REVISED PROOF OF SKOLEM'S THEOREM*

TAKASHI NAGASHIMA

In [N 91], the author intended to present an easy finitary proof of Skolem's Theorem but unfortunately it turned out to contain some serious errors. This corrected version is self-contained and readers' knowledge of [N 91] is not assumed. Skolem's Theorem is the following statement: In the classical predicate logic, let \(f \) be a \(k \)-ary function symbol not contained in a formula \(\forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y) \supset B \). Then

\[
\forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y) \supset B
\]

is valid if and only if

\[
\forall x_1 \ldots \forall x_k A(x_1, \ldots, x_k, f(x_1, \ldots, x_k)) \supset B
\]

is valid.

We use the logical symbols \(=, \land, \lor, \supset, \forall \) and \(\exists \). Different letters are used for free variables and for bound variables. Any set consisting of function symbols and predicate symbols is called a language. The language obtained by adding function symbols \(f, g, \ldots \) and predicate symbols \(P, Q, \ldots \) to any language \(\mathcal{L} \) is written \(\mathcal{L} \cup \{f, g, \ldots, P, Q, \ldots\} \). Terms and formulae are constructed according to the usual syntactic rules. Any formula of the form \((A \supset B) \land (B \supset A) \) is abbreviated as \(A \equiv B \). For any formula \(A(a) \), the formula

\[
\exists x A(x) \land \forall x \forall y (A(x) \land A(y) \supset x = y)
\]

is abbreviated as \(\exists! x A(x) \). If two formal expressions \(A \) and \(B \) differ only in their bound variables, \(A \) and \(B \) are congruent [K 52, §33] or \(A \) is an alphabetical variant of \(B \) [T 75, §3].

A cedent is a sequence of zero or more formulae separated by commas. A sequent is an expression of the form

\[\Gamma \rightarrow \Theta \]

where \(\Gamma \) and \(\Theta \) are any decents. Partition of cedent is defined as follows:

1. If \(\Gamma \) is the empty cedent then \([\Gamma; \Gamma]\) is the only partition of \(\Gamma \).
2. If \([\Gamma_1; \Gamma_2]\) is a partition of \(\Gamma \) then \([\Gamma_1; A; \Gamma_2]\) and \([\Gamma_1; \Gamma_2; A]\) are partitions of \(\Gamma, A \).

A partition of a sequent \(\Gamma \rightarrow \Theta \) is an ordered pair (of sequents)

\[[\Gamma_1 \rightarrow \Theta_1; \Gamma_2 \rightarrow \Theta_2] \]

* This research was partially supported by Grant-in-Aid for scientific Research Nos. 62540145 and 05640253, Ministry of Education, Science and Culture of Japan.
For any formula or a cedent or a sequent S, let

$$\text{FV}(S) = \text{the set of free variables occurring in } S,$$

$$\text{BV}(S) = \text{the set of bound variables occurring in } S,$$

$$\text{Func}(S) = \text{the set of function symbols occurring in } S.$$

For any formula or a cedent or a sequent S, $\text{Pred}^+(S)$ (resp. $\text{Pred}^-(S)$) denotes the set of predicate symbols occurring positively (resp. negatively) in S and $\text{Pred}(S)$ denotes the set of all predicate symbols occurring in S.

Let \mathcal{L} be a language. A term t is an \mathcal{L}-term if $\text{Func}(t) \subseteq \mathcal{L}$. If $\text{Func}(A) \cup \text{Pred}(A) \subseteq \mathcal{L}$ then A is an \mathcal{L}-formula. The language $\text{Func}(A) \cup \text{Pred}(A)$ is called the language of A and denoted as $\mathcal{L}(A)$. Similar notations and terminologies are used for cedents and sequents.

For any formal expression S and for any (free or bound) variable v, $S[v := t]$ denotes the result of replacing all occurrences of variable v in S with t. When a formula is denoted as $A(a)$, the expression $A(a)[a := t]$ is abbreviated as $A(t)$.

The system LK_e (LK with equality) is an extension of LK obtained by adding the following schemata for initial sequents:

\[
\begin{align*}
\vdash t = t \\
\vdash s = t, A(s) \rightarrow A(t)
\end{align*}
\]

where a is a free variable, s and t are terms and $A(a)$ is an atomic formula. This system is equivalent to LK_e in [T 75, §7]. LK_e is also equivalent to the system LKG [N 66], which is an extension of LK obtained with additional inference schemata

\[
\begin{align*}
\vdash t = t, \Gamma \rightarrow \Theta \\
\vdash \Gamma \rightarrow \Theta, A(s), A(t) \rightarrow A \\
\vdash s = t, \Gamma, \Delta \rightarrow \Theta, A
\end{align*}
\]

where a is a free variable, s and t are terms and $A(a)$ is an atomic formula.

A derivation (or a proof figure) is defined as usual. A sequent S is LK-provable and denoted as $\vdash S$ is there exists an LK-derivation \mathcal{H} of a sequent S and if all sequents in \mathcal{H} are \mathcal{L}-sequents, then S is LK-provable in \mathcal{L} and denoted as $\mathcal{L}\vdash S$. Corresponding terminologies and notations are used also for LK_e. If the equality symbol $=$ is not contained in \mathcal{L}, then LK_e-provability in \mathcal{L} is clearly equivalent to LK-provability in \mathcal{L}.

If $A(a_1, \ldots, a_n)$ is a formula and x_1, \ldots, x_n are distinct bound variables not occurring in this formula, then the formal expression

$$\lambda x_1, \ldots, x_n. A(x_1, \ldots, x_n)$$

is an n-ary abstract [T 75, §20]. If V is $\lambda x_1, \ldots, x_n. A(x_1, \ldots, x_n)$ and if t_1, \ldots, t_n are terms then $V(t_1, \ldots, t_n)$ denotes the formula $A(t_1, \ldots, t_n)$. For any n-ary abstract V, define
\[\text{Func}(V) = \text{Func}(V(a_1, \ldots, a_n)), \]
\[\text{Pred}(V) = \text{Pred}(V(a_1, \ldots, a_n)) \]

where \(a_1, \ldots, a_n \) are free variables not occurring in \(V \). An abstract \(V \) is an \(\mathcal{L} \)-abstract if \(\text{Func}(V) \cup \text{Pred}(V) \subseteq \mathcal{L} \).

For any \(k \)-ary predicate symbol \(P \) and any \(k \)-ary abstract \(V \), the result of substituting \(V \) for \(P \) in a formula or a cedent or a sequent \(S \) is denoted as \(S[P:=V] \).

The key idea of our proof is replacing a function symbol by a predicate symbol \([K 52, S74]\). Let \(\mathcal{L} \) be a language, let \(f \) be a \(k \)-ary function symbol not contained in \(\mathcal{L} \) and let \(F \) be a \((k+1)\)-ary predicate symbol not contained in \(\mathcal{L} \). The \((f;F)\)-transformation applies to \(\mathcal{L} \cup \{f\}\)-terms and to \(\mathcal{L} \cup \{f\}\)-formulae. Any \(\mathcal{L} \cup \{f\}\)-term is transformed into a unary \(\mathcal{L} \cup \{=, F\}\)-abstract and any \(\mathcal{L} \cup \{f\}\)-formula is transformed into an \(\mathcal{L} \cup \{=, F\}\)-formula.

Definition is by the following induction.

1. \(a^* \) is \(\lambda u.(u=a) \).
2. \(f(t_1, \ldots, t_k)^* \) is
 \[\lambda u.\exists x_1 \ldots \exists x_k(f^*(t_1)(x_1) \land \ldots \land F^*(x_1, \ldots, x_k, u)) \]
 where \(u, x_1, \ldots, x_k \in BV(t_1^*) \cup \ldots \cup BV(t_k^*) \).
3. \(g(t_1, \ldots, t_n)^* \) is
 \[\lambda u.\exists x_1 \ldots \exists x_n(g^*(t_1)(x_1) \land \ldots \land g^*(x_1, \ldots, x_n)) \]
 where \(u, x_1, \ldots, x_n \in BV(t_1^*) \cup \ldots \cup BV(t_n^*) \).
4. \(P(t_1, \ldots, t_n)^* \) is
 \[\exists x_1 \ldots \exists x_n(P^*(t_1)(x_1) \land \ldots \land P^*(x_1, \ldots, x_n)) \]
 where \(x_1, \ldots, x_n \in BV(t_1^*) \cup \ldots \cup BV(t_n^*) \).
5. \((A \land B)^* \) is \(A^* \land B^* \), \((A \lor B)^* \) is \(A^* \lor B^* \), \((A \supset B)^* \) is \(A^* \supset B^* \) and \((\neg A)^* \) is \(\neg A^* \).
6. \((\forall x.A(x))^* \) is \(\forall y.A^*(y) \) and \((\exists x.A(x))^* \) is \(\exists y.A^*(y) \) where \(y \) is any bound variable such that \(y \in BV(A(a)^*) \).

Example. In case of \(k=1 \), \((f(a)=b)^*\) is (any alphabetical variant of)
\[\exists x_1 \exists x_2 \exists y z(z=a \land F(z, x)) \land y=b \land x=y. \]

For any \((k+1)\)-ary predicate symbol \(F \), the existence condition [Mo 82] \(\text{Ex}(F) \) is the formula
\[\forall x_1 \ldots \forall x_k \exists y F(x_1, \ldots, x_k, y) \]
and the uniqueness condition [Mo 82] \(\text{Un}(F) \) is the formula
\[\forall x_1 \ldots \forall x_k \forall y \forall z(F(x_1, \ldots, z_k, y) \land F(x_1, \ldots, x_k, z) \supset y=z). \]

Lemma 1. An \(\mathcal{L} \)-sequent is \(\mathcal{L} \)-provable if and only if it is \(\mathcal{L} \)-provable in \(\mathcal{L} \). An \(\mathcal{L} \)-sequent is \(\mathcal{L}K \)-provable if and only if it is \(\mathcal{L}K \)-provable in \(\mathcal{L} \cup \{=\} \).

Proof. The first part of Lemma is a direct consequence of Gentzen's cut-elimination theorem [G 35]. The latter part follows from cut-elimination theorem of \(\mathcal{L}K \) \([T 75, \S 7]\) or cut-elimination theorem of \(\mathcal{L}KG \) \([N 66]\).

Lemma 2. Let \(P \) be a \(k \)-ary predicate symbol, \(V \) be a \(k \)-ary \(\mathcal{L} \)-abstract and \(S \) be any \(\mathcal{L} \)-sequent. If \(\mathcal{L} \vdash S \) then \(\mathcal{L} \vdash S[P:=V] \). If \(\mathcal{L} \vdash \not S \) then \(\mathcal{L} \vdash \not S[P:=V] \).
Proof. Case \(LK\): By cut-elimination theorem, there exists an cut-free \(LK\)-derivation \(\mathcal{H}\) of \(S\). Applying redesignation of free variables [G 35, III 3.10], \(\mathcal{H}\) can be converted into a cut-free \(LK\)-derivation \(\mathcal{H}'\) of \(S\) such that no eigenvariable of \(\mathcal{H}'\) occurs in \(V\). Substitute \(V\) for \(P\) in every sequent of \(\mathcal{H}'\). The result of substitution is easily verified to be an \(LK\)-derivation of \(S[P := V]\). Similarly for Case \(LK_e\). □

Now let a \(k\)-ary function symbol \(f\) and a \((k + 1)\)-ary predicate symbol \(F\) be fixed. We state some Lemmas concerning the \((f; F)\)-transformation.

Lemma 3. For any \(\mathcal{L}\)-term \(t\),

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F) \rightarrow \exists ! xt^*(x). \] □

Proof. By induction on the structure of \(t\). □

Lemma 4. For any free variable \(a\), any \(\mathcal{L}\)-term \(t\) and any \(\mathcal{L}\)-formula \(A\),

\[\mathcal{L} \cup \{ = \} \vdash_e t^*(a) \equiv a = t, \]

\[\mathcal{L} \cup \{ = \} \vdash_e A^* \equiv A. \] □

Lemma 5. For any free variable \(a\) and any \(\mathcal{L}\)-terms \(s\) and \(t\),

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), t^*(a) \rightarrow s^*(b) \equiv s[a := t]^*(b). \] □

Proof. By induction on the structure of \(s\). □

Lemma 6. If \(= \in \mathcal{L}, F \in \mathcal{L}, a\) is a free variable, \(t\) is a \(\mathcal{L}\)-term and \(A\) is a \(\mathcal{L}\)-formula, then

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), t^*(a) \rightarrow A^* \equiv A[a := t]^*. \] □

Proof. By induction on the structure of \(A\). □

Lemma 7. If \(= \in \mathcal{L}, F \in \mathcal{L}, a\) is a free variable, \(t\) is an \(\mathcal{L}\)-term and \(A(a)\) is an \(\mathcal{L}\)-formula, then

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), \forall x A(x)^* \rightarrow A(t)^*, \]

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), A(t)^* \rightarrow \exists x A(x)^*. \] □

Proof. Let \(a \in \text{FV}(\forall x A(x)) \cup \text{FV}(t)\). By Lemma 6,

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), t^*(a) \rightarrow A(a)^* \equiv A(t)^*. \]

Hence

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), t^*(a), A(a)^* \rightarrow A(t)^*, \]

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), t^*(a), \forall x A(x)^* \rightarrow A(t)^*, \]

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), \exists x t^*(x), \forall x A(x)^* \rightarrow A(t)^*. \]

By Lemma 3,

\[\mathcal{L} \cup \{ =, F \} \vdash_e \text{Ex}(F), \text{Un}(F), \forall x A(x)^* \rightarrow A(t)^*. \]
The latter half is proved similarly. □

Lemma 8. For any \(\mathcal{L} \cup \{ f \} \)-sequent \(\Gamma \rightarrow \Theta \), if \(\mathcal{L} \cup \{ f \} \vdash \Gamma \rightarrow \Theta \) then

\[
\mathcal{L} \cup \{ \varepsilon, F \} \vdash \varepsilon \text{Ex}(F), \text{Un}(F), \Delta^* \rightarrow \Theta^*.
\]

Proof. By cut-elimination theorem, there exists a cut-free \(\mathcal{L} \cup \{ f \} \)-LK-derivation \(\mathcal{H} \) of \(\Gamma \rightarrow \Theta \). It suffices to prove by induction that

\[
\mathcal{L} \cup \{ \varepsilon, F \} \vdash \varepsilon \text{Ex}(F), \text{Un}(F), \phi^* \rightarrow \Psi^*
\]

for any sequent \(\phi \rightarrow \Psi \) occurring in \(\mathcal{H} \). The statement is evident for initial sequents. We divide cases according to the inferences whose lower sequent is \(\phi \rightarrow \Psi \).

Case \((\rightarrow \exists)\). Let the inference be

\[
\frac{\Delta \rightarrow \Lambda, \, A(t)}{\Delta \rightarrow \Lambda, \, \exists x A(x)}
\]

Since \(\mathcal{L} \cup \{ f \} \vdash \Delta \rightarrow \Lambda, A(t) \),

\[
\mathcal{L} \cup \{ \varepsilon, F \} \vdash \varepsilon \text{Ex}(F), \text{Un}(F), \Delta^* \rightarrow \Lambda^*, A(t)^*
\]

by the inductive hypothesis. By Lemma 7,

\[
\mathcal{L} \cup \{ \varepsilon, F \} \vdash \varepsilon \text{Ex}(F), \text{Un}(F), A(t)^* \rightarrow \exists x A(x)^*,
\]

hence

\[
\mathcal{L} \cup \{ \varepsilon, F \} \vdash \varepsilon \text{Ex}(F), \text{Un}(F), \Delta^* \rightarrow \Lambda^*, \exists x A(x)^*.
\]

Case \((\forall \rightarrow)\). Similarly by Lemma 7.

All the other cases are straightforward. □

Theorem 9 (Lyndon). For any partition \([\Gamma_1 \rightarrow \Theta_1; \Gamma_2 \rightarrow \Theta_2] \) of an LK-provable sequent \(\Gamma \rightarrow \Theta \), if

\[
\text{Pred}^-(\Gamma_1 \rightarrow \Theta_1) \cap \text{Pred}^+(\Gamma_2 \rightarrow \Theta_2) \models \phi
\]

or

\[
\text{Pred}^+(\Gamma_1 \rightarrow \Theta_1) \cap \text{Pred}^-(\Gamma_2 \rightarrow \Theta_2) \models \phi
\]

then there exists a formula \(C \) satisfying the following properties:

1. \(\vdash \Gamma_1 \rightarrow \Theta_1, \ C \) and \(\vdash \neg C, \Gamma_2 \rightarrow \Theta_2 \).
2. \(\text{FV}(C) \subseteq \text{FV}(\Gamma_1 \rightarrow \Theta_1) \cap \text{FV}(\Gamma_2 \rightarrow \Theta_2) \).
3. \(\text{Pred}^+(C) \subseteq \text{Pred}^-(\Gamma_1 \rightarrow \Theta_1) \cap \text{Pred}^+(\Gamma_2 \rightarrow \Theta_2) \).
4. \(\text{Pred}^-(C) \subseteq \text{Pred}^+(\Gamma_1 \rightarrow \Theta_1) \cap \text{Pred}^-(\Gamma_2 \rightarrow \Theta_2) \). □

Any formula \(C \) satisfying (1)–(4) is called a Lyndon interpolant of the partition \([\Gamma_1 \rightarrow \Theta_1; \Gamma_2 \rightarrow \Theta_2] \).

Lyndon’s proof is not finitary but a finitary proof can be carried out with Maehara’s method [Ma 73, §8.3], [T 75, §6].
Theorem 10. If a sequent \(S \) contains no equality symbol and if \(\vdash \varepsilon S \) then \(\vdash S \). \(\square \)

Proof. This is an easy application of cut-elimination theorem of \(LK \) with equality [Ma 73, §6.6], [T 75, §7], [N 66]. \(\square \)

Theorem 11 (Skolem). Let \(f \) be a \(k \)-ary function symbol not occurring in

\[
\forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y), A, A.
\]

If

\[
\vdash \forall x_1 \ldots \forall x_k A(x_1, \ldots, x_k, f(x_1, \ldots, x_k)), A \rightarrow A
\]

then

\[
\vdash \forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y), A \rightarrow A.
\] \(\square \)

Proof. For the sake of simplicity in notation, we assume \(k = 1 \). Let \(\mathcal{L} = \mathcal{L}(\forall x \exists y A(x, y), A, A) \) and let \(F \) be a 2-ary predicate symbol not contained in \(\mathcal{L} \). Assume

\[
\vdash \forall x A(x, f(x)), A \rightarrow A.
\]

Whence follows

\[
\mathcal{L} \cup \{ f \} \vdash \forall x A(x, f(x)), A \rightarrow A \quad (1)
\]

by Lemma 1. By Lemma 8,

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, \exists x A(x, f(x))\}, A^* \rightarrow A^*. \quad (2)
\]

Because \(f(a)^*(b) \) is \(\exists x(x = a \land F(x, b)) \),

\[
\{ =, F \} \vdash \varepsilon f(a)^*(b) \equiv F(a, b).
\] \((3) \)

\[
\mathcal{L} \cup \{ = \} \vdash \varepsilon \exists x A(x, f(x)) \equiv A(a, b) \quad (4)
\]

and

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F), f(a)^*(b) \rightarrow A(a, b)^* \equiv A(a, f(a)) \quad (5)
\]

follows immediately from Lemmas 4 and 6 respectively. From (3), (4) and (5) we obtain successively

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F), F(a, b) \rightarrow A(a, f(a))^* \equiv A(a, b),
\]

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F), F(a, b) \rightarrow A(a, f(a))^* \equiv F(a, b) \land A(a, b),
\]

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F), F(a, b) \rightarrow A(a, f(a))^* \equiv y(F(a, y) \land A(a, y)),
\]

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F), Ex(F) \rightarrow A(a, f(a))^* \equiv y(F(a, y) \land A(a, y)),
\]

\[
\mathcal{L} \cup \{ =, F \} \vdash \varepsilon \exists x(F, Un(F) \rightarrow \forall x A(x, f(x)) \equiv \forall x \exists y(F(x, y) \land A(x, y)). \quad (6)
\]

By Lemma 4,

\[
\mathcal{L} \cup \{ = \} \vdash B^* \equiv B
\]
for any member \(B \) of \(\Delta, \Lambda \). Therefore

\[\mathcal{L} \cup \{ =, F \} \vdash \text{Ex}(F), \text{Un}(F), \forall xA(x, f(x))^*, \Delta \rightarrow \Lambda \]

(7)

follows from (2). From (6) and (7) follows

\[\mathcal{L} \cup \{ =, F \} \vdash \forall x\exists y(F(x, y) \wedge A(x, y)), \text{Ex}(F), \text{Un}(F), \Delta \rightarrow \Lambda. \]

(8)

Consider the partition

\[\text{Un}(F) \quad \vdash \forall x\exists y(F(x, y) \wedge A(x, y)), \text{Ex}(F), \Delta \rightarrow \Lambda \]

of this sequent. Then

\[\text{Pred}^{-}(\text{Un}(F) \rightarrow \{ = \}) = \{ = \}, \quad \text{Pred}^{+}(\text{Un}(F) \rightarrow \{ = \}) = \{ F \} \]

and

\[F \notin \text{Pred}^{+}(\forall x\exists y(F(x, y) \wedge A(x, y)), \text{Ex}(F), \Delta \rightarrow \Lambda), \]

Let \(C \) be a Lyndon interpolant of this partition. Then \(C \) satisfies \(\text{Pred}(C) \subset \{ = \}, \)

\[\mathcal{L} \cup \{ =, F \} \vdash \text{Un}(F) \rightarrow C \]

(9)

and

\[\mathcal{L} \cup \{ =, F \} \vdash \forall x\exists y(F(x, y) \wedge A(x, y)), \text{Ex}(F), \Delta \rightarrow \Lambda. \]

(10)

Substitute \(\lambda uv.(u = v) \) for \(F \) in (9) and apply Lemma 2. Then

\[\mathcal{L} \cup \{ = \} \vdash \forall x\forall y\forall z(x = y \wedge x = z \supset y = z) \rightarrow C, \]

hence

\[\mathcal{L} \cup \{ = \} \vdash C. \]

(11)

From (10), (11) and

\[\mathcal{L} \cup \{ F \} \vdash \forall x\exists y(F(x, y) \wedge A(x, y)) \rightarrow \text{Ex}(F), \]

it follows

\[\mathcal{L} \cup \{ =, F \} \vdash \forall x\exists y(F(x, y) \wedge A(x, y)), \Delta \rightarrow \Lambda. \]

By substitution of \(\lambda uv. A(u, v) \) for \(F \), we obtain

\[\mathcal{L} \cup \{ = \} \vdash \forall x\exists y(A(x, y) \wedge A(x, y)), \Delta \rightarrow \Lambda. \]

Hence

\[\mathcal{L} \cup \{ = \} \vdash \forall x\exists y A(x, y), \Delta \rightarrow \Lambda. \]

(12)

By Lemma 10, we conclude

\[\mathcal{L} \vdash \forall x\exists y A(x, y), \Delta \rightarrow \Lambda. \]

Remark. Another proof is sketched in [Mo 82], which can be stated as follows. From (8) we have
\[\mathcal{L} \cup \{=, F\} \vdash \forall \forall \forall (F(x,y) \supset A(x,y)), \text{Ex}(F), \text{Un}(F), \mathcal{A} \rightarrow \Lambda. \] (13)

Since \(F \not\in \text{Pred}^{-}(\forall \forall \forall (F(x,y) \supset A(x,y)), \mathcal{A} \rightarrow \Lambda) \),
\[\mathcal{L} \cap \{=, F\} \vdash \forall \forall \forall (F(x,y) \supset A(x,y)), \text{Ex}(F), \mathcal{A} \rightarrow \Lambda \] (14)

by [Mo 82, Theorem 1]. We obtain (12) by substituting \(\lambda uv. A(u,v) \) for \(F \).

Acknowledgement. The author would like to thank Professor T. Uesu for his helpful advices.

References

