies

U(N) = Z 53'7)3'. (3)

JEN



Since

o(N) = 0= G,

jEN jEN
(3) implies > ;v v; = >y 605, Since §; < 1 for all j, we must have v; =0
for all j € N. This yields v(N) = 0 from (3), which contradicts v(N) > 0.
Therefore, we obtain m! > d;v;.

Let (S, y°) be the optimal solution of (1). Then, (S,y”) satisfies

mt = oS- D,y
JESjFi
yf‘ = (SjUj, VJES,‘]%Z

For a sufficiently small € > 0, define a payoff allocation z° € Xf such that

s
Z

. € . . .
=m'—c¢, zfzéjvj—l-s_—l, Vj €S, j#i,
where s is the number of all members in S. If player ¢ proposes (S, z°), then

this is accepted in o since all responders j receive only the discounted payoffs

S _

g =m' — e > §;u; for any sufficiently

d;v; if they reject the proposal. Since z
small € > 0, the conditional expected payoff for player i in ¢ when she is a
proposer is strictly greater than d;v;, which is her continuation value when
her proposal is rejected. This fact implies that player i’s proposal must be

accepted in 0. QED.

An important implication of this lemma is that an SSPE o of the bargaining
model I'(V, p, §) is determined uniquely (up to responses off equilibrium path)
by its configuration (v%,¢%)sec(v). When player i chooses a coalition S in o,

she proposes the payoff allocation z° = (xf)jeg for coalition S such that

v =0(S) = Y oY, i =), VjE€S, j#i
jESj#i

and all other members of S accept it. Another implication of the lemma is that

10



an agreement of a coalition (possibly inefficient) is made in the first round in
the bargaining game I'(N, p, ), regardless of a proposer, if the characteristic
function is super-additive. That is, the bargaining game has no delay of agree-
ments. This result does not hold in other bargaining games where the first
rejector becomes the next proposer (see Chatterjee, Dutta. Ray and Sengupta
1993, and Ray and Vohra 1999).

The next step of our analysis is to characterize an equilibrium configuration

in (N, p,9).

Lemma 3.2. In a subgame ['(S,p,d), let p7 be player i’s recognition prob-
ability, v{ player i’s expected payoff, and ¢ player i’s randomized choice of
coalitions where a coalition 7" C S is chosen with probability ¢7 (7). A col-
lection (v, ¢%)sec(vy where 0% = (v7);en and ¢° = (¢)ien is an equilibrium
configuration of I'(N, p, d) if and only if the following conditions hold for every
coalition S € C(N) and every i € S:

(i) ¢°(S) > 0 implies that S is a solution of

S
max (o(T) = > &), (4)
JET,j#i

(ii) v¥ € R, satisfies

of = pf max (u(T)— Y &)

1€1'CS

JET,j#1
+ 3 e Y ey Y @) (5)
JES,j#L JETCSeT jeTCS,z'géT

Proof. It follows from Lemma 3.1 that, in an SSPE o of I'(N, p, ), player i
receives (4) when she is a proposer, and receives d;v7 and 51%5 ~1" as a respon-
der, when player j(# i) proposes coalitions 7" including i and 7" excluding 1,
respectively. Noting this fact, we can see that condition (i) means that player

’s randomized choice ¢ of coalitions composes her locally optimal choice

11



when she is selected as a proposer, and that condition (ii) defines the expected
payoffs (v)sec(n) of player i recursively. The if-part can be proved by a well-
known fact (sometimes called the single-period deviation property) that the
local optimality of a strategy implies the global optimality in an infinite-length
extensive game with perfect information such as the bargaining game I'(V, p, )

(see Selten (1981, p.137)). QED

In Lemma 3.2, we call condition (i) the optimality condition and condition
(ii) the payoff equation for an equilibrium configuration in I'(N,p,d). With
help of these two conditions, we will characterize an SSPE of the bargaining
model I'(N, p, ) in the next section.

With help of Lemma 3.2, the existence of an SSPE in the bargaining model
['(N, p,d) can be proved by Kakutani’s fixed point theorem in a standard man-
ner. The existence of an SSPE in related models are proved in the literature

(Ray and Vohra 1999, Eraslan 2002, Gomes 2005 among others).
Proposition 3.1. There exists an SSPE of the bargaining model I'(V, p, 4).

Proof. By Lemma 3.2, it suffices to prove that there exists a collection

(v, ¢%) sec(ny of players’ expected payoffs v° = (v

?)ies and their random-

ized choices ¢° = (g”)ies of coalitions in all subgames I'(S, p, d) such that (4)
and (5) hold for every coalition S € C(N) and every i € S. We prove this claim
by the induction regarding the number s of players in coalition S. When s =1
where S = {i}, the claim trivially holds by putting v}"} = 0 and ¢! ({i}) = 1.
For any 2 < s < n, suppose that the claim holds for all ¢ =1,---,s — 1. Let
S € C(N) be any coalition with s members. For all proper subsets T of S, let
v" = (v])jer be expected payoffs for members in 7" and let ¢" = (¢ )ier be
their randomized choices of coalitions in the subgame I'(T, p, d) such that (4)

and (5) hold. The existence of such v* and ¢* is guaranteed by the supposition

of the induction.

12



For every i € S, let A = A({T | i € T C S}). Recall that A(A)
is the set of all probability distributions on a finite set A. A7 is the set
of player ¢’s all randomized choices of coalitions when she is selected as a
proposer. Define a multi-valued mapping F' from a compact and convex set
X7 X [Lies A7 to itself as follows. For (z,q) € X{ x [[,.q A7, F(x,q) is the
set of all (y,r) € X§ x [[,cg A7 which satisfy for all i € S
(i), e A({S | i€ S cSand S is a solution of

max (v(T) — Y &)},

ieT'CS Rl
JET,j#i

and

(ii) y; € Ry satisfies

y; = p? max (v(T) — Z 8;x;)

1€1'CS

JET j#i
+ > e (Y M+ D (M),
JES,jF£i JETCSIeT JETCS,i¢T

where 7;(1’) is the probability which r; assigns to 7' C S.

We can show without much difficulty that F'(x,q) is a non-empty convex
set in X§ X[ ],cq A7, and that F' is upper-semicontinuous. By Kakutani’s fixed
point theorem, there exists a fixed point (z*, ¢*) of F with (z*, ¢*) € F(x*, ¢*).
Now, we define v7 = 27 and ¢° = ¢ for all i € S. Then, the fact that
(v°,¢%) € F(v°,¢%) implies that v° = (v7);cs and ¢° = (¢ )ics, together with
(0T, ¢T) for all proper subsets T' of S, satisfy (4) and (5) in Lemma 3.2 for
every 1 € S. QED

We remark that Proposition 3.1 does not hold for a pure-strategy SSPE.
To obtain the existence of an SSPE, one needs to allow a randomized choice of
coalitions by proposers. As we will show in the next section, a pure-strategy
SSPE with an agreement of the grand coalition /V exists if the expected equi-

librium payoff allocation is in the (enlarged) core of the underlying game.
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4 Characterizations

Let p; = pl for every i € N. The payoff equation (5) for an equilibrium

configuration (v%,¢%)sec(v) in T'(N, p, d) can be rewritten as

(1=0 > o5 Y, ¢ +p > (Y ¢'(9)d0)

JENj#i  ijeTCN JEN,j#i i, jESCN
S D A CICCIEES DN VI S AIVA CAR (6)
i€SCN JEN,j#i  jETCNi¢T

and, in a matrix form, as

1—06 ij Z q;'(T) 02p1 Z ' (T) Onp1 Z q' (T)

j#1 1,jeT 1,2€T LneT

1,2€T j#£2  2j€eT 2,neT

1,neT 2,neT j#n n,jeT
p1 Z q ( )+ 010
V1 1eS
Vo D2 Z % ( ) + a0
= 2eS
nes

where «; = Zj;ﬁi Pj ZigT,jeT qjv(T)UiN_T'

We first consider under which conditions the grand coalition N is formed,

independent of a proposer.

Definition 4.1. A behavior strategy o for I'(V,p,d) is called the grand-
coalition SSPE if it is an SSPE of I'( NV, p, §) and the grand coalition N forms,

independent of a proposer.

14
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The next theorem characterizes the grand-coalition SSPE.

Theorem 4.1. The grand-coalition SSPE of I'(V,p,d) is characterized as
follows.

(i) The expected payoff v; for player i is given by

ZjGN lpij(;j

The grand-coalition SSPE exists if and only if

Y v+ > wi(1=06;) >w(S) forall SCN. (8)
ics JEN-S
(ii) If all players have the common discount factor ¢, then the expected payoff
v; for player i is given by p;u(IV). For any ¢ almost close to one, the grand-

coalition SSPE exists if and only if its expected payoff vector (p;v(N), - -+, p,v(N))

is in the core of (IV, v). Every player proposes the payoff vector (p1v(N), -+, p,v(N))

in the limit that 0 goes to one.

Proof. (i) The payoff equation of the grand-coalition SSPE is given by

1- 51(1 - pl) dop1 - OnP1 U1 p1U(N)
01D2 1—0;(1—p2) ... 0np2 va || p2v(NV)

Calculating the ¢-th row in the equation above, we obtain

(1 — 6Z)UZ + p; Z(Sj?)j = piU(N), Vi € N. (9)

JEN

15



Summing up both sides of (9) for all i € N yields

Zvi = v(N). (10)

1EN

Letting k = Y.y 0ivi, (9) is rewritten as

=15 (v(N) — k), Vi€ N. (11)

It follows from (11) that

k= Zmi =(@W(N) -k - iiéipi.

1EN 1EN

This yields

i Ji
Djen =5, Pi B Djen =5, i

k = v(N) =
d; 1
1+ ZjeN 1,—]5jpj ZjeN 1——6jpj

v(N). (12)

Substituting (12) into (11), we prove (7). The optimality condition (4) is given
by
v(N) — Z djv; > wv(S) — Z djv;, VS CN.

JEN,j# JES,j#i
In view of (10), we can see that the optimality condition is equivalent to (8).
By Lemma 3.2, we can prove the last part of (1).
(ii) When 6, = --- = §,, = 4, it can be easily shown that (7) implies v; =
piv(N). Note that v; is independent of §. Suppose first that there exists the
grand-coalition SSPE for any ¢ almost close to one. Taking § — 1 in (8), we

obtain > ._cv; > v(S) for all S C N. This means that the expected payoff

ics
vector (p1v(N), -+ ,p,v(N)) is in the core of (N, v). Conversely, suppose that
Yoies Vi =D icgPiv(N) > v(S) for all S C N. Since v; > 0 forall j € N — S,
we can show that (8) holds for any 6 < 1. By Lemma 3.2, this implies that there
exists the grand-coalition SSPE of I'(N, p, §) for any J, and it has the expected

payoff vector (p1v(N), -+ ,p,v(N)). In the grand-coalition SSPE, player i

16



proposes a payoff allocation (6pyv(N),---, (1 —62#2. P;)v(N), -+, dp,u(N)).
This proposal converges to (p1v(N),--,pv(N)) as § — 1. QED

The theorem has several implications. First, it shows that when players

form the grand coalition in the bargaining model I'(N,p,J), their expected

payoffs are proportional to the ratio 131'51_. This fact suggests that the ra-
tio represents the bargaining power of each player. Players who have higher
recognition probability and are more patient can receive higher expected pay-
offs. The random-proposer model can explain the bargaining power of a player
from two factors, procedural rules and players’ time preferences.!

Second, the theorem shows that the existence of the grand-coalition SSPE
for I'(V, p, 0) is closely related to the non-emptiness of the core of the cooper-

ative game (N, v). (8) requires that the expected payoffs v; for players satisfy,
forall S C N,

Zvi > v(S) —€, where €= Z v (1 —0;).

i€s jeEN—S
This means that the expected payoffs for players in the grand-coalition SSPE
belongs to a larger set of the core of (N, v), which is called the e-core in the
literature. As § goes to one, this set converges to the core of (N, v). Namely,
the grand-coalition SSPE exists for any ¢ almost close to one if and only if
its expected payoff vector is in the core of the game (N, v). An immediate
corollary of this result is that if the core of the game is empty, then the grand-
coalition SSPE never exists, whatever recognition probability distribution is,
when players are sufficiently patient.

Thirdly, when players have the common discount factors almost close to

one, the proposal of every player in the grand-coalition SSPE is equal to a gen-

eralized Nash bargaining solution with weights (py,- -+, p,), which is a solution

!One may interpret this result negatively, arguing that the equilibrium outcome of a
noncooperative bargaining model is sensitive to unimportant procedural details. In our
view, the recognition probability for players should not be regarded as unimportant details.
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maXfoi s.t. in:U(N), xz; > 0,Yie N

iEN iEN
where the disagreement point is given by players’ payoffs v({i}) = 0, i =
1,---,nin the case of no coalitions.? This relation between the grand-coalition
SSPE payoff and the generalized Nash bargaining solution is extended by
Okada (2005) to a general n-person cooperative game, derived from a strategic-
form game, in which utility may not be transferable and externality prevails.

As we have reviewed in the introduction, the uniqueness of an SSPE of the
random-proposal model is an open question for a general cooperative game.
Eraslan (2002) proves the uniqueness of an SSPE payoff in a majority voting
game. Yan (2000) proves that the grand-coalition SSPE is a unique SSPE for
a game with nonempty core when the recognition probability is equal to some
(normalized) core payoff in a restricted case that the bargaining stops after
one coalition forms and that players have the common discount factors.

We consider the uniqueness of an SSPE in an n-person symmetric game

which includes a majority voting game as a special case.

Definition 4.2.

(i) A game (N, v) is called symmetric if the value v(S) of coalition S depends
only on the size s of S. Whenever no confusion arises, v(S) is denoted by v(s).
(ii) Let (N,v) be a symmetric game. An SSPE o of I'(V, p, d) is called sym-
metric if the following conditions hold: if any player ¢ chooses a coalition S
with positive probability in any round ¢, then every player j € N also proposes
all coalitions (including herself) of the same size as S with (possibly unequal)

positive probability in the same round.

A symmetric SSPE requires that all proposers’ choices of coalitions are in-

2Note that, if players have different discount factors, the expected payoffs in (7) does not
have a (unique) limit as players’ discount factors go to one.
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variant to renaming of players. That is, all proposers treat equally all other
players as their coalition partners. A symmetric SSPE is a natural criterion
of equilibrium selection in a symmetric game. It includes the grand-coalition
SSPE and the Baron-Ferejohn equilibrium of a majority voting game in which
every proposer chooses equally all minimal winning coalitions (including her-
self). In a general setup where coalitions form sequentially, the Baron-Ferejohn
equilibrium can be generalized to an equilibrium in which all proposers choose
randomly all coalitions of the same size in each round until all players join
any coalition. Remark that a symmetric SSPE does not rule out the possibil-
ity that a proposer chooses randomly coalitions of different sizes in the same

round. In what follows in this section, we consider only a symmetric SSPE.

Lemma 4.1. Let (N,v) be a symmetric game. In every symmetric SSPE of
['(N, p,d) except the grand-coalition SSPE, all players ¢ € N receive the same
discounted expected payoffs §;v;.

Proof. Let o be a symmetric SSPE of I'(V, p, ¢) other than the grand-coalition
SSPE. In o, there exists some player ¢ who proposes a subcoalition S # N with

positive probability. By the optimality condition of o, it must hold that

v(S) — Z djv; > v(T) — Z djvj, VI CN.
JESjFi JeT,j#i
Pick any j € S,j # i, and any k ¢ S. Substituting T = (S — {j}) U {k}
into the condition above yields d;v, > d;v;. By the definition of a symmetric
SSPE, player i proposes the coalition (S —{j})U{k} with positive probability.
Replacing S with (S — {j}) U {k} in the arguments above, we can obtain
0jvj > Opvg. Thus, 0;v; = Opv,. Finally, since o is symmetric, player j chooses
S with positive probability. By repeating the same arguments as above, we

can show that 6;v; = 0pvy. Thus, d;v; = d;v; = Opve. QED
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The lemma shows that when all players have a risk not to be invited to
coalitions in a symmetric game, their discounted expected payoffs are identi-
cal in equilibrium. This result is caused by a competition among players in
coalition formation. Every player accepts to join any coalition if she is offered
her discounted expected payoff. In this sense, the discounted expected payoff
(called a continuation payoff in the bargaining literature) can be interpreted
as a “price” which all proposers should pay when they want her as their coali-
tional partners. When a subcoalition is formed, any “expensive” player is
excluded from the coalition. A mechanism similar to price competition makes

all players’ prices equal.

Lemma 4.2. For an SSPE o of T'(N, p, 6) with a configuration (v%, ¢%)sec(n),
let v; be the expected equilibrium payoff for player 4, and let V, = >\ v;.
Then,

e=>Ym Y ¢ (So(S)+ D sy (13)

iEN  S:eSeC(N) iEN

where «; = Z#i Pj ZigT,jeT qjv(T)UZN_T'

Proof. Summing up both sides of the payoff equation (6) for all i € N, we
obtain (13). QED

The RHS of (13) represents the discounted sum of coalitional values realized
in equilibrium. In a majority voting game, V, is simply equal to the value of

a winning coalition for all o.

Proposition 4.2. Let (N,v) be a symmetric game, and o be a symmetric
SSPE other than the grand-coalition SSPE. Then, the expected payoff v; for

player ¢ in ¢ is given by
Vo

0i ZjeNalj

where V; is the discounted sum of coalitional values in o defined by (13). An

(14)

Uy
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SSPE o exists only if

ost) = 0(t) > (51— #) forall t=1,-- . (15)

1
ZjEN 5;

where s; is the size of coalitions formed in the initial round.?

Proof. (14) follows from Lemma 4.1 and V, = >, .y v;. The optimality

condition for ¢ implies

U(Sl) - Z 6]'1)]' > U(T) — Z O, VI'C N
JES1,j#i kET k#i
where S is a coalition formed in the initial round. With (14), this yields (15).
QED

The proposition shows that the expected payoffs for players are inversely
proportional to their discount factors in any symmetric SSPE other than the
grand-coalition SSPE.* This result is in stark contrast to Theorem 4.1. The
conflict of coalition formation changes drastically the payoff distribution among
players. Players with high discount factors receive less expected payoffs. Any
“expensive” player who is patient is unlikely invited by other players to coali-
tions, and thus the player’s expected payoff decreases.

The next theorem provides a uniqueness result of the grand-coalition SSPE.

Theorem 4.2. In a symmetric game (N, v) with non-empty core, the grand-
coalition SSPE is a unique symmetric SSPE of I'(V,p,d) for any discount
factors § = (01, - ,0,).

3The conditions similar to (15) also hold in all other rounds if subcoalitions form in these
rounds. Since the proof is the same, we omit it.

4Kawamori (2005) also derives (14) in a majority voting game in a restricted case that
voters are sufficiently similar in recognition probability and discount factors.
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Proof. Suppose that there exists a symmetric SSPE o of I'( NV, p, §) other than
the grand-coalition SSPE. Let s(< n) be the size of a coalition which may form

with positive probability in the initial round in o. Then, it follows from (15)

that

7"(5
1
ZjEN 5;

Putting t = n in the condition above, we obtain

v(s) —wv(t) > —t), forall t=1,--- n.

n—s

1
ZjEN 5;

v(s) > (1 —

Ju(n), (16)

since V; < wv(n) and s <n. Since 3,y = > n, (16) implies
J

n—s

v(s) > (1—

This contradicts the assumption that the core of (N, v) is non-empty. Thus, we

can prove that the grand-coalition SSPE is a unique symmetric SSPE. QED

Together with Theorem 4.1, the theorem shows that if the proportional
distribution of the total value v(IN) under the ratio (p;/(1 — 0;))sen is in the
core, then the grand-coalition SSPE exists and it is a unique symmetric SSPE.
The expected payoffs for players are given by this proportional distribution.
To this extent, we can say that the random-proposer model is consistent with
the core theory. If the recognition probability p is an extreme one such that
the proportional distribution above is not in the core, then the model does not
capture a bargaining process which is implicitly assumed in the core theory.

When the core is empty, the uniqueness of a symmetric SSPE payoff is
an open question except a special case of majority voting games. In every
majority game (except the unanimous game), every proposer chooses a minimal
winning coalition in every SSPE since the expected payoffs (acceptance level)
of all other voters are strictly positive (Lemma 3.1). That is, an SSPE of

the majority game is not the grand-coalition SSPE. In the game, the sum of
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all players’ expected payoffs in every SSPE is equal to the value of winning.
Thus, Proposition 4.2 implies that a symmetric SSPE payoff of a majority
voting game is unique for any discount factor.

To conclude this section, we summarize the SSPE payoff in a three-person

symmetric game.

Example 4.1. Three-person symmetric games

The player set is {1,2,3}. The value of a coalition S is represented by
v(s) where s is the number of players in S. We normalize v as v(3) = 1 and
v(l) = 0 for i = 1,2,3. Let v(2) = @ where 0 < a < 1. The core of the
game is non-empty if and only if 0 < a < 2/3. Other cooperative solutions
such as the Shapley value and the nucleolus are equal to the equity allocation
(1/3,1/3,1/3), regardless of the value a. For simplicity of analysis, we assume
the equal recognition probability (p; = ps = ps = 1/3) and the common
discount factor (§; = dy = d3 = 9).

First, consider the grand-coalition SSPE. By Theorem 4.1, every player
receives the expected payoff 1/3, and thus the grand-coalition SSPE exists if
and only if @ < 232 (see (8)). Next, consider a Baron-Ferejohn equilibrium
in which every player chooses every two-person coalition including herself at
random. It follows from Proposition 4.2 that every player receives the expected

payoff a/3, and that the Baron-Ferejohn equilibrium exists if and only if % <

a <1 (putting t = 3 in (15)).

3

3=d 3
< @< 355,

For the range 2 5 we will show that there exists a symmetric
SSPE in which every player chooses both the grand coalition and all two-person
coalitions including herself at random. Suppose that every player chooses the
grand coalition with probability p (0 < p < 1) and each of two-person coalitions
including herself with probability ¢ (0 < ¢ < 1/2) where p = 1 — 2¢. Lemma

4.1 shows that every player receives the same expected payoff, denoted by v.
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The payoff equation (5) of the SSPE is given by
1 2
v = g(p(l — 26v) 4+ 2q(a — 0v)) + g(p + q)ov.

This solves p = 31”%5 On the other hand, the optimality condition (4) of the

SSPE requires that 1 — 20v = a — dv, which implies v = ITT“. Thus, we have

_ 3-(3+0)a

3.6
P="1"a3s

. The constraint 0 < p < 1 means that 3> < a < 3%5'

The expected payoff v of every player is illustrated in Figure 4.1 when
the discount factor for future payoffs is almost equal to one. The bargaining
outcome depends on the value a of a two-person coalition as follows. When
0<a< 33;5. the grand coalition forms and v is constant at 1/3. When % <
a < 3%6, it is interesting to notice that the expected payoff decreases as the
value of two-person coalitions increases. In this region, every player proposes

all coalitions including herself at random, and the probability of the grand

coalition decreases as two-person coalitions becomes more valuable. When

3

g the grand coalition is never chosen, and thereafter v increases as the

a =
value of two-person coalitions increases, and becomes 1/3 again when a = 1

(the majority game).

5 Application: one employer and workers

Consider a production economy & with one employer (player 1) and n — 1
identical workers ¢ (= 2,---,n). Let N = {1,---,n}. If a coalition S C N
consists of the employer and s—1 (s > 1) workers, then the benefit of S is given
by a real-valued function f(s) which is monotonically increasingins = 1,--- ,n
with f(1) = 0. Otherwise, the benefits of coalitions are assumed to be zero.
Shapley and Shubik (1967) investigated this economy by the cooperative game

theory. The core of the economy is always non-empty since the allocation with
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expected payoff

1/3

0 2334 g '@

Figure 4.1 three-person symmetric game

the employer exploiting the total benefit f(n) is in the core. The Shapley value
and the nucleolus in the economy will be given in Proposition 5.4.

We will apply the random proposer model I'(N,p,d) to the production
economy & and will characterize an SSPE of the economy. For simplicity of
analysis, we will assume that all players have the common discount factor
0 and the equal recognition probability p = (1/n,---,1/n). Let v; be the
expected payoff of player i (= 1,---,n) in an SSPE. The grand-coalition SSPE
will be called the full-employment equilibrium, and any other SSPE a partial-
employment equilibrium.

The first result regarding the full employment is derived by Theorem 4.1.

Proposition 5.1. The full-employment equilibrium of the production econ-

omy & is characterized as follows.
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(i) The full-employment equilibrium exists if and only if

n—(n—s)d

f(n) > f(s) foral s=1,--- n. (17)

(ii) The expected payoff v; of every player i (i = 1,---,n) is given by f(n)/n.
Every proposer offers § f(n)/n to all other players, and it is accepted.

When the discount factor ¢ is almost equal to one, (17) is equivalent to
f(n)/n > f(s)/s for all s = 1,--- n. This condition means that the full
employment has the highest average productivity.

We next characterize a partial-employment equilibrium where there exist
some workers unemployed. Proposition 5.1 shows that all players receive the
same expected payoffs in the full employment equilibrium. The next lemma

says that this is also true for all workers in every SSPE.

Lemma 5.1. For all workers ¢ and j, v; = v; for every SSPE.

The proof of the lemma is given in the Appendix. We define the following

two types of partial-employment equilibria.

Definition 5.1. Let o be a partial-employment equilibrium of the production
economy &.

(i) For 2 < s <, o is called an s-equilibrium if only coalitions with s members
form with positive probability in o.

(ii) For 2 < s <t < n, o is called an (s,t)-equilibrium if only coalitions with s

and ¢t members form with positive probability in o.
In an s-equilibrium, the employer hires only s — 1 workers. In an (s,t)-

equilibrium, the employer hires either s — 1 or ¢t — 1 workers. We will show

that except a degenerate class of the economy &, there exists no other types

26



of partial-employment equilibria.

Proposition 5.2. For 2 < s < n, an s-equilibrium of the production economy

£ is characterized as follows.

(i) Let v*(0) be the expected payoff of the employer, and let w*(J) be the

expected payoff of every worker. Then,

. B n—1—(s—1)¢ .
R P ¥ Py 5 g o A (18)

(n—1)(1—-90)
(0) = : 19
O s 3 Py R (19)
Every worker receives an offer with probability (:(721)11;; L

(ii) There exists an s-equilibrium if and only if f(s) — f(t) > (s — t)ow*(9)
for all t # s.

(iii) An s-equilibrium exists for any ¢ sufficiently close to one if and only if
f(s) > f(t) for all t < s and f(s) = f(¢) for all t > s. As 0 goes to one,
the agreement in the s-equilibrium converges to a unique core-allocation

of the economy £ where the employer exploits the total payoft f(n).

The proposition provides the condition (ii) for an s-equilibrium to exist.

The condition is rewritten as

w > ow*(d) for t<s
w < 6w (s) for t> s,

This means that the continuation value a = dw*(d) of each worker provides a
“supporting hyperplane” y = ak+b (b is a constant) of the production function
y = f(k) at k = s. Since the worker’s equilibrium wage must be equal to the

continuation value a = dw*(J), this fact means that the equilibrium coalition
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size s is the optimal solution of the employer’s profit maximization

max f(k) — (6w*(6))(k — 1).

where k£—1 is the number of workers hired by the employer. The existence con-
dition of an s-equilibrium in our discrete case corresponds to the competitive
equilibrium condition f'(s) = dw*(J) in the continuous case.

When the discount factor for future payoffs is almost close to one, the
expected payoffs w* for workers converge to zero (and thus the equilibrium
wages, too). Therefore, the production function y = f(k) attains the maximum
at the equilibrium coalition size s, and the marginal productivity is zero beyond
s. The employer exploits the total production, that is, her expected payoff v*
is equal to f(n).

The intuitive reason for this result is as follows. A “wage-cut” competition
among workers equalizes all workers’ wages. If any worker’s wage is higher
than others, then the worker is not hired by the employer. When the discount
factors for future payoffs are close to one, the workers’ continuation payoffs are
equal to their expected payoffs in a stationary equilibrium. Also, the expected

payoff v*(9) of the employer satisfies the equation

n

v (6) = (f(s) — (5~ 10w (8) + " 260" ().

1
n
In the limit that ¢ goes to one, the equality v* + (s — 1)w* = f(s) holds. On
the other hand, since an s-member coalition forms with probability one in an
s-equilibrium, it must hold that v* + (n — 1)w* = f(s). These two equalities
imply w* = 0. Since f(s) = f(n), the core of the economy consists uniquely

of the equilibrium allocation (f(n),0,---,0).

Proposition 5.3. For 2 < s < t < n, an (s,t)-equilibrium of the production

economy & is characterized as follows.
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(i) Let v(d) be the expected payoff of the employer, w(d) be the expected
payoff of every worker, and p(d) be the probability that an s-member

coalition is formed. Then,

(t=1)f(s) = (s =1)f()

WO = T oD ) (20)
@)= f(s)

w(d) = N (21)
@) =) n-1

PO = R ) s (22)

(ii) There exists an (s, t)-equilibrium if and only if 0 < p(d) < 1, and f(s) —
f(k) > (s — k)dw(0) for all k # s with the equality for k£ = t.

(iii) Every (s, t)-equilibrium and every (s, t')-equilibrium are payoff-equivalent

if 5,8 <t,t.

(iv) Assume that ¢ < n. If an (s, t)-equilibrium exists for any ¢ sufficiently
close to one, then f(k) = f(n) for all s < k < n. Moreover, v(J) and

w(0) converge to f(n) and 0, respectively, as 0 goes to one.

(v) Assume that ¢ = n. If an (s, n)-equilibrium exists for any ¢ sufficiently

close to one, then @ < @ Moreover, v(d) and w(d) converge to
vt = (nfl)f(si:gsfl)f(”) and w* = %7 respectively, as § goes to one.

If f(s) < f(n), then p(J) converges to zero as 6 goes to one. The expected
payoff vector (v*,w*,--- w*) is in the core of the production economy

£, and the employer receives the minimum payoff v* in the core.

The proposition characterizes a partial-employment equilibrium where the
employer may hire two different numbers of workers. In a similar manner to the
case of an s-equilibrium, the existence condition (ii) can be interpreted as that
the two equilibrium coalition sizes s and ¢ (s < t) maximize the employer’s
profit f(k) — (dw*(d))(k — 1) where k is the number of hired workers and

dw*(d) is the worker’s wage (continuation value). When the employer does
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not hire all workers (¢t < n), an (s,t)-equilibrium has the same property as
an s-equilibrium. Namely, when the discount factor ¢ is close to one, the
equilibrium wage converges to zero, and the production function f(k) attains
the maximum at the equilibrium coalition sizes & = s,t. The employer exploits
the total benefit f(n). The intuition for this result is similar to the case of an
s-equilibrium.

When the employer may hire all workers (¢ = n), the workers receive pos-

f(n)—f(s)

itive wage w* = ———-=, provided that players are sufficiently patient. The

fact that the employer maximizes the profit f(k)—w*(k—1) at k = s, n implies

(n)—f(s)

that the equilibrium wage w* = ! ~—~~ is the solution of

min 200 = /() (23)

1<k<n—-1 n—k

Unlike the case of ¢t < n, the production function y = f(k) does not necessarily
attain the maximum at £ = s, but the production of an s-member coalition
per capita is greater than or equal to that of the full employment. The dis-
tribution (v*, w*,---  w*) among all players is in the core of the economy and
the employer receives the smallest payoff in the core.

When the discount factor is close to one, the residual claim of the employer
is equal to her expected payoff v* in all coalitions which she may propose. Since
the employer is indifferent to proposing an s-member coalition and the grand
coalition, it must hold that v* = f(s)—(s—1)w* = f(n)—(n—1)w*. This gives
w* = % The condition @ < @ means that the employer’s expected
payoff is greater than or equal to those of workers. Let k& (2 < k < n) be
any number of workers. The payoff maximization of the employer implies that
v* > f(k) — (k—1)w* for any k. That is, v*+ (k — 1)w* > f(k). On the other
hand, since the employer may propose either s-member coalition or the grand
coalition, it holds that v* + (s — 1)w* = f(s) and v*+ (n—1)w* = f(n). These
three conditions imply that the equilibrium distribution (v*,w*,--- , w*) is in

the core of the economy, and that the employer receives the smallest payoff in
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the core.
We illustrate by the following three-person economy how the type of an

SSPE is determined by the production function and the discount factor.

Example 5.1. One employer and two workers

Consider an economy with one employer and two workers. The production
function is given by f(1) = 0,f(2) = a (0 < a < 1), f(3) = 1. Figure 5.1
illustrates the regions for three types of equilibria in the economy, depending
on the productivity a of a two-member coalition and the discount factor ¢.
Proposition 5.1 shows that the full-employment equilibrium exists if and only
if 22 > g (region (A)). In region A, all players receive the same expected
payoffs 1/3. Proposition 5.2 shows that a 2-equilibrium exists if and only if

a > 5550 (region (C)). In region C, the employer reccives the expected

276 . 2726 .y . . .
payoff #=%a, and the workers receive £=2za. A (2, 3)-equilibrium exists in

. . 2a—1
the region (B), where the employer receives the expected payoff =555 and the

l—a
[

workers receive the expected payoff 2=2. In region (B), the probability of full
employment converges to one as the discount factor goes to one. In the limit,

the payoff to the employer is 2a — 1 if 2/3 < a < 1.

We summarize the equilibrium of the production economy £ when the

employer and all workers are sufficiently patient.

Theorem 5.1. The production economy &£ has a unique SSPE in terms of
expected payoffs when the employer and all workers are sufficiently patient.
In the limit that the discount factor 0 goes to one, the expected payoffs for

players are characterized as follows.

(i) If f(n)/n > f(s)/s for all s, then all players receive the equal payoff
f(n)/n. The payoff distribution is in the core of the economy.

(ii) Otherwise, the workers receive the wage w* = f("g:f(s) where s is the
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2/3

Figure 5.1 One employer and two workers

f(n)—f(k)
k

n—

solution of minj <<, 1 . The employer maximizes the profit by
hiring s —1 workers. The payoff distribution is in the core of the economy,

and the employer receives the smallest payoff in the core.

The theorem shows that when all players are sufficiently patient, they agree
to an efficient payoff distribution in the bargaining model. The payoff distri-
bution, however, depends on the production function. The equal division is
realized if and only if the full employment attains the highest productivity per
capita. It is interesting to see how the SSPE payoff is related to cooperative
solutions. We consider the Shapley value and the nucleolus in the production
economy &£. Since the definitions of these cooperative solutions are standard,

we omit them.
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Proposition 5.4. The Shapley value and the nucleolus in the production
economy & are characterized as follows.

(1) The Shapley value of the employer is

6= j0s) (24)

(2) The wage w for workers in the nucleolus is

- f(n) = f(s)
1§r§1§1£—1 n—s+1"~ (25)

The payoff of the employer is

(= Df(s) — (5"~ 2)f ()
n—s 41

where s* is the solution of (25).

The intuition for the Shapley value is as follows. When the employer may

enter a randomly forming coalition, she joins any s-member coalition with
—1) (s—=1)!(n—s)!

-1 n!

equal probability ((;Z = %) Since the marginal contribution of the
employer to the coalition is f(s), the Shapley value allocation to the employer
is given by (24).

The nucleolus and the SSPE payoff have similar properties with respect to

payoff distribution. The equal division is realized in the nucleolus if and only

i) ) = f(s)
n 1<s<n—1 m—s4+1

This condition implies that, for s =2,--- ,n—1 I < I which is slightly

> s—1 — n
stronger than the corresponding one @ < @ for the full-employment equi-

librium. When the full-employment equilibrium does not prevail, the wage
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formula (25) in the nucleolus is almost the same as that (23) in the partial-

f(:zi;{(ls) is replaced with {71 iy (23),

employment SSPE, while the ratio
From these observations, we can say that the difference between the nucleolus
and the SSPE payoff is marginal in a large economy. These two solutions, how-
ever, yield different payoff distributions when the number of players is small.

The following example shows this point.

Example 5.2. Comparison of three solutions
Consider again the economy with one employer and two workers in Exam-
ple 5.1. The production function is given by f(1) = 0,f(2) =a (0 < a <

1), f(3) = 1. The discount factor ¢ is almost equal to one. The nucleolus has

%, 1;11)

the following simple formula. The wage of workers is given by w = min(
The payoff to the employer is given by v = 1 — 2w. Figure 5.2 illustrates the
employer’s payoff in the SSPE, the Shapley value and the nucleolus. The
SSPE payoff and the nucleolus, both included in the core, give the equal divi-
sion when the productivity of a two-member coalition of the employer and one
worker satisfies 0 < a < 1/3. When the two-member coalition becomes more
productive (1/3 < a < 2/3), the nucleolus wage is (1 — a)/2 but the SSPE
wage is still 1/3. When the two-person coalition becomes highly productive
(2/3 < a), the SSPE wage becomes 1 — a. Note that the nucleolus wage is
one half of the SSPE wage. The SSPE payoff allocation is equal to the equity
allocation (1/3.1/3,1/3) as long as the latter belongs to the core. The nucle-
olus, however, departs earlier from the equity allocation as the two-member
coalition becomes productive (1/3 < a). The Shapley value is different from
the SSPE payoff and the nucleolus. It does not produce the equity allocation
if a coalition of the employer and one worker is productive. The wage by the
Shapley value decreases as the two-member coalition becomes productive, but
the magnitude of the decrease is not as steep as the nucleolus and the SSPE.
It gives each worker the positive payoff 1/6 even when the employer can make

the largest production with only one worker. However, in this case, the core
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consists of a single allocation where the employer exploits the total production.

The SSPE payoff and the nucleolus predict the employer’s exploitation.

payoff
1
nucleolus — SSPE
Shapley E
1/3 [
0 1/3 2/3 4/5 1
a

Figure 5.2 The payoff of the employer in three solutions

Figure 5.3 illustrates different solutions, the SSPE payoff, the core, the
Shapley value and the nucleolus, in the set of payoff distributions (xy, zy.x3)
which satisfy z1 + x9 + 23 = 1. In the figure, the equity allocation (1/3, 1/3,
1/3) is outside the core. The SSPE payoff of the employer is the smallest

payoff in the core.
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nucleolus

Shapley SSpE

equity

>/ N

Figure 5.3 Comparison of different solutions

6 Conclusion

We have considered the random-proposer model as a noncooperative bargain-
ing procedure for an n-person coalitional game. By analyzing an SSPE of
the bargaining model, we have examined to what extent two approaches, non-
cooperative game theory and cooperative game theory are complementary in
the problem of coalitional bargaining. We have shown that the non-emptiness
of the core in a game critically affects an equilibrium of the bargaining model.
The grand coalition forms in equilibrium only if the expected payoffs of players
lie in an enlarged set of the core, which shrinks to the core as players become
sufficiently patient. The bargaining power of a player is determined by the

ratio of a recognition probability to a payoff loss by discounting. In the last
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part, we have applied the bargaining model to a production economy of one
employer and multiple workers. We have shown that the SSPE payoff and the
nucleolus have similar distributional properties: both solutions lie in the core
and predict the equal division when the full employment has a high productiv-
ity per capita. The SSPE payoff and the nucleolus have similar wage formula.
The Shapley value yields a different distribution. This discrepancy among so-
lutions is caused by the fact that the SSPE and the nucleolus capture strategic
conflict of coalition formation in multilateral bargaining, but that the Shapley
value does not. It may be interesting for future studies to examine how the
results of the production economy can be extended to a general cooperative

game.

7 Appendix

Proof of Lemma 5.1. The lemma is proved by Yan (2005, Proposition 5).
For convenience of readers, we provide her proof here. Let C; be the set of
coalitions which player ¢ proposes with positive probability in an SSPE, and
let qZ be the probability that player ¢ receives an offer when player j is selected
as a proposer. For any S including i, define w(S) = v(S) — ;¢4 dv;. Then, it
must hold from Lemma 3.2 that

1
v; = —(w(S) + dv;) + quévz (26)
n J#z
for all S € C;, and
w(S) > w(T) (27)

for all S € C; and all 7' C N with ¢ € T'. (26) implies

v; = w(S) — forall SeC. (28)

—0(1+ Zj;éi q;)

Remark from (27) that w(S) = w(S’) for all S, 5" € C;.
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Suppose that v; # v;. With no loss of generality, we assume that v; > v;.
Claim 1. w(S7) > w(S?) for all $7 € C; and all S° € C;.
Proof of claim 1. Take any S/ € C; and any S* € C;. If j € S, then the
claim follows from (27). Otherwise, we have w(S?) > w((S* — {i}) U {j}) =
w(S") + dv; — dv; > w(SY).

Claim 2. 37, . ¢f > >, qF-

Proof of claim 2. Consider any k # 4, j. For any S € Cg, i € S implies j € S
since dv; > ov;. Hence, qf > ¢F. We next prove qj- > qf It suffices us to show
that ¢§ < 1 implies ¢/ = 0, that is, if there exists some S* € C; with j ¢ S,
then any S7 € C; does not include i. Suppose not. Then, there exists some
S* € C; with j ¢ S* and some S7 € C; with ¢ € S7. Since S* € C; and i € 57,
we have w(S?) > w(S7) > w(S7) 4 dv; — dv;. On the other hand, since S? € Cj,
we have w(S7) > w((S" — {i}) U{j}) = w(S") + dv; — dv;. A contradiction.

By (28), the two claims imply v; > v;. This contradicts the supposition. QED

Proof of Proposition 5.2.
(i) It follows from Lemma 3.2 that

-1
n

vE) = (f(s) ~ (s~ Dw(8) +
f5) = v°(6)+ (0~ Du(9).

dv*(9)

It can be easily shown that this system has a unique solution (18) and (19). Let
q be the probability that every worker receives an offer. Again, from Lemma

3.2, we have
W) = S(F(5) — 607 (5) — (s — 2)6u’ (9)) + g’ (9).

Together with (18) and (19), we can prove that this equation has a solution

s—2)n+1
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(ii) The optimality condition (4) for the employer is given by

f(s) = (s = 1)ow*(6) > f(t) — (t — 1)ow*(d) for all ¢ # s.

This is equivalent to f(s) — f(t) > (s — t)dw*(0) for all ¢t # s. The optimality
conditions for workers give the same inequality. Conversely, we can construct
an s-equilibrium as follows. The employer selects every s—1 workers with equal
probability, and offers dw*(0) to them. Every worker selects every s-member
coalition including the employer and herself with equal probability, and offers

dv*(d) to the employer, and Jw*(J) to other workers in the coalition. When this

(s—2)n+1
n(n—1) °

strategy is employed, every worker receives an offer with probability
If the condition in the proposition holds, then we can prove from Lemma 3.2
that the constructed strategy is an SSPE.

(iii) In view of (19) and s < n, w*(J) converges to zero as 0 goes to one. Noting

this fact, we can show that for all £,
f(s) = f(t) > (s —t)6w*(6) for any § sufficiently close to one
if and only if
f(s)> f(t) forall t=1,---,n

with the strict inequality for all ¢ < s. Since f(s) is a monotonically increasing

function, this proves the first part. By (18) and (19), we have

limv*(§) = f(n) and limw*(d) = 0.

0—1 0—1

Hence, the employer offers zero payoff to every worker in a coalition in the
limit that ¢ goes to one. When f(s) = f(¢) for all ¢ > s, the core of the
production economy & consists of a unique allocation (f(n),0,---,0). This

proves the second part. QED

Proof of Proposition 5.3.
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(i) By Lemma 3.2, v = v(0) and w = w(0) satisfy the following conditions.

y = %(f(s)—(s—l)&w)—l—n_l&v (29)

vt (n—1w = pf(s)+1—-p)f(t) (30)
f(s) = (s =1Dow > f(k)—(k—1)6w forall k+#s (31)
f) =t —=1Ddw > f(k)—(k—1)6w forall k#t (32)

By (31) and (32), we have f(s) — (s — 1)éw = f(t) — (¢t — 1)0w, which yields
(21). By substituting (21) into (29), we have (20). Finally, we obtain (22)
from (21) and (30).

(ii) (31) and (32) are equivalently reduced to f(s) — f(k) > (s — k)ow(6) for
all k # s,t and f(s) — f(t) = (s — t)ow(d). The proposition can be proved by
Lemma 3.2.

(iii) Let v and w are the expected payoffs for the employer and workers, re-
spectively, in an (s, t)-equilibrium, and let v and w' are the expected payoffs
for the employer and workers, respectively, in an (s',¢')-equilibrium. In view

of (21), the optimality conditions for an (s, t)-equilibrium are

f(t) = f(s)

15) = 1) 2 5 — T O 3
£~ 1k > (1 - 1y O 3

for any k # s,t. Similarly, the optimality conditions for an (s, t')-equilibrium

£~ 1) 2 (¢~ T =D (35)
£(E) - ) 2 (o~ =D (36)

for any k # s,t. Putting k = ¢’ in (34) and £ =t in (35), we obtain

1) = 1)  fE) = f(5)

t—s th— s
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since s’ < t. Similarly, putting k£ =¢' in (33) and k£ = s in (36), we obtain

ft) = f(s) S FF) = £(5)

t—s th— s

since s < t'. Thus, we have w = w'. If s = &', then v = v’ easily follows from
(29) and w = w'. Suppose that s > s', without loss of generality. Putting

k = s"in (33), we have
f(s) = f(s)

p > dw.
s—§
Similarly, putting £ = s in (35), we have
_ !
1) =16 _ s
s—s -
Hence, we have
_ !/
f(S) f,(S) — 6w — (5'[1),.
s—§

This equality with (29) yields v = v'.
(iv) From (20) and (21), we can see that v(d), w(d) converge to
=D f) = (s=Df@®) . ft) = f(5)

= =2 37
v P , W P (37)

respectively, as 0 goes to one. Let p* be any accumulation point of {p(¢)}.
By taking 6 — 1 in (30), we have v* + (n — L)w* = p*f(s) + (1 — p*) f(2).
Substituting (37) into this equation, we obtain

n—t . n—t
() = 0+ —

(p" + )/ (). (38)
Since ¢t < n, p* + 2=t > 0. Then, it follows from (38) that f(s) = f(¢). Thus,
v* = f(s) and w* = 0 from (37). Finally, f(s) = f(¢) implies f(s) = f(n)
from (33) with k = n.

(v) Putting ¢ = n in (37) yields v* = @=E=G=DIM) ;g 40 = [0S0

n n—s

Since t = n, (38) implies that p*f(s) = p*f(n) for any accumulation point p*
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of {p(9)}. If f(s) < f(n), then we obtain p* = 0. Hence, {p(d)} converges to
0 as 6 goes to one. Hence, whichever f(s) < f(n) or f(s) = f(n) holds, we

obtain

v+ (n—1w" = f(n). (39)

Since p > 0 and f(s) < f(n), (30) implies v(d) + (n — L)w(d) < f(n). Substi-
tuting (20) and (21) into this inequality, a tedious calculation yields

By taking 6 — 1, we obtain f(ss) > @ We will prove the last part. It follows
from (37) that

(n—k)f(s) = (s = k) f(n)

v+ (k- Dw" = P (40)
for all £ > 2. On the other hand, (34) yields
f) ~ 1) = (n - T2 IE) (a1)

(40) and (41) imply that v* + (k — 1)w* > f(k) for all £ > 2. Together

with (39), this means that the payoff allocation (v*, w*,--- ,w*) is in the core
of the production economy &. Any core allocation (vy,w,---,w) in which
all workers receive the same payoffs w satisfies v + (n — 1)w = f(n) and

v+ (s —1)w > f(s). These conditions imply v > v*. Finally, for any core
allocation (v, ws, - - -, wy,), there exists some value w such that the allocation
(v1,w, -+ ,w) is in the core. Thus, the employer’s payoff v* is her minimum

payoff in the core. QED
Proof of Theorem 5.1. We first note that even if there exists an SSPE with

more than two different sizes of coalitions, the same proof as in Proposition 5.3

can be applied, and thus the economy has the same payoff distribution as in an
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(s,t)-equilibrium in the limit that the discount factor § goes to one. The ratio
% is constant for any two coalition sizes s and ¢ in the equilibrium. The
equilibrium wage is equal to this ratio. From this argument, it follows that the
economy has a unique SSPE payoff when the discount factor § is close to one.
(i) is proved by Proposition 5.1. If (i) does not hold, there exists some k such

that f(n)/n < f(k)/k, which implies LS8« J0) "6t s he the solution
[=F®) o4 ot — L)

— = Geometrically, s satisfies the

of minj<p<, 1
property that all points (k, f(k)) are included in the half-space determined
by the line connecting points (s, f(s)) and (n, f(n)). The employer’s profit
f(k) — (k —1)w is maximized at k = s, n. Then, (ii) is proved by Propositions

5.2 and 5.3. QED.

Proof of Proposition 5.4.
(1) By the definition of the Shapley value, we have

s—1 n! n
s=1

6=3" (”‘ 1) = D=9l ey -5~ L), (42)

s=1

(2) Since the nucleolus satisfies the axiom of symmetry, all (identical) workers
receive the same payoffs. Let v be the employer’s payoff and w be the wage

for workers. Then, the nucleolus is the solution of the following program:

min ¢
st. v+(s—VDw+e>f(s), s=1,---,n—1
sw+e2>0, s=1,---,n—-1

v+ (n— 1w = f(n)

It can be easily seen that the optimal solution of w satisfies w* > 0. This

means that constraints sw+¢ > 0 for s = 2,--- ,n—1 are redundant. We can
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show that the remaining constraints imply

f(n) = f(s)

e > — .
- n—s—+1

Thus, the optimal solution (v*, w*,e*) satisfies

w* = —"= min M

I<s<m—1 n— s+ 1

, v = f(n) — (n—1w"

This proves the proposition. QED
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