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Abstract

Under standard assumptions about players’ cost functions, we show that a
Tullock contest with asymmetric information has a pure strategy equilibrium.
Moreover, when players have a common value and a common state indepen-
dent linear cost function, a two player Tullock contest in which one player has
an information advantage has a unique equilibrium. In this equilibrium both
players exert the same expected effort, although the player with information
advantage has a greater payoff and wins the prize less frequently than his op-
ponent. When there are more than two players in the contest, an information
advantage leads to higher payoffs, but the other properties of equilibrium no

longer hold.
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1 Introduction

In a Tullock contest — Tullock (1980) — a player’s probability of winning the prize is
the ratio of the effort he exerts and the total effort exerted by all the players. Baye and
Hoppe (2003) have identified a variety of economic settings (rent-seeking, innovation
tournaments, patent races) which are strategically equivalent to a Tullock contest.
Tullock contests also arise by design, e.g., sport competition, internal labor markets.
A number of studies have provided an axiomatic justification to such contests, see,
e.g., Skaperdas (1996) and Clark and Riis (1998)).

There is an extensive literature studying Tullock contests and its variations under
complete information about the players’ value of the prize and their cost of effort.
Perez-Castrillo and Verdier (1992), Baye Kovenock and de Vries (1994), Szidarovszky
and Okuguchi (1997), Cornes and Hartley (2005), Yamazaki (2008) and Chowdhury
and Sheremeta (2009) study existence and uniqueness of equilibrium. Skaperdas and
Gan (1995), Glazer and Konrad (1999), Konrad (2002), Cohen and Sela (2005) and
Franke et al. (2011), study the effect on the players’ behavior of changes in the payoff
structure, and Schweinzer and Segev (2012) and Fu and Lu (2013) study optimal
prize structures. See Konrad (2008) for a general survey.

In this paper we study Tullock contests under asymmetric information (i.e., when
player’s value for the prize and/or their cost of effort is private information), a topic
seldom investigated in the literature. Fey (2008) and Wasser (2013) have recently pro-
vided an analysis of rent-seeking games under incomplete information. More closely
related to our work is Warneryd (2003), which we discuss below.

In our setting, each player’s value for the prize as well as his cost of effort depend on
the state of nature. The set of states of nature is finite. Players have a common prior
belief, but upon the realization of the state of nature, and prior to taking action,
each player observes some event that contains the realized state of nature. The
information of each player at the moment of taking action is therefore described by a
partition of the set of states of nature. (Jackson (1993) and Vohra (1999) have shown
that this representation is equivalent to Harsanyi model of a Bayesian game using
players’ types.) A contest is therefore described by a set of players, a probability
space describing players’ prior uncertainty and beliefs, a collection of partitions of

the state space describing the players’ information, a collection of state dependent



functions describing the players’ values and costs, and a success function specifying
the probability distribution used to allocate the prize for each profile of efforts. We
assume throughout that the players cost functions are continuously differentiable,
strictly increasing and convex with respect to effort, and that the cost of exerting no
effort is zero in every state. (In a similar framework, Einy et al. (2001, 2002), Forges
and Orzach (2011), and Malueg and Orzach (2009, 2012) study common-value first-
and second-price auctions.)

We show that a Tullock contest has a pure strategy Bayesian equilibrium. The
proof involves constructing a sequence of equilibria of contests obtained from the
original Tullock contest by truncating the action space so that it is a closed and
bounded interval whose lower bound approaches zero from above. We show that any
limit point of a sequence of equilibria of these contests (which have an equilibrium
by Nash’s Theorem) is an equilibrium of the original Tullock contest. A key step in
the proof is to show that in any such limit point the total effort exerted by players is
positive in every state of nature. (Hence this is also a property of the pure strategy
equilibrium of the contest that we construct.) Our existence result applies whether
players have private or common values and whether players’ costs of effort is the
same or different, and makes no presumption about the players’ private information.
Moreover, it extends to a general class of Tullock like contests which success function
is formed as a ratio of the score given to each players’ effort and the total scores given
to all players, provided each player’s score function is strictly increasing and concave.
(Warneryd (2012) establishes existence of equilibrium for common value Tullock con-
tests when there are two types of players, those that have complete information and
those who only have the prior information, and investigates which players are active,
i.e., make a positive effort, in equilibrium.)

Next we study Tullock contests in which players have a common value for the prize
and a common state independent linear cost function, to which we refer simply as
common-value Tullock contests. We consider first two-player common-value Tullock
contests in which one of the players has an information advantage over his opponent
(i.e., the partition of one player is finer than that of his opponent). We show that such
contests have a unique (pure strategy) Bayesian equilibrium, which we characterize.

In equilibrium both players exert the same expected effort. Moreover, both players



have a positive expected payoff, although the payoff of the player with an information
advantage is greater than that of his opponent. Interestingly, the player with an
information advantage wins the prize less frequently (i.e., with a smaller ex-ante
probability) than the uninformed player. We also examine how players information
affects the effort they exert and their payoffs. Assuming that the distribution of the
players’ value for the prize is not too disperse, we show that when one player is better
informed than the other the total effort exerted by players and the share of the total
surplus they capture is larger than when both players have the same information.

In the same framework and under the same assumptions, Einy et al. (2013)
characterize the unique equilibrium of a two-player common-value all-pay auctions,
which is in mixed strategies, and show that the expected payoff of the player with an
information advantage is positive while the expected payoff of his opponent is zero,
and that both the expected effort and the ex-ante probability of winning the prize
are the same for both players. Using the results in Einy et al. (2013) and our results
we study the relative effectiveness of Tullock contests and all-pay auctions to induce
players to exert effort. We find that the sign of the difference in the total effort exerted
by players in these contests is undetermined, and may be either positive or negative
depending on the distribution of the players’ value for the prize — see Example 1.
(Fang (2002) and Epstein, Mealem and Nitzan (2011) study the outcomes of Tullock
contests and all-pay auction under complete information.)

Finally, we study whether our results for two-players common-value Tullock con-
tests extend when there are more than two players in the contest. It turns out that our
observation that the player with an information advantage obtains a greater payoff
than his opponent holds generally in common-value Tullock contests: simply observ-
ing the formal equivalence between a common-value Tullock contest and a oligopoly
with asymmetric information allows us to obtain this result as an implication of a the-
orem of Einy, Moreno and Shitovitz (2002) that shows that in any Cournot Bayesian
equilibrium of an oligopolistic industry a firm’s information advantage leads to greater
profits. The other properties of equilibrium of two-player contests, however, do not
hold in contests with more than two players: specifically, we show a three-player
example in which two of the players have superior (and symmetric) information to

that of the third player, in which the expected effort exerted by players differs. We



also provide an example of a contest in which all but one player have the same infor-
mation and the remaining player has an information advantage, in which the ex-ante
probability that the player with information advantage wins the prize is greater than
that of any of the other players.

Our results for two-player common-value Tullock contests are closely related to
those of Warneryd (2003), who studies a model in which the players common value is
a continuous random variable. In particular, Warneryd (2003) shows that a Tullock
contest in which one player observes the value and the other does not observe anything
— the distribution of the value is common knowledge — has a unique equilibrium,
which is interior, and obtains properties of this equilibrium which are akin to those
we obtain. In our setting, when one of the players has an information advantage over
the other, it can be assumed without loss of generality that one player observes the
value while the other only has the common prior information. However, when the
distribution of the common value is sufficiently disperse the unique equilibrium is a
corner equilibrium. It turns out that some of the properties of the interior equilibrium
do not hold when the equilibrium is not interior.

The rest of the paper is organized as follows: in Section 2 we describe the general
setting. In Section 3 we establish that every Tullock contest has a pure strategy
Bayesian equilibrium. Section 4 and 5 study common-value Tullock contests with
two players, and with more players, respectively. Section 6 concludes. Long proofs

are given in the Appendix.

2 The model

A group of players N = {1,...,n}, with n > 2, compete for a prize by choosing a
level of effort on R,. Players’ uncertainty about the state of nature is described by
a probability space (€2, p), where Q is a finite set and p is a probability distribution
over €2 describing the players’ common prior belief about the realized state of nature.
W.l.o.g. we assume that p(w) > 0 for every w € 2. The private information about the
state of nature of player i € N is described by a partition II; of €. Players compete
for the prize. The value for the price of each player is described by a random variable

Vi:Q — Ry, ie, if w € Q is realized then player i’s (“private”) value for the



prize is V;(w). The cost of effort of each player i € N is described by a function
ci - 2 xR, — R, which is continuously differentiable, strictly increasing and convex
with respect to effort z;, and such that ¢;(-,0) = 0 on Q.

A contest starts by a move of nature that selects a state w from ) according to the
distribution p. Every player ¢ € N observes the element 7;(w) of II; which contains
w. Then players simultaneously choose their effort levels (z1, ..., z,) € R". The prize
is awarded in a probabilistic fashion, according to a success function p, which for each
profile of effort levels x € R’} assigns the prize to players according to a probability
distribution p(x) in the n-simplex. Thus, the payoff of player i € N, u; : @ xR} — R,
is given for every w € Q2 and x € R’} by

wiw, ) = p; (2) Vi(w) — ¢ (w, ). (1)

Thus, a contest is described by a collection (N, (€2, p), {IL }ien, {Vi}ien, {¢i}ien, p)-

In a contest, a pure strategy of player i € N is a [I;-measurable function X; : {2 —
R, (i.e., X; is constant on every element of II;), that represents i’s choice of effort in
each state of nature following the observation of his private information. We denote
by S; the set of strategies of player 4, and by S = [[_, S; the set of strategy profiles.
For any strategy X; € S; and 7; € II;, X; (7;) stands for the constant value that X; (+)
takes on ;. Also, given a strategy profile X = (X3,..., X,,) € S, we denote by X_;
the profile obtained from X by suppressing the strategy of player i € N. Throughout
the paper we restrict attention to pure strategies.

Let X = (Xy,...,X,) be a strategy profile. We denote by U;(X) the expected
payoff of player i, which is given by

Ui(X) = Elui(-, (X1 ()5, X ()]

For m; € 11;, we denote by U;(X | m;) the expected payoff of player i conditional on
T, 1€,

VX | ) = Elusl, (X0 () X () | 7.

An N-tuple of strategies X* = (X7, ..., X%) is a Bayesian equilibrium if for every
player : € N, and every strategy X; € S;

Us(X™) > Ui( X7, X5); (2)

—



or equivalently,

Uil(X™ | ) > Us(X™ 5, Xi | ) (3)

for every m; € 11,.

3 Existence of Equilibrium

Tullock contests are identified by a class of success functions p’ such that for z €
R?\{0} the probability that player i € N wins the prize is
T L
] == 4
o () = 2, (1)
where = = 25:1 x, is the total effort exerted by the players. Theorem 1 establishes

that under our assumptions a Tullock contest has a pure strategy equilibrium.
Theorem 1. Fvery Tullock contest has a (pure) strategy Bayesian equilibrium.

Note that Theorem 1 makes no presumption about the players’ private informa-
tion, and applies whether players have private or common values, and whether their
costs of effort is the same or different. A direct implication of Theorem 1 is the exis-
tence of equilibrium for a general class of success functions. For this class of success
functions, Szidarovszky and Okuguchi (1997) have established existence of a unique

equilibrium when players have complete information.

Corollary 1. Every contest such that the success function p is gien for x € R7\{0}

and i € N by
9i ()
pi(t) = i
> i1 i ()
where for every j € N the function g; : Ry — Ry s strictly increasing and concave,

has a Bayesian equilibrium.

Proof. Let C' = (N, (2,p),{IL;}ien, {Vitien, {ci}tien, p) be a contest satisfying
the assumptions of Corollary 1 for (g1, ..., g, ). The Tullock contest (N, (2, p), {IL; }icn,
{Vitien, {Gi}tien, p7) where ¢ (+,) = ¢; (-,9; " (+)) for every i € N and p”(0) = p(0)
has a Bayesian equilibrium X* = (X7, ..., X*) by Theorem 1. It is easy to see that
Y* = (g7 o X}, ...,g. o X}) is a Bayesian equilibrium of C. B
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4 Two-Player Common-Value Tullock Contests

Henceforth we study contests in which players have a common value for the prize and
a common state independent linear cost function, i.e., such that for allt € N, V; =V,
and ¢; (-, ) = z on 2. We refer to these contests as common-value contests, and they
are described by a collection (N, (2, p), (IL;)ien, V, p). Let us index the set of states
of nature as Q = {wy, ..., wn }, write p(wg) = pr and V(wg) = vy, for k € {1,...,m},
and assume, w.l.o.g., that 0 < v; < v < ... < V.

In this section we study two-player common-value Tullock contests in which player
2 has an information advantage over player 1 (i.e., such that Il is finer than II;).
Thus, we may assume w.l.o.g. that the only information player 1 has about the state
is that described by the common prior, i.e., II; = {Q}, whereas player 2 has perfect
information about the state of nature, i.e., Il = {{w1}, ..., {wn}}. In such contests
a strategy profile is a pair (X,Y), where X = (z,...,2) € R7 specifies player 1’s
unconditional effort z, and Y = (y1,...,ym) € R7 specifies the effort of player 2 in
each state of nature.

The following notation will be useful in characterizing the pure strategy Bayesian

equilibria of a Tullock contest. For k € {1,...,m} write

Ay, = (ips\/v_s) (1 + im) : (5)

Note that
EWNV
5

Lemma 1 establishes a key property of the mapping A.

Ay =

Lemma 1. If /vy > Ag for some k < m, then \Jv, > Ay, and A > Ay for all
k> k.

Proposition 1 establishes that a two-player common-value Tullock contest in which
player 2 has an information advantage has a unique pure strategy equilibrium which
is easily identified. Let k* € {1,...,m} be the smallest index such that /v, > Aj.

Since
U, > p—m\/vm =A,,

then k* is well defined.



Proposition 1. A two-player common-value Tullock contest in which player 2 has an
information advantage has a unique Bayesian equilibrium (X*,Y™*) given by x* = A2,

yp =0for k < k*, and y;; = Ap (\/or — Ag+) for all k > k*.

Since by convention v; is the smallest possible value, then \/v; > A; = E(V/V)/2,
and therefore k* = 1, whenever the distribution of values is not too disperse; e.g., this
inequality holds when v,, < 4v;. When this is the case, then the unique equilibrium

is interior. For future references we state this observation in Remark 2.

Remark 2. Consider a two-player common-value Tullock contest in which player 2
has an information advantage. The unique Bayesian equilibrium is interior if and

only if /v > E(VV)/2, i.e., the distribution of values is not too disperse.

Interestingly, when one player has superior information the expected effort exerted

by players in the equilibrium of the contest is the same.

Proposition 2. In a two-player common-value Tullock contest in which player 2 has
an information advantage both players exert the same expected effort, i.e., E(Y*) =

A2, = x* = E(X*). Hence the expected total effort is TE = E(X*)+ E(Y*) = 2A2..

Proof. By Proposition 1,
E(Y*) = Zpsy:
s=1

= > pAr (Vor — Ar)

s=k*
= Ap Y por— A3 > ps
s=k* s=k*
= A2, (1—1—2]95) — A2, Zps
s=k* s=k*
= A.1

In a two-player common-value Tullock contest in which player 2 has an information
advantage the equilibrium probabilities that player 1 wins the prize when the state
is wy, is )

pre =1 (% 0) = & _ A

AL+ A (V- Ar) Vo
8




whereas the probability that player 2 wins the prize is p3, = 1 — pj,.. Thus, the larger
is the realized value of the prize, the smaller (larger) is the probability that player 1
(player 2) wins the prize, i.e., pj < pj, and ph., > pb,. for k' > k > k*. Of course,

the larger is the realized value of the prize, the larger is the effort of player 2, i.e.,

yZ/ — Ak* (\/'Ukl — Ak*) > Ak* (\/U_ - Ak*)yz

for k' > k > k*. Also, for k' > k > k*,

>k >k
P Uk = Ape /Ui > Aper/Ur = P10k,

i.e., the larger is the realized value of the prize, the larger are the conditional expected

payofts of both players, and

* % * %
Por V' = PoVk > PokVk = PopVk;

i.e., the conditional expected payoff of player 2 is larger the larger is the realized value
of the price. Write p; = E(p}) for the ex-ante probability that player ¢ wins the prize.

Proposition 3 establishes another interesting property of equilibrium.

Proposition 3. In a two-player common-value Tullock contest in which player 2
has an information advantage the ex-ante probability that player 1 wins the prize is

greater than that of player 2, i.e., p; > ps.

Remark 3 states that under symmetric information each player exerts an expected
effort equal to F(V')/4. (The proof of this result is straightforward, and is therefore
omitted.)

Remark 3. A two-player common-value Tullock contest in which players have
symmetric information has a unique pure strateqy equilibrium, which is symmetric

and involves each player exerting an expected effort equal to E(V')/4.

The surplus captured by the players in a contest is the difference between the
expected (total) surplus £(V') and the expected total effort they exert. In Proposition
4 below we show that when player 2 has an information advantage, in an interior
equilibrium players exert less effort, and therefore capture a greater surplus, than

when they are symmetrically informed.



Proposition 4. Consider a two-player common-value Tullock contest in which player
2 has an information advantage. If the distribution of values is not too disperse, i.e.,
N E(\/V)/Q, then the players’ exert less effort and capture a greater share of the

surplus than when both players have symmetric information.

Proof. When player 2 has an information advantage, then \/v; > E(VV)/2
implies that the equilibrium is interior by Remark 3, and therefore the expected total
effort is TE = 2A? = F (\/V )2/2 by Proposition 2. When players have symmetric
information the expected total effort TE is TE = E(V)/2 by Remark 3. Then

Jensen’s inequality implies

TE —-TE = E(QV) — E(VV)* >0. 1

The contests arising in many economic and political applications are effectively
an all pay auction either by design (e.g., sports or political competition) or by the
nature of problem (e.g., a patent races). We conclude this section studying what
can be said about the players’ expected total effort in all pay auctions and Tullock
contests.

A common-value all pay auction is a common-value contest in which the suc-
cess function is given for x € R" by p?4(z) = 1/m(z) if 2; = max{x;},en, and
pPA(z) = 0 otherwise, where m(z) = |k € N : z; = max{x,}jen|. Einy et. al.
(2013) show that in unique equilibrium of a two-player common-value all pay auction
in which player 2 has an information advantage over player 1 (i.e., Il is finer than

I1;) the players’ total expected effort is

m s—1 m s—1 m
TEAPA =2 ;ps (; PrUk + %%%) =2 ;ps ;pkvk + ;pivs.
Hence the difference between total efforts in an all pay auction and a Tullock contest
is m s—1 m
A=TEPA—TE =2 "p, Y poox+ Y pio,— 247,
s=1 k=1 s=1

For simplicity, consider the case where there are only two states of nature, i.e., m = 2.

10



If the equilibrium of the Tullock contest is interior, then

A = 2p1p21)1 + (p%'l)l +p§?)2) — QA%

(P1/01 + P2y/02)”
4

= 2pipovr + p%”l + pg% -2
1

= 2pipav1 + B (p1y/v1 — Pz\/v_2)2

> 0.

Hence an all pay auction generates more effort that a Tullock contest. However, if

the Tullock contest has a corner equilibrium, then

A = Qplpz'Ul + (pfvl +pgv2) — QA%
2

(P21/02)

= 2p1pov1 + Pivy + pavg — 2

(1 +p2)2
2
= plvl(l +p2) — p2U2 (— — 1) .
N+ )

Thus, A may be either positive or negative depending on the distribution of the
players’ common value — see Example 1 below. Thus, the level of effort generated by

these two contests cannot be ranked in general.
The following example illustrates our findings.

Example 1. Let m = 2, p; = 1 —p, v; = 1, and v = v, where p € (0,1) and
v € (1,00). Then E(V) =1 —p(1 —v), E(VV) =1—p(1 — ), A4 = E(\V)/2,
and Ay = p\/o/(1+p). Ifv < (1+p)® /p?, then /1 =1 > A; and k* = 1; otherwise
k* = 2.

In a Tullock contest in which player 2 observes the value but player 1 does not,

the unique equilibrium is
X' = (AL AY), Y7 = (A (1 - A1), A (Vo — A)),
and the total effort is TE = 242 = [1 — p(1 — v)]2/2 when v < (1+p)® /p2.
Otherwise, the unique equilibrium is
X" = (43, 43), Y7 = (0,4 (Vv — 42)),

and the total effort is TE = 242 = 2p?v/(1+p)2. If v < (1 4 p)* /p?, then the ex-ante

probability that player 1 wins the prize is

(1 _ _ _ > -
p = p)Aler\/5 5 (p+ (1 =p)Vo) N T

11



Otherwise, this probability is
p? 1 1

=(-ptp 2=+ L=t

pi=-ptpm=0-pti =7 >5

Hence, consistently with Proposition 3 the uninformed player wins the prize more

frequently than the informed player. Further, if v < (1 + p)® /p?, then

A (1—A) - A7 +va1 (Vv—A) — A

A2+ A (1 - A) A2 + A (Vo — Ay)
2

= (1-pp(1-Vv)

> 0.

2[U2(X*=Y*)—U1(X*7Y*>} = (1—29)

And if v > (1 +p)® /p?, then

Az (Vv — As) — A]

2[Ua(X™ V") = Uh(X*,Y7)] = _<1_p)+va§+A2(\/_—A2)

I—p

= — v—1)—1
=D
1_

N
p

> 0.

That is, the payoff of the informed player is greater than that of the uninformed player.
(We show in Proposition 5 below the information advantage is always rewarded in a
common-value Tullock contest, regardless of the number of players and the number
of states of nature.)

Under symmetric information the equilibrium total effort in a Tullock contest is
E(V)/2 > max{2A3, 243}, i.e., the total effort when player 2 has an information
advantage is less than when both players have the same information.

In an all pay auction in which player 2 observes the value but player 1 does not,

the equilibrium total effort is

TEA =2(1—p)p+(1—p)° +pv=(1-p) (L +p) +p.
As we showed above, if v < (1 + p)2 /p?, then the expected total effort in the unique
equilibrium of the Tullock contest, which is interior, is TE = 243 = [1—p(1—+/v)]?/2.

Hence

(1-p(1 - Vo))’
2

TEAPA —TE = (1-p)(1+p)+pPv — > 2p > 0.

12



However, if v > (1 + p)® /p?, then the expected total effort in the unique equilibrium
of the Tullock contest, which is a corner equilibrium, is TE = 2p*v/ (1 + p)* . Assume
that p = 1/4. Then

15 7

TEAPA _TE =" _ — .
16 400

Hence TEAPA < TE for v > 375/7.

5 n-Player Common-Value Tullock Contests

The following result is a direct implication of the theorem of Einy, Moreno and Shi-

tovitz (2002).

Theorem 2. Let X* = (X{,...,X}) be any equilibrium of an n-player common-
value Tullock contest. If player i has an information advantage over player j, then

Ui(X™) = U;(X7).

Proof. An n-player common-value Tullock contest (NN, (€2, p), (IL;),. 5 , V) is for-
mally identical to what Einy, Moreno and Shitovitz (2002) refer to as an oligopolist
industry (N, (2, p), P, ¢, (I1;);en), where the demand and cost functions are defined

for (w,z) € A x Ry as

P(wa Q) = (;U)a
and
c(w,z) =z,

respectively. With this convention, the profit of firm ¢ € N in the industry coincides

with the expected payoff of player : € N in the contest, i.e., for w € Q and X € 5,

V(w)
wi(w, X) m)(i(w) — Xi(w)
= Pw,) Xi(w))Xi(w)—clw, X;(w)).

Theorem 2 then follows from the theorem of Einy, Moreno and Shitovitz (2002). B

The following example shows that Proposition 2 does not extend to common-value
Tullock contests with more than two players. In the example, player 1 has only the

prior information whereas players 2 and 3 have complete information. In equilibrium

13



the expected effort of the uninformed player is below that of each of the informed

players.

Example 2. Consider a 3-player common-value Tullock contest in which m = 2,
p1=p2 = 1/2, v; = 1 and v = 2. Player 1 has no information, i.e., his information
partition is II; = {w;,ws}, and players 2 and 3 have complete information, i.e., their
information partitions are Ils = II3 = {{w;},{w2}}. In the interior equilibrium of
this contest, which is readily calculated by solving the system of equations formed by
the players’ reaction functions, the effort of player 1 is X7 = (0.30899, 0.30899) while
the efforts of players 2 and 3 are X5 = X = (0.20342,0.46933). Note that

1
E(X7) =0.30899 < 5(0.20342 +0.46933) = E(X;) = E(X}),
i.e., the expected effort of player 1 is less than the expected effort of players 2 and 3.

The next example shows that Proposition 3 does not extend to contests with
more than two players. In the example there is an informed player and a number of
uninformed players. Contrary to the natural extension of Proposition 3, the ex-ante
probability that the informed player wins the prize is above that of the uninformed

players.

Example 3. Consider an eight player common-value Tullock contest in which
m=2,p; =py=1/2,v1 =1 and vy = 2. Players 1 to 7 have no information, i.e., their
information partition is II; = {wq,ws} for i € {1,...,7}, and player 8 is completely
informed, i.e., his information partitions is IIg = {{w1}, {w2}}. This contest has a

(corner) equilibrium given by
Xi=..= X7 =(0.15551,0.15551), X = (0,0.38694).

In equilibrium, the ex-ante probability that player i € {1,2,...,7} wins the prize is

oLl 0.155 51
i = 57 T 7(0.15551) + 0.386 94

) = 0.12413,
whereas the ex-ante probability that player 8 win the prize is
ps =1—7(0.12413) = 0.131009.
Thus, the informed player wins the prize more frequently than an uninformed player.
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6 Concluding remarks

Under broad conditions, Tullock contests have pure strategy equilibria. Two-player
common-value Tullock contests in which one player has an information advantage
exhibit interesting properties: equilibrium is unique, although it may not be interior.
And whether the equilibrium is interior or not, the player with an information ad-
vantage exerts the same expected effort as his opponent, but obtains a greater payoff
and wins the object less frequently. When the equilibrium is interior, i.e., when the
distribution of the players’ common value is not too disperse, the players exert less ef-
fort than when they are symmetrically informed. (It is an open question whether this
property holds when the distribution of values is sufficiently disperse that the unique
equilibrium is a corner equilibrium.) While the information advantage is rewarded
in common-value Tullock contests whether there are two or more players, the other
properties of equilibrium obtained for two-player contests may not hold for contests
with more than two players. Interestingly, a Tullock contest does not necessarily

generates less effort than an all-pay auction.

7 Appendix

Proof of Theorem 1. Let (N, (2, p), {IL }ien, {Vi}ien, {¢i }ien) be a Tullock contest.
Since the cost function of each player is strictly increasing and convex in the player’s
effort, it follows from (1) that there exists ) > 0 such that u;(-,z) < 0 for every i € N
and every x € R}, provided z; > Q. For any 0 < ¢ < () consider a variant of the
contest, denoted by G., in which the effort set of each player i is restricted to be the
bounded interval [e, Q] . In G, the set of strategies of player i, S; ., is identifiable with

the compact set [¢, Q)" via the the bijection x; — (x; (;)) Player i’s expected

i€l
payoff function U; is continuous on S, = x!_,S; . (since the success function p in (4)
is continuous if efforts are restricted to [e, Q)]), and it is concave in i’s own strategy
(as the state-dependent payoff function u,(+, z) is concave in the variable z; if efforts
are restricted to [e,@Q]). Nash’s Theorem thus guarantees existence of a Bayesian
X

equilibrium in G.; pick one such equilibrium and denote it by X = (X7 _,.

We will now show that
lim inf X* () > 0.
e—0+
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Indeed, suppose to the contrary that there is a vanishing positive sequence {ex}%2,

such that
glelg lim X* (w) =0, (6)
and fix w* € Q such that
X2, (@) = min X7, () (7)

for infinitely many & (and thus, w.l.o.g., for every k). Since the expected payoff of
player 7 is negative in every state of nature when z; = @), for any sufficiently small

ex the equilibrium strategy X/, satisfies X7 (1) < Q. Thus, for a given m; € II;,

1EK

X} (m;) € [ex, @). Additionally, X; and X; (7;) can both be viewed as the argument
of the function U;(X*

ien Xi | mi), since X (7;) is the only numerical input needed to
determine the conditional expected payoff of player i given 7;, when the equilibrium

*
—1,Ek

Xi | m;) by (3), then

strategies of players other than ¢ are X*, _ . Since the equilibrium strategy X7 is a

(local) maximizer of U;(X*

—1,ER ")
dU(X™; . Xi, | ™)
; <0.
dX; (m;) Xi(mi) =X, (m:)
That is,
dEfu; (-, X%, ., (+), X (m) | mi) <0
dX; (m;) Xi(mi)=X ., (mi) T
or, equivalently,
d i JXi ' 7X£kg 7
[ X O X 0) ]
dl‘i
Using (4) and (1) we calculate the derivative explicitly,
Vi)  Xi, (m)Vi() d
FE|= — —k - —C; ',X?k i i < 0.
0 K pdne e @) I <
Thus
Vi) d Vi()
E = - i (5 Xig, (m i —Xi., (M) E | = i| <0,
T 0 e X ) 7] =X ) B g |

which leads to

Vi) d
Xi7gk (771) > . V( ) . (8)
i\ | m]

Xz ()
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Inequality (8) holds, in particular, for m; = m; (w*) . Since X} (w*) = X/ (7 (w¥))
(as, by definition, w* € m; (w*)), (8) yields

B s~ e (X @) | )]

X: () du”
V()
Xz ()

|ﬂ@ﬁ
Summing over i € N we obtain

B s~ e (X ) | )]

X: () du”

X2 (W) =)
=1

or (since X7 (w*) > ne > 0)

X:k(w*) () _ Y w* dC' . * w* 7 (w*
B | S VI = K () e (X () )

125 ; (10)
i=1 X2 (W)
E— Vi() [ (W)
Xz ()
By the definition of X7 (w*) (see (7)),
X* *
0< ﬂ <1
X2 (W)

for every w € €. Hence we assume w.l.o.g. (by moving to a subsequence if necessary)

that the limit _
Xz (W)

exists for every w € 2. Note also that a (w) = 1 for w = w*, which occurs with positive

probability by our assumption on p, and thus

muzzi@fmmpww):E@@%%Hm@m>u (11)
koo | X2 ()

Also, since dc; (+,0) /dz; is well defined (because ¢; is concave), then (6) and (7) imply

i 2| €, o) O D <w*>] - (12)

k—o0
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Taking limit on the right-hand side of (10), which exist by (11) and (12), we get
1> Z ) | mi (W) '
( ) [ i (w)]

Furthermore, as 0 < a (-)*> < a(-) < 1, we obtain

m)
1>Z <>|m<w>]Z

Since by assumption n > 2, we have reached a contradiction. This proves that,
indeed,
lim inf X*(:) > 0. (13)

e—0+
Now let {€}}%2; be a vanishing positive sequence such that the limit

X/ (w) = lim X7, (w)

k—o0

exists for every i € N and w € €. (Such a sequence exists since all X7_(w) belong

to the compact interval [0,Q].) Obviously, X* = (X7, ..., X}

¥) constitutes a strategy

profile in the contest G, and it follows from (13) that
X* (1) > 0. (14)

We will show that X* is a Bayesian equilibrium of G.

Since the state-dependent payoff function u;(+, z) is continuous at any point = with
T > 0, then for every i € N, every 7; € II;, and every sequence {Y};}7, of strategy
profiles such that Y (w) = limg_ Yk (w) for every i and w, and Y; (+) > 0, we have

lim U (}/1 ks “'7Yn,/€ | 7Ti) = Ui(}/l,m --'7Yn,0 ’ 7'('@'). (15)

k—oo

Since every X is a Bayesian equilibrium in G, then for every sufficiently large k£ and

every strategy X; of player i satisfying 0 < X; (-) < @) we have

) > Ui(X7,

Ui(X:;; —i,el < Xy | ). (16)

The inequality (14) and equation (15) allow us to apply the limit as & — oo to both
sides of inequality (16), which shows that

18



for every strategy X; of player i satisfying 0 < X; (-) < @ and every m; € II;.
It is easy to see that

z;—0+

where z; > 0 (respectively, z; = 0) is identified with a strategy of i for which X; (7;) =
x; (respectively, X; (m;) = 0). Thus (17) in fact holds for every for every strategy X;
satisfying 0 < X; (1) < @ (i.e., the deviations of ¢ may be zero at some states of
nature).

Finally, note that player i can improve upon any strategy X; for which X; (w) > @
at some w by lowering the effort on 7;(w) to zero and thus receiving non-negative
expected payoff conditional on m;(w). Thus, in contemplating a unilateral deviation
from X/, player i is never worse off by limiting himself to strategies X, satisfying
0 < X; () < Q. But this implies that (17) holds for every strategy X; € S;. Since this

is the case for every ¢ € N, we have shown that X* is a Bayesian equilibrium of G. B

Proof of Lemma 1. Assume that /v > Aj for some k< m.
We show that /v, > A for all k& > k. Suppose not; let k > k be the first index
such that for VUi < A;. Since VUi 2 A;_,, then

1+ Z Ps | VUi 2 | 1+ Z ps | Aj_y = Z Psy/Us-
s=k—1 s=k—1 s=k—1

Thus, v; > v; ; and \/v;_; > A; | imply

LY pe | vor > |1+ D b | Vo + o/
s=k s=k—1

> |1+ D0 o | A o
s=k—1

= ps\/v_ﬁpk\/_

s=k—1
= 1 + Zps k7
which contradicts that ,/v; < A;.
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Now we show that A; > A for all k& > k. Suppose not; let & > k be the first
index k > k such that Ay, < Ay. Since Aj > A;_, and NC A;_, (as we have just
showed), then

> padia + |14 p | 4
s=k
Hence
m m
L+ Z Ps | Apy =P Ai 2 1+Zps Ap
s=k—1 s=k
ie.,
l—i-Zps A];_lz 1—1—2]75 A,‘C.
s=k s=k

Thus, Ay > Aj_, > A;, which yields a contradiction. l

Proof of Proposition 1. Let (X,Y), where X = (z,...,z) and Y = (y1, ..., Ym),
be a Bayesian equilibrium. It is easy to see that = + ys, > 0 for all s € {1,...,m}: If
r + ys = 0 for some s € {1,...,m}, since p! (0) < 1 for some i € {1,2}, then player ¢
by exerting an arbitrarily small effort € > 0 wins the prize with probability one when
the state is w,, and therefore can profitably deviate.

Moreover, since x maximizes player 1’s payoff given Y, then
Zpsvs—ys -1<0, (18)

holds (with with equality if z > 0). And since ys maximizes player 2’s payoff in state

w, given x, then
x

Vg
(z+ys)
holds (with equality if y, > 0) for each s =1, ..., m.

-1<0, (19)

We show that x > 0.If y, = 0 for some k, then x > 0, since as shown above
T+ y > 0 for all k. If y, > 0 for some k, then y, = vz (\/or — /z) > 0 by (19),

which implies x > 0. Thus, in either case = > 0.
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We show that if ¢, > 0 for some k < m, then y > 0 for all £’ > k. Since x > 0,
if yp > 0, then y, = /z (\/or — /) by (19), and since vy > vy, for all &' > k, then
\/E (\/Uk/ - \/E) >0, i.e.,

T
Uk/—2—1>0,
T

for all " > k. Then yy = 0 would violate the inequality (19) for s = k’. Hence y» > 0.
Let k° be the smallest index such that y, > 0. Therefore > 0 and (18) imply

Z psvs Z psvs =1,

(z+y) = @+ ys)
and (19) implies yp = 2z (y/or — /x) > 0 for all k' > k°. Hence z = A2, y;, =
Apo (\/’U_ko — Ako) for all £ > k°, and y, = 0 for all k£ < k°.
We show that k° = k*, which establishes that the profile (z*,y7, ..., y},) identified
in Proposition 1 is the unique equilibrium. Clearly k° > k*: If k° < k*, since k*
is the smallest index such that /v, > A, then /v < Aje, and therefore yo =
N7 (\/W — \/E) = Apo (\/v_ — Ako) < 0, which contradicts that k° satisfies yzo > 0.
Assume that k° > k*. Therefore yg« = 0. Since /vp= > Ay« then A7, > A%, = = by

Lemma 1, and therefore

x Aio
Vi — — 1=

— A2) > 0.
72 Aéo ( Uk k )

Hence yy+ = 0 violates the inequality (19) for s = k*. B

Proof of Proposition 3. Let us be given a two-player common-value Tullock contest
in which player 2 has an information advantage over player 1. Given (yy+,...., ym) €

R* define the function

i S PR
b2 (yk*vaym) = .
,; Yk + D et DsYs
Hence p, = D2 (Yjus -, ys,).  We show that the maximum value of pp on K =
{Wres ooy Ym) € RE | g < Ypwi1... <y} is reached at yp = ... = y,,. Hence
max pg = zm: S < 1
G b2 m =9’

k=k* 1 + ZSZ’C* ps

and therefore yi. < ... < vy’ implies py = po (Yjs, ..., ¥) < maxg pa < 1/2, which

establishes Proposition 3.
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Differentiating p, with respect to y for k € {k*,...,m} we get

Ops S Py S Py
Or (t:;; o (U 22 DsYs)? t:,; g W 2 DsYs)?
Hence y+ = ... = y,,, implies
o _,
Yk

for all £ € {k*,...,m}. Moreover, for every(yy+, ..., ym) € K such that yp < ypey1 <
. < Ym, then Ops /0y« > 0, and therefore ygp« = yy+11. Suppose now that yg« =

Ypr1 = .. =Y =y, m—12>k > 1. We will show that y,,1 = y as well. If
Ypr = Ygr4+1 = ... = Yk, then by (20) we obtain that 0p,/dy, > 0, and therefore
Yk = Y1 A
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