
 
 
 
 

Department of Economics, Hitotsubashi University 
Discussion Paper Series 

No. 2013-08 
 

Choice via Grouping Procedures 
 

Jun Matsuki and Koichi Tadenuma 
 

September 2013 
 
 



Choice via Grouping Procedures∗

Jun Matsuki† Koichi Tadenuma‡

July 2013

This version: September 2013

∗We are grateful to Sean Horan for his detailed comments, which improved a part of the proof

of the main results in this paper. We also benefited from helpful comments of Paola Manzini,

Marco Mariotti, and participants at the Workshop on Bounded Rationality in Choice: Theory,

Application, Welfare and Experiments held at the University of St. Andrews, July 29-30, 2013.

Financial support from the Ministry of Education, Culture, Sports, Science and Technology, Japan,

through the Grant-in-Aid for Scientific Research (B) No. 24330062 is gratefully acknowledged.
†Japan Post Bank, Tokyo 100-8798, Japan. E-mail: jm at ara4y(at)yahoo.co.jp.
‡Department of Economics, Hitotsubashi University, Kunitachi, Tokyo 186-8601, Japan. E-mail:

koichi.tadenuma(at)r.hit-u.ac.jp.

1



Abstract

In this paper, we consider a natural procedure of decision-making, called a

“Grouping Choice Method”, which leads to a kind of bounded rational choices.

In this procedure a decision-maker (DM) first divides the set of available al-

ternatives into some groups and in each group she chooses the best element

(winner) for her preference relation. Then, among the winners in the first

round, she selects the best one as her final choice. We characterize Grouping

Choice Methods in three different ways. First, we show that a choice function

is a Grouping Choice Method if and only if it is a Rational Shortlist Method

(Manzini and Mariotti, 2007) in which the first rationale is transitive. Sec-

ond, Grouping Choice Methods are axiomatically characterized by means of a

new axiom called Elimination, in addition to two well-known axioms, Expan-

sion and Weak WARP (Manzini and Mariotti, 2007). Third, Grouping Choice

Methods are also characterized by a weak version of Path Independence.

JEL Classification: D01.

Keywords: grouping of alternatives, preference, bounded rationality.
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1 Introduction

To construct models to explain (seemingly) irrational choices of individuals

or societies is one of the central themes in economic theory recently. In this

paper, we consider a natural procedure of decision-making, called “Grouping

Choice Methods”, which leads to a kind of bounded rational choices. In this

procedure, a decision-maker (DM) first divides the set of available alternatives

into some groups and in each group she chooses the best element (winner) for

her preference relation. Then, among the winners in the first round, she selects

the best one as her final choice.

Such choice behaviors are often observed in real life. For example, suppose

that a family would like to buy a house. Three houses {x, y, z} are available,

of which x and y are located in town A, and z in town B. They first choose

the best house in each town, and then make a final choice from the “winners”

in the first round. Suppose that they prefer x to y, y to z, and z to x.1 Now,

when y and z are available, each of them is the only house in each town.

Hence, y is chosen from {y, z} because they prefer y to z. On the other hand,

when all three houses are available, they first choose x as the best house in

town A since they prefer x to y. Because z is the only house in town B, hence

the best, the set of winners in the first round is {x, z}. Then they choose z

because they prefer z to x. Thus, z is selected from {x, y, z}. Notice that

the family’s preference relation is cyclic in this example and yet a final choice

can be determined by this procedure of choice with grouping. However, these

choices are inconsistent with Samuelson’s (1938) Weak Axiom of Revealed

Preferences (WARP), which requires that if y is chosen when z is available,

then z should not be chosen whenever y is available.

In this paper, we formalize and analyze decision-making procedures as de-

scribed above. First, we define a grouping rule as a correspondence that spec-

ifies for each set S of available alternatives a grouping in S (a set of subsets

of S). Several natural requirements are imposed on admissible grouping rules.

1Note that a family’s preference relation may become cyclic because it is a collective preference

relation (if they decide by majority voting, for instance).
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We assume that each DM is endowed with a single preference relation. Given

a grouping rule and a preference relation, and for each set of available alterna-

tives, a Grouping Choice Method first takes a maximal element in each group in

the set for the preference relation, and then selects a maximal element among

these first-round maximums.

We characterize Grouping Choice Methods in three different ways. First,

we show that a choice function is a Grouping Choice Method if and only if

it is a Rational Shortlist Method (Manzini and Mariotti, 2007) in which the

first rationale is transitive. In Rational Shortlist Methods, a DM is endowed

with two preference relations, called “rationales”, and for each set of available

alternatives, she sequentially applies the two rationales to make the selection.

Second, we axiomatically characterize Grouping Choice Methods. Manzini

and Mariotti (2007) showed that Rational Shortlist Methods are characterized

by a weak version of WARP and a standard choice-consistency property under

the expansion of the set of alternatives, simply called “Expansion”. Their

Weak WARP requires that if an alternative x is chosen in binary comparison

with y, as well as in a set S containing both x and y, then y should not be

chosen in any “intermediate” set T between {x, y} and S (that is, {x, y} ⊆
T ⊆ S). Because the class of Grouping Choice Methods is a restricted class

of Rational Shortlist Methods, Grouping Choice Methods also satisfy Weak

WARP and Expansion. In addition to the above two axioms, we introduce a

new axiom called “Elimination”. This property means that if an alternative y

is never chosen in the presence of another alternative x, then (i) whenever y is

chosen in a menu (without x) and then x becomes newly available, x should

be chosen in the new menu, or (ii) whenever y and x are present, eliminating

y from the menu dose not affect the choice. We show that these three axioms

fully characterize Grouping Choice Methods. In the literature, the papers

close to this part of our results are Au and Kawai (2011) and Horan (2013).

Both of them characterize Rational Shortlist Methods in which both of the two

rationale are transitive by distinct sets of axioms respectively. Horan (2013)

also provides a characterization of Rational Shortlist Methods in which the
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first rationale is transitive (and the second is unrestricted) by a list of axioms

that is different from ours.2

Third, we consider a weak version of Path Independence, which we call

Grouping Path Independence. The original version of Path Independence was

introduced by Plottt (1973). It means that final outcomes should be inde-

pendent of the “paths” to lead to them. To describe our version, assume

that a grouping rule G and a set S of available alternatives are given. As an

example, let the groups specified by G for S be G(S) = {S1, S2, S3}. Con-

sider the following path to a final choice: first, apply a choice rule C to each

group Si (i ∈ {1, 2, 3}) to select an alternative C(Si); second, apply the rule to

the set of the alternatives selected from the groups in the first round, namely

{C(S1), C(S2), C(S3)}, to make a final choice C({C(S1), C(S2), C(S3)}). Now,

let us change the path either by merging or by splitting some groups in the

original grouping G(S) = {S1, S2, S3}. For instance, by merging S1 and S2, we

obtain {S1 ∪ S2, S3} as the new grouping. Then, apply the choice rule C the

same way as above, but under the new grouping in S. Grouping Path Indepen-

dence requires that this type of change in grouping should not affect the final

choice, that is, C({C(S1), C(S2), C(S3)}) = C({C(S1∪S2), C(S3)}). Both our

Grouping Path Independence and the original version of Path Independence

require the final choice to be unchanged with changes in the grouping of the

set of available alternatives. The difference between the two conditions is that

the former considers only departures by merging or by splitting from the ini-

tial groups specified by the given grouping rule, whereas the latter allows any

changes in grouping. Hence, our version is weaker than the original one. We

show that, given a grouping rule G, a choice function satisfies Grouping Path

Independence for G if and only if it is a Grouping Choice Method with G and

some preference relation.

2In the first version of Horan (2013), he characterizes Rational Shortlist Methods in which the

first rationale is transitive by Expansion, Weak WARP, and the axiom called “Choice Symmetry”.

In the latest version which we have just known, he strengthens our Elimination axiom and defines

the axiom called “Exclusivity”. Then, he provides a characterization by means of Expansion and

Exclusivity.
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In the literature on individual or social decision-making, many authors have

proposed and studied models to explain choice behaviors that are inconsis-

tent with single preference maximization over the sets of feasible alternatives.

Among them, sequential applications of multiple criteria are often considered

in both individual and social choices.3 It is interesting that choices by sequen-

tial maximization of two rationales with the first one being transitive may be

alternatively described as decision-making by single preference maximization

with a grouping procedure. The two distinct procedures may explain the same

set of choice outcomes.

Manzini and Mariotti (2012b) consider yet another decision-making proce-

dure that looks similar to ours. In their procedure, a DM first “categorizes”

alternatives. Here “categorization” is the same as “grouping” in our proce-

dure. In their model, however, a DM is endowed with two distinct preference

relations, one over the “categories” (subsets of the set of alternatives) and the

other over alternatives. Then, she first eliminates all alternatives in categories

dominated by another category, and chooses an alternative that is maximal

among the remaining ones. In contrast to their model, a DM is endowed with

a single preference relation over the alternatives in our model, just like the

standard choice theory. Our point of departure from the classical theory is to

introduce a grouping process before maximization.

In social choice contexts, agenda setting is crucial for determining final

outcomes, especially when a social preference relation contains cycles as in the

case of majority voting. Here agenda setting is the same as grouping in our

model. Hence, our results may shed some light on bounded rationality of social

choice under various agenda settings.

The rest of this paper is organized as follows. Section 2 introduces basic

notation and definitions, and defines Grouping Choice Methods. Sections 3,

3Such contributions include Suzumura (1983), Aizerman (1985), Aizerman and Aleskerov (1995),

Roelofsma and Read (2000), Kalai, Rubinstein, and Spiegler (2002), Tadenuma (2002, 2005),

Manzini and Mariotti (2007, 2012a), Houy (2007), Houy and Tadenuma (2009), Au and Kawai

(2011), Apesteguia and Ballester (2013), Dutta and Horan (2013), and Horan (2013).
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4, and 5 present three characterizations of Grouping Choice Methods, respec-

tively. Section 6 discusses relationship between grouping rules and rationality

of choice. The final section contains concluding remarks. All proofs are rele-

gated in the Appendix.

2 Grouping Choice Methods

First, we introduce basic notation and definitions throughout the paper. Let

X be a finite set of alternatives, and X the set of all nonempty subsets of

X. A choice function is a function C : X → X such that for every S ∈ X ,

C(S) ∈ S. A binary relation (or rationale) on X is a set P ⊆ X × X. For

simplicity, (x, y) ∈ P is written as xP y. A binary relation P is asymmetric if

x P y implies not[y P x]. Let P be the set of all asymmetric binary relations

on X.

We say that x ∈ X and y ∈ X with x ̸= y are comparable in P ∈ P if xP y

or y P x holds. An asymmetric binary relation P ∈ P is complete if for all

x, y ∈ X with x ̸= y, x and y are comparable in P . It is transitive if for all

x, y, z ∈ X, x P y and y P z implies x P z. It contains a cycle if there exist an

integer n with n ≥ 3 and n alternatives x1, . . . , xn ∈ X such that xi P xi+1 for

all i ∈ {1, . . . , n− 1} and xn P x1. It is acyclic if it contains no cycle.

For each P ∈ P and each S ∈ X , let M(S;P ) ⊆ S denote the set of

maximal elements in S for P :

M(S;P ) = {x ∈ S |̸ ∃y ∈ S such that y P x} .

For each S ∈ X , let |S| denote the number of elements in S.

Next, we introduce a new procedure of decision making, which we call a

“Grouping Choice Method”. In this procedure, a DM first divides the set of

feasible alternatives into some groups, and from each group, she selects an

element (winner). Then, she chooses an element among the winners in the

first round. In order to formally define the new procedure, we first introduce

“grouping rules”.
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Definition 1. A grouping rule is a correspondence G that associates with

every S ∈ X a family G(S) of subsets of S, and that satisfies the following

three conditions.

(G1) For every S ∈ X , ∪Sk∈G(S)Sk = S,

(G2) For every S ∈ X , there exist no Si, Sj ∈ G(S) with Si ̸= Sj and Si ⊆ Sj.

(G3) For all S, T ∈ X , if there exists Si ∈ G(S) such that {x, y} ⊆ Si and

{x, y} ⊆ T , then there exists Tj ∈ G(T ) such that {x, y} ⊆ Tj

For each S ∈ X , G(S) is called the grouping in S, and each member of G(S)

a group in S.

Condition (G1) means that every element in S belongs to some group in

G(S). Condition (G2) says that no group is a strict subset of another group.

Condition (G3) is consistency in grouping. To motivate the condition, consider

again the situation for a family to buy a house. Let X = {x, y, z, w} be the

set of all houses where x, y are located in town A while z, w are in town B.

At first, all houses are available, and they divide X into {x, y} and {z, w}
by location. But then, w is sold so that S = {x, y, z} becomes the new set

of available houses. Then, if they still divide S according to location, {x, y}
should be a group in S. That is, x and y are always in a group as long as both

are available. Condition (G3) requires this kind of consistency in grouping

procedures.

Now we are ready to define our new decision procedure.

Definition 2. A choice function C is a Grouping Choice Method if and

only if there exist a grouping rule G and an asymmetric binary relation P such

that for every S ∈ X , C(S) = M(∪Sk∈G(S)M(Sk;P );P ).

8



3 Grouping Choice Methods and Sequen-

tial Applications of Multiple Criteria

Sequential applications of multiple criteria in individual or social choices have

been studied by many authors as cited in the Introduction. In this section.

we clarify the relationship of Grouping Choice Methods with the models of

sequential applications of multiple criteria.

Manzini and Mariotti (2007) defined and analyzed Rational Shortlist Meth-

ods. In the Methods, a DM is endowed with a pair of preference relations,

called “rationale”, and for each set of available alternatives, she first takes

all maximal elements for the first rationale in the set, then among these ele-

ments, she selects the maximum for the second rationale. An obvious difference

of Grouping Choice Methods from Rational Shortlist Methods is that a DM

is endowed with single preference relation in the former, whereas with two

preference relations in the latter. Despite this difference, there is a strong

connection between the two methods of choice. Our first theorem shows that

a choice function is a Grouping Choice Method if and only if it is a Rational

Shortlist Method in which the first rationale is transitive. It is interesting

that the same set of choice outcomes may be explained in either of the two

models of decision-making: the model of sequential maximization with a pair

of rationales and that of maximization of a single preference relation with a

grouping procedure.

Theorem 1. A choice function is a Grouping Choice Method if and only if it

is a Rational Shortlist Method in which the first rationale is transitive.

It is worth noting the relationship of two rationales in a Rational Short-

list Method with the single preference relation in the corresponding Grouping

Choice Method. Let a pair of rationales (P1, P2) be given. Construct the single

preference P12 as follows: For all x, y ∈ X,

x P12 y ⇔ x P1 y or [not(y P1 x) and x P2 y].
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The preference relation P12 was defined and studied in Tadenuma (2002)

and Houy and Tadenuma (2009), and called the lexicographic composition of

(P1, P2). In this composition, an alternative x is superior to another alternative

y if and only if (1) x is superior to y by the first criterion P1 or (2) x is superior

to y by the second criterion P2 when x and y are not comparable by P1. Houy

and Tadenuma (2009) scrutinize differences between the two ways of decision-

making with a given pair of preference relations: one is a Rational Shortlist

Method and the other is to construct the (single) lexicographic composition

and then maximize it. Despite the differences, the lexicographic composition

plays a key role to connect Rational Shortlist Methods with Grouping Choice

Methods, as seen below.

Let a pair of preference relations (P1, P2) be given. Suppose that

there exist a grouping rule G and a preference relation P such that

M(M(S;P1);P2) = M(∪Sk∈G(S)M(Sk;P );P ) for every S ∈ X . Then, we

have M(M({x, y} ;P1);P2) = M({x, y} ;P ) for all x, y ∈ X. This means that

xP y if and only if [xP1 y] or [not(y P1 x) and xP2 y]. Hence, P = P12. Thus,

as a corollary of Theorem 1, we have the following:

Corollary 1. If a choice function is a Rational Shortlist Method with a pair

of rationales (P1, P2) in which the first rationale is transitive, then it is a

Grouping Choice Method with the lexicographic composition of (P1, P2) and

some grouping rule.

4 Axiomatic Characterization of Grouping

Choice Methods

In this section, we define three natural properties of choice functions. Then,

we show that Grouping Choice Methods satisfy all these properties, and con-

versely, every choice function satisfying the three properties is a Grouping

Choice Method.

The first property is standard choice-consistency under the expansion of
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available alternatives. It says that if an alternative is chosen in each of the

two sets of available alternatives, then it should be chosen in the union of the

two sets.

Expansion: For all S, T ∈ X , if x = C(S) = C(T ), then x = C(S ∪ T ).

The next property is a weaker version of Samuelson’s WARP, which was

introduced by Manzini and Mariotti (2007). This axiom requires that if an

alternative x is chosen in {x, y} and a set S containing both x and y, then y

should not be chosen in any “intermediate” set between {x, y} and S.

Weak WARP: For all x, y ∈ X and all S, T ∈ X , if {x, y} ⊆ T ⊆ S and

x = C({x, y}) = C(S), then y ̸= C(T ).

The third property says that if an alternative y is never chosen in the

presence of another alternative x, then (1) whenever y is chosen in a menu (in

the absence of x) and then x becomes newly available, x should be chosen in

the new menu (that is, x “eliminates” the initial winner y), or (2) whenever

both x and y are present, eliminating y from the menu dose not affect the

choice.

Elimination: For all x, y ∈ X, if y ̸= C(S) for every S ∈ X with x ∈ S, then

(1) for every S ∈ X with x ̸∈ S and y = C(S), x = C(S ∪ {x}), or
(2) for every S ∈ X with x ∈ S and y ∈ S, C(S) = C(S \ {y}).

Our next theorem shows that the above three properties characterize

Grouping Choice Methods.

Theorem 2. A choice function satisfies Expansion, Weak WARP, and Elim-

ination if and only if it is a Grouping Choice Method.

In the Appendix, we show that the three axioms in Theorem 2 are inde-

pendent.
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5 Grouping Path Independence

To present our final characterization of Grouping Choice Methods, we need to

introduce some additional definitions. The idea behind the following definitions

is simple. Given a grouping in some set S, we consider two ways to change it.

In one way, we merge two groups into one and iterate this operation to obtain

a new grouping. In the other way, we split a group into two groups and iterate

it.

Let S ∈ X . Let S1 and S2 be two families of subsets of S. We say that

(1) S2 is obtained by merging from S1 if (i) Ti = Sj ∪ Sk for some Ti ∈ S2 and

some Sj , Sk ∈ S1 and (ii) S1 \ {Sj , Sk} = S2 \ {Ti}; and that

(2) S2 is obtained by splitting from S1 if (i) Si = Tj ∪ Tk for some Si ∈ S1 and

some Tj , Tk ∈ S2, and (ii) S1 \ {Si} = S2 \ {Tj , Tk}.
Then, we say that a family T of subsets of S is obtained by iteratively merging

(resp., iteratively splitting) from a family S if there exists a sequence of families

of subsets of S, S1,S2, . . . ,Sℓ such that S1 = S, Sℓ = T , and for all h ∈
{1, . . . , ℓ − 1}, Sh+1 is obtained by merging (resp., splitting) from Sh. Let

G(S) be the set of all families of subsets of S that are obtained either by

iteratively merging or by iteratively splitting from S.
The following property requires that the above types of changes in grouping

should not affect the final outcomes.

Grouping Path Independence: Let a grouping rule G be given. We say

that a choice function C satisfies Grouping Path Independence for G if the

following condition holds: For every S ∈ X , if T ∈ G(G(S)), then C({C(Tj) |
Tj ∈ T }) = C({C(Si) | Si ∈ G(S)}).

Notice that the grouping consisting only of the whole set S is obtained

by iteratively merging from any grouping in S. Hence, the above condition is

equivalent to the following: For every S ∈ X , and every T ∈ {G(S)}∪G(G(S)),

C(S) = C({C(Tj) | Tj ∈ T }).
We are now ready to state our third characterization of Grouping Choice

Methods.
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Theorem 3. Let a grouping rule G be given. A choice function C satisfies

Grouping Path Independence for G if and only if it is a Grouping Choice

Method with G and some asymmetric binary relation P .

We note that the necessity part of the above theorem does not rely on the

property (G3) of grouping rules. Hence, this part holds in the class of grouping

rules that satisfy (G1) and (G2) but not necessarily (G3). This means that a

choice function satisfying Grouping Path Independence can be rationalized by

a preference relation in more general cases of grouping.

6 Properties of Grouping Rules and Ratio-

nality of Choice

A key to determine properties of a Grouping Choice Method is the grouping

rule. If we take the finest grouping {{x} | x ∈ S} or the coarsest grouping

{S}, then the grouping choice method is simply the classical rational choice

function. Between the two extremes, there are a variety of cases. Depending

on which grouping rules are admissible, the degree of rationality of grouping

choice methods varies.

We consider grouping rules that satisfy three conditions (G1) to (G3).

However, there may be some situations to which it is not appropriate to require

(G3). Consider again the example in which a family buys a house. They divide

available houses into groups by their locations. Suppose that the set of all

houses is X = {x, y, z, w} where x and y are located in district a of town A,

z is located in another district b of town A, and w is located in another town

B. If the set of available houses is {x, z, w}, then she divides it into {x, z}
and {w} because x and z are located in the same town and w is located in the

other town. But when she faces {x, y, z}, she might divide {x, y, z} into {x, y}
and {z} because x and y are located in the same district and z is located in

another district. This is a violation of (G3). The condition (G3) requires that

any two alternatives that are in a group in some situation of choice should be
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in a group in any other situations. However, there may be cases in which two

alternatives in a group get separated with a change of the whole menu.

Without (G3), however, much of rationality of choice will be

lost. In fact, we can construct an example of a Grouping Choice

Method that violates both Expansion and Weak WARP. Consider again

the above example of choosing a house. Let G be such that

G(X) = {{x, y} , {z} , {w}} , G({x, y, z}) = {{x, y} , {z}} , G({x, y, w}) =

{{x, y} , {w}} , G({x, z, w}) = {{x, z} , {w}} , and G({y, z, w}) =

{{y, z} , {w}}). Define P = {(y, x), (x, z), (w, x), (z, y), (w, y), (z, w)}. Let C

be the Grouping Choice Method with G and P . Then, we have z = C(X) =

C({z, w}) and w = C({x, z, w}) = C({x, y, w}). Thus, C violates both Weak

WARP and Expansion.

7 Concluding Remarks

In this paper, we introduce a new, natural procedure of decision making, called

a Grouping Choice Method. We clarify the relationships between the two dis-

tinct procedures, Rational Shortlist Methods and Grouping Choice Methods.

We also axiomatically characterize Grouping Choice Methods by using new

properties.

An advantages of our grouping procedure lies in its simplicity. Grouping

before maximization is quite common in every day decision-makings. More-

over, our method assumes only one preference relation for a DM, as in the

classical theory. We do not need to imagine more complex DMs with multiple

criteria. Yet the outcomes of choice are the same as those in the case where

the DMs would sequentially maximize their multiple preference relations.

The properties of Grouping Choice Methods depends crucially on grouping

rules. We impose three conditions (G1) to (G3) on grouping rules. If we

weaken the requirements on grouping rules, we may explain a broader range

of choice behaviors, including more “irrational” ones. On the other hand, we

impose additional conditions, we may characterize a more restricted class of
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choice functions. It may be an interesting future topic to study what kind of

bounded rationality Grouping Choice Methods keep with weaker or stronger

requirements on grouping rules.

8 Appendix

8.1 Proof of Theorems 1 and 2

We first introduce additional definitions and notation. Let a grouping rule G

be given. For all x, y ∈ X, define x ↔ y as

x ↔ y ⇔ ∃S ∈ X : ∃Si ∈ G(S) such that {x, y} ⊆ Si

That is, x ↔ y means that x and y belong to the same group in some subset

S ∈ X . Notice that the following relation holds since the grouping rule satisfies

(G3).

x ↔ y ⇔ ∀S ∈ X : ∃Si ∈ G(S) such that {x, y} ⊆ Si

That is, the relation x ↔ y also means x and y belong to the same group in

every subset of X. We write not[x ↔ y] as x ̸↔ y:

x ̸↔ y ⇔ ∀S ∈ X :̸ ∃Si ∈ G(S) such that {x, y} ⊆ Si

Given a pair of asymmetric binary relations (P1, P2), define the binary

relation P ∗
2 as follows (Houy and Tadenuma, 2009, p.1776): for all x, y ∈ X,

x P ∗
2 y ⇔ x and y are not comparable in P1 and x P2 y.

Given P ∈ P, define the transitive closure T (P ) of P as follows: for all

x, y ∈ X,

x T (P ) y ⇔ ∃z1, . . . , zk ∈ X with k ≥ 2 such that x = z1, y = zk and

∀i ∈ {1, . . . , k − 1}, zi P zi+1.

To prove theorems, we need some lemmas.
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Lemma 1. Assume that a pair of asymmetric binary relations (P1, P2) se-

quentially rationalizes a choice function C. Then the following claims hold.

(a) P1 is acyclic.

(b) For all S ∈ X , M(M(S;P1);P
∗
2 ) = M(M(S;P1);P2) holds. That is,

(P1, P
∗
2 ) also sequential rationalizes C.

(c) For all x, y ∈ X with x ̸= y, x and y are comparable in one and only one

of P1 and P ∗
2 .

Proof. Assume that a pair of asymmetric binary relations (P1, P2) sequentially

rationalized a choice function C.

(a) If P1 contains a cycle x1, . . . , xn ∈ X, then M(S;P1) = ∅ where S =

{x1, . . . , xn}, and hence C(S) = M(M(S;P1);P2) = ∅. This contradicts

nonemptiness of C.

(b) Let S ∈ X . For all x, y ∈ M(S;P1), x and y are not comparable

in P1, and hence x P2 y holds if and only if x P ∗
2 y holds. Therefore,

M(M(S;P1);P2) = M(M(S;P1);P
∗
2 ).

(c) Assume that x and y are neither comparable in P1 nor in P ∗
2 . By the

above claim, (P1, P
∗
2 ) sequentially rationalizes C. Then, we have {x, y} =

M(M({x, y} ;P1);P
∗
2 ) = C(S). This contadicts C(S) is a singleton for

every S ∈ X . Hence, x and y must be comparable in P1 or P ∗
2 . By the

definition of P ∗
2 , x and y are comparable in only one of P1 and P ∗

2 .

Lemma 2. Assume that a pair of asymmetric binary relations (P1, P2) se-

quentially rationalizes a choice function C. Let S ∈ X and x = C(S). Then,

the following claims hold.

(d) There exists no y ∈ S such that y P1 x.

(e) For every y ∈ S, if y P ∗
2 x, then there exist k alternatives z1, . . . , zk ∈

S \ {x, y} with k ≥ 1 such that

(i) z1 P1 y,
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(ii) zi+1 P1 zi and zi P
∗
2 x for all i = 1, . . . , k − 1 if k ≥ 2, and

(iii) x P1 zk or x P ∗
2 zk.

Proof. Since x = C(S) = M(M(S;P1);P2), we have x ∈ M(S;P1). Hence,

Claim (d) follows.

Assume that y ∈ S and y P ∗
2 x. By claim (b) in Lemma 1, x =

M(M(S;P1);P
∗
2 ). If there exists no z1 ∈ S with z1 P1 y, then y ∈ M(S;P1)

holds, and x ̸∈ M(M(S;P1);P
∗
2 ), which is a contradiction. Hence, there exists

z1 ∈ S with z1 P1 y. If z1 = x, then x P1 y, which contradicts y P ∗
2 x. Thus,

z1 ̸= x. If x P1 z1 or x P ∗
2 z1, we are done.

Assume that neither x P1 z1 nor x P ∗
2 z1 holds. By claim (d), z1 P1 x does

not hold. Then, by claim (c) in Lemma 1, we have z1 P
∗
2 x. If there exists no

z2 ∈ S with z2P1 z1, then z1 ∈ M(S;P1) and x ̸= M(M(S;P1);P
∗
2 ), which is a

contradiction. Thus, there exists z2 ∈ S with z2 P1 z1. It follows from z2 P1 z1

and z1 P
∗
2 x that x ̸= z2. If xP1 z2 or xP ∗

2 z2, we are done. If not, then by the

same argument as above, there exists z3 with z3P1z2. Iterating this procedure,

we have a sequence z1, z2, . . . such that zi+1P1 zi and ziP
∗
2 x for all i = 1, 2, . . ..

Because P1 is acyclic by claim (a) in Lemma 1, it must be the case that zi ̸= y

for all i = 1, 2, . . . and zi ̸= zj for all i, j with i ̸= j. Moreover, since S is finite,

this procedure must terminate. Let the kth iteration terminate the procedure.

Then, we have x P1 zk or x P ∗
2 zk.

Lemma 3. Assume that a pair of asymmetric binary relations (P1, P2) se-

quentially rationalizes a choice function C and satisfies the following property:

Property T: ∀x, y ∈ X; x T (P1) y ⇒ x P1 y or x P ∗
2 y.

Then, (T (P1), P
∗
2 ) also sequentially rationalizes C.

Proof. Assume that (P1, P2) sequentially rationalizes C and satisfies Property

T. Let S ∈ X and x = C(S). By claim (b) in Lemma 1, x = M(M(S;P1);P
∗
2 ).

Now we prove x = M(M(S;T (P1));P
∗
2 ).

First we show x ∈ M(S;T (P1)). Suppose, on the contrary, that there exists

y ∈ S with y T (P1) x. By claim (d) in Lemma 2, y P1 x does not hold. Then,
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by Property T, we have y P ∗
2 x. It follows from claim (e) in Lemma 2 that

there exists z ∈ S such that z T (P1) y and [x P1 z or x P ∗
2 z]. By z T (P1) y

and y T (P1) x, we have z T (P1) x. Then, Property T implies that [z P1 x or

z P ∗
2 x]. However, [x P1 z or x P ∗

2 z] and [z P1 x or z P ∗
2 x] are incompatible

because (i) both P1 and P ∗
2 are asymmetric, and (ii) by the definition of P ∗

2 ,

x P1 z and z P ∗
2 x are incompatible, and so as x P ∗

2 z and z P1 x. Hence, we

have x ∈ M(S;T (P1)).

Since P1 ⊆ T (P1), we have M(S;T (P1)) ⊆ M(S;P1). It follows from x =

M(M(S;P1);P
∗
2 ) that x ∈ M(M(S;T (P1));P

∗
2 ). Notice that P ∗

2 is complete in

M(S;P1) by claim (c) in Lemma 1. Hence, it is also complete in M(S;T (P1)).

Thus, we have x = M(M(S;T (P1));P
∗
2 ).

Lemma 4. Assume that a choice function C is a Grouping Choice Method with

an asymmetric binary relation P and a grouping rule G. Then, the following

claims hold:

(f) P is complete.

(g) For every S ∈ X , if x ↔ y for all x, y ∈ S, then M(S;P ) ̸= ∅.

(h) For every S ∈ X and all x, y ∈ S, if x ↔ y and y P x, then x ̸= C(S).

(i): For every S ∈ X and all x, y ∈ S, if y P x and x = C(S), then there

exists z ∈ S \ {x, y} such that x P z, z P y, and y ↔ z.

Proof.

Claim (f). For all x, y ∈ X, C({x, y}) is a single element in {x, y}. Hence,

we have x P y or y P x.

Claim (g). Suppose, on the contrary, that S ∈ X and for all x, y ∈ S,

x ↔ y but M(S;P ) = ∅. Since S is finite and P is asymmetric and

complete, P contains a cycle in A, that is, there exist x1, x2, . . . , xn ∈ S

with n ≥ 3 such that xi P xi+1 for all i ∈ {1, . . . , n − 1} and xn P x1.

Take minimal j ∈ {3, . . . , n} such that xj P x1. Because P is complete,

we have x1 P xj−1, xj−1 P xj , and xj P x1. Let T = {x1, xj−1, xj}. By

the initial supposition, we have v ↔ w for all v, w ∈ T . Then it must

18



be the case that T ∈ G(T ) or {{x1, xj−1} , {xj−1, xj} , {x1, xj}} ⊆ G(T ).

If T ∈ G(T ), it follows from (G2) in the definition of Grouping Rules,

{T} = G(T ). Thus, we have C(T ) = M(T ;P ) = ∅, which contradicts

non-emptiness of C. If {{x1, xj−1} , {xj−1, xj} , {x1, xj}} ⊆ G(T ), then

we also have C(T ) = M(∪Tk∈G(T )M(Tk;P );P ) = M(T ;P ) = ∅, which is

a contradiction. Therefore, it must be the case that M(S;P ) ̸= ∅.

Claim (h). Assume that S ∈ X , x, y ∈ S, x ↔ y, and yPx. Let Si ∈ G(S) be a

group in S such that x, y ∈ Si. Then, x ̸∈ M(Si;P ). Because G satisfies

(G3), we have v ↔ w for all v, w ∈ Si. By Claim (g), M(Si;P ) ̸= ∅.
Let z ∈ M(Si;P ). Since P is complete, we have z P x. Thus, x ̸∈
M(∪Sk∈G(S)M(Sk;P );P ) = C(S).

Claim (i). Assume that S ∈ X , x, y ∈ S, y P x, and x = C(S). If y ∈
∪Sk∈G(S)M(Sk;P ), then y P x and x = C(S) are incompatible. Hence,

y ̸∈ ∪Sk∈G(S)M(Sk;P ). Let Si ∈ G(S) be a group with y ∈ Si. By Claim

(g), M(Si;P ) ̸= ∅. Then, there exists z ∈ M(Si;P ). By completeness of

P , we have z P y. Then, z ̸= x since y P x. Because G satisfies (G3), we

have y ↔ z. Moreover, from x = C(S) = M(∪Sk∈G(S)M(Sk;P );P ) and

z ∈ ∪Sk∈G(S)M(Sk;P ), we have x P z.

We now prove Theorems 1 and 2 together in the following three parts:

Part 1: to show that every Grouping Choice Method satisfies Expansion, Weak

WARP, and Elimination.

Part 2: to show that if a choice function satisfies Expansion, Weak WARP, and

Elimination, then it is a Rational Shortlist Method in which the first rationale

is transitive.

Part 3: to show that if a choice function is a Rational Shortlist Method in

which the first rationale is transitive, then it is a Grouping Choice Method.

Part 1: We show that every Grouping Choice Method satisfies Weak WARP,

Expansion, and Elimination.
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Let C be a Grouping Choice Function with an asymmetric binary relation

P and a grouping rule G.

Weak WARP:

Assume T ∈ X and x = C({x, y}) = C(T ). Let S ∈ X be a set such that

{x, y} ⊆ S ⊆ T . By x = C({x, y}), we have x P y. It follows from x = C(T )

and Claim (h) in Lemma 4 that there exists no z ∈ T such that x ↔ z and

z P x. Because S ⊆ T , there exists no z ∈ S with x ↔ z and z P x. Then,

Claim (i) in Lemma 4 and x P y together imply y ̸= C(S).

Expansion:

Suppose, on the contrary, that x = C(S) = C(T ) but y = C(S∪T ) ̸= x. Since

C satisfies Weak WARP, y ̸= C({x, y}). Hence, x = C({x, y}) and x P y.

Then, by Claim (i) in Lemma 4, there exists z ∈ S ∪ T with z ↔ x and z P x.

Without loss of generality, assume z ∈ S. It follows from Claim (h) in Lemma

4 that x ̸= C(S), which is a contradiction. Thus, x = C(S ∪ T ) must hold.

Elimination:

Let x, y ∈ X. Assume that y ̸= C(A) for all A ∈ X with x ∈ A. Suppose, on

the contrary, that there exist S, T ∈ X such that y = C(S), x ̸= C(S ∪ {x}),
and x ∈ T , C(T ) ̸= C(T ∪ {y}). Let v = C(S ∪ {x}) and w = C(T ).

In the following, we have seven steps to derive a contradiction.

Step 1: We show that v ̸= x, y and w ̸= x, y.

By the assumption and the supposition, v ̸= x, y and w ̸= y. Moreover, if

x = w = C(T ), then we have x = C(T ) = C(T ∪ {y}) because x = C({x, y})
by the assumption and C satisfies Expansion. Therefore, we have w ̸= x.

Step 2: We show x P y, x ↔ y, y P v, v ̸↔ y, and v P x.

Since v ̸= x, we have v ∈ S. Because y = C(S) and C satisfies Weak

WARP, it must be the case that y = C({v, y}). Hence, y P v.

It follows from v = C(S ∪{x}) and Claim (i) in Lemma 4 that there exists
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a ∈ S ∪ {x} such that v P a, a P y and a ↔ y. If a ∈ S, then it contradicts

y = C(S) by Claim (h) in Lemma 4. Therefore, we have a = x. Thus, v P x,

x P y and x ↔ y.

If v ↔ y, then by Claim (h) in Lemma 4, we have v ̸= C(S ∪ {x}), which
is a contradiction. Thus, we have v ̸↔ y.

Step 3: We show y P w and w ↔ y.

Let z = C(T ∪ {y}). By the initial supposition, z ̸= w = C(T ). From the

initial assumption and x ∈ T , we have z ̸= y, and hence z ∈ T . If z P w,

then C({z, w}) = z, which contradicts the fact that C satisfies Weak WARP.

Thus, w P z. It follows from z = C(T ∪ {y}) and Claim (i) in Lemma 4 that

there exists b ∈ T ∪ {y} such that z P b, b P w and b ↔ w. If b ∈ T , then it

contradicts w = C(T ) by Claim (h) in Lemma 4. Therefore, we have b = y.

Thus, y P w, and w ↔ y.

Step 4: We show w ̸↔ x.

Assume not: let w ↔ x. Then, by this assumption and the above steps,

we have w ↔ x, w ↔ y, and x ↔ y. It follows from Claim (g) in Lemma 4

that M({w, x, y} ;P ) ̸= ∅. From Step 2 and Step 3, we have x P y and y P w

which imply x = M({w, x, y} ;P ). Then, by asymmetry of P , we have x P w.

From the combination of xP w and w ↔ x, Claim (h) in Lemma 4 states that

w ̸= C(T ). It is a contradiction. Hence, we have w ̸↔ x.

Step 5: We show v ̸= w, x P w, w P v, v ↔ w, and x = C({v, w, x, y}).

By Steps 2 and 3, we have v ̸↔ y and w ↔ y. Hence, v ̸= w.

Consider C({v, w, x, y}). By Step 2, x P y and x ↔ y. It follows from

Claim (h) in Lemma 4 that y ̸= C({v, w, x, y}). Similarly, since y P w and

w ↔ y by Step 3, we have w ̸= C({v, w, x, y}).
Since w ↔ y by Step 3, there exists Ai ∈ G({v, w, x, y}) with {w, y} ⊆ Ai.

Because v ̸↔ y and w ̸↔ x by Steps 2 and 4, we have {w, y} = Ai. From y P w

in Step 3, we have y = M(Ai;P ), and hence y ∈ ∪Ak∈G({v,w,x,y})M(Ak;P ).

Then, since y P v by Step 2, v ̸= M(∪Ak∈G({v,w,x,y})M(Ak;P );P ).
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Thus, it must be the case that x = C({v, w, x, y}). It follows from v P x in

Step 2 and Claim (i) in Lemma 4 that there exists d ∈ {w, y} such that x P d,

dP v and d ↔ v. However, since v ̸↔ y by Step 2, we have d ̸= y. Hence,xP w,

w P v and v ↔ w.

Step 6: We show that there exists t ∈ T \ {x,w} such that t ̸= v, y, w P t,

t P x, and t ↔ x.

Since w = C(T ) and x P w by Step 5, It follows from Claim (h) in Lemma

4 that there exists t ∈ T \ {x,w} such that w P t, t P x, and t ↔ x. Because

x = C({v, w, x, y}) by Step 5, it must be the case that t ̸= v, y.

Step 7: We show that none of t, v, w, x, and y is equal to C({t, v, w, x, y}),
which is a contradiction.

By Step 2, x P y and x ↔ y. It follows from Claim (h) in Lemma 4 that

y ̸= C({t, v, w, x, y}). By a similar argument, we can show that none of v, w,

and x is equal to C({t, v, w, x, y}).
Since v ↔ w by Step 5, there exists Bj ∈ G({t, v, w, x, y}) with {v, w} ⊆

Bj . Suppose t ∈ Bj . It follows from w ↔ t, w P t by Step 6, and Claim (h) in

Lemma 4 that t ̸= C({t, v, w, x, y}.
Next, suppose t ̸∈ Bj . Because v ̸↔ y and w ̸↔ x by Steps 2 and 4, we have

x, y ̸∈ Bj . Then, Bj = {v, w}. Since w P v by Step 5, we have w = M(Bj ;P ),

and hence w ∈ ∪Bk∈G({u,v,w,x,y})M(Bk;P ). Because w P t in Step 6, we have

t ̸= M(∪Bk∈G({u,v,w,x,y})M(Bk;P );P ) = C({t, v, w, x, y}).

Part 2: We show that if a choice function satisfies Expansion, Weak WARP,

and Elimination, then it is a Rational Shortlist Method in which the first

rational is transitive.

Assume that a choice function C satisfies Expansion, Weak WARP, and

Elimination. By Manzini and Mariotti (2007, Theorem 1), C is a Rational

Shortlist Method.

Define P1 and P2 as follows: For all a, b ∈ X with a ̸= b,

a P1 b ⇔ ∃A ∈ X such that C(A) = b and C(A ∪ {a}) /∈ {a, b}.
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a P2 b ⇔ C({a, b}) = a.

Then, by Dutta and Horan (2013, Proposition 1 and Lemma 4), (P1, P
∗
2 ) se-

quentially rationalizes C.4 By Lemma 3, if (P1, P
∗
2 ) satisfies Property T:

∀a, b ∈ X : a T (P1) b ⇒ a P1 b or a P ∗
2 b, 5

then (T (P1), P
∗
2 ) also sequentially rationalizes C, which means that C is a

Rational Shortlist Method in which the first rationale is transitive. Therefore,

it remains to show that (P1, P
∗
2 ) satisfies Property T.

Suppose, on the contrary, that there exist z1, . . . , zn ∈ X such that ziP1zi+1

for all i ∈ {1, . . . , n− 1} but neither z1 P1 zn nor z1 P
∗
2 zn holds. Then, n ≥ 3.

Because (P1, P
∗
2 ) sequentially rationalizes C, we have zn = C({z1, zn}) and

z1 = C({z1, z2, . . . , zn}). Then, there exists j ∈ {1, . . . , n− 2} such that (i)

C({z1, . . . , zj , zn}) ̸= C({z1, . . . , zj , zn} ∪ {zj+1}). Moreover, by the definition

of P1, there exists U ∈ X such that (ii) zj+1 = C(U) but zj ̸= C(U ∪ {zj}).
However, since zj P1 zj+1, it follows that zj+1 ̸= C(S) for all S ∈ X with

zj ∈ S. Then, by Elimination, one of the claims (i) and (ii) cannot hold, which

is a contradiction. Thus, (P1, P
∗
2 ) satisfies Property T.

Part 3: We show that if a choice function is a Rational Shortlist Method in

which the first rationale is transitive, then it is a Grouping Choice Method.

Assume that a choice function C is sequentially rationalized by a pair of

asymmetric binary relations (P1, P2) and P1 is transitive. Define a binary

relation P as follows: For all x, y ∈ X with x ̸= y,

x P y ⇔ x = C({x, y}).

Then, P is asymmetric.

For every S ∈ X , let g(S) be the class of all subsets Si of S such that for

all x, y ∈ Si with x ̸= y, either x P1 y or y P1 x holds. Then, we define a

4We are grateful to Sean Horan for suggesting that this part of the proof could be shortened by

using the results in Dutta and Horan (2013).
5Note that (P ∗

2 )
∗ = P ∗

2 by definition.
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correspondence G as follows:

G(S) = {Si ∈ g(S) |̸ ∃Sj ∈ g(S) such that Sj ̸= Si and Si ⊆ Sj} .

That is, G(S) is the class of “maximal” subsets (in inclusion relations) of S in

which every element is comparable with every other element in P1.

Now we check that G is a grouping rule, that is, for every S ∈ X , G(S)

satisfies the conditions (G1), (G2), and (G3) in Definition 2.

(G1) By the definition of G, ∪Si∈G(S)Si ⊆ S. For every x ∈ S, because

{x} ∈ g(S) by the definition of g(S), there exists Si ∈ G(S) with x ∈ Si.

Therefore, we have S ⊆ ∪Si∈G(S)Si.

(G2) By the definition of G, it satisfies (G2).

(G3) Assume that there exists Si ∈ G(S) ⊆ g(S) such that {x, y} ⊆ Si, and

{x, y} ⊆ T . By definition, either x P1 y or y P1 x holds. This implies

{x, y} ∈ g(T ). Then, there exists Tj ∈ G(T ) such that {x, y} ⊆ Tj .

Next, we show that C is a grouping choice method with P and G. Let

S ∈ X and x = C(S). First, we prove that there exists Sk ∈ G(S) such that

x = M(Sk;P ). Since G(S) satisfies (G1), there exists Si ∈ G(S) with x ∈ Si.

If Si = {x}, then obviously, x = M(Sk;P ). Assume |Si| ≥ 2. Let y ∈ Si \ {x}.
It follows from x = C(S) and Lemma 2 that y P1 x does not hold. Because y

is comparable with x in P1, it must be the case that x P1 y. Then, we have

x = C({x, y}). By the definition of P , xP y. This holds for every y ∈ Si\ {x}.
Thus, we have x = M(Si;P ).

Second, we show x P y for every y ∈ S \ {x} such that y = M(Sj ;P ) for

some Sj ∈ G(S). Suppose, on the contrary, that there exists y ∈ S such that

y = M(Sj ;P ) for some Sj ∈ G(S) but xP y does not hold. By the definition of

P , x ̸= C({x, y}), and hence y = C({x, y}). Then, either yP1x or yP ∗
2 x. Since

x = C(S), it cannot be the case that y P1 x. It follows from y P ∗
2 x and Claim

(e) in Lemma 2 that there exists w ∈ S with w P1 y. Then, w = C({y, w}).
Hence, we have w P y. Because y = M(Sj ;P ), it follows that w ̸∈ Sj .

If Sj = {y}, it contradicts {w, y} ∈ g(S) and the construction of G. Hence,

we have |Sj | ≥ 2. Let z ∈ Sj \{y}. Then, either zP1 y or yP1 z holds. If zP1 y,
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then z = C({y, z}), which implies z P y, which contradicts y = M(Sj ;P ).

Thus, y P1 z must be the case. It follows from w P1 y and transitivity of P1

that wP1 z. This holds for every z ∈ Sj \{y}. Hence, we have Sj∪{w} ∈ g(S),

which contradicts Sj ∈ G(S).

8.2 Independence of the Axioms in Theorem 2

The three axioms, Expansion, Weak WARP, and Elimination in Theorem 2 are

independent in the sense that no two axioms imply the other. The following ex-

amples illustrate choice functions that satisfy two of the axioms while violating

the third.6 All the three choice functions are defined on X = {x, y, z, w}.

Expansion:

Define x = C(x, y) = C(x, z) = C(x,w) = C(x, y, z) = C(x, y, w) =

C(x, z, w), y = C(y, z) = C(y, w) = C(y, z, w) = C(X), z = C(z, w). Then,

we can check that C satisfies Weak WARP and Elimination. However, C

violates Expansion because x = C(x, y, z) = C(x, z, w) but y = C(X).

Weak WARP:

Define x = C(x, y) = C(x,w) = C(x, y, w), y = C(y, z) = C(y, w) =

C(y, z, w), z = C(x, z) = C(z, w) = C(x, y, z) = C(x, z, w) = C(X). Then, we

can check that C satisfies Expansion and Elimination. However, C violates

Weak WARP because z = C(x, z) = C(X) but y = C(y, z, w).

Elimination:

Define x = C(x, y) = C(x, z) = C(x, y, z), y = C(y, z) = C(y, z, w) = C(X),

z = C(z, w) = C(x, z, w), w = C(x,w) = C(y, w) = C(x, y, w). Then, we

can check that C satisfies Expansion and Weak WARP. However, C violates

Elimination because w ̸= C(S) for every S with z ∈ S but (1) w = C(x, y, w)

and z ̸= C(X), and (2) C(x, z, w) ̸= C(x, z).

6For simplicity of notation, C({x, y}) is written as C(x, y) in this subsection.
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8.3 Proof of Theorem 3

To prove the theorem, we use a standard property of choice consistency. It

says that if an alternative in a set S “wins” over every other alternative in S

in binary choices, then it should be chosen in S.

Condorcet Consistency: For every S ∈ X , if there exists x ∈ S such that

x = C({x, y}) for every y ∈ S \ {x}, then x = C(S).

The following lemma may be interesting of itself.

Lemma 5. If a choice function C satisfies Grouping Path Independence for a

grouping rule G, then it satisfies Condorcet Consistency.

Proof. The proof is by induction. Assume that a choice function C satisfies

Grouping Path Independence for a grouping rule G. Let S ∈ X . Assume that

there exists x ∈ S such that x = C({x, y}) for every y ∈ S \{x}. If |S|=2, then

by the above assumption, x = C(S). Assume x = C(S) holds if |S| ≤ k − 1

where k ≥ 3. We show that it also holds if |S| = k.

We divide two cases: (i) G(S) = {S} and (ii) G(S) ̸= {S}. First, assume

G(S) = {S}. Consider the family of subsets of S, {{x} , S \ {x}}, which is

obtained by iteratively splitting from G(S). Since C satisfies Grouping Path

Independence for G, we have C(S) = C({C({x}), C({S \ {x}})}) = C({x, v})
where v = C(S \ {x}). By the initial assumption, we have x = C({x, v}).
Hence, we have x = C(S).

Second, assume G(S) ̸= {S}. Let G(S) = {S1, . . . , Sn} where n ≥ 2.

Without loss of generality, assume x ∈ S1. Consider the family of subsets of S,{
S1,∪Sk∈G(S),Sk ̸=S1

Sk

}
, which is obtained by iteratively merging from G(S).

From condition (G2) in the definition of grouping rules, it cannot be the case

that S1 = S. Hence, we have |S1| ≤ k − 1. By the assumption of induction,

we have x = C(S1). Now, since C satisfies Grouping Path Independence

for G, we have C(S) = C(
{
C(S1), C(∪Sk∈G(S),Sk ̸=S1

Sk)
}
) = C({x, y}) where

y = C(∪Sk∈G(S),Sk ̸=S1
Sk). By the initial assumption, we have x = C({x, y}).

Therefore we have x = C(S).
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We now prove Theorem 3.

Let a grouping rule G be given.

[Sufficiency]

Assume that a choice function C is a Grouping Choice Method with G and

some asymmetric binary relation P . We show that C satisfies Grouping Path

Independence for G.

Let S ∈ X . Let Σ = {T1, . . . , Tm} be obtained either by iteratively merging

or by iteratively splitting from G(S) = {S1, . . . , Sn}. We need to show that

C(∪Ti∈ΣC(Ti)) = C(S). Let x = C(S) = M(∪Sj∈G(S)M(Sj ;P );P ).

Without loss of generality, assume x ∈ T1 ∈ Σ. We show x = C(T1).

Assume that Σ is obtained by iteratively merging from G(S). Suppose, on

the contrary, that x ̸= C(T1) = y. By Claim (f) in Lemma 4, P is complete.

Case 1: y P x.

There exists Sk ∈ G(S) with y ∈ Sk ⊆ T1. From Claims (f) and (g) in

Lemma 4, M(Sk;P ) = {z} for some z ∈ Sk ⊆ T1. Then, z ̸= y because

x = M(∪Sj∈G(S)M(Sj ;P );P ) and y P x. Hence, we have z ∈ T1, y ↔ z,

and z P y. It follows from Claim (h) in Lemma 4 that y ̸= C(T1), which is a

contradiction.

Case 2: x P y.

We have x = C({x, y}) = C(S) and {x, y} ⊆ T1 ⊆ S. It follows from Weak

WARP that y ̸= C(T1), which is a contradiction.

Hence, it must be the case that x = C(T1).

Next, assume that Σ is obtained by iteratively splitting from G(S). Then,

there exists Sj ∈ G(S) such that T1 ⊆ Sj . It follows from x = C(S) and

Claims (f) and (h) in Lemma 4 that xP y for every y ∈ Sj \ {x} and hence for

every y ∈ T1 \ {x}. Thus, it must be case that x = C(T1).

We have shown x ∈ ∪Ti∈ΣC(Ti). To show x = C(∪Ti∈ΣC(Ti)), suppose,

on the contrary, C(∪Ti∈ΣC(Ti)) = y ̸= x. As in Case 2 above, supposing

x P y leads to a contradiction. Suppose y P x. As in Case 1 above, if Σ

is obtained by iteratively merging from G(S), then we have a contradiction.

Suppose that Σ is obtained by iteratively splitting from G(S). There exists
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Sk ∈ G(S) with y ∈ Sk. From Claims (f) and (g) in Lemma 4, M(Sk;P ) = {z}
for some z ∈ Sk. Because y P x and x = M(∪Sj∈G(S)M(Sj ;P );P ), it must

be the case that z ̸= y. Hence, z P y and y ↔ z. There exists Th ∈ Σ

such that z ∈ Th ⊆ Sk. Then, z P w for every w ∈ Th \ {z}. Therefore,

z = C(Th) ⊆ ∪Ti∈ΣC(Ti). It follows from z P y, y ↔ z, z ∈ ∪Ti∈ΣC(Ti),

and Claim (h) in Lemma 4 that y ̸= C(∪Ti∈ΣC(Ti)), which is a contradiction.

Thus, we have x = C(∪Ti∈ΣC(Ti)).

[Necessity]

Assume that a choice function C satisfies Grouping Path Independence for G.

Define a binary relation P as follows: For all x, y ∈ X, xP y ⇔ x = C({x, y}).
Because either C({x, y}) = x or C({x, y}) = y holds, P is complete and

asymmetric. Hence, for every A ∈ X , |M(A;P )| ≤ 1.

Let S ∈ X and x = C(S). We show that {x} = M(∪Sj∈G(S)M(Sj ;P );P ).

First, we show that {x} = M(Sk;P ) for some Sk ∈ G(S). Suppose, on the

contrary, x ̸∈ M(Sj ;P ) for all Sj ∈ G(S) with x ∈ Sj . Then, for every

Sj ∈ G(S) with x ∈ Sj , there exists yj ∈ Sj such that yj P x. By definition,

yj = C({x, yj}). Construct a family Σ of subsets of S as follows:

Σ = {{x, yj}, Sj\{x, yj} | Sj ∈ G(S) and x ∈ Sj}∪{Sj | Sj ∈ G(S) and x ̸∈ Sj}.

Then, Σ is obtained by iteratively splitting from G(S). Now we have x ̸=
C(Ti) for all Ti ∈ Σ, and hence x ̸= C(∪Ti∈ΣC(Ti)). However, by Grouping

Path Independence, we have x = C(S) = C(∪Ti∈ΣC(Ti)) ̸= x, which is a

contradiction. Thus, we have {x} = M(Sk;P ) for some Sk ∈ G(S).

Second, we show x P y for every y ∈ S such that {y} = M(Sj ;P ) for

some Sj ∈ G(S). Suppose, on the contrary, that there exists y ∈ S such

that {y} = M(Sj ;P ) for some Sj ∈ G(S) and y P x. Because P is com-

plete, it follows that for every z ∈ Sj , y P z, and hence y = C({y, z}). Since

C satisfies Condorcet Consistency by Lemma 5, we have y = C(Sj). Con-

sider the family of subsets of S,
{
Sj ,∪Sh∈G(S),Sh ̸=Sj

Sh

}
. This family is ob-

tained by iteratively merging from G(S). Because C satisfies Grouping Path

Independence for G, we have C(S) = C({C(Sj), C(∪Sh∈G(S),Sh ̸=Sj
Sh)}) =
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C({y, C(∪Sh∈G(S),Sh ̸=Sj
Sh)}). However, since y P x, we have y = C({y, x}). It

follows that C({y, C(∪Sh∈G(S),Sh ̸=Sj
Sh)}) ̸= x, which contradicts x = C(S) =

C({y, C(∪Sh∈G(S),Sh ̸=Sj
Sh)}). Thus, x P y for every y ∈ S such that {y} =

M(Sj ;P ) for some Sj ∈ G(S). Therefore, {x} = M(∪Sj∈G(S)M(Sj ;P );P ).
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[7] Houy, Nicolas (2007), “Rationality and Order-Dependent Sequential Ra-

tionality,” Theory and Decision, 62, 119-134.

[8] Houy, Nicolas and Koichi Tadenuma (2009), “Lexicographic Compositions

of Multiple Criteria for Decision Making,” Journal of Economic Theory,

144 (4), 1770-1782.

[9] Kalai, Gil, Ariel Rubinstein, and Rani Spiegler (2002), “Rationalizig

Choice Functions by Multiple Ratinales,” Econometrica, 70 (6), 2481-

2488.

29



[10] Manzini, Paola and Marco Mariotti (2007), “Sequentially Rationalizable

Choice,” American Economic Review, 97(5), 1824-1839.

[11] Manzini, Paola and Marco Mariotti (2012a), “Choice by Lexicographic

Semiorders,” Theoretical Economics, 7, 1-23.

[12] Manzini, Paola and Marco Mariotti (2012b), “Categorize Then Choose:

Boundedly Rational Choice and Welfare,” Journal of the European Eco-

nomic Association.

[13] Plott, Charles R. (1973), “Path Independence, Rationality, and Social

Choice,” Econometrica, 41 (6), 1075-1091.

[14] Roelofsma, Peter. H. and Daniel Read (2000), “Intransitive Intertemporal

Choice,” Journal of Behavioral Decision Making, 13, 161-177.

[15] Samuelson, Paul A. (1938), “A Note on the Pure Theory of Consumer’s

Behavior,” Econometrica, 5 (1), 61-71.

[16] Suzumura, Kotaro (1983), “Resolving Conflicting Views of Justice in So-

cial Choice,” in P.K. Pattanaik and M. Salles (Eds.), Social Choice and

Welfare, North-Holland, Amsterdam, 125-149.

[17] Tadenuma, Koichi (2002), “Efficiency first or Equity First? Two Princi-

ples and Rationality of Social Choice,” Journal of Economic Theory, 104

(2), 462-472.

[18] Tadenuma, Koichi (2005), “Egalitarian-Equivalence and the Pareto Prin-

ciple for Social Preferences,” Social Choice and Welfare, 24, 455-473.

30


