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Abstract

This paper concerns a propagation mechanism in an economy where many indi-
viduals follow a threshold rule and interact with a positive feedback. We derive
an asymptotic distribution of the propagation size when the number of the agents
tends to infinity. The propagation distribution exhibits a slower convergence to a
deterministic value than it would if the agents followed a smooth adjustment pol-
icy. This gives rise to significant aggregate fluctuations in a finite lumpy-adjusting
economy even when the agents are hit by small independent shocks.
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1 Introduction

Since the debate between Prescott and Summers [1,2] on aggregate techno-
logical shocks, it has been of continuous interest whether idiosyncratic shocks
can cause aggregate fluctuations. Whereas idiosyncratic sectoral shocks have
robust tendency to cancel out each other in the standard dynamic general
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equilibrium model (Dupor [3]), several models have been proposed to exhibit
to the contrary (Jovanovic [4], Bak et al. [5]). This paper extends the latter
literature by demonstrating that the aggregate fluctuations can occur when
individual behavior follows a threshold rule, often called an (S, s) policy.

Threshold rules are widely observed in individual economic behavior. As their
microeconomic foundation has been well established, researchers’ interest has
shifted to their aggregate consequences. Many macroeconomic studies at-
tempted to establish the aggregate relevance of the individual threshold be-
havior. For example, the menu-cost pricing model (Mankiw [6]) claimed the
aggregate effect of individual inertia in price settings. The model of lumpy
investment (Cooper and Haltiwanger [7]) claimed that the micro-level lumpy
adjustment generated aggregate fluctuations in production.

Yet few theoretical works have shown the relevance of the threshold behav-
ior in aggregation when the shocks are independent across individual units,
an environment in which the law of large numbers takes effect. Caplin and
Spulber [8] and Caballero and Engel [9], for example, found that the mean
aggregate behavior did not differ between the two economies, one with lumpy
adjustments and the other with smooth adjustments. This neutrality result is
due to the fact that adjustments in the extensive margin across agents work
exactly like adjustments in the intensive margins within agents, when agents’
positions in (S, s) bands are distributed uniformly.

Our model differs from these studies in that we have a finite number of agents,
whereas the previous models use a continuum of agents. It turns out that the
deviation from the continuum model can be quantitatively significant in a
finite economy. Heuristically speaking, exogenous independent shocks across
agents cause some agents to adjust. Their adjustments induce further adjust-
ments of other agents through a feedback effect, which in turn induce even
further adjustments, and so on. This chain reaction constitutes a propagation
mechanism. If an economy is inhabited by a continuum of agents, then any
positive shocks across agents cause a deterministic fraction of agents to ad-
just, due to the work of the law of large numbers at the limit. If the economy
consists of countably many agents and the size of the shock is conditioned
on the number of agents, then the outcome depends on how we condition on
them. Suppose that the shock size is of order 1/N . Then the number of agents
that adjust due to the initial shocks asymptotically follows a non-degenerate
Poisson distribution. The same mechanism applies to the subsequent propa-
gation process when the feedback effect is of order 1/N . The feedback effect is
of order 1/N when the feedback is caused through an average behavior of all
agents. In this case, the magnitude of the shocks is equal to the magnitude of
the feedback effect, and the feedback effect plays a decisive role in determin-
ing the aggregate fluctuations. The fraction of agents that adjust converges to
zero in probability, but we find that the convergence is slower than that in the
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smoothly-adjusting economy. Thus, the finite agent model enables us to study
the economic situations where individual shocks add up to a sizable aggregate
shock, which the continuum of agents models could not account for.

This paper develops a mathematical method to evaluate the asymptotic distri-
bution of aggregate variables in an (S, s) economy when the number of agents
N tends to infinity. Our approach clarifies when and why the lumpy adjust-
ment matters. We reproduce the neutrality theorem that the mean aggregate
behaviors of lumpy and smooth economies coincide, but we find that the vari-
ance of the propagation size in the lumpy economy is much larger than that
in the smooth economy. This raises the possibility that idiosyncratic shocks
cause significantly large aggregate fluctuations for an economy with finite but
many agents. Furthermore, the propagation size follows a heavy-tailed dis-
tribution when the idiosyncratic shocks are small relative to the size of the
lumpiness, whereas it follows a normal distribution when the shock dominates
the lumpiness. In the latter case, the aggregate behavior is the same as its
smoothly-adjusting counterpart. The heavy-tailed distribution emerges from
the propagation effect, which characterizes the aggregate fluctuations as long
as the exogenous shocks do not overwhelm the feedback effect of individual
lumpy adjustments.

It turns out that we can regard the smooth and lumpy economies as polar
cases in terms of the ratio of lumpiness to shock size. When this ratio goes to
zero, the propagation follows a normal distribution and the aggregate variance
in the lumpy economy is as small as the smooth economy, whereas when the
ratio diverges to infinity, it follows a heavy-tailed distribution and the variance
in the lumpy economy is much bigger than the smooth economy. By numeri-
cally calculating the aggregate variances in the region between the polar cases,
we determine that the transition between the two phases occurs at the point
where the lumpiness is equal to the standard deviation of the shock. We also
find that the heavy-tailed distribution is infinitely divisible. This property
proves useful when we consider a dynamic extension of the model. Suppose
that the exogenous shocks hit repeatedly over time. Then, the variance of the
accumulated shocks increases linearly with the time horizon. Thus, the cor-
responding aggregate fluctuation follows the heavy-tailed distribution when
the time horizon is short, whereas it follows the normal distribution when
the time horizon is long. Using the infinite divisibility, we can derive an ap-
proximate stochastic process of the aggregate for a short time horizon, which
progressively turns into a normal process for a long time horizon.

The paper is organized as follows. Section 2 presents a simple model of the
(S, s) economy. Section 3 shows the distribution of the aggregate. Section 4
concludes. Proofs are deferred to the Appendix as well as to the working paper
version of this paper [10].
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2 General Framework

An individual’s behavior is usually specified in such a way that the agent re-
sponds smoothly to a change in the environment. This behavioral specification
may be expressed as follows:

xi = QN(x) + ei, i = 1, 2, . . . , N. (1)

Agent i’s action is xi and ei is an agent specific factor. Define x and e as vectors
with i-th coordinates xi and ei for i = 1, 2, . . . , N respectively. QN(x) is an ag-
gregator function of the action profile. We assume that QN(x) is increasing in
all the coordinates xi, and ∂QN(x)/∂xi = O(1/N). Thus an agent’s action gen-
erates a positive feedback effect of order 1/N on other agents’ actions through
QN . This behavioral function is commonly derived from a first-order condition
of the agent’s utility maximization. In a Cournot competition, for example, xi
is the best reply in producer i’s production level given the other producer’s
production levels. In many economic decisions, however, the adjustment in
individual behavior exhibits inertia and occasional lumpy correction:xi = QN(x) + ei − λisi

si ≡ ((QN(x) + ei)(mod λi))/λi
, i = 1, 2, . . . , N (2)

where x(mod λ) denotes the remainder of the division of x by λ. The domain
of xi is thus {0,±λi,±2λi, . . .}. By λi we denote the size of a lumpy adjustment
in xi. The variable si is normalized by the agent-specific bandwidth λi so that
it always takes a value in [0, 1). It represents the agent’s position in the (S, s)
band. The linear specification in ei is standard as in [9]. The specification is
versatile enough to allow, among others, the analysis of a standard sectoral
business cycle model [10].

We construct a simple game to exemplify an economy that generates behav-
ioral rules of the type (2). Consider a sequence of strategic games GN =
〈N, (Xi), (U

N
i )〉, N = N0, N0 + 1, . . . for a large integer N0. A game GN is

played by N players. The action set for player i is Xi = {0,±λi,±2λi, . . .}.
Player i’s payoff is given by a function UN

i (x) = −(QN(x) + ei − λi/2 − xi)
2

which is a quadratic loss function utilized in Caplin and Leahy [11]. The payoff
attains its maximum zero when xi = QN(x) + ei − λi/2. The optimal xi ∈ Xi

lies between χ− λi and χ, where χ satisfies UN
i (χ− λi, x−i) = UN

i (χ, x−i), by
the concavity of UN

i and by ∂QN(x)/∂xi = O(1/N). Hence xi = χ−χ(mod λi)
is the global maximizer for large N . Solving χ, we obtain (2) as the best re-
sponse of i. Thus a solution x of the system (2) is a Nash equilibrium of the
game GN . When λi = 0, we reset the action set as an entire real line: Xi = R.

4



Then the first-order condition of i’s payoff maximization produces (1) as a
behavioral rule for a smoothly adjusting case.

The existence of a solution x for the system of behavioral rules (2) is readily
available. Let an underline and an overline denote a lower and an upper bound
of the variable, respectively.

Lemma 1 (Existence of equilibrium) Suppose that QN(x) is increasing
in x ∈ RN and that ei and λi are bounded. Suppose that there exist scalars x
and x that satisfy x = QN(x, x, . . . , x) + e − λ and x = QN(x, x, . . . , x) + e.
Then the system (2) has a solution for any e and λ.

Proof: If QN(x) is increasing in x, then QN(x) + ei − (QN(x) + ei)(mod λi)
is increasing in x as well. Let us construct a vector function by stacking N
functions in (2). Since 0 ≤ (QN(x)+ei)(mod λi) < λi, the constructed x and x
defines the lower and upper bound of xi. The vector function thus has a fixed
point by Tarski’s theorem (Vives [12]). Any xi ∈ R that satisfies (2) belongs
to Xi by construction. 2

Lemma 1 implies that the equilibrium exists when QN is increasing and when
the smooth counterpart (1) has an equilibrium for an extended space [e−λ, e]
of the exogenous variable ei. Since QN(x) is increasing, players are situated
in strategic complementarity. Thus, GN is a particular case of supermodular
games.

Suppose that x1 and x0 correspond to the equilibria that solve the system (2)
given e1 and e0, respectively. We generate e1 by perturbation as e1i = e0i +εi/N
where εi is positive and i.i.d. across i. The best reply is a one-sided (S, s)
policy due to the positivity of the perturbation. The perturbation shock is also
normalized by N so that its impact matches the magnitude of the feedback
effect ∂QN(x)/∂xi. This choice of normalization allows us a simple analysis of
a polar case in which the lumpiness overwhelms the size of shocks. 2 Define
a propagation size caused by the perturbation as QN(x1) − QN(x0). This is
the increment in the aggregate index QN . It is also the common factor of
increments in individual actions xi. Our goal is to asymptotically characterize
the distribution of the propagation size for large N .

The system (2) allows multiple equilibria. To complete the definition of the
perturbation, we need an equilibrium selection algorithm. We employ best
response dynamics as such algorithm. Define u as the step of the dynamics
(xi,u, si,u). Set the initial value of the best response dynamics equal to the

2 The case when the shock is mean-zero, or positive with the mean which is indepen-
dent of N , can be analyzed similarly. The aggregate fluctuation becomes symmetric,
but is still characterized by a heavy tail which is analogous to the result in this paper
(see [13]).
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initial equilibrium value: xi,0 = x0
i and si,0 = s0

i . For subsequent steps, we
define the individual responses as follows:

xi,1 =

xi,0 + λi if si,0 + εi/(Nλi) ≥ 1

xi,0 otherwise
(3)

xi,u+1 =

xi,u + λi if si,u + (QN(xu)−QN(xu−1))/λi ≥ 1

xi,u otherwise
, foru ≥ 1(4)

si,1 = si,0 + (εi/N − xi,1 + xi,0)/λi (5)

si,u+1 = si,u + (QN(xu)−QN(xu−1)− xi,u+1 + xi,u)/λi, foru ≥ 1. (6)

Define T as a stopping time of the process QN(xu) − QN(xu−1). Namely,
T ≡ min{u|QN (xu)−QN (xu−1)=0} u. Then xT satisfies the system (2) for e1. Thus
the best response dynamics constitutes an equilibrium selection algorithm that
defines an equilibrium x1 = xT . The stopping time T is finite with probability
one when N → ∞, as we will prove when we show the propagation distri-
bution. This equilibrium selection algorithm has been used by Vives [12] and
Cooper [14]. The algorithm has a straightforward economic intuition. We start
from an initial equilibrium that solves the system of best response functions,
and add a disturbance to the system. Then we update the individual choice by
applying the best response function iteratively until a new solution is reached.
This particular equilibrium selection has immediate implications. The proce-
dure imposes inertia on the individual actions. Agents do not adjust their
actions unless they are strictly better off by adjusting. Also, it rules out an
equilibrium far from an initial equilibrium that would require some kind of
informational coordination. The preclusion of big jumps in equilibrium based
on informational coordination suits our aim to focus on strategic complemen-
tarity alone as a propagation mechanism.

3 Main Results

In this section we derive the distribution of propagation size under a simplify-
ing assumption (Assumption 3). Let us first define a perturbation experiment.

Assumption 2 (Perturbation) We have an equilibrium x0. In a perturba-
tion e1i = e0i + εi/N , εi is positive and bounded. An agent’s position s0

i is a
random variable with support [0, 1) and i.i.d. across i. The cumulative distri-
bution function of s0

i satisfies limh→0(Fs(1)− Fs(1− h))/h = ψ <∞.

We let s0
i follow any distribution that has a density in the vicinity of the

border s0
i = 1. Our initial condition of the perturbation is an equilibrium

6



x0 and random variables e0i , such that s0
i = (e0i − xi + QN(x))/λi obeys the

distribution function Fs where λi, i = 1, 2, . . . , N , is a prefixed sequence. 3

As a simplifying assumption, we assume that the aggregator QN(x) is sym-
metric and linear in xi, and the lumpiness of adjustments is the same for all
agents.

Assumption 3 (Linearity and homogeneity) QN(x) = φ
∑N
i=1 xi/N where

φψ ≤ 1. Also λi = λ for all i.

The existence of solution x0 is confirmed by Lemma 1 under Assumption 3
when φ < 1, for [(e−λ)/(1−φ), e/(1−φ)]N is the compact domain of x that is
mapped into itself. With this assumption, the response system with continuous
adjustment (1) is analogous to that of Jovanovic [4]. His paper shows that the
idiosyncratic shock is amplified to a fluctuation of average of xi if φ approaches
to 1 as 1 − 1/

√
N . Revisiting his paper, Gabaix 4 argues that it essentially

assumes an implausibly high magnitude of multiplication effect (1/(1− φ) =√
N). The present model extends Jovanovic’s by incorporating a nonlinear

effect due to (S, s) policy. The (S, s) policy transforms the adjustment at the
intensive margin to that at the extensive margin. This gives rise to a new
source of aggregate fluctuations even when φ is strictly below 1, and a heavy-
tail distribution of the aggregate fluctuations when φ approaches to 1 as we
see below.

Define µ = E[εi]ψ/λ. We then obtain the distribution of the propagation size.

Proposition 4 (Propagation distribution) Under Assumptions 2 and 3,
the normalized propagation size N(QN(x1)−QN(x0)) converges in distribution
to wφλ when N →∞, where w is a random variable that follows a probability
distribution:

Pr(w) = (φψw + µ)w−1µe−φψw−µ/w! (7)

for w = 0, 1, 2, . . .. The moment generating function of w is eµ(G(s)−1) where
G(s) is a moment generating function which satisfies a functional equation
G(s) = es+φψ(G(s)−1). The distribution of w is infinitely divisible. 5 Its tail is

3 The assumption that si is identically distributed holds for any distribution of ei
when the equilibrium is symmetric: xi = x and λi = λ for all i. The assumption
imposes a restriction on ei when the equilibrium is asymmetric. A particular dis-
tribution of ei that satisfies the assumption is a uniform distribution over [0, λizi)
where zi is an arbitrary integer. Lemmas 5 and 6 offer an alternative justification
that the assumption holds at the stationary state when ei follows a random walk.
4 “Power laws and the origins of the aggregate fluctuations,” 2004, mimeo.
5 A distribution F is called infinitely divisible when for any integer n there exists
a distribution Fn such that F is the n-fold convolution of Fn.
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approximated by:

Pr(w) ≈ (µe−µ/(φψ
√

2π))(φψe1−φψ)ww−1.5 (8)

for large integer w.

Proof: See Appendix A.1.

The propagation sizeQN(x1)−QN(x0) has an asymptotic mean (E[εi]/N)φψ/(1−
φψ) and variance (E[εi]/N

2)ψλφ2/(1− φψ)3. The distribution starts out as a
power-law distribution w−1.5 at w = 0 and exhibits an exponential trunca-
tion (φψe1−φψ)w at the tail. The distribution becomes a pure power-law when
φψ → 1 and its variance tends to infinity.

Proposition 4 marks a clear departure from an economy without inertia. Let
us set up a model of a smoothly adjusting counterpart of our economy. Sup-
pose that an agent’s optimal decision follows a smooth adjustment rule (1).
Then, under Assumption 3, we directly obtain that QN(x1) − QN(x0) =
(φ/(1− φ))

∑
i εi/N

2 when φ < 1. By the central limit theorem, a normalized
propagation size N1.5(QN(x1)−QN(x0)− (E[εi]/N)φ/(1− φ)) asymptotically
follows a normal distribution with mean zero and variance Var[εi]φ

2/(1− φ)2.
The normalization factor N1.5 consists of two factors: the contribution from
the normalized shock (N) and the central limit theorem (N0.5). The prop-
agation size in Proposition 4 has the normalization factor N , that is equal
to the normalization factor for the smooth case less the contribution of the
central limit theorem. An immediate implication of the comparison between
the two economies is that the aggregate in the lumpy economy is much more
volatile than its smooth counterpart. The asymptotic variance of the propaga-
tion size QN(x1)−QN(x0) is scaled to N−3 in the smooth economy, whereas it
is scaled to N−2 in the lumpy economy. This leads to the possibility that the
threshold model may quantitatively explain the large magnitude of aggregate
fluctuations when a smooth model cannot.

Let us note that the variance of perturbation shocks does not appear in our
formula of the aggregate variance, whereas it does in its smoothly adjusting
counterpart. In fact, the aggregate variance in the lumpy economy remains
unchanged when the shock εi is replaced with its mean. The randomness of the
shock is irrelevant in determining the fluctuation magnitude. To the contrary,
the distribution of s0

i directly affects the variance through ψ. This implies that
the configuration of agents’ positions in the inaction intervals is the crucial
variable in determining the variability of propagation sizes. The nonlinearity
of (S, s) policy alone can generate a complex aggregate fluctuation, provided
that the deterministic evolution of the configuration of si is ergodic.

8



The propagation distribution also differs in its shape between the lumpy
and smooth economies. It is skewed and heavy-tailed in the lumpy economy,
whereas it follows a normal distribution in the smooth economy. The heavy-
tail accounts for an extra 1 − φψ in the denominator in the variance. The
tail is stretched because of the propagation effect. To see this, let us consider
an economy with lumpiness but without spillover, say, QN(x) = 0. Then the
number of agents who adjust follows a Poisson distribution asymptotically,
and the variance of the average of xi is (E[εi]/N

2)ψλ. This corresponds to the
initial adjustments caused directly by the shocks in our economy. The aggre-
gate variance in our economy with spillover is larger than this by the factor
of φ2/(1 − φψ)3, which corresponds to the effect of propagation that follows
the initial adjustments.

It is useful to compare our finite agent model with continuum of agents models.
Let us set up the continuum of agents model as follows. Suppose that Q(x) =
φ

∫
xidi. Consider a perturbation εi/N on ei for some fixed N . Under Assump-

tion 3, the best response is x1
i = x0

i +λ if si+(εi/N +φ
∫
x1
i −x0

i di)/λ ≥ 1 and
x1
i = x0

i otherwise, if N is large enough so that no agent adjusts more than
λ. Suppose that s0

i is uniformly distributed. Then the fraction of agents who
adjust is a deterministic value (E[εi]/N + φ

∫
x1
i − x0

i di)/λ. Thus, we obtain
that Q(x1)−Q(x0) = (E[εi]/N)φ/(1−φ). This is a deterministic value that is
equal to the mean of the propagation size in our finite model. The continuum
of agents model does capture the mean impact of the propagation, but fails to
capture its stochastic nature. The propagation size in the continuum of agents
model is also equal to the mean propagation size in the smooth economy, thus
we have reproduced the neutrality theorem.

Both the continuum of agents model and the smooth economy model elim-
inate the randomness of the propagation effect. In the continuum of agent
model, the feedback effect of agents’ actions on the aggregate is always de-
terministic by construction. In the smooth economy, the propagation effect
cancels out across agents quickly due to the law of large numbers. Even in
the lumpy economy, the lumpiness λ should be washed away when the shock
εi/N overwhelms the lumpiness, and the aggregate fluctuation should resem-
ble that of the smooth economy. A simulation verifies this intuition. Figure 1
plots the standard deviation of the propagation size for various sizes of λ and
σe ≡ Std[εi/N ]. 6 It is seen that the standard deviation of the propagation

6 The simulation is executed as follows. Draw an initial value of e0
i for i = 1, 2, . . . , N

from a distribution uniform over [0, λ). Then x0
i = 0 for all i is an equilibrium. Draw

a perturbation εi from a normal distribution with mean zero and various standard
deviations σe. The new equilibrium x1 is calculated by the best response dynamics
(3,4). Then we obtain a propagation size φ

∑N
i=1(x

1
i − x0

i )/N . We set N = 500 and
φ = 0.5. We compute the propagation size for 104 times and the standard deviation
of the propagation size for each value of λ.
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Fig. 1. Simulation for cross-over points of lumpy and smooth economies

increases proportionally with σe when σe > λ so that it behaves as in the
smooth economy, whereas it significantly deviates upward when σe < λ.

Using above arguments, we can deduce a time-series property of the aggregate
Q(x) when ei evolves over time with variance increasing in time horizon. Intu-
itively speaking, the economy behaves as a lumpy economy for the time horizon
in which the innovation of ei is dominated by the lumpiness λ, whereas it be-
haves as a smooth economy for the time horizon in which the innovation washes
out λ. The infinite divisibility of distribution (7) plays an important role tech-
nically. In general, a random variable having an infinitely divisible distribution
is equivalent to the random variable being an increment of a stochastic process
with independent increments [15, page 177]. We can see this point for our case.
Suppose that eti evolves as a stochastic process with independent and positive
increments. We define an equilibrium path as a sequence of static equilibria.
Then we can define the aggregate growth, QN(xt) − QN(x0), for every time
horizon t. The variance of a cumulative innovation eti − e0i grows linearly with
the time horizon t. For a fixed large N , suppose that εi/N is equivalent to
e1i − e0i which is an increment of ei for a unit time horizon. Then, the nor-
malized growth N(QN(x1)−QN(x0)) follows the moment generating function
eµ(G(s)−1), which is a compound Poisson distribution with Poisson mean µ and
a random variable that follows G(s). Now consider a growth in a shorter time
horizon N(QN(x1/n)−QN(x0)) for any integer n. Then this growth follows a
moment generating function e(µ/n)(G(s)−1), which is a compound Poisson with
the same random variable following G(s) and with a Poisson mean µ/n which
is linearly scaled by the time horizon 1/n. Therefore, the sequence of the static
equilibria of an economy with a fixed N is approximated by a compound Pois-
son process with hazard rate µ and a random variable that follows G(s) for a
time horizon shorter than the unit time. By a similar argument, a smoothly
adjusting counterpart is approximated by a Brownian motion.
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The compound Poisson process exactly obtains only for a vanishingly short
time scale. This fact corresponds to that Proposition 4 holds only when the
shock is small relative to the lumpiness. Our simulation in Figure 1 shows,
however, that the deviation from the smooth economy is observable for the
range σe < λ. This implies in the time-series context that the aggregate process
is in transition from a compound Poisson to a Brownian up to the time scale
for which the size of the accumulated shock matches the lumpiness. The cross-
over time scale is characterized by λ/σe where σe is the size of shocks for a
unit time.

Proposition 4 holds under various distributions of s0
i . It is necessary, however,

to know the stationary distribution of si, when we consider a sequence of static
equilibria. We can indeed show that the uniform distribution is a stationary
distribution of si with respect to the perturbation. The following Lemma is a
reexpression of the result of Caplin and Spulber [8].

Lemma 5 (Stationary distribution of si) Consider a perturbation e1i =
e0i + εi where εi is bounded. Suppose that s0

i is independently and uniformly
distributed over [0, 1). Assume that QN(x1) − QN(x0) is asymptotically inde-
pendent of s0

i when N → ∞. Then, s1
i is independently and uniformly dis-

tributed asymptotically when N →∞.

Proof is provided in [10]. Lemma 5 shows that si stays uniformly distributed
even after a sizable shock εi hits. The assumption of the asymptotic indepen-
dence between QN(x1)−QN(x0) and s0

i is natural, for we consider the situation
in which the effect of a single agent’s action is of order 1/N in aggregation.

The uniform distribution is also a convergent point of si if ei evolves as a
random walk. The following Lemma is analogous to Caballero and Engel [9].

Lemma 6 (Convergence of si) Consider that ei evolves as a random walk
ei,t+1 = ei,t + εi,t/N for t = 0, 1, . . . where εi,t is i.i.d. across both i and t.
Pick p > 2 arbitrarily. Assume that QN(xt=Np)−QN(x0) and

∑Np−1
t=0 εt/(Nλi)

are asymptotically independent. Then si,t=Np converges in distribution to a
distribution uniform over a unit interval and independent across i when N →
∞.

Proof is provided in [10]. Above Lemmas imply that the uniform distribution
of si serves as a steady state of the economy with respect to its aggregate
variability when the environment ei is diverging. Thus ψ = 1 is the stationary
value of ψ. The condition p > 2 in Lemma 6 implies that the convergence
takes no less than N2 periods for which the accumulated shock achieves an
observable size of standard deviation Std[εi]/λi.

The Lemmas are proved for nonlinear QN(x) and heterogeneous λi. In fact,
Proposition 4 can also be shown in the general environment. We allow λi to be
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heterogeneous with a finite number of typesK that take values λ(1), λ(2), . . . , λ(K).
We call an agent with λ(k) “type-k.” Let σk denote the limit fraction of type-k
agents among all the agents when N → ∞. Consider two sequences of real
numbers ai and λi, i = 1, 2, . . .. We assume that ai and λi are mutually in-
dependent when i is drawn randomly. Define a function b(λi) and let b(k)
denote b(λ(k)). We write the limit of the averages of 1/λi and b(λi)/λi for
i = 1, 2, . . . , N when N → ∞ by using an expectation operator as E[1/λ] ≡∑K
k=1 σk/λ(k) and E[b/λ] ≡ ∑K

k=1 σkb(λ(k))/λ(k), respectively. The relaxed
assumption is following.

Assumption 7 (Generalization) For any finite set H, a sequence of bounded
functions QN satisfies N(QN({xi + λi}i∈H , x−H)−QN(x)) → ∑

i∈H ai(x)b(λi)
as N → ∞. A sequence λi, i = 1, 2, . . ., takes a finite number of values. For
each x, a sequence ai(x), i = 1, 2, . . ., is bounded and satisfies

∑N
i=1 ai(x)/N →

φ(x) where φ(x)ψE[b/λ] ≤ 1. The pair (ai(x), λi) is mutually independent for
each x when i is randomly drawn.

Assumption 7 allows a heterogeneous effect, ai(x)b(λi), of an adjustment of
xi on Q(x). A simple example of such a QN(x) is

∑
i aixi/N , which includes

the homogeneous case as a special case when ai = φ. Assumption 7 also
allows the effect to depend on λi and x. Dependence on x is permissible since
an asymptotic distribution of perturbation is determined only by the local
characteristics of QN(x) at x0. An example of such a nonlinear aggregator
QN(x) is a CES-type function.

Define µ = ψE[εi]E[1/λ]. Define Jx(·) as a moment generating function of
ai(x) when i is randomly drawn. Under the relaxed assumption, we obtain the
following distribution of the propagation size:

Proposition 8 (Propagation distribution in a general case) Under As-
sumptions 1 and 7, the normalized propagation size N(QN(x1) − QN(x0))
asymptotically follows a moment generating function eµ(G(s)−1) where G(s) sat-
isfies a functional equation:

G(s) =
K∑
k=1

Jx0((s+ ψE[1/λ](G(s)− 1))b(k))σk/(λ(k)E[1/λ]). (9)

The propagation distribution is infinitely divisible.

Proof is provided in [10]. By the formula above, one can calculate any moment
of the propagation sizeQN(x1)−QN(x0) asymptotically. For example, its mean
is (E[εi]/N)E[b/λ]φψ/(1−φψE[b/λ]) and its variance is (E[εi]/N

2)E[b2/λ]E[a2
i (x

0)]ψ/(1−
φψE[b/λ])3. The mean and variance in the homogeneous model can be repro-
duced by substituting ai = φ and b(λi) = λ.
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The aggregate behavior of the economy’s smooth counterpart is analogous to
the homogeneous case. Consider a linear case QN(x) =

∑
i aixi/N . If agents

adjust smoothly, then x1
i−x0

i = QN(x1)−QN(x0)+εi/N holds. Then we obtain:∑N
i=1 ai(x

1
i −x0

i ) = (
∑N
i=1 ai/N)N(QN(x1)−QN(x0))+

∑N
i=1 aiεi/N . Thus, the

normalized propagation size is N(QN(x1) − QN(x0)) = (
∑N
i=1 aiεi/N)/(1 −∑N

i=1 ai/N). Hence, N1.5(QN(x1)−QN(x0)−E[εi]φ/(1−φ)N) follows a normal
distribution with mean zero and variance Var[aiεi]/(1 − φ)2. The variance of
the propagation size converges to zero as fast as N−3. The homogeneous case
is again a particular case of this result.

By the form of the moment generating function, the normalized propagation
size follows a compound Poisson distribution with Poisson mean µ and a ran-
dom variable that follows a moment generating function G(s). Thus, the dis-
tribution function is infinitely divisible. Therefore, the time series implication
derived for the homogeneous case applies to the heterogeneous case. Suppose
that eti evolves as a stochastic process with independent and positive incre-
ments. Then we can define a sequence of static equilibria. For a fixed large N ,
suppose that εi/N is equivalent to an increment of ei for a unit time horizon
e1i −e0i . Then the sequence of static equilibria is approximated by a compound
Poisson process with hazard rate µ and a random variable that follows G(s)
for a time horizon less than the unit time.

4 Conclusion

In this paper, we analyze a generic model of an (S, s) economy with finite
agents where each agent follows a threshold adjustment policy. We derive an
asymptotic distribution of propagation caused by a positive feedback effect
across agents’ policies. With homogeneous agents, we derive the closed-form
distribution of the propagation. The distribution shows a slower convergence to
a deterministic value than its counterpart in a smoothly-adjusting economy.
Moreover, the distribution is skewed and heavy-tailed. The variance of the
propagation is significantly larger than its smooth counterpart due to the slow
convergence and the heavy tail, and hence contrasts the neutrality theorems on
the (S, s) economy in which the threshold behavior does not cause significant
aggregate fluctuations.

The distribution exhibits a phase transition depending on the size of the lumpi-
ness relative to the size of an exogenous shock. The distribution is skewed and
heavy-tailed, and slowly converging to a deterministic value when the lumpi-
ness is larger than the shock, whereas it follows a normal distribution and
converges as fast as the central limit theorem predicts when the lumpiness is
overwhelmed by the shock. Applying this idea to the case when the shocks
accumulate over time, we show that short-run fluctuations are characterized
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by the skewed and heavy-tailed distribution, whereas long-run fluctuations
are characterized by the normal distribution. Furthermore, by utilizing the
infinite divisibility of the propagation distribution, the equilibrium path can
be approximated by a compound Poisson process for a short time horizon,
whereas the process progressively converges to a normal process as the time
horizon becomes longer.

It is left as an open question what dynamics the (S, s) economy generates.
The compound Poisson process is only an approximate when si is held at the
stationary distribution. In a finite economy, ψ varies over time due to the
ergodic evolution of si, which can generate rich structure in time series. In
particular, the clustered adjustments tend to cause another clustering when
those agents approach to the threshold as a mass again, generating so-called
echo effects. It seems promising to explore the fluctuations in (S, s) economies
in relation to the large-dimensional nonlinear dynamical systems.

A Appendix

A.1 Proof of Proposition 4

Consider the best response dynamics (3,4) for u = 1, 2, . . . , T . Define Mu =
N(QN(xu) − QN(xu−1)) for u ≥ 1. Define mu as the number of agents that
increase xi at u. Under Assumption 3, Mu = muφλ holds. We first prove the
following lemma.

Lemma 9 (Branching process in best response dynamics) Under As-
sumptions 2 and 3, the process mu, u = 1, . . . , T , follows asymptotically as
N → ∞ a branching process where the number of initial parents m1 follows
a Poisson distribution with mean µ and the number of children each parent
bears follows a Poisson distribution with mean φψ.

Proof: Define Hu as a set of agents i such that xi,u − xi,u−1 = λ. Let c denote
the upper bound of the support of εi. We define Condition U on a path mv,
v = 1, . . . , u − 1 for u ≥ 2, as (c/λ + φ(

∑u−1
v=1 mv))/N < 1. U is a sufficient

condition for Hv ∩Hu = ∅ for any v < u.

First, we examine the stochastic process mu under U up to a finite step.
The probability that an agent i belongs to H1 is Pr(si,0 + εi/(Nλ) ≥ 1) =∫ c
0 Fs(1)−Fs(1−εi/(Nλ))f(dεi). Thus m1 follows a binomial distribution with

this probability and population N . Similarly, for u ≥ 2, the probability that
an agent i /∈ ⋃u−1

v=1 Hv belongs to Hu is derived as follows. Define a short-hand
h1 = (εi/λ+ φ

∑u−1
v=1 mv)/N and h2 = (εi/λ+ φ

∑u−2
v=1 mv)/N .
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Pr(si,u−1 + φmu−1/N ≥ 1 | {mv}u−1
v=1 , i /∈

u−1⋃
v=1

Hv) (A.1)

=
Pr(si,u−1 + φmu−1/N ≥ 1, i /∈ ⋃u−1

v=1 Hv | {mv}u−1
v=1)

Pr(i /∈ ⋃u−1
v=1 Hv | {mv}u−1

v=1)
(A.2)

=

∫ c
0 Fs(1− h2)− Fs(1− h1)f(dεi)∫ c

0 Fs(1− h2)f(dεi)
(A.3)

The first equality holds by the multiplication rule of conditional probabilities.
The second equality holds because i /∈ ⋃u−1

v=1 Hv is equivalent to si,u−1 = si,0 +
(εi/λ+φ

∑u−2
v=1 mv)/N < 1. Hence, mu given {mv}u−1

v=1 for u ≥ 2 under U follows
a binomial distribution with probability (A.3) and population N −∑u−1

v=1 mv.

Next, we derive an asymptotic process of mu up to a finite step. We showed
that mu follows a stochastic process which is finite with probability one up
to a finite step. Hence, by construction, U is satisfied with probability one
when N → ∞ up to a finite step. The asymptotic mean of m1 is simply:∫ c
0 Fs(1) − Fs(1 − εi/(Nλ))f(dεi)N → E[εi]ψ/λ = µ as N → ∞. Hence m1

asymptotically follows a Poisson distribution with mean µ. The asymptotic
mean of mu given mu−1 for u ≥ 2 is derived similarly. Note that h1 → 0 and
h2 → 0 as N →∞ for any finite path of mv. Then,

∫ c
0 Fs(1− h2)− Fs(1− h1)f(dεi)∫ c

0 Fs(1− h2)f(dεi)
(N −

u−1∑
v=1

mv)

→ (−ψ(E[εi]/λ+ φ
u−2∑
v=1

mv) + ψ(E[εi]/λ+ φ
u−1∑
v=1

mv)) = φψmu−1. (A.4)

Hence mu given mu−1 asymptotically follows a Poisson distribution with mean
φψmu−1. Since a Poisson distribution is infinitely divisible, the process mu

given m1 follows a branching process whose step distribution follows a Poisson
with mean φψ.

The stopping time T is finite with probability one, since the mean number of
children born by a parent is φψ ≤ 1 by Assumption 3 [16]. Hence U is satisfied
by an entire path mv, v = 1, 2, . . . , T , with probability one. 2

The sum of the branching process
∑T
v=1mv given m1 = l is known to fol-

low a Borel-Tanner distribution [17, page 68], Pr(
∑T
u=1mu = w | m1 = l) =

(l/w)e−φw(φw)w−l/(w−l)!, for w = l, l+1, . . .. By Lemma 9, m1 follows a Pois-
son distribution with mean µ. Thus

∑T
v=1mv follows a compound Poisson dis-

tribution with Poisson mean µ and a Borel-Tanner for m1 = 1. Calculating the
compound distribution, we obtain the desired distribution function (7). This
distribution is infinitely divisible since this is a compound Poisson distribution.
Equation (8) is obtained by applying Stirling’s formula w! =

√
2πww+0.5e−w

to (7) for large w. 2
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