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Abstract

We investigate retailers’ price setting behavior using a unique dataset containing by-
the-second records of prices offered by closely competing retailers on a major Japanese
price comparison website. First, we find that, when the average price of a product across
retailers falls rapidly, the frequency of price adjustments increases, and the size of price
adjustments becomes larger. Second, we find positive autocorrelation in the frequency
of price adjustments, implying that there tends to be clustering where price adjust-
ments occur in succession. In contrast, there is no such autocorrelation in the size of
price adjustments. These two findings indicate that the behavior of competing retailers
is characterized by state-dependent pricing rather than time-dependent pricing.
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1 Introduction

Since the seminal study by Bils and Klenow (2004), there has been extensive research on

price stickiness using micro price data. One vein of research along these lines concentrates

on price adjustment events and examines the frequency with which such events occur. An

important finding of such studies is that price adjustment events occur quite frequently. Using
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raw data of the U.S. consumer price index (CPI), Bils and Klenow (2004) report that the

median frequency of price adjustments is 4.3 months. Using the same U.S. CPI raw data,

Nakamura and Steinsson (2008) report that when sales are excluded, prices are adjusted with

a frequency of once every 8 to 11 months. Similar studies focusing on other countries include

Dhyne et al. (2006) for the euro area and Higo and Saita (2007) for Japan.

The frequency measure of price changes is an indicator of price stickiness at the micro

level. Most studies find that this micro price stickiness is too low to explain the price rigidity

observed at the macro level. Assuming that the measurements of both micro and macro

stickiness are correct, a possible explanation for this discrepancy is real rigidities or strategic

complementarities in price setting, as has been advocated by Ball and Romer (1990), Kimball

(1995), and others. In Kimball’s setting, where price adjustment events are assumed to occur

according to a Poisson process, firms with an opportunity to adjust their prices are influenced

by other firms that do not adjust prices, therefore keeping the extent of the price adjustment

small. Given that the fraction of adjusters remains unchanged, this implies that prices are

stickier at the macro level.

This means that to understand the extent of macro price stickiness, it is insufficient to only

examine the frequency of micro price adjustments; instead, it is also necessary to examine the

size of price adjustment and the extent to which firms’ price changes are correlated. To do so,

what is important is to collect price data of competing firms, that is, price data for individual

firms whose pricing behavior is potentially correlated with each other. Unfortunately, such

data are rarely available. For the compilation of CPI statistics, for example, a particular

retailer is chosen to represent a particular region for a particular product and sales price

data are then collected from that retailer. This means that it is virtually impossible to

obtain price data from competing retailers from CPI raw data. Another potential source is

scanner data, but as far as we are aware, there exists no comprehensive dataset comprising

prices for competing retailers.

In order to investigate the price setting behavior of retailers that directly compete with

each other, we use online market data in this paper. Specifically, the data we use are the
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selling prices offered by retailers on Kakaku.com, a major price comparison site in Japan.

Transactions on this site concentrate on consumer electronics such as TV sets, video equip-

ment, digital cameras, etc. For example, for the AQUOS LC-32GH2, a liquid crystal tele-

vision model made by Sharp, prices were provided by about 100 firms. These retailers have

registered with Kakaku.com beforehand and have entered a contract stating that they will

pay fees to Kakaku.com reflecting the number of customers transferred to their website via

Kakaku.com. These 100 retailers monitor at what prices the other retailers offer the same

product at any particular moment and, based on this, adjust the price at which they offer that

product themselves. Thus, these retailers can be said to be engaged in moment-by-moment

price competition in the virtual market provided by the price comparison site.

The dataset consists of the records, with a time stamp up to the second, of all prices offered

by each of the competing retailers for all products over the two year sample period. It allows

us to track prices of a single product, which is identified by its barcode, offered by competing

retailers over time. However, like most of the micro price data used in previous studies, our

dataset does not contain any information about shocks, such as shocks to marginal costs, so

that we cannot tell whether comovements in prices offered by different retailers come from

strategic interaction between them or common shocks. Still, data on the size, frequency, and

correlation of price changes can help to discriminate between different theories.

Time-dependent pricing models with strategic complementarities imply that after a com-

mon shock to marginal costs, there will be multiple rounds of price adjustments, in which the

size of successive adjustments is small. The probability of price adjustments is exogenously

given in those models, so that the presence of multiple rounds of price adjustments implies

that it takes longer until the entire process of price adjustments is completed. Thus those time

dependent pricing models imply that the size of price changes is persistent in the sense that

it is positively correlated with its own past values, but that the frequency of price changes is

not persistent. State-dependent pricing models with strategic complementarities imply that

the number of price adjustments per period increases after a cost shock, that is, “temporal
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agglomeration” or clustering in price adjustments emerges.1/2 Thus those state dependent

pricing models imply that both the size and the frequency of price adjustments are persistent.

Empirical evidence on the persistence in the size of price adjustments is mixed. Specifically,

Bils et al. (2009) investigate this by employing raw data of the U.S. CPI, but fail to find

positive autocorrelation in the size of price adjustments.3 In contrast, Gopinath and Itskhoki

(2009) find that exchanges rate changes pass-through into import prices only gradually and

interpret this as evidence for multiple rounds of price adjustments due to strategic comple-

mentarities. Turning to the persistence in the frequency of price adjustments, as far as we

are aware, there do not exist any empirical papers that directly investigate this, partly due

to the absence of datasets that contain information regarding pricing behavior of competing

firms.4 In this paper, we will examine persistence both in the frequency and the size of price

changes by making full use of our dataset.

The main findings of this paper are as follows. First, we find that, when the average price

of a product across retailers falls rapidly, the frequency of price adjustments increases, and

the size of price adjustments becomes larger. This result suggests that pricing behavior of

competing retailers is characterized by state-dependent pricing, rather than time-dependent

pricing. Second, we find positive and significant autocorrelation in the frequency of price

adjustments, implying that there tends to be clustering where, once a price adjustment occurs,

such adjustments occur in succession. In contrast, we fail to find any positive autocorrelation

in the size of price adjustments. The lack of persistence in the size of price adjustments

1Ball and Romer (1990) investigate the role of strategic complementarities in an economy with menu costs,
in which not only the size but also the timing of price adjustments is endogenously determined. They show
that, provided that other firms adjust their prices, it would be optimal for a firm to adjust its price, yielding
a positive correlation between price adjustments by one firm and price adjustments by rival firms.

2It is well known that such clustering occurs in a more general setting in which agents make discrete deci-
sions (price adjustment is an example of such discrete decisions) and there exist strategic complementarities
among them. Agents have an incentive to bunch discrete decisions in that situation. See Cooper and Halti-
wanger (1996) for a survey of empirical studies that look for clustering in various economic activities such as
machine replacement, investment, and so on, as evidence for strategic complementarities.

3More precisely, what they did was to estimate “reset price inflation” (i.e., the rate of change of desired
prices) and to examine its persistence in addition to persistence in the rate of inflation as commonly defined.
They fail to find positive autocorrelation in both of the two inflation variables.

4Indirect evidence is provided by Klenow and Kryvtsov (2008), who look for bunching of price changes (or
price synchronization) using raw data of the U.S. CPI for 1988-2003 and find that there is little price bunching
in the sense that the number of price adjustments does not fluctuate much, at least during this period of low
inflation. They did not examine persistence in the number of price adjustments.
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that we find, a result that is similar to what Bils et al. (2009) find using raw data of the

CPI, contradicts time-dependent pricing models with strategic complementarities. Third and

finally, we find that the probability of price adjustments for a given retailer increases with

the number of previous adjustments made by his rivals since his last price adjustment.

The rest of the paper is organized as follows. Section 2 provides a description of the

Kakaku.com dataset used in this paper and discusses some of the characteristics of these

data. In Section 3, we present stylized facts about price adjustments in this market. In

Section 4, we conduct a simulation analysis using a model of state-dependent pricing with

strategic complementarities based on Caballero and Engel (2007) in order to see whether the

facts found in Section 3 can be replicated by the model. Section 5 concludes the paper.

2 Data Description

2.1 Overview

The data we use in this paper are from Kakaku.com, a major Japanese price comparison

website. The website is operated by Kakaku.com, Inc., and at present about 1,300 retailers

use the site as part of their sales activities. A wide range of products is offered through the

website, but the most important are consumer electronics and personal computers, and if

items with a different barcode are counted as separate products, about 300,000 products are

offered. The number of monthly users is about 12 million.

By visiting the website, users of Kakaku.com can obtain information on the characteristics

of a product they are interested in, find a list of retailers offering that product, and the price

at which each retailer offers that product. In addition, users can also obtain information on

the characteristics of retailers such as whether they charge delivery fees, whether they accept

credit card payment, whether they have an offline shop, and retailer ratings by customers

who have used the retailer. Consumers visiting Kakaku.com use this information to choose

a retailer from which to purchase that product and then click a button on the Kakaku.com

website saying “Go to retailer.” They are then transferred to the website of the retailer,

where they go through the retailer’s sales procedure and finally purchase the product.
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There are various types of price comparison websites and some focus on gathering, on

their own, prices advertised on internet websites and posting a list of these. However, different

from this type of price comparison websites, the special characteristic of Kakaku.com is that

Kakaku.com, Inc., and each retailer enter a contract (on the payment of fees depending on

transferred customers, etc.) before any prices are listed. Therefore, retailers are well-informed

about what other retailers have registered with Kakaku.com. Moreover, based on information

sent to them by Kakaku.com, Inc., retailers check three or four times a day, or more frequently,

the prices offered by other retailers, the overall rank of their own price, whether the number

of customers transferred to their own site is large or small, and, if necessary, adjust their own

price.

The dataset used in this paper consists of the records, with a time stamp up to the second,

of all prices offered by each retailer (for a total of around 4 million records) and the history

of customer clicks on the “Go to retailer” button (around 24 million records) for all products

offered during the 731 days from November 1st, 2006, to October 31st, 2008.5

This is not the first study to use prices from price comparison sites. However, few studies

have used a dataset that includes information on how the price at which competing retailers

offer a product changes over time, and which retailer consumers click on. The dataset closest

to the one in this paper is the one used by Baye et al. (2009) from a price comparison site in

the United Kingdom. However, their dataset consists of daily aggregated data and does not

allow observations on competition between retailers on an hour-by-hour, minute-by-minute,

and, in some cases, even second-by-second basis.

Figure 1 shows an example of the fluctuations in the prices at which three competing

retailers were offering a liquid crystal TV made by Sharp (AQUOS LC-32GH2). The figure

illustrates the following. First, there is a strong downward trend in the price for this product,

and within a period of about 50 days, the price fell from 130,000 yen to a little below

5Of course it is important to note that just because the “Go to retailer” button was clicked on, this does
not necessarily mean that this ultimately resulted in a purchase. However, looking at the correlation between
the number of customers referred from Kakaku.com and information on the number of actual sales obtained
from scanner data for several of the retailers registered with Kakaku.com, it can be confirmed that this is
extremely high. This result shows that the number of clicks is a sufficiently useful proxy for the actual number
of sales.
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120,000 yen. However, what also becomes clear is that the retailers did not continuously

lower prices day-by-day. Rather, after maintaining a particular price level for several days or

weeks, they lowered the price discontinuously by several hundred or several thousand yen.

Then, soon thereafter, they again maintained the same price level. This occurred repeatedly.

In sum, price adjustment events are infrequent in the sense that they do not occur every

day and time intervals between two consecutive events are irregular. When they do occur,

price adjustments are discontinuous in the sense that the size of each adjustment is typically

far above zero. These two properties are in line with patterns shown in previous studies

using CPI raw data or scanner data.6 Second, the three retailers do not adjust prices at the

same time but instead each adjusts their price at a different time and to a different extent.

Although the prices offered by the three retailers overall show the same trend, a closer look

reveals that the price gap between the retailers fluctuates, and that competition is fierce,

with first one retailer and then the other taking the lead.

2.2 Frequency of price adjustments

Figure 2 (a) shows the distribution of the price duration (that is, the interval from one price

change until the next price change) for the AQUOS LC-32GH2 liquid crystal TV. The data

we are using here are for 230 days starting from November 2006, during which this particular

model was available in this market. The number of retailers providing a price for this product

during this period is not fixed, but on average there are 40 retailers. We use all the price

spells for these retailers. Note that the period from when a retailer begins to offer this product

until it first changes the price is not regarded as a price spell. We similarly exclude the period

immediately before a retailer stops offering a product.

In the figure, the horizontal axis shows the price duration, while the vertical axis shows

the corresponding value of the cumulative distribution function (CDF). For example, the

value on the vertical axis corresponding to a price duration of 10 days is 0.04, indicating

6Studies using CPI raw data or scanner data report that sales (that is, temporary price drops) occur
frequently. However, at least on the basis of Figure 1, it appears that the retailers on Kakaku.com do not
conduct sales. In the dataset used in our paper, sales cannot be observed as frequently as in the case of offline
retailers.
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that the share of price spells of 10 days or more in the total is 4 percent. The average price

duration is 1.93 days, and the median is 0.34 days. In other words, on average, the probability

that a price adjustment event occurs on any given day is 0.518 (=1/1.93). If price adjustment

events would occur according to a Poisson process, price duration would follow an exponential

distribution. Because the vertical axis here is shown in logarithmic scale, if the price duration

follows an exponential distribution, the measured CDF should form a straight line. However,

as can be seen in the figure, the CDF takes a convex shape.

In previous research using micro price data, it is repeatedly reported that the hazard

function is downward sloping, that is, the longer the time since the last price adjustment, the

lower is the probability of an adjustment event occurring. Figure 2 (b), which presents the

hazard function estimated from our data,7 shows that the same is the case here. However,

previous studies measure hazard functions using pooled data for several products, so it is

possible that the downward sloping hazard function may be the result of heterogeneity in price

adjustment probabilities across different products. In contrast, the price spells used in Figure

2 (b) are collected for only one product, so that this kind of product heterogeneity does not

arise, although we cannot rule out the possibility that there exists non-trivial heterogeneity in

price adjustment probabilities across different retailers, and this may give rise to the convex

shape. Some retailers may be more active in this market than others, and therefore change

their prices more often.

The product category “LCD TVs” contains 742 different products, and the statistics

shown in Figure 2 are for only one of them. We calculate the median of price durations for

each of the 742 products to see how it differs across different products. The result is presented

in Figure 3, which shows the cumulative distribution function of the price durations for the

742 products. The vertical axis represents the fraction of products whose price durations

are shorter than the value shown on the horizontal axis. The price duration corresponding

to a value of 0.5 on the vertical axis is 0.56 days on the horizontal axis, meaning that the

7Denote price duration by y and its PDF and CDF by f(y) and F (y), respectively. Then the hazard

function h(y) is related to the CDF of y as follows: h(y) = − d
dy

log[1 − F (y)] = f(y)
1−F (y)

. If the price duration

obeys a Poisson process, h(y) is constant, so that the derivative of log[1− F (y)] with respect to y is constant
as well.
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price duration for a representative product at the median of the CDF is 0.56 days, which is

slightly longer than the median price duration of 0.34 days for the particular product used

in Figure 2. More importantly, we see substantial heterogeneity in terms of price duration

across different products. For example, products whose price durations are longer than 3 days

account for about twenty percent of the 742 products. This kind of heterogeneity in terms

of price duration is similar to the findings of previous studies on micro price stickiness, but

it differs from them in that we actually see heterogeneity across individual products within

a product category. The same is confirmed for other product categories such as “digital

cameras” with 611 different individual products.

2.3 Price ranks

Figure 4 shows how the price rank for a retailer affects the probability that it will be clicked

on by consumers for the AQUOS LC-32GH2 liquid crystal TV. Specifically, it shows, for the

case that retailer i is ranked first or second, how the price differences with the most closely

competing retailer affects the number of clicks. On the horizontal axis, the figure depicts the

price difference between retailer i and the competing retailer for each point in time. A value

of -0.1 indicates that the price offered by retailer i, ranking first, is 10 percent lower than

that of the second-ranked retailer; a value of 0.1 indicates that the price offered by retailer

i, in the second rank, is 10 percent higher than that of the first-ranked retailer. The vertical

axis shows the share of retailer i in the total number of clicks.

Let us assume that retailer i offers the lowest price and is in the position indicated by

point A. If it raises the price even only a little, it will be overtaken by a rival retailer and its

number of clicks will decline. According to the figure, as a result of the price increase, the

number of clicks would fall discontinuously. In fact, through only a small price increase, the

number of clicks would almost halve.8 On the other hand, if the retailer i, from the position

indicated by point A, lowers the price, the number of clicks it receives will increase because

8While the figure shows the competitive relationship between the first and the second rank, the discontin-
uous change in the number of clicks seen here can also be observed for the 2nd and 3rd rank, the 3rd and
4th rank, etc. A similar discontinuity in the number of clicks is found by Baye et al. (2009) using data from
a British price comparison site.
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the price advantage vis-à-vis the second-ranked retailer will increase further, but that increase

in the number of clicks will not be that great. Thus, the elasticity of demand for an increase

and a decrease in price differs and in this sense the demand curve is kinked.9

Such a discontinuity in the demand curve implies that this online market is close to a

perfectly competitive market with homogeneous products. However, as shown in the figure,

retailer i still obtains about 20 percent of all clicks even when it offers the second lowest

price, which is clearly inconsistent with perfect competition. To see this feature in more

detail, we calculate in Figure 5 how the number of clicks changes depending on the price

rank. The horizontal and vertical axes represent, respectively, price ranks and the share of

clicks retailers obtain at that price rank. The figure is produced by using all price quotes for

all products over the entire sample period. Figure 5 indicates that the retailer with the first

rank indeed obtains many, but not all clicks; about 29 percent of clicks go to the first-ranked

retailer. The second-ranked retailer still receives about 23 percent, and even the fifth-ranked

retailer obtains more than 6 percent of all clicks. This can reflect heterogeneity across different

retailers in terms of the various services associated with delivery and payment. In this sense,

this market may still be regarded as an imperfectly competitive market with differentiated

varieties.

3 Stylized Facts Regarding Price Adjustments by Competing
Retailers

3.1 Frequency and size of price changes

The first issue we investigate is how the frequency of price adjustments and the size of

price adjustments fluctuate as the average price changes. The upper panel of Figure 6 shows

fluctuations in the average price of the AQUOS LC-32GH2 liquid crystal TV over a sample

period of 230 days starting from November 1, 2006. This particular model was sold by 128

retailers during this period, although some of them were not in the market for some part of

9Kimball (1995) presents a model in which a version of kinked demand curve is the source of real rigidities.
See, for example, Negishi (1979) for an early attempt to explain price rigidities by the presence of a kinked
demand curve. On the other hand, Bhaskar (1988) shows that the presence of a kinked demand curve does
not necessarily imply price rigidities.
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the sample period due to, for example, the lack of inventory. The price shown here is the

average of prices across all retailers present in the market at a particular point in time. The

total number of price adjustments during this sample period was 2645, implying that a price

change occurred about 11 times a day. As seen in the figure, the average price was on a

downward trend throughout the sample period, but a closer inspection of the figure reveals

that there were four phases, indicated by the shaded areas, during which the decline in the

average price accelerated. The rapid decline in the average price during these four phases

was probably associated with a substantial decline in marginal costs, such as a change in

procurement prices, although we are not certain about that.

An important question concerns whether the rapid decline in the average price came from

increases in the frequency of price adjustments or changes in the size of price adjustments.

The middle panel presents the number of price adjustments conducted by some of the 128

retailers. The thin line represents the number of price decreases, while the thick line represents

the number of price increases. We see that the number of decreases increased significantly

during the four phases. For example, the number of decreases reached as high as 120 during

the first phase, which is more than six times the regular level. Moreover, we see that there is a

tendency that the number of decreases decays only gradually after each of the four phases of

rapid decline, suggesting that the process of tâtonnement continues until prices fully stabilize.

In contrast, the number of price increases does not show any significant change even during

the four phases of rapid decline.

Turning to the size of price changes, which is shown in the lower panel, we see a substantial

increase in the size of price decreases at the very beginning of each of the four phases of rapid

decline. On the other hand, the average size of price increases is quite volatile and does not

show any particular tendency during the four phases of rapid decline.

To investigate the contribution of the frequency and the size of price changes in more

detail, we calculate the coefficient of correlation between the frequency of price changes and

the change in the average price for each two-day period (i.e., the difference between the

average price at the final second of the previous two-day period and that at the final second
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Table 1: The frequency and the size of price changes for all retailers and for top ten retailers

All Retailers Top Ten Retailers

The number of price changes 2645 1716
The number of price decreases 2231 1602
The number of price increases 414 114

Correlation between the change in the average price and:
the number of price decreases -0.19 -0.47
the number of price increases 0.23 -
the size of price decreases -0.03 0.03
the size of price increases 0.19 -

Notes: The correlation between the price change and the number of price decreases (price
increases) is calculated as the coefficient of correlation between the price change during
a two-day period and the number of price decreases (price increases) during that period.
The correlation between the price change and the size of price decreases (increases) is
calculated in a similar way. The correlation with the number of price increases and that
with the size of price increases are not calculated for top ten retailers, because the number
of observations is very limited.

of the current two-day period), as well as the coefficient of correlation between the size of

price changes and the price change for each two-day period. The result is presented in the

middle column of Table 1. This shows that the frequency of price decreases (increases) is

negatively (positively) correlated with the price change, indicating higher (lower) frequency

of price decreases (increases) when the average price declines rapidly. However, the correlation

with the frequency of price decreases is not so large, probably reflecting the fact that the two

variables are correlated not simultaneously but with some lags as we saw in Figure 6. On the

other hand, the size of price decreases is uncorrelated with the price change, while the size

of price increases is positively correlated with the price change.

It should be noted that the 128 retailers that sell this particular LCD TV model in this

online market are not necessarily all directly competing with each other by closely monitoring

each other’s pricing behavior. For example, some of the retailers with a long history and a

high reputation with customers may not need to compete directly with retailers who have

only recently started business and thus have to offer lower prices to attract customers. In

order to reflect this, we also focus on a sample of retailers that are most likely to compete

with each other. Specifically, in the third column of Table 1, we calculate the average price
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charged by the top ten retailers (i.e., the ten retailers offering the lowest prices) in each

period and estimate the correlation with the frequency and the size of price changes. The

number of price decreases conducted by the top ten retailers is 1602, which accounts for 72

percent of all price decreases conducted by all retailers present in this market. In contrast,

the number of price increases conducted by the top ten retailers accounts for only 27 percent

of all price increases conducted by all retailers.10 This suggests that the top ten retailers are

in keener price competition than the other retailers. More importantly, the correlation with

the number of price decreases is now much higher than in the case of the average price of

all retailers, suggesting that those retailers whose prices are close to the lowest one are more

likely to change the frequency of price adjustments (and thus less likely to change the size of

price adjustments) in their price competition, as compared to the other retailers.

3.2 Persistence in the frequency and the size of price changes

The upper panel of Figure 7 shows the estimated autocorrelations for both the size and the

frequency of price changes based on the average price of all retailers. The frequency of price

changes has a high positive correlation of around 0.5 with its value two days before, and this

autocorrelation gradually decays until it reaches zero vis-à-vis the frequency of price changes

ten days before. This implies that the expected waiting time until the next price change

event is smaller (greater) if the previous price duration is shorter (longer). In contrast, the

size of price adjustments has no significant correlation with its past values. We did the same

exercise using the frequency and the size of price adjustments in the average price offered by

the top ten retailers. The results are presented in the lower panel of Figure 7 and are quite

similar to the one for all retailers, indicating that the results are robust to changes in the

measure of inflation.11

10The average size of price decreases for the top ten retailers is about one third of that for all retailers. This
indicates that the top ten retailers cut prices more often than the other retailers, but the magnitude of price
cut is much smaller.

11Note that the different results for the size and the frequency of price changes are difficult to explain with
existing models. Time dependent pricing models imply some persistence in the size of price changes because
new prices spread to firms only gradually because of nominal rigidities, and no persistence in the frequency
of price changes. Thus, time dependent pricing models, with or without strategic complementarities, predict
results opposite to what we observe in the data. On the other hand, state-dependent pricing models imply
that first-adjusters, who are far away from the desired price level, change prices by more than followers
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The lack of persistence in the size of price adjustments is similar to Bils et al.’s (2009)

finding using raw data of the U.S. CPI that the size of price changes is not positively correlated

with its past values. In fact, they find a negative autocorrelation, rather than a positive one,

both for reset price inflation (i.e., the rate of change of desired prices) and for the rate of

inflation defined in the standard manner. As for persistence in the frequency of price changes,

Klenow and Kryvtsov (2008) look for bunching of price changes (or price synchronization)

using raw data of the U.S. CPI for 1988-2003 and report that there is little price bunching in

the sense that the number of price adjustments does not fluctuate much during this period

of low inflation. On the other hand, Gagnon (2009) finds evidence for the bunching of price

changes during high inflation periods in Mexico. Our result looks closer to what is observed

in Mexico (with high inflation) than in the U.S. (with low inflation), although neither of the

two studies attempts to estimate the extent to which price bunching persists. The study most

closely related to ours is Davis and Hamilton (2004), which investigates stickiness in gasoline

prices for nine gasoline wholesalers by estimating an autoregressive conditional hazard model

where price duration is allowed to depend on its past values. They find a positive dependence

of price duration on its past values for six out of the nine firms and a negative dependence

for the remaining three firms.

What does the estimated persistence in the frequency of price changes imply? As we saw

in Section 2.2, the median of price durations of this product is 0.34 days. Is this number con-

sistent with the result from Figure 7 that it takes ten days before all retailers have completed

their price adjustments? To address this question, let us assume a Calvo-type setting and

consider a case in which a common shock (such as a common shock to marginal costs) hits

all retailers at time 0. We denote the waiting time until representative retailer i experiences

its first Calvo event by τi and the waiting time until all of the 128 retailers have at least one

Calvo event by T . The random variable T is related to τi as T ≡ max{τ1, τ2, . . . , τ128}. Note

that τi follows an exponential distribution in the Calvo setting where price adjustment events

(Golosov and Lucas’s (2007) selection effect), so that the size of price adjustments is positively correlated
with its past values, while implying some persistence in the frequency of price adjustments as well, because
the probability of price adjustments is higher for first-adjusters than for followers. State-dependent pricing
models with strategic complementarities imply even higher persistence in the size of price adjustments, as well
as in the frequency of price adjustments.
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occur according to a Poisson process. Making use of this fact, we calculate the expectation

of T and obtain E(T ) = 1.89.12 That is, it takes only 1.89 days before all the retailers com-

plete their price adjustments, which is much shorter than ten days. This simple calculation

indicates that each of the 128 retailers conducts, on average, 5.3 (=10/1.89) rounds of price

adjustments before all adjustments are completed.

Why do they conduct multiple rounds of adjustments? This issue is beyond the scope of

this paper, but one may think of various reasons. One possibility is that shocks themselves

occur only gradually; for example, shocks are common across retailers but do not affect all re-

tailers simultaneously and instead may affect some retailers earlier than others. Alternatively,

there may exist heterogeneity with some retailers responding to a shock more quickly than

others. Furthermore, multiple rounds of price adjustments may arise because of imperfect

knowledge about the price sensitivity of customers or about the cost structure of rivals. In

this case, retailers cannot calculate a desirable price level, so that it may be optimal for them

to experiment a set of different prices temporarily until they eventually reach a desirable

level. Such experimentation may be the source of multiple rounds of price adjustments.

3.3 The probability of price adjustment conditional on the number of pre-
vious adjustments by competing retailers

Given the presence of persistence in the frequency of price changes, an interesting question

to be asked is whether the price change by a retailer is correlated with the price changes by

the other retailers. To investigate this, we estimate something similar to a hazard function.

Let us suppose that retailer i changes its price at a particular point in time, and that the

total number of price adjustments by other retailers after that point in time is n. We then

calculate the probability of a price adjustment by retailer i conditional on the occurrence of

the n price adjustments by the other retailers.

Figure 8 shows the estimation result. The horizontal axis represents the value of n; for

12Since τi follows an exponential distribution with an exponent of 0.34−1, the probability that no Calvo
events occur to retailer i until time t is given by exp(−0.34−1t). Thus the probability that at least one of the 128
retailers does not experience any Calvo event until time t is given by 1− [1−exp(−0.34−1t)]128. Differentiating
this with respect to t, we obtain 128

0.34
exp(−0.34−1t)[1−exp(−0.34−1t)]127, which is the probability that the last

retailer experiences a Calvo event (and therefore price adjustments are completed for all of the 128 retailers)
at time t. We use this result to calculate E(T ).
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example, n = 4 means that four price adjustments by other retailers have occurred since the

last price adjustment by retailer i, and the corresponding value on the vertical axis represents

the conditional probability that it is retailer i that conducts the next price adjustment. This

figure resembles those frequently used in previous studies, such as Alvarez et al. (2005) among

others, except that the horizontal axis represents not the elapsed time but the number of

price adjustments by other retailers.13

As seen in the figure, the conditional probability of price adjustment increases with n at

least until n = 7. This result indicates that retailer i’s decision is significantly influenced by

the pricing behavior of other retailers. Note that the conditional probability starts to decline

from n = 8 onward, which may reflect that there still remains some heterogeneity among

retailers in terms of the probability of price adjustments.

Menu cost models imply that the probability of price adjustment increases with time,

because the deviation of the current price level from the desired one increases as time elapses.

One may think that the upward sloping part of the hazard function in Figure 8 simply reflects

this property. However, as we saw in Figure 2 (b), the standard hazard function for this

product, i.e., the one with the elapsed time on the horizontal axis, is actually downward

sloping, implying that the upward sloping part of the hazard function in Figure 8 does not

stem from this property.

Then the question is why we have different results depending on whether we have the

elapsed time or the number of price adjustments by competing retailers on the horizontal axis.

It is important to note that clustering in price adjustments in this market would contribute

to creating a downward sloping hazard function with the elapsed time on the horizontal axis.

However, such an effect of clustering on the shape of the hazard function is weakened by

replacing the horizontal variable with n, since n is not highly correlated with the elapsed time.

For example, the price change events identified by n = 5 may occur not only in busy periods

with many price adjustments, but also in quiet periods with smaller numbers of adjustments.

Therefore, the time elapsed during the five price adjustments differs substantially from one

13When estimating hazard functions, it is important to use data for a homogenous set of retailers. To do
so, we focus only on retailers that are positioned at the 5th rank or above immediately after the last price
adjustment.
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event to another. In fact, we confirm from the data that the average length of intervals

between two consecutive price adjustments by competing retailers is correlated with n only

weakly.

4 State-Dependent Pricing with Strategic Complementarities

In this section, we will introduce the generalized Ss model proposed by Caballero and Engel

(2007) to describe state-dependent pricing with strategic complementarities, and conduct

numerical simulations with calibrated parameters to see whether we can replicate the facts

found in the last section.

4.1 Setting and parameter values

Consider a setting in which each retailer reviews its price and, if necessary, adjusts it. Suppose

that the opportunity of a price review arrives according to a Poisson process with a probability

of 1− θ. When this opportunity arrives for a retailer, it compares its current price with what

Caballero and Engel (2007) refer to as the target price. The retailer changes its price if the

discrepancy between the two is sufficiently large and sets a new price equal to the target

price.

A key assumption concerns how the target price is determined. Here we assume that there

are two types of retailers. The first type of retailers pays no attention to the prices offered

by rival retailers. The target price of these retailers is equal to marginal costs, mt, plus

some margin, which is assumed to be small. On the other hand, the second type of retailers

considers the prices offered by rivals in deciding their target prices. Specifically, their target

price is equal to a weighted average of the average value of the prices offered by those who

changed their prices in the previous period (“adjusters”) and the average value of the prices

offered by those who did not change their prices in the previous period (“non-adjusters”),

which are denoted by PA
t−1 and PNA

t−1 , respectively. The fraction of the first type in the total

number of adjusters in each period is assumed to be constant and given by 1 − α. Finally,

we assume that a typical retailer is a combination of the two types with the weights 1 − α
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and α. Then the target price of this retailer, which is denoted by P ∗
it, is given by

P ∗
it = (1 − α)mt + α

[
ωPA

t−1 + (1 − ω)PNA
t−1

]
+ ϵit (1)

where ω is a parameter between 0 and 1, ϵit is a disturbance term, and P ∗
it, mt, PA

t−1, and

PNA
t−1 are all in logarithm.

The probability that retailer i changes its price conditional on that it is allowed to review

its price is denoted by Λ and assumed to depend on xit, which is defined by xit ≡ Pit−1 −

P ∗
it. The function Λ(xit) is what Caballero and Engel (1993a) refer to as the “adjustment

hazard function.” This is a useful tool to discriminate between state-dependent and time-

dependent pricing. If the probability of price adjustment depends upon a state variable, x, it

is state-dependent pricing, and if not, it is time-dependent pricing. We make two assumptions

about the shape of the adjustment hazard function. First, the probability of price adjustment

becomes higher as the actual price deviates more, positively or negatively, from the target

level, so that Λ′(x) > 0 for x > 0 and Λ′(x) < 0 for x < 0. Caballero and Engel (1993b) call

this the increasing hazard property. Second, the adjustment hazard function is assumed to

be symmetric.

Calibrated parameters are set as follows. We assume that the number of retailers is ten

and that the length of each time step is 3.6 minutes, or 40 steps=1 day. As for the probability

of price review, we assume that each retailer reviews its price, on average, 0.4 times a day,

which implies 1− θ = 0.01. This is based on the interviews we conducted with major players

in the Kakaku.com market. As for marginal costs mt, we assume that the decline in marginal

costs occurs according to a Poisson process, and that the probability of the decline is 0.002 per

time step, implying that a decline in marginal costs occurs, on average, 30 times a year. The

size of the decline in marginal costs is assumed to be 1 percent of the price level. Combining

these two, marginal costs mt and therefore the price level decline, on average, by 30 percent

per year, which is consistent with what is observed in the data.

Following Caballero and Engel (2006), the adjustment hazard function is assumed to be
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of quadratic form and can be represented by:

Λ(x) =


1 if x < −λ0

(x/λ0)2 if − λ0 ≤ x ≤ λ0

1 if λ0 < x

(2)

where λ0 is a positive parameter. The value of λ0 is assumed to be 0.05, implying that the

probability of adjustment is equal to unity if the deviation of the current price from the target

level is above 5 percent, while it is less than unity if the deviation is less than 5 percent.

Finally, the parameters appearing in equation (1) are assumed to be α = 0.9 and ω = 0. The

value of α is based on the empirical autocorrelation in the frequency of changes in the lowest

price.14

4.2 Simulation results

The simulation results are presented in Figure 9. The left panel shows autocorrelations for

the frequency and the size of price changes. The results clearly show that there is a positive

autocorrelation both in the frequency and the size of price adjustments, although the auto-

correlation is slightly larger and longer for the frequency of adjustments than for the size of

adjustments. Note that such persistence in the frequency and the size of price adjustments

stems mainly from strategic interactions among retailers due to the presence of strategic com-

plementarities described by equation (1). Comparing these results with the empirical ones

presented in Figure 7, we see no difference as far as the frequency of price adjustments is con-

cerned. However, there is an important difference for the size of price adjustments in that the

empirical autocorrelations are almost zero. In the Caballero-Engel model, the state variable

x determines the size of adjustments, but it also determines the likelihood of adjustments

through the adjustment hazard function Λ(x). Given the increasing hazard property of this

function, a higher (lower) probability of price adjustment tends to be associated with greater

(smaller) size of adjustment. This feature is seen in the simulation result but not in the em-

pirical one. The empirical result may suggest that the size of adjustments is determined in a

way different from the one described by the Caballero-Engel model.
14To test the robustness of our results, we also conducted simulations with slightly smaller values of α

(α = 0.8 and 0.7), as well as different values of ω. The results are similar to the ones reported in the text.
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Turning to the right panel of Figure 9, this shows the probability of a price adjustment by

retailer i conditional on the occurrence of n price adjustments by other retailers. Comparing

this with the empirical result presented in Figure 8, the model successfully replicates the

pattern that the conditional probability increases with n, although the simulation result

does not show the property that the hazard function is downward sloping for large values

of n, as we saw in the data. This difference may be accounted for by heterogeneity across

retailers in terms of the probability of price adjustment, which is absent in the model.

5 Conclusion

In this paper, we have investigated retailers’ price setting behavior using a unique dataset

containing by-the-second records of prices offered by competing retailers on a major Japanese

price comparison website. We find that, when the average price of a product across retailers

falls rapidly, the frequency of price adjustments increases, and the size of price adjustments

becomes larger. This suggests that pricing behavior of competing retailers is characterized

by state-dependent pricing, rather than time-dependent pricing. We also find that there is

positive autocorrelation in the frequency of price adjustments, implying that there tends to

be clustering where once a price adjustment occurs, such adjustments occur in succession.

Our estimate of the length of such clustering is about ten days, which is about five times as

long as implied by the Bils-Klenow type estimate of the length of price spells. This implies

that each retailer goes through, on average, five rounds of price adjustments before the entire

process of adjustments is completed.

Can we carry over these results to the world outside internet markets? Probably not,

because pricing behavior in online markets may be quite different from that in offline markets.

Does there exist a similar clustering in price adjustments outside internet markets? And if

so, is it large enough to account for the differences in price stickiness at the micro and macro

levels? These are the questions to be addressed in future work.
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Figure 1: Prices of an LCD TV offered by three competing retailers
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Figure 2: Price duration for an LCD TV
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Notes: The median of price durations is calculated for each of the 742 products
in the product category “LCD TVs”, as well as for each of the 611 products in
the product category “Digital cameras”. For each of the two product categories,
the vertical axis represents the fraction of products whose price durations,
measured by the median, are shorter than the value shown on the horizontal
axis.
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Figure 4: Relative price and the share in the number of clicks

Notes: The horizontal axis represents the price difference for an LCD TV between retailer i
and its most closely competing retailer. A value of -0.1 on the horizontal axis indicates that
the price offered by retailer i is 10 percent lower than that of the competitor. The vertical
axis represents the share of retailer i in the total number of clicks.
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Notes: The horizontal axis represents price rank of a retailer and the vertical
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Figure 6: Fluctuations in the average price of an LCD TV 
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Figure 7: Autocorrelation functions of the frequency and the size of price changes 
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Figure 8: Probability of price adjustment conditional on the number of adjustments by rivals

Notes: The horizontal axis represents the number of price adjustments by its rivals since the last
price adjustment by retailer i, and the vertical axis represents the conditional probability that it
is retailer i that conducts the next price adjustment.
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Figure 9: Simulation results
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