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Abstract

Dealing with the integrated and near-integrated processes, this paper investigates the
validity of regression on deterministic trends of K terms as K becomes large. It is
found that the regression tends to be valid in spite of the true process being free
from the deterministic trends, which implies that the distinction between stochastic
and deterministic trends disappears in K-asymptotics of the integrated and near-
integrated processes. It is also shown that, in K-asymptotics, the usual unit root test
based on the model with deterministic trends of K terms becomes useless against near

integration since the unit root distribution remains unchanged.
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1. Introduction

In the analysis of economic time series it has been taken for granted that it is
possible to differentiate stochastic trends from deterministic trends, where stochastic
trends refer to I(1) processes, that is, nonstationary processes whose first differences
become stationary. The so-called unit root tests have been devised to discriminate
between the two with the belief in this dichotomy.

There are, however, some phenomena that shake this belief. Spurious detrending in
regression is one typical example, where the I(1) process is regressed on deterministic
time trends to observe that the regression coefficients exhibit statistical significance as
the sample size T goes to infinity, although their true values are zero, which is discussed
in Durlauf and Phillips (1988). ! In addition, R?, the coefficient of determination,
has a non-degenerate limiting distribution. The only evident indication of spurious
regression seems to be a very low value of the Durbin-Watson (DW) statistic, which
implies that the detrended residuals are still of the nonstationary I(1) nature.

The above findings are based on the situation where the sample size T — oo with
K, the number of terms of deterministic trends used for regression, fixed. We shall
call this usual type of asymptotics “I- asymptotics”. On the other hand, Phillips
(1998, 1999) recently extended the arguments to “K-asymptotics”, where the number
of deterministic terms K — oo maintaining 7T-asymptotics. In K-asymptotics the
regression coefficients of deterministic trends are still significant. Moreover, R? con-
verges to 1 in probability, implying that the stochastic trends can be fully explained by
deterministic trends. The DW statistic is found to be of no help in detecting spurious
regression. In other words, spurious regression becomes valid in K-asymptotics.

The purpose of the present paper is two-fold. One is to explore various statistical
properties in K-asymptotics, extending the arguments of Phillips (1998, 1999) to near-
integrated processes. The other is to investigate how K-asymptotics work in finite
samples. In doing so attention is directed to the effect on the unit root tests after
detrending. Section 2 describes briefly Phillips’ arguments, while Section 3 extends
his arguments. It seems necessary to deal with these two cases separately because
of some mathematical reasons which will become clear later. Section 4 examines,

by simulations, the finite-sample performance of K-asymptotics. Section 5 concludes.

!Spurious regression is usually referred to as the regression of one I(1) process on another inde-
pendent I(1) process. This case can be detected in terms of cointegration, with which we are not
concerned here.



Since the Fredholm theory on integral equations plays an important role in this paper,
its brief summary is provided as Appendix A, whereas proofs of theorems are all given

in Appendix B.

2. K-Asymptotics in the Integrated Process
In this section we deal with the I(1) process whose data generating process (DGP)
is given by
Ye = Yp1 T Uy, Yo = 0, t=1,...,7), (1)

where {u;} is a short memory stationary process defined by

o

o o
u =Y e, > jloyl <oo, a=) a; #0, (2)
j=0 j=0 Jj=0

with {&;} ~ 1.i.d.(0, 0?). Then the process {u;} has the long-run variance

2
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which is finite and positive. The short run variance V (u;) is denoted as 0. We further
assume that E (|g,/?) < oo for some p > 2.

We also define the partial sum process

1 1 [Tr]
Xr(r) = ——=— Y = —=— > U, 4
r(r) VTo, T YT, & (4)

where r € [0,1] and [T'r] is the integer part of Tr. Then, as T — oo, the following
functional central limit theorem (FCLT) holds:

where = signifies weak convergence throughout this paper, whereas {W(r)} is the
standard Brownian motion defined on [0,1]. This is a typical invariance principle in
the weak version, while the strong version [Csoérgé and Horvath (1993)] says that, as

T — oo, we can construct a standard Brownian motion such that

sup 1° —-W(r) —0 (6)

1
o<r<t |VToy Y]

with probability 1, where 0 <0 =1/2—-1/p < 1/2.



Moreover it is known [Loéve (1978), Chan and Wei (1988)] that W (r) admits

infinitely many ways of series representations. For example, we have

W(r) = igu +°°ffg) .

where {v;} ~ NID(0,1), {£,} ~ NID(0,1), and the two sequences are independent of

each other, whereas ¢;(r) is a continuous function. Moreover, )\, is the eigenvalue of

the positive definite kernel

K(r,s) = Cov <W(7") — igi(r)yi, W(s) — f:lgi(s)yi) ,

and f,,(r) is the corresponding orthonormal eigenfunction (see, for details, Appendix
A). Thus, allowing for various values of m and various functions g¢;(r), we obtain
infinitely many ways of series representations of W (r) that converge with probability
1 and in mean square, uniformly in r € [0,1]. Among such representations the most
convenient for the present purpose is

W(r) = f_ojl %@L C gulr) = Vasinl(n — 1/2)m], (7)

where (n — 1/2)7 is the square root of the n-th smallest eigenvalue of the positive
definite kernel Cov(W (r), W (s)) = min(r,s), while ¢,(r) is the corresponding or-
thonormal eigenfunction.

It is anticipated from (6) and (7) that the I(1) process y; = y;—1 + u; that contains
purely stochastic trends can be validly represented by deterministic trends. To see

this we consider, following Phillips (1998), the regression relation

Yy = i_{:i)k(/sk (%) + iy = b(K)'¢(K,t/T) + iy (8)

where b(K) = (by,- - -, bx), ¢(K,t/T) = (¢1(t/T),- - -, ¢x(t/T))" and i, is the OLS
residual. Note that ¢(K,t/T) is the vector of deterministic trends. One may argue
that use of polynomials is more appropriate as a trend. It is certainly true, but we
do prefer to use ¢(K,t/T) because this is also used in the series representation of the
Brownian motion in (7), which yields mathematical convenience. For our purpose,
however, this choice will lose no generality, as we shall demonstrate later.

To study the asymptotic behavior of various statistics arising from the regression

relation (8), the partial sum process based on residuals plays an important role, which
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we describe as
- 1

UT(T) \/_UL

Note that the process {Wyk(r)} is a detrended Brownian motion, which is the residual

g = Worlr) = W) = [ 606, 5)W(s)ds6(K, ). (9

process of the Hilbert space projection of W (r) on the space spanned by ¢(K,r).

Let ¢(K) = (c1, ..., ck) be any K x 1 vector with ¢(K)'c(K) =1 and ¢, gyijx)
the usual regression t¢-ratio constructed from ¢(K)'b(K). We also denote the coefficient
of determination and the Durbin-Watson statistic by R? and DW, respectively. Then
Phillips (1998) obtained the following results on T-asymptotics.

(2) c(KYB(K)NT = ope(K) J} 6(K,n)W(r)dr,

(b) SL@2/T = o [ Wie(r)dr,

(©) oy /VT = e(K) JE oK, )W (r) dr/ (Je Weg(r)dr)'”” |
@ R =1-5L,@/S0 = 1 W) dr/ R W2(r) dr,
(e) DW — 0 in probability.

The result (a) together with (7) and the orthogonality of ¢, (r) implies that the K
components of b(K)/+/T are asymptotically independently normally distributed with
the variance of its k-th component being o2 /((k — 1/2)?m?). In fact, it holds that

[ oWy dr =@ for, ... /o), ax=(k=1/2m

The result (b) implies that the regression residuals still contain nonstaionary com-
ponents while it follows from (c) that the regression coefficients of deterministic trends
are significant. This also applies when the robust ¢-ratio which accommodates serial
dependence in the residuals is used. Moreover, the result (d) also signals that the
fitted regression is valid. The result (e), however, serves as conventional wisdom that
detects poor performance of the fitted model. This last statement can be made more
rigorous by the fact that

1
fol chK (r)dr '

We next move on to K-asymptotics by letting 7" — oo and then K — co. It holds

that

TxDW =



(a) c(K)B(K)/VT = N(0,03), of =075, cn/ (n—1/2)n°),
(b) Eioy /T2 = O,(1/K),

(©) toxyi)/VT = Op(VE),

(d) R? — 1 in probability,

() T x DW = 0,(K).

All of the above statistics signal that the regression relation (8) is valid in K-
asymptotics. We have that the coefficients of deterministic trends are still significant
because of (c), and the regression (8) fully captures the variation of {y;} because of (d).
Moreover, as described in (e), the DW statistic does produce a nonnegligible value.
More specifically, it holds that, as 7" — oc and then K — oo, T x DW/K converges
to 72 in probability. In conclusion, stochastic trends cannot be distinguished from
deterministic trends in K-asymptotics of the integrated process.

It is of great interest to study K-asymptotics in models for unit root tests. To

this end we consider the regression relation

R K . AN . .
Yo = Py + > by (T) Fiy = Py +D(K) (K, t)T)+a,, (t=2, ..., T). (10)
k=1

We first deal with T-asymptotics, for which Phillips (1999) proved that it holds

that, as T" — oo,

Jo W (r) dW (r)
ADF, 7, = W dr (11)
ADF, %, = fOIW“’K(T)dW(;)Q, (12)
(fo1 WQ%K(T) dr)

where ADF}, and Z, are the unit root coefficient statistics suggested in Said and Dickey
(1984) and Phillips (1987), respectively, whereas ADF; and Z; are the corresponding
unit root ¢-ratio statistics. Note that, in the simplest case where the error term {u,}

in (1) follows i.i.d.(0,6%), ADF, =T(p — 1) and

0—1
ADF, = : 172
5 /(S04 = S 1ol TV AT S yiesd (K, 1/T)

where 62 = > 42/(T — K — 1) and A7 = Y. ¢(K, t/T)d(K,t/T)".



The following results concerning the significance of the coefficients of deterministic

trends can also be obtained by routine calculation.

\/TC(K)'E(K)/UL = oK)X(K,¢), (13)
tygybk) = X(K,9) /\/ )QUK, ¢)te(K) , (14)

(X

where

Jo Worc(r) dW (r) + (1 — 0%/0%)/2) 3 6(K,m)W (r) dr
fol WQ%K(T) dr ’

X(K.6) = [ 6K, r)dW () (

K, ¢) = Ic - /01 6(K, )W (r) dr / o(K,r) dr// W(r

It is seen from (13) that the asymptotic distributions of the coefficients are non-normal,
unlike in the case of the purely deterministic regression (8), and that the stochastic
order of b(K) has decreased to 1/v/T so that b(K) is consistent and converges to the
true coefficient of zero. Nonetheless it follows from (14) that the corresponding ¢-ratio
is O,(1), which implies possible significance of the coefficients of deterministic trends.

This last statement becomes much clearer in K-asymptotics. In fact we have the
following results on K-asymptotics, which can be derived by letting K — oo in the

expressions on the right sides of (11) through (14). 2

°K K

ADF,, Z, = N(—” ”—) (15)
2 ' 6
/K 2

ADF, 7, = N(—”T, ;—4) (16)

VTe(K)Yb(K)/os = N(O, WQKQI;(Q%W), (17)

tykyik)y = 0,(VK) . (18)

It is quite interesting to observe in (15) that the unit root coefficient statistic, which
is T(p — 1) in the simplest case, is Opy(K), diverging to —oo, and tends to normality
after suitable recentering and rescaling. It is also interesting to notice in (16) that the
t-ratio is O, (V'K), diverging to —oco, and tends to normality after recentering without
rescaling. It follows from (17) that v/T¢(K)'b(K)/K = O,(1) so that the coefficients

2The results (17) and (18) are not given in Phillips (1999), whose proof will be provided in Section
3 when we deal with the near-integrated process.




of deterministic trends can take nonnegligible values in K-asymptotics. The result in
(18) further signals the statistical significance of deterministic trends.

The limiting distributions described in (15) and (16) do vary depending on deter-
ministic trends chosen as regressors. In fact, when we consider a usual model for unit
root tests that uses polynomials given by

X Koot . X
Y¢ = PYi—1 + Z by, (T) + ty = pys_1 + b(K) p(K, t/T) + iy, (19)
k=0

where p(K,7) = (1, r, .., 7¥)’, Nabeya (1999) obtained the following K-asymptotics.?

ADF,, Z, = N(-4K, 16K), (20)
ADF, 7, = N(-V2K,1/2). (21)

Note that (20) and (21) are polynomial versions of (15) and (16), respectively. Since

K 2
T ”—) = N(=157VK, 0.41),

2 724

K m'K
N (-”2 , %) = N(—4.93K, 16.23K), N (-
it is seen that the limiting distributions based on trigonometric and polynomial func-
tions are close to each other. This fact will be corroborated by simulations in Section 4.

In any case, use of trigonometric functions as deterministic trends has been justified.

3. K-Asymptotics in the Near-Integrated Process
In this section we extend the arguments discussed in the last section to deal with

near-integrated processes. Thus we consider, as the DGP,
yt:pyt—1+ut: y0:07 pzl—(C/T), (t:]-a R T)7 (22)

where c is a fixed positive constant, while {u;} is a short memory stationary process
described in (2) with the long-run variance o%. Then it is known that, for the partial

sum process defined by

1 1 [Tr]

= Y= Y= p
\/TUL[ } \/TOLtzl

Yr(r) = =ty (23)

the following FCLT holds:
Yr(-) = J(),

3An extension of the analysis of the polynomial case to the near-integrated process seems dif-
ficult and remains to be solved. This is a main reason we concentrate on deterministic trends of
trigonometric functions.




where {J¢(r)} is the Ornstein-Uhlenbeck (O-U) process given by
J(r) = e / TS AW(s) o dJ(r) = —eJS(r)dr + dW(r), Y(0) = 0. (24)
0

The O-U process {J°(r)} admits the following series representation:

i D Ve, (25)

where {&,} ~ NID(0,1), A, is the n—th smallest eigenvalue of the positive definite
kernel
efc|'rfs| _ efc(H—s)

2¢ ’

Cov(J¢(r), J%(s)) =

and f,(r) is the corresponding orthonormal eigenfunction. Unlike in the expansion
(7) of the standand Brownian motion W (r), it is impossible to obtain A, and f,(r)
analytically, although numerically possible once c is given, which will be demonstrated
in Section 4. We can show (see Appendix A) that )\, is the n-th smallest positive
solution to

/N — 2
tanv—c¢2 = ¢

Then it can be checked easily that

(n—1/2)r <A —c2<nr and (n—1/2)*7°+c* <\, <n’m?+c2.

We also obtain

i 1 in 2
= NnT, P =\ An — % M, = S L : (26)
M,

2 A,
Under the above setting we first consider

fa(r) =

:ﬁzkfk(%)+at:B<K>'f<K,t/T>+at, (t=1,...7), (0

where f(K,r) = (fi(r), ..., fx(r)) and the partial sum process based on the OLS
residulas uq, ..., g satisfies
1 1
— i = J§ r=J“r—/ K,s)'J(s)ds f(K,T). 28
N prc(r) = J%(r) = | FE8)T°(s) ds f(K, ) (28)

Then, proceeding in the same way as before, we have the following theorem on

T-asymptotics.

Theorem 1. For the regression relation (27) it holds that, as T — oo,

8



(a) «(KYB(K)/NT = oK) J f(K,r)J(r) dr,

(b) S a2 /T = o} [Ty dr,

(©) turyir/VT = dAKY 3 10T dr/ (J{ Ty dr) .
@) R =1-50,@/S0 0 = 1= {50y dr/ {0} dr,
(e) DW — 0 in probability,

where ¢(K) is any K x 1 vector such that ¢(K)'¢(K) = 1.

Theorem 1 implies that T-asymptotics in the near-integrated process give essen-
tillay the same results as in the integrated process. The only difference is that the
limiting process J¢(r) and the eigenfunction f(K,r) have been substituted for W (r)
and ¢(K,r), respectively. Then it follows from (25) and the orthonormality of { f,(r)}

that
/Olf(K,r)Jc(r) dr = (gl/@, gK/\/E)',

which implies that the components of b(K) are asymptotically normal and indepen-
dent of each other.

It may be noted that this eigenvalue decomposition does not hold if f(K,r) is
replaced by the much simpler function ¢(K,r). The reason will be explained shortly.
In any case use of ¢(K,r) rather than f(K,r) in the above theorem makes arguments
complicated.

We now discuss K-asymptotics by letting K — oo in Theorem 1, which yields

Theorem 2. For the regression relation (27), it holds that, as T — oo and then

K — oo,
(2) «(K)YB(K)/VT = N(0,02), 02=07 Y2 ¢/,
(b) X1’ /T? = Oy(1/K),
(©) toryiy/VT = Op(VEK),
(d) R? — 1 in probability,

(e) T x DW = 0,(K).



It is seen that K-asymptotics in the near-integrated process are, like T-asymptotics,

essentially similar to those in the integrated process. We note, however, that, if the

deterministic trend f(K,r) is replaced by ¢(K,r) in the regression equation (27), the

above result (a) has to be changed. This is because, in that case, we have, as T — oo,

Ek/ (\/TJL) = ; or(r)J(r) dr

1
n sin p,r sin(k — 1/2)mwr dr
0

_ i &n lsin (r, — (k= 1/2)7) B sin (p, + (k — 1/2)7)
pin — (k= 1/2)m fin + (k= 1/2)7

=1 Mp/2M,

Y

so that this last sum need not be & /+/A;, which is to be attained when ¢ (r) is

replaced by fi(r). This means that the components of b(K) are asymptotically not

independent, but a closer examination reveals that, in the above infinite sum, the

term corresponding to n = k dominates and yields a value which is close to & /v/Ax-

This property will be effectively used when we formulate a model for unit root tests.

We move on to deal with the regression relation

t A
Yt = PYi— 1+Zbkflc( >+Ut—Pyt 1+ b(K) f(K, t/T) + i,

(29)

and obtain the following results on T-asymptotics (Theorem 3) and K-asymptotics

(Theorem 4).

Theorem 3. For the regression relation (29) it holds that, as T — oo,

o b (r) dJe(r
AR 2 > e
ADE, 7, o T3 (r) dJ5(r)
| (s (r)y2dr) ™
ﬁc(K)'éK/aL = dK)Y(K, ),
by = V(K. f) /\/ )O(K, f)~e(K)

where

Jo i (r) dJ°(r) + (1 — 0§ /07) /2

R N e e

10
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x/()lf(K,r)JC(r) dr,
(K. f) = Ix - | "R, P () dr | LK) TS dr / | )Y dr.

Theorem 4. For the regression relation (29) it holds that, as T — oo and then

K — oo,
2K 4K
ADF, Z, = N (—”2 %) : (34)
K 2
ADF, 7, = N (—W > ;—4> : (35)
R 7T4 K 02
VTe(K)b(K)/os = N (0, ZK2 3 A—’“) , (36)
k=1 "k
toryiy = Op(VK). (37)

It is seen that the T- and K-asymptotics in the near-integrated process are essen-
tially the same as in the integrated process. Thus we can conclude that the regression
of y; on y;_; and the deterministic trend f(K,¢/T) is valid even if K — oo. In par-
ticular, it is quite interesting to notice that, in K-asymptotics, the statistics ADF),
and ADF; are normally distributed independently of the near-integration parameter
c. Note, however, that these statitsics do depend on ¢ in T-asymptotics.

The regression relation (29) cannot be used as a model for tesing a unit root Hy :
p = 1 because the deterministic regressor f(K,r) depends on the unknown parameter
c. We should use the modol (10) discussed in Section 2 as a suitable model for this
purpose, where we derived the limiting distributions of test statistics ADF, and ADF;
under Hy. To derive the limiting power under H; : p = 1 — (¢/T'), we need consider
the regression (10) under H;, that is, under the situation where the DGP is the near-
integrated process (22). In that case, results on 7T-asymptotics can be obtained in
the same way as in Theorem 3 by replacing fi(r) by ¢x(r). For instance, we have, as

T — oo under p=1— (¢/T),

J3 TS g dJE(T)
ADF, = 32—
o {J¢K(T)} dr

It, however, turns out that results on K-asymptotics in the present case are not clear-

cut because of the reason described below Theorem 2. We also mentioned there that

11



replacing fi(r) by ¢r(r) affects K-asymptotics little. Thus it is expected that results
similar to those in Theorem 4 hold true in this case. This last point will be examined

by simulations in the next section.

4. Some Simulations
In this section we examine, by simulations, the finite sample performance of 7-
and K-asymptotics developed in previous sections. For simplicity we assume the DGP

to be
Yi = PYi1 + €t Yo =0, p=1—(c/T), t=1,...,7), (38)

where {e;} ~ NID(0, 1) and c is a nonnegative constant.

The regression relations considered are

K " i
Yy = Zbk9k<_>+5ta (t=2,...,T), (39)
k=1 T
K . t
Yy = ﬁyt—1+zbk9k (T) + &4, (t=2,...,T), (40)
k=1

where gx(r) is a deterministic function equal to @, (r) in (7) when ¢ =0 (p = 1) and
equal to fi(r) in (26) when ¢ > 0 (p < 1). Note that fi(r) cannot be defined explicitly
so that it has to be obtained numerically (see (26)).

To compute p in a number of replications it is more convenient to run the regression

K " )
Yio1 = Y brgi (—> + €1, t=2,...,7), (41)
k=1 T

to get
T v ~ T v
2toEt-1E _ Do Et—1Yt

p= — = - . (42)
Z?:z 5%—1 Z?:Q 5%—1
We can also consider the estimator
D Y YT
p=F (43)
2281

but we find that the two estimators p and p are different in T-asymptotics, although

they are equivalent in K-asymptotics. We state this fact as the following theorem.

Theorem 5. For the DGP (38), it holds that, as T — oo,

Jo Yy (r) dY (r)
fol{Yth(T)}2 dr’

12

T(p-1) = (44)




Jo Yore(r) dY (r) + Hyx

T(p-1) = o) 2dr (45)
and, as K — oo,
16-1. 16-1 = §[(-55TE), (46)

where Y (r) = W(r) for ¢ = 0 and J°(r) for ¢ > 0, whereas Yy (r) = Wyk(r) for
c =0 and Jfx(r) for ¢ > 0. Moreover

Hyc= [ Y0) o) [ 95196y ds = Y] dr [V (r)gtrar,

where g(r) = g(K,r) and gV (r) = dg(K,r)/0r.

The estimator p can be easily computed once the regression (39) is fitted, but,
because of the reason described in Theorem 5, we use p throughout simulations.*

Table 1 is concerned with R? and DW for the model (39) with p=1. The entries
are the means and standard deviations (SDs) of these statistics computed from 1,000
replications. We fix the number of replications at 1,000 throughout simulations. The
sample sizes used here are T'=400 and 800, for which six values of the number of
terms K are examined. It is seen from Table 1 that the distribution of R? with K
fixed depends little on T, as was described in Theorem 1, while R? tends to 1 as K
becomes large, as Theorem 2 implies. On the other hand the distribution of DW does
depend on 7" even if 7" is large and K is fixed. Both the mean and SD decrease to
half as the sample size doubles. This is because DW = O,(1/T) with K fixed. When
K becomes large with large T fixed, DW as well as R? increases so that the fitted

model, although deviates from the DGP, becomes more plausible.
TABLE 1

Table 2 is concerned with the means and SDs of T'(p— 1) obtained from 7'=400 for
p=1, 0.975, and 0.95, respectively. The entries in parentheses are the corresponding
theoretical values derived from K-asymptotics described in (15). It is observed from
Table 2 that, for each p, the distribution of T'(p — 1) is shifted to the left with the

SDs increased as K becomes large. It is also observed that the distribution changes

41f we use polynomials as the deterministic trends, then it can be shown that the two estimators
are equivalent in both T- and K-asymptotics.
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litte with p close to 1 when K is moderately large (K > 10 in the present case). This
last fact is a consequence of Theorem 4. Under 7'=400, Figure 1 draws the histogram
of T(p—1) with p=1 and K=1, together with the density of N(—4.93, 16.23) derived
from K-asymptotics. The approximation is evidently poor because of a very small
value of K, although not terribly bad. Figures 2 and 3 draw the same graphs as in
Figure 1, but, with p=1 and K=20 in the former, and with p=0.95 and K=20 in the
latter. The normal distributions are N(—98.7, 324.7) in both figures. It is seen that
the approximation is quite good in both cases. It is also seen that the two histograms
are quite alike, which implies that the distribution of 7'(p — 1) depends little on p

close to 1 when K is reasonably large.
TABLE 2 FIGURE 1 FIGURE 2 FIGURE 3
We also conduct simulations in connection with the unit root test
Hy: p=1 against H :p=1-(¢T). (47)

For this purpose we use the model (40) with gx(r) = ¢x(r). The null distribution of
the unit root statistic 7'(p — 1) was discussed in Section 2, and is drawn in Figures 1
and 2. As for the distribution under Hy, we should distinguish it from the distribution
with gg(r) = fx(r) discussed in Section 3. Note that we cannot use f(r) in stead of
or(r) because fr(r) depends on unknown ¢ to be tested. One such histogram with
9x(r) = fx(r) was drawn in Figure 3. Figure 4 draws the histogram of the unit root
statistic T'(p — 1) under ¢=20 when T=400 and K=20 so that p=0.95, together with
N(—98.7,324.7) which is the distribution of the statistic in K-asymptotics with ¢y (r)
replaced by fr(r). It is seen that the histogram in this figure is so close to that in
Figure 3, which implies that the distribution of T'(p — 1) under p close to 1 depends
little on whether ¢y (r) or fx(r) is used. Comparison of Figure 4 with Figure 2 leads
us to conclude that the unit root test based on T'(p — 1) has no local power in K-
asymptotics. The same is true, though not reported here, for the test based on the

t-ratio statistic.
FIGURE 4

Finally we report some simulation results associated with the usual model for the

unit root test, that is, the model (40) with gx(r) being the polynomial of degree k.
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It should be mentioned here that use of ordinary polynomials of the form g(r) = r*

causes trouble to compute p when K becomes as large as 10. This fact may be
explained in terms of the condition number of the K x K matrix Hg7 whose (4, k)th

element Hgr(j, k) is given by

Bt — Ly~ (B (1)
xr( k) =7 2 (7) (7) -
It holds that, as T — oo, Hgr(j, k) converges to Hg(j, k) = 1/(j + k + 1). The

corresponding limiting matrix Hg is known as the Hilbert matrix and it is found that

the condition numbers of Hy are
1.24x10° (K =4), 1.67x10® (K =6), 2.05x10" (K =8), 2.42x10* (K = 10).

To overcome the above difficulty we used Legendre’s polynomials whose orthonor-

malized version of degree k is defined by

[k/2

b 2k — 27)! 1\ k2
Qulr) = V2 +1 ;(_1)722jj!(§c—j)!zl)c—2j)! (“5) ’

where Qo(r) = 1, Qi(r) = V3(2r — 1), Qa(r) = V/5(6r> — 6r + 1), and so on. °
It should be understood that the distribution of 7(p — 1) does not depend on the
choice of polynomials, unlike in the case of trigonometric functions. Table 3 reports
the means and SDs under 7=400 for ¢=0 (p=1), 10 (p=0.975), 20 (p=0.95), and
various values of K. The entries in parentheses are the corresponding theoretical
values derived from K-asymptotics described in (20). The general feature is similar to
that of Table 2. We should mention here that K-asymptotics in the near-integrated
process remain to be established when polynomials are used as the deterministic
trends, but it is conjectured that the distribution of T(p — 1) depends little on p
close to 1 as K becomes large with large T fixed. Figure 5 draws the histogram of
T(p — 1) with p=1 and K=20 under T=400, together with the density of N(—80,
17.89) derived from K-asymptotics, whereas Figure 6 the corresponding histogram
with p=0.95 and K=20, together with the same density as in Figure 5. It is seen that
the two histograms resemble closely, which supports the conjecture mentioned above.

The normal approximation is also seen to be reasonably good. We can conclude that

5T am very grateful to Professor Seiji Nabeya for suggesting using and how to compute efficiently
Legendre’s polynomials.
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the unit root test based on T'(p — 1) has also no local power in K-asymptotics when

polynomials are used as the deterministic trends.

TABLE 3 FIGURE 5 FIGURE 6

5. Concluding Remarks
We have discussed K-asymptotics associated with deterministic trends fitted to
the integrated and near-intgerated processes. The results obtained can be summarized

into three respects as follows:

i) The vector of deterministic trends, g(K,r) = (¢:1(r), ..., gx(r)), tends to
explain fully the true process {y;} that contains purely stochastic trends in
the sense that the regression of y; on g(K,r) yields significant ¢-ratios for the
fitted coefficients, R? close to 1, and DW exhibiting little indication of serial
correlation. The situation remains unchanged between the integrated and near-

integrated processes.

ii) The deterministic trends are still significant if y, is regressed on g(K,r) as well

as on y;_1, although the DGP for y; contains 1;_; only.

iii) The unit root test based on the regression of y; on y;_; and g(K,r) loses its
power against near integration since the unit root distribution in the integrated

process is the same as that in the near-integrated process.

Needless to say, the model with stochastic trends is preferred to the one with
deterministic trends on the ground of parsimony. The truth, however, may be that the
actual process is generated by an infinite number of deterministic trends with random
coefficients. There is no way of choosing between the two under K-asymptotics of the
integrated and near-integrated processes. This raises a question of what the trend is,

which arises just because the trend, if any, is unobservable.
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Appendix A: Brief Summary of the Fredholm Theory

Following Courant and Hilbert (1953) and Hochstadt (1973), we give a brief sum-
mary of the theory of Fredholm integral equations, whose knowledge is essential to
the understanding of the discussions developed in Sections 2 and 3. A more detailed
treatment of the theory in terms of the analysis of nonstationary time series can be
found in Tanaka (1996), while various statistical applications are developed in Nabeya
and Tanaka (1988, 1990a, 1990b), and Tanaka (1990, 1993).

Let us consider the following equation for A and f(r)

fr) = )\/01 K(r,5)f(s) ds, (A1)

where K (r,s), called the kernel, is a given, continuous and symmetric function on
[0,1]x[0,1]. This equation is called the homogeneous Fredholm integral equation of
the second kind. A value A for which this integral equation possesses a nonvanishing
continuous solution f(r) is called an eigenvalue of the kernel K (7, s); the corresponding
solution f(r) is called an eigenfunction for the eigenvalue A\. The maximum number
[ of linearly independent solutions is called the multiplicity of A. It is known that
every eigenvalue is real because of the symmetry of the kernel and every multiplicity
is finite. Moreover, we can assume, without any loss of generality, that the sequence
of eigenfunctions { f,,(r)} is orthonormal, where the eigenvalues are repeated as many
times as their multiplicities.
The integral equation (Al) can be approximated by the algebraic system
' A& ok k ,
@25, o

or, in matrix notation,
A

fT:TKTfTa

where fr =[(f(j/T))]is a T x 1 vector and K = [(K(j/T,k/T))] is a T x T matrix.

Let us consider

A
Ir — =Ky

DT(/\) = T

bl

where Dr(A) = 0 is the characteristic equation that gives reciprocals of eigenvalues

of the matrix K7 /T. Then it holds that

19



D) = lim Dr(})
K(t,t) - - - K(t,t,
o0 (_1)n )\'n, 1 1 ( ? 1) ( . )
-y — /0/0 : : dty - dt,.  (A2)
S Kt,t) - - o K(ta,tn)
The function D(]) is called the Fredholm determinant (FD) of the kernel K(r,s). It
holds that the series in (A2) converges for all A so that D()) is an entire or integral
function with D(0) = 1.
The following theorem gives an important relationship between D()\) and eigen-

values.

Theorem A1l. Every solution to D(A) = 0 is an eigenvalue of K(r,s), and in turn

every eigenvalue of K(r,s) is a solution to D(X) = 0.

It follows that A = 0 is never an eigenvalue since D(0) = 1 # 0. It is known that
there exists at least one eigenvalue insofar as the symmmetric and continuous kernel
K(r, s) is not identically equal to zero. If there are an infinite number of eigenvalues,
K(r,s) is said to be nondegenerate; otherwise it is degenerate. When K(r,s) is
nondegenerate, A = oo is the only accumulation point of zeros. If all the eigenvalues
have the same sign, then K (r, s) is said to be definite. Alternatively, K(r, s) is positive
(negative) definite if [ [, K (r,s)g(r)g(s) drds is nonnegative (nonpositive) for any
continuous function ¢(r) on [0,1]. If all but a finite number of eigenvalues have the
same sign, K (r,s) is said to be nearly definite.

Two typical examples of kernels are

Cov(W (r), W(s)) = min(r, s), Cov(W(r), W(s)) = min(r,s) — rs,
where W (r) is the standard Brownian motion and W (r) is the Brownian bridge.
These kernels are evidently positive definite and nondegenerate. In fact, the FDs of
min(r, s) and min(r, s)—7s are shown to be cos /A and sin v/A/v/\, respectively. Thus
the eigenvalues are (n — 1/2)?7? and n?r? for n = 1, ..., respectively. A convenient
method for computing FDs is demonstrated below to help understand the arguments

in Section 3.
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The following theorem, called Mercer’s theorem, is specific to nearly definite ker-
nels, and is an infinite-dimensional version of the eigenvalue decomposition of sym-

metric matrices.

Theorem A2. Let K(r,s) be continuous, symmetric and nearly definite on [0, 1] X
[0,1]. Then it holds that
<1

K(r,s)=)Y_ /\—fn(T)fn(S) 5

n=1 """
where {\,} is a sequence of eigenvalues of K (r, s) repeated as many times as their mul-
tiplicities, while {f,(r)} is an orthonormal sequence of eigenfunctions corresponding

to eigenvalues A, and the series on the right side converges absolutely and uniformly

to K(r,s).

Mercer’s theorem plays an important role in the analysis of nonstationary time
series. For instance, if {Z(t)} is a zero-mean Gaussian process on [0,1], then it admits

the following series expansion

2= 50,

where )\, is the eigenvalue of the positive definite kernel Cov(Z(r), Z(s)), fa(r) is
the correponding orthonormal eigenfunction, and {&,} ~ NID(0,1). This fact can be
easily shown to hold true by Mercer’s theorem, and was used in (7) and (25).

The following theorem is also specific to nealy definite kernels, and will be effec-

tively used to compute FDs.

Theorem A3. Suppose that K (r,s) is continuous, symmetric and nearly definite on

[0,1] x [0,1]. Then the FD of K(r,s) can be expanded as

Dm:ﬁ@—ﬁy,

n=1

where A, is the eigenvalue of K(r,s) and l, is the multiplicity of \,.

On the basis of this theorem together with Theorem Al, we can give a set of

sufficient conditions for a function of A to be the FD of a nearly definite kernel.
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Theorem A4. Let K(r,s) be continuous, symmetric and nearly definite on [0, 1] X
[0,1] and {\.} a sequence of eigenvalues of K(r,s). Suppose that D()) is an entire
function of X\ with D(0) = 1. Then D()) becomes the FD of K(r,s) if

i) every zero of D(/\) is an eigenvalue of K(r,s), and in turn every eigenvalue of

K(r,s) is a zero of D(\) ;

ii) D(\) can be expanded as

n

where 1, is equal to the multiplicity of \y.

A word may be in order. If D()) is an entire function with D(0) = 1, so is D?()\),
for example. The zero of 152()\) at A,, however, is of order 2/,,, while the multiplicity
of A, is I,. Thus D?()) is not the FD of K.

To obtain a candidate D()) for the FD of K we work with a differential equa-
tion with some boundary conditions equivalent to the integral equation (Al). As an
illustration let us take up the positive definite kernel

e—clr—s| _ g—c(r+s)

2c ’

K(r,s) = Cov(J(r), J(s)) = (A3)

where J¢(r) is the O-U process defined in (24). Let us consider
1
[) = A [ K(r9)f(s)ds
0
r emclr—s) 1 gmels—) 1 gmelr+s)
= A l/ £(s) ds+/ £(s) ds—/ £(s) ds] L (A4)
0 r 2c 0 2c

2¢
By differentiation we have
')+ (A=) f(r)=0, (A5)

and it can be shown that this differential equation together with the two boundary
conditions f(0) = 0 and ¢f(1) 4+ f'(1) = 0 is equivalent to the integral equation (A4).
The general solution to (Ab) is given by

flr)y=aicospur+agsinur, pu=vV\—c?, (A6)
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where a; and ay are arbitrary constants. From the boundary conditions f(0) = 0 and

cf(1) + f'(1) = 0, we have the following homogeneous equation on a = (a1, as)":

( L 0 )(“l>:<0> & M(MNa=0.
CCOS |4 — (SN csin i + 4 cos j as 0

The eigenfunction f(r) in (A6) must be nonvanishing, which occurs only when a # 0.
Thus A(£ 0) is an eigenvalue if and only if |M ()| = c¢sin p+p cos p = 0. We therefore

obtain

D) = lcos,u—i—/% Sinp]/ec, D) =1 (A7)

as a candidate for the FD of K(r,s) in (A3). Condition i) in Theorem A4 has now
been established.

We proceed to establish ii) in the same theorem. From the boundary condition
a; = 0 we have f(r) = agsin ur with as # 0, which yields the orthonormal eigenfunc-
tion given in (26). Thus the multiplicity of every eigenvalue is unity. We have only to
show that D()) admits an infinite product expansion as given in Theorem A4 with

l, = 1 for every n. For this purpose we have the following theorem [Whittaker and
Watson (1958, p.137)].

Theorem A5. Let h(z) be an entire function with h(0) = 1 and have simple zeros at
the points ay, ag, ..., where lim,_, |a,| = co. Suppose that there is a sequence {Cp,}
of simple closed curves such that h'(z)/h(z) is bounded on C,, as m — oo. Then h(z)
can be expanded as

h(z) = exp{H(0)2} I[ {(1-Dea (D)}

n=1 G an

Putting z = VA — ¢2, let us first show that h(z) = [cosz + ¢(sin 2)/2]/(1 + ¢)
satisfies the conditions in Theorem A5. It can be checked easily that h(z) is an
even entire function with A(0)=1 and A'(0)=0 whose zeros are all simple. Then we
can define the zeros of h(z) by +a;, *as,---, where a, = VA, —c2 (> 0) and
lim a, = co. Let C,, be the square in the complex plane with vertices mm(+1 + i),

n—,oo
m =1,2,---. Then it is seen that

R'(z) (ccosz)/z— (c/z* +1)sinz

h(z) cosz+ (csinz)/z

is bounded on each side of C,,, as m — oo.
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It follows from Theorem A5 that we can expand the even function h(z) with

h'(0) =0 as

1
h(z) = T+ [cosergsinz
ad z z z
= 1—- = Y1+ = _z
(o) e () (e ) e ()

Then we have

ec e
ad A ad A
- o0l (1-5) =1 (1-5,)

which establishes ii) in Theorem A4. Thus we have shown that D()) in (A7) is really
the FD of K(r,s) in (A3) so that every eigenvalue is the solution to

tan VA —c2 = -V —c?/e

This fact is effectively used in the discussions of K-asymptotics in Section 3.
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Appendix B: Proofs of Theorems

Throughout this appendix we use, for notational simplicity,

f(t) = fUE,/T), fO(t) = 0f (K, 7)[0r|p=yyr, Af(E) = FK,t/T) = f(K, (t = 1)/T).

Proof of Theorem 1
(a) It is easy to show, by the FCLT and the continuous mapping theorem (CMT),
that

1 - 1 '
) = (X A0r0) 10
= GL/O f(K,r)Jo(r)dr,

which leads us to the conclusion.
(b) This is an immediate consequence of (28) and the CMT.
(c) We deduce that

toeyiry [VT = ic / \/ Sz e(k)y (XS0 F(ty) ()

= (K /0 FE,7)J(r) dr / \/ /0 {Tee(m)) dr |

which yields the conclusion.
(d) This follows from (b) and the FCLT.
(e) We have DW = Nr/Dr, where Dr = 3" 47 and

Nr = Z(Ut—ut 1)2
= Y {u— BEY £(t) = (s — BE) F(E— 1)}

= S A 2(K) S AF) Ay +WE)S AFAL()BK) .

Here it can be shown that

S AfOAR = 5 Y FO0) Ay, = <%> ,
S ALOALE) = = X fO0F00 =0, (1)
so that
1

1
=7 > uj +0,(1) = 0% in probability.
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Thus we have, from (b) and the CMT,

2
T x DW = 25 L (B1)

oL fo {JfK( )}2 dr

which establishes (e).

Proof of Theorem 2
(a) We first have

) = 3 (z > ) =6
= f(K,r)ALPE(K) + f(Lr)ALY?e(L), (B2)

where

Ag =diag (A1, ..., Ak), AL =diag(Ags1, ..., )
fLr)' =(f(K+1,r), ...,), &) =k, -y )-

Then we have, from the orthonormality of {fx(r)},
[ 5 dr = AR () (B3)
so that
e(K) [ K, 1)) dr = (KY€ () = N (0, e(KY A e(K)) |

which yields the conclusion.

(b) It follows from the proof of (a) that
Tialr) = o) = [ £ )T (s) ds F(K,r) = F(L Y AT (),

which gives

1 [e7e) 1
V(K) = [ (k) dr=€ave) = 3 s (B
Since we have
— 1 > 1 1 1
:zK: P n§+1 (n—1/2)7 +d,)* + T 2K +o (f) ’

where 0 < d,, < 7/2, we get the conclusion.

26



(c) This is an immediate consequence of (a) and (b) since
1
| FE )T dr = 0,(1),
0

1 . 2 1
/0 (T ) dr =0, (E) .
(d) This immediately follows from (b).
(e) This follows from (B1) and (b).

Proof of Theorem 3
Here we consider, for simplicity, the case where the error term {u;} in the DGP (22)

follows i.i.d.(0,0%). Then we have
(0 Eran ) (o )= (Fham ) o9
so that ADF, =T (p — 1) = Ur/Vr, where
Ur = 23 =S o @ (S76)56)) " 10)] du
= o /O T (r) dT(r)
Ve = % [Z v =Y v f(s) (30 f(s)f(S)')f1 Zys_lf(S)]
= 02/01{J;K(r)}2 dr .

Since joint weak convergence of Ur and V7 is ensured, (30) is established.

We next consider

ADF, = (p=1)SE(p) =T(p—1) [ (s//V2) |

where

1 1 N
= s = ey 2 (= Aver — B F(1) w

1

= e Y [~ (0= Py — () F ()]

It can be shown after some algebra that 62 — o2 in probability, which yields (31)
because of (30) and the CMT.
It follows from (B5) that

) = 7 3 70) f = (5= Py} / (zXr0r@)
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which evidently yields (32). As for (33), we have

tasepic) = eUK)BR) [V e(KySe(K)

where

1

S = mmemr 2 (S FOLO) = e f0) X we S0 Y )

= o’%(K, f)™
with (K, f) defined in the theorem, which leads us to (33).

Proof of Theorem 4
We continue to assume that the error term {u;} in (22) follows i.i.d.(0,6%). We first
have that Y(K) in (B4) tends to N(mg,0%), where mg = 1/(m?K) + o(1/K) and

oo 2 00 9
2

g = —

R e N BV E ST

B 2 1
= i+ (iw)
We next obtain, after some algebra,

/01 T (r)dJ(r) = /01 |:JC(T)_/01f(Ka $)J(s) ds f (K, r)] 0I(r)

1

= S (5 = 1) — AL [ 1) = [ SO, ) dr

= —% + % G(K) + H(K),
where
G(K) = E(L)AL” F(L 1) F(L 1A (L),
H(K) = €A [ fO0r) f(L Y draT (1) (6)

Here we have E(H(K)) = 0 and

o0

E(G(K)) = f(L1) AT f(L1) = Z —fz( )
e 1 1
< n_%l =122 ¢ (E) !

VIH(K)) = tr [AKl /01 FOK, P F(L ) drAT? /01 FL ) FO(K, 7Y dr|
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To evaluate V(H(K)), let us consider, for 1 < j < K and k > K + 1,

we = [ 00 ) dr

_ M /1 S in e d
M, My Jo COS fi;7 Sin pur dr

_ ll — cos(p + p) 1= cos(u, = uj)]
2M; My, W =+ Lk P — 1y ’

where p; = (j —1/2)7 + d; with 0 < d; < 7/2 and 0 < M; < 1. Then we have

K 00 a2_
V(H(K)) = > =
j=1k=K+1 )‘j/\k
_ li 3 1 [1_COS(NJ'+NI€) N 1—COS(uk—uj)r
4 j=1k=K+1 (/L? + ) (ui + CQ)MJZ My Myt Mk P — I
< const. X i i { 1 + 1 + 1 }
j=1k=K+1 (k—1/2)%k*  K2(k? —5%)  pi(oe — 115)?
log K
- o(%)
Thus we obtain
Jo Tig(r)dJe(r) ~1/2+ 0,(\/Iog K/ K)

i {Teem) ar  V/@K) +V272/(12KV3K) + 0,(1/(KVK))

(L 2, (1
= i _———— [ ,
2 V6K T\VK
where Z ~ N(0,1), and arrive at (34).

Similarly we have
Jo Tic(r)dJe(r) —1/2+ 0,(IogK /K)
(i {51}’ ar) P (Y@K) + V2Z) (2K VBE) + 0,(1/(KVE)))

- e sdaenl)

which yields (35).
We next deduce that

T RYARE(E) + oy(K) (®7)

o(K)Y(K, f) =
which proves (36). Finally we have
S(K, f) = I - AR PERIEERIAL [ [ 47y dr
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so that, using the orthogonal matrix P such that

—-1/2

PALPE(K)E(K) AL P = diag (€(K)Y AL €(K), 0, ..., 0)

we obtain

1— (K ALK /fo{Jc ydr 5

51 fo{Jc( )}er §ﬂ2

c(K)S(K, f) 'e(K) =

E(L)ATIE(L
= OP(K)a
where 3= (81, ..., Bk)' = Pc(K). Thus (37) follows from this and (B7).

Proof of Theorem 5
Suppose that ¢ > 0 so that gx(r) = fr(r) with fx(r) defined in (26). Then we
obtain (44) and (46) concerning the limiting distribution of 7'(p — 1). Let us consider
T(p—1) = Ar/Br, where By = Y &2 ,/T? and

Ar = Y e (E-En)
— %Z y — FE=1 (X FO)f )_IZf(t)yt]
x B - 810 (S H01@) S F0w
= o [/01 L7 - 5 o [ 597 s} dre(r)
= [Lre) Oy dr [ ()T dr
+ /0 CF(K, Py ) dr /0 L FE, ) fOK, ) dr / L F (K, )T dr

0

1
— /0 T (r) dJ°(r) + Hye

where Hyg is defined in the theorem. Thus we obtain (45) by joint weak convergence
of Ay and By, and the CMT. As for K-asymptotics, substituting (B2) and (B3) into

Hyg, we have by partial integration
1 /1 1
Hyo = 5 [ IV rY drf (KD 1) [ F0 )0 dr
— /1 Je(r) fY(K, r)'dr/l f(K,r)Je(r) dr
0 0
= GRYAL (A DAY — [ () SO, Y dr] AL ()
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—E(LYAT [ (L0, ) drAR P (K)

where H(K) is defined in (B6), which is O,(v/log K/K). Thus we arrive at (46)

because of Theorem 4.
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Table 1
R? and DW Statistics for Model (39) with p =1

K=1 2 ) 10 20 50
R2
T = 400
Mean 0.594 0.752 0.887 0.943 0.971 0.989
SD 0.325 0.236 0.121 0.060 0.032 0.013
T = 800
Mean 0.591 0.752 0.888 0.942 0.971 0.988
SD 0.314 0.235 0.117 0.063 0.032 0.012
DW
T = 400
Mean 0.039 0.064 0.136 0.256 0.484 1.100
SD 0.024 0.031 0.047 0.063 0.081 0.104
T =800
Mean 0.020 0.033 0.069 0.129 0.249 0.586
SD 0.012 0.016 0.023 0.032 0.043 0.062
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Table 2
Distributions of T'(p — 1) for Model (40) with gx(r) = ¢x(r) or fi(r)

K =1 2 ) 10 20 a0

Mean ~7.03 —1191  —2632 —50.60 —96.18 —219.83
(—4.93) (=9.87) (—24.67) (—49.35) (—98.70) (—246.74)

SD 5.10 6.56 9.71 12.77 16.61 21.04
(4.03)  (5.70) (9.01)  (12.74)  (18.02)  (28.49)

p=0.975
Mean  —14.87 —18.08  —29.67 —52.36 —96.97  —220.10
SD 6.26 7.37 9.67 12.78 16.59 21.06
p=0.95
Mean  —24.50 —27.08  —36.56 —56.69 —99.12  —220.78
SD 7.60 8.38 10.09 12.88 16.58 21.07
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Table 3

Distributions of T'(p — 1) for Model (40) with gx(r) = Qk(r)

K=1 5 10 15 20
p=1
Mean —10.39 —14.84 —26.69 —46.05 —65.12 —-82.71
(=4) (=98 (=20)  (-40) (=60) (-80)
SD 5.94 7.44 9.89 1249 1456  16.16
(4.00)  (5.66) (8.94) (12.65) (15.49) (17.89)
p=0.975
Mean —-17.34 —20.47 -30.09 —48.00 -66.41 —83.75
SD 7.13 8.15 10.01 12.54 1462  16.23
p=0.95
Mean —26.65 —29.22 -37.32 -53.13 -70.12 —86.66
SD 8.33 9.00 10.32 12.63  14.72  16.29
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Figure 1. Distributions of T'(p — 1) with 7" = 400, K =1
and p=1
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Figure 2. Distributions of T'(p — 1) with T' = 400, K = 20
and p=1
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Figure 3. Distributions of 7'(p — 1) with 7" = 400, K = 20 and
p =095
(Regression with f(K,r) as deterministic trends)
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Figure 4. Distributions of T'(p — 1) with 7' = 400, K = 20
and p =0.95

(Regression with ¢( K, r) as deterministic trends)
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Figure 5. Distributions of T'(p — 1) with 7' = 400, K = 20

and p=1
(Regression with polynomial trends)
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Figure 6.  Distributions of T'(p — 1) with 7' = 400, K = 20
and p =0.95

(Regression with polynomial trends)
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