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Abstract

Under standard assumptions about players�cost functions, we show that a

Tullock contest with asymmetric information has a pure strategy equilibrium.

Moreover, when players have a common value and a common state indepen-

dent linear cost function, a two player Tullock contest in which one player has

an information advantage has a unique equilibrium. In this equilibrium both

players exert the same expected e¤ort, although the player with information

advantage has a greater payo¤ and wins the prize less frequently than his op-

ponent. When there are more than two players in the contest, an information

advantage leads to higher payo¤s, but the other properties of equilibrium no

longer hold.
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1 Introduction

In a Tullock contest �Tullock (1980) �a player�s probability of winning the prize is

the ratio of the e¤ort he exerts and the total e¤ort exerted by all the players. Baye and

Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking, innovation

tournaments, patent races) which are strategically equivalent to a Tullock contest.

Tullock contests also arise by design, e.g., sport competition, internal labor markets.

A number of studies have provided an axiomatic justi�cation to such contests, see,

e.g., Skaperdas (1996) and Clark and Riis (1998)).

There is an extensive literature studying Tullock contests and its variations under

complete information about the players�value of the prize and their cost of e¤ort.

Perez-Castrillo and Verdier (1992), Baye Kovenock and de Vries (1994), Szidarovszky

and Okuguchi (1997), Cornes and Hartley (2005), Yamazaki (2008) and Chowdhury

and Sheremeta (2009) study existence and uniqueness of equilibrium. Skaperdas and

Gan (1995), Glazer and Konrad (1999), Konrad (2002), Cohen and Sela (2005) and

Franke et al. (2011), study the e¤ect on the players�behavior of changes in the payo¤

structure, and Schweinzer and Segev (2012) and Fu and Lu (2013) study optimal

prize structures. See Konrad (2008) for a general survey.

In this paper we study Tullock contests under asymmetric information (i.e., when

player�s value for the prize and/or their cost of e¤ort is private information), a topic

seldom investigated in the literature. Fey (2008) andWasser (2013) have recently pro-

vided an analysis of rent-seeking games under incomplete information. More closely

related to our work is Warneryd (2003), which we discuss below.

In our setting, each player�s value for the prize as well as his cost of e¤ort depend on

the state of nature. The set of states of nature is �nite. Players have a common prior

belief, but upon the realization of the state of nature, and prior to taking action,

each player observes some event that contains the realized state of nature. The

information of each player at the moment of taking action is therefore described by a

partition of the set of states of nature. (Jackson (1993) and Vohra (1999) have shown

that this representation is equivalent to Harsanyi model of a Bayesian game using

players� types.) A contest is therefore described by a set of players, a probability

space describing players�prior uncertainty and beliefs, a collection of partitions of

the state space describing the players� information, a collection of state dependent
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functions describing the players�values and costs, and a success function specifying

the probability distribution used to allocate the prize for each pro�le of e¤orts. We

assume throughout that the players cost functions are continuously di¤erentiable,

strictly increasing and convex with respect to e¤ort, and that the cost of exerting no

e¤ort is zero in every state. (In a similar framework, Einy et al. (2001, 2002), Forges

and Orzach (2011), and Malueg and Orzach (2009, 2012) study common-value �rst-

and second-price auctions.)

We show that a Tullock contest has a pure strategy Bayesian equilibrium. The

proof involves constructing a sequence of equilibria of contests obtained from the

original Tullock contest by truncating the action space so that it is a closed and

bounded interval whose lower bound approaches zero from above. We show that any

limit point of a sequence of equilibria of these contests (which have an equilibrium

by Nash�s Theorem) is an equilibrium of the original Tullock contest. A key step in

the proof is to show that in any such limit point the total e¤ort exerted by players is

positive in every state of nature. (Hence this is also a property of the pure strategy

equilibrium of the contest that we construct.) Our existence result applies whether

players have private or common values and whether players� costs of e¤ort is the

same or di¤erent, and makes no presumption about the players�private information.

Moreover, it extends to a general class of Tullock like contests which success function

is formed as a ratio of the score given to each players�e¤ort and the total scores given

to all players, provided each player�s score function is strictly increasing and concave.

(Warneryd (2012) establishes existence of equilibrium for common value Tullock con-

tests when there are two types of players, those that have complete information and

those who only have the prior information, and investigates which players are active,

i.e., make a positive e¤ort, in equilibrium.)

Next we study Tullock contests in which players have a common value for the prize

and a common state independent linear cost function, to which we refer simply as

common-value Tullock contests. We consider �rst two-player common-value Tullock

contests in which one of the players has an information advantage over his opponent

(i.e., the partition of one player is �ner than that of his opponent). We show that such

contests have a unique (pure strategy) Bayesian equilibrium, which we characterize.

In equilibrium both players exert the same expected e¤ort. Moreover, both players
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have a positive expected payo¤, although the payo¤of the player with an information

advantage is greater than that of his opponent. Interestingly, the player with an

information advantage wins the prize less frequently (i.e., with a smaller ex-ante

probability) than the uninformed player. We also examine how players information

a¤ects the e¤ort they exert and their payo¤s. Assuming that the distribution of the

players�value for the prize is not too disperse, we show that when one player is better

informed than the other the total e¤ort exerted by players and the share of the total

surplus they capture is larger than when both players have the same information.

In the same framework and under the same assumptions, Einy et al. (2013)

characterize the unique equilibrium of a two-player common-value all-pay auctions,

which is in mixed strategies, and show that the expected payo¤ of the player with an

information advantage is positive while the expected payo¤ of his opponent is zero,

and that both the expected e¤ort and the ex-ante probability of winning the prize

are the same for both players. Using the results in Einy et al. (2013) and our results

we study the relative e¤ectiveness of Tullock contests and all-pay auctions to induce

players to exert e¤ort. We �nd that the sign of the di¤erence in the total e¤ort exerted

by players in these contests is undetermined, and may be either positive or negative

depending on the distribution of the players�value for the prize � see Example 1.

(Fang (2002) and Epstein, Mealem and Nitzan (2011) study the outcomes of Tullock

contests and all-pay auction under complete information.)

Finally, we study whether our results for two-players common-value Tullock con-

tests extend when there are more than two players in the contest. It turns out that our

observation that the player with an information advantage obtains a greater payo¤

than his opponent holds generally in common-value Tullock contests: simply observ-

ing the formal equivalence between a common-value Tullock contest and a oligopoly

with asymmetric information allows us to obtain this result as an implication of a the-

orem of Einy, Moreno and Shitovitz (2002) that shows that in any Cournot Bayesian

equilibrium of an oligopolistic industry a �rm�s information advantage leads to greater

pro�ts. The other properties of equilibrium of two-player contests, however, do not

hold in contests with more than two players: speci�cally, we show a three-player

example in which two of the players have superior (and symmetric) information to

that of the third player, in which the expected e¤ort exerted by players di¤ers. We
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also provide an example of a contest in which all but one player have the same infor-

mation and the remaining player has an information advantage, in which the ex-ante

probability that the player with information advantage wins the prize is greater than

that of any of the other players.

Our results for two-player common-value Tullock contests are closely related to

those of Warneryd (2003), who studies a model in which the players common value is

a continuous random variable. In particular, Warneryd (2003) shows that a Tullock

contest in which one player observes the value and the other does not observe anything

� the distribution of the value is common knowledge � has a unique equilibrium,

which is interior, and obtains properties of this equilibrium which are akin to those

we obtain. In our setting, when one of the players has an information advantage over

the other, it can be assumed without loss of generality that one player observes the

value while the other only has the common prior information. However, when the

distribution of the common value is su¢ ciently disperse the unique equilibrium is a

corner equilibrium. It turns out that some of the properties of the interior equilibrium

do not hold when the equilibrium is not interior.

The rest of the paper is organized as follows: in Section 2 we describe the general

setting. In Section 3 we establish that every Tullock contest has a pure strategy

Bayesian equilibrium. Section 4 and 5 study common-value Tullock contests with

two players, and with more players, respectively. Section 6 concludes. Long proofs

are given in the Appendix.

2 The model

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort on R+. Players�uncertainty about the state of nature is described by

a probability space (
; p); where 
 is a �nite set and p is a probability distribution

over 
 describing the players�common prior belief about the realized state of nature.

W.l.o.g. we assume that p(!) > 0 for every ! 2 
. The private information about the
state of nature of player i 2 N is described by a partition �i of 
: Players compete

for the prize. The value for the price of each player is described by a random variable

Vi : 
 ! R++, i.e., if ! 2 
 is realized then player i�s (�private�) value for the
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prize is Vi(!). The cost of e¤ort of each player i 2 N is described by a function

ci : 
�R+ ! R+, which is continuously di¤erentiable, strictly increasing and convex

with respect to e¤ort xi, and such that ci(�; 0) = 0 on 
:
A contest starts by a move of nature that selects a state ! from 
 according to the

distribution p: Every player i 2 N observes the element �i(!) of �i which contains

!. Then players simultaneously choose their e¤ort levels (x1; :::; xn) 2 Rn+. The prize
is awarded in a probabilistic fashion, according to a success function �; which for each

pro�le of e¤ort levels x 2 Rn+ assigns the prize to players according to a probability
distribution �(x) in the n-simplex. Thus, the payo¤of player i 2 N; ui : 
�Rn+ ! R,

is given for every ! 2 
 and x 2 Rn+ by

ui(!; x) = �i (x)Vi(!)� ci (!; xi) : (1)

Thus, a contest is described by a collection (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �):
In a contest, a pure strategy of player i 2 N is a �i-measurable function Xi : 
!

R+ (i.e., Xi is constant on every element of �i); that represents i�s choice of e¤ort in

each state of nature following the observation of his private information. We denote

by Si the set of strategies of player i, and by S =
Qn
i=1 Si the set of strategy pro�les.

For any strategy Xi 2 Si and �i 2 �i; Xi (�i) stands for the constant value that Xi (�)
takes on �i. Also, given a strategy pro�le X = (X1; :::; Xn) 2 S; we denote by X�i

the pro�le obtained from X by suppressing the strategy of player i 2 N: Throughout
the paper we restrict attention to pure strategies.

Let X = (X1; :::; Xn) be a strategy pro�le. We denote by Ui(X) the expected

payo¤ of player i, which is given by

Ui(X) � E[ui(�; (X1 (�) ; :::; Xn (�))]:

For �i 2 �i; we denote by Ui(X j �i) the expected payo¤ of player i conditional on
�i; i.e.,

Ui(X j �i) � E[ui(�; (X1 (�) ; :::; Xn (�)) j �i]:

An N -tuple of strategies X� = (X�
1 ; :::; X

�
N) is a Bayesian equilibrium if for every

player i 2 N , and every strategy Xi 2 Si

Ui(X
�) � Ui(X�

�i; Xi); (2)
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or equivalently,

Ui(X
� j �i) � Ui(X�

�i; Xi j �i) (3)

for every �i 2 �i:

3 Existence of Equilibrium

Tullock contests are identi�ed by a class of success functions �T such that for x 2
Rn+nf0g the probability that player i 2 N wins the prize is

�Ti (x) =
xi
x
; (4)

where �x �
PN

k=1 xk is the total e¤ort exerted by the players. Theorem 1 establishes

that under our assumptions a Tullock contest has a pure strategy equilibrium.

Theorem 1. Every Tullock contest has a (pure) strategy Bayesian equilibrium.

Note that Theorem 1 makes no presumption about the players�private informa-

tion, and applies whether players have private or common values, and whether their

costs of e¤ort is the same or di¤erent. A direct implication of Theorem 1 is the exis-

tence of equilibrium for a general class of success functions. For this class of success

functions, Szidarovszky and Okuguchi (1997) have established existence of a unique

equilibrium when players have complete information.

Corollary 1. Every contest such that the success function � is given for x 2 Rn+nf0g
and i 2 N by

�i (x) =
gi (xi)Pn
j=1 gj (xj)

;

where for every j 2 N the function gj : R+ ! R+ is strictly increasing and concave,

has a Bayesian equilibrium.

Proof. Let C = (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �) be a contest satisfying
the assumptions of Corollary 1 for (g1; :::; gn). The Tullock contest (N; (
; p); f�igi2N ;
fVigi2N ; f�cigi2N ; �T ) where �ci (�; �) = ci

�
�; g�1i (�)

�
for every i 2 N and �T (0) = �(0)

has a Bayesian equilibrium X� = (X�
1 ; :::; X

�
n) by Theorem 1. It is easy to see that

Y � = (g�11 �X�
1 ; :::; g

�1
n �X�

n) is a Bayesian equilibrium of C: �
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4 Two-Player Common-Value Tullock Contests

Henceforth we study contests in which players have a common value for the prize and

a common state independent linear cost function, i.e., such that for all i 2 N; Vi = V;
and ci (�; x) � x on 
. We refer to these contests as common-value contests, and they
are described by a collection (N; (
; p); (�i)i2N ; V; �). Let us index the set of states

of nature as 
 = f!1; :::; !mg; write p(!k) = pk and V (!k) = vk for k 2 f1; :::;mg,
and assume, w.l.o.g., that 0 < v1 < v2 < ::: < vm:

In this section we study two-player common-value Tullock contests in which player

2 has an information advantage over player 1 (i.e., such that �2 is �ner than �1).

Thus, we may assume w.l.o.g. that the only information player 1 has about the state

is that described by the common prior, i.e., �1 = f
g, whereas player 2 has perfect
information about the state of nature, i.e., �2 = ff!1g; :::; f!mgg. In such contests
a strategy pro�le is a pair (X; Y ); where X = (x; :::; x) 2 Rm+ speci�es player 1�s

unconditional e¤ort x, and Y = (y1; :::; ym) 2 Rm+ speci�es the e¤ort of player 2 in
each state of nature.

The following notation will be useful in characterizing the pure strategy Bayesian

equilibria of a Tullock contest. For k 2 f1; :::;mg write

Ak =

 
mX
s=k

ps
p
vs

! 
1 +

mX
s=k

ps

!�1
: (5)

Note that

A1 =
E(
p
V

2
:

Lemma 1 establishes a key property of the mapping A:

Lemma 1. If
p
v�k � A�k for some �k < m; then

p
vk > Ak and A�k � Ak for all

k > �k:

Proposition 1 establishes that a two-player common-value Tullock contest in which

player 2 has an information advantage has a unique pure strategy equilibrium which

is easily identi�ed. Let k� 2 f1; :::;mg be the smallest index such that pvk � Ak:
Since

p
vm >

pm
(1 + pm)

p
vm = Am;

then k� is well de�ned.
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Proposition 1. A two-player common-value Tullock contest in which player 2 has an

information advantage has a unique Bayesian equilibrium (X�; Y �) given by x� = A2k� ;

y�k = 0 for k < k
�; and y�k = Ak�

�p
vk � Ak�

�
for all k � k�.

Since by convention v1 is the smallest possible value, then
p
v1 � A1 = E(

p
V )=2;

and therefore k� = 1, whenever the distribution of values is not too disperse; e.g., this

inequality holds when vm � 4v1: When this is the case, then the unique equilibrium
is interior. For future references we state this observation in Remark 2.

Remark 2. Consider a two-player common-value Tullock contest in which player 2

has an information advantage. The unique Bayesian equilibrium is interior if and

only if
p
v1 � E(

p
V )=2, i.e., the distribution of values is not too disperse.

Interestingly, when one player has superior information the expected e¤ort exerted

by players in the equilibrium of the contest is the same.

Proposition 2. In a two-player common-value Tullock contest in which player 2 has

an information advantage both players exert the same expected e¤ort, i.e., E(Y �) =

A2k� = x
� = E(X�). Hence the expected total e¤ort is TE = E(X�) +E(Y �) = 2A2k� :

Proof. By Proposition 1,

E(Y �) =
mX
s=1

psy
�
s

=
mX
s=k�

psAk� (
p
vk � Ak�)

= Ak�
mX
s=k�

ps
p
vk � A2k�

mX
s=k�

ps

= A2k�

 
1 +

mX
s=k�

ps

!
� A2k�

mX
s=k�

ps

= A2k� :�

In a two-player common-value Tullock contest in which player 2 has an information

advantage the equilibrium probabilities that player 1 wins the prize when the state

is !k is

��1k := �
T
1 (x

�; y�k) =
A2k�

A2k� + Ak�
�p
vk � Ak�

� = Ak�p
vk
;
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whereas the probability that player 2 wins the prize is ��2k = 1� ��1k: Thus, the larger
is the realized value of the prize, the smaller (larger) is the probability that player 1

(player 2) wins the prize, i.e., ��1k0 < �
�
1k and �

�
2k0 > �

�
2k for k

0 > k � k�: Of course,
the larger is the realized value of the prize, the larger is the e¤ort of player 2, i.e.,

y�k0 = Ak� (
p
vk0 � Ak�) > Ak� (

p
vk � Ak�) y�k:

for k0 > k � k�. Also, for k0 > k � k�;

��1k0vk0 = Ak�
p
vk0 > Ak�

p
vk = �

�
1kvk;

i.e., the larger is the realized value of the prize, the larger are the conditional expected

payo¤s of both players, and

��2k0vk0 = �
�
2kvk0 > �

�
2kvk = �

�
2kvk;

i.e., the conditional expected payo¤of player 2 is larger the larger is the realized value

of the price. Write ���i = E(�
�
i ) for the ex-ante probability that player i wins the prize.

Proposition 3 establishes another interesting property of equilibrium.

Proposition 3. In a two-player common-value Tullock contest in which player 2

has an information advantage the ex-ante probability that player 1 wins the prize is

greater than that of player 2, i.e., ���1 > ��
�
2:

Remark 3 states that under symmetric information each player exerts an expected

e¤ort equal to E(V )=4: (The proof of this result is straightforward, and is therefore

omitted.)

Remark 3. A two-player common-value Tullock contest in which players have

symmetric information has a unique pure strategy equilibrium, which is symmetric

and involves each player exerting an expected e¤ort equal to E(V )=4:

The surplus captured by the players in a contest is the di¤erence between the

expected (total) surplus E(V ) and the expected total e¤ort they exert. In Proposition

4 below we show that when player 2 has an information advantage, in an interior

equilibrium players exert less e¤ort, and therefore capture a greater surplus, than

when they are symmetrically informed.
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Proposition 4. Consider a two-player common-value Tullock contest in which player

2 has an information advantage. If the distribution of values is not too disperse, i.e.,
p
v1 � E(

p
V )=2, then the players�exert less e¤ort and capture a greater share of the

surplus than when both players have symmetric information.

Proof. When player 2 has an information advantage, then
p
v1 � E(

p
V )=2

implies that the equilibrium is interior by Remark 3, and therefore the expected total

e¤ort is TE = 2A21 = E(
p
V )2=2 by Proposition 2. When players have symmetric

information the expected total e¤ort TE is TE = E(V )=2 by Remark 3. Then

Jensen�s inequality implies

TE � TE = E(V )

2
� E(

p
V )2

2
> 0: �

The contests arising in many economic and political applications are e¤ectively

an all pay auction either by design (e.g., sports or political competition) or by the

nature of problem (e.g., a patent races). We conclude this section studying what

can be said about the players�expected total e¤ort in all pay auctions and Tullock

contests.

A common-value all pay auction is a common-value contest in which the suc-

cess function is given for x 2 Rn+ by �APA(x) = 1=m(x) if xi = maxfxjgj2N ; and
�APA(x) = 0 otherwise, where m(x) = jk 2 N : xk = maxfxjgj2N j. Einy et. al.

(2013) show that in unique equilibrium of a two-player common-value all pay auction

in which player 2 has an information advantage over player 1 (i.e., �2 is �ner than

�1) the players�total expected e¤ort is

TEAPA = 2

mX
s=1

ps

 
s�1X
k=1

pkvk +
1

2
psvs

!
= 2

mX
s=1

ps

s�1X
k=1

pkvk +

mX
s=1

p2svs:

Hence the di¤erence between total e¤orts in an all pay auction and a Tullock contest

is

� := TEAPA � TE = 2
mX
s=1

ps

s�1X
k=1

pkvk +

mX
s=1

p2svs � 2A2k� :

For simplicity, consider the case where there are only two states of nature, i.e., m = 2:
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If the equilibrium of the Tullock contest is interior, then

� = 2p1p2v1 +
�
p21v1 + p

2
2v2
�
� 2A21

= 2p1p2v1 + p
2
1v1 + p

2
2v2 � 2

�
p1
p
v1 + p2

p
v2
�2

4

= 2p1p2v1 +
1

2
(p1
p
v1 � p2

p
v2)

2

> 0:

Hence an all pay auction generates more e¤ort that a Tullock contest. However, if

the Tullock contest has a corner equilibrium, then

� = 2p1p2v1 +
�
p21v1 + p

2
2v2
�
� 2A22

= 2p1p2v1 + p
2
1v1 + p

2
2v2 � 2

�
p2
p
v2
�2

(1 + p2)2

= p1v1(1 + p2)� p22v2
�

2

(1 + p2)
2 � 1

�
:

Thus, � may be either positive or negative depending on the distribution of the

players�common value �see Example 1 below. Thus, the level of e¤ort generated by

these two contests cannot be ranked in general.

The following example illustrates our �ndings.

Example 1. Let m = 2, p1 = 1 � p; v1 = 1; and v2 = v; where p 2 (0; 1) and
v 2 (1;1): Then E(V ) = 1 � p(1 � v), E(

p
V ) = 1 � p(1 �

p
v); A1 = E(

p
V )=2,

and A2 = p
p
v=(1+ p): If v � (1 + p)2 =p2; then pv1 = 1 � A1 and k� = 1; otherwise

k� = 2:

In a Tullock contest in which player 2 observes the value but player 1 does not,

the unique equilibrium is

X� = (A21; A
2
1); Y

� = (A1 (1� A1) ; A1
�p
v � A1

�
);

and the total e¤ort is TE = 2A21 = [1 � p(1 �
p
v)]2=2 when v � (1 + p)2 =p2.

Otherwise, the unique equilibrium is

X� = (A22; A
2
2); Y

� = (0; A2
�p
v � A2

�
);

and the total e¤ort is TE = 2A22 = 2p
2v=(1+p)2: If v � (1 + p)2 =p2; then the ex-ante

probability that player 1 wins the prize is

���1 = (1� p)A1 + p
A1p
v
=
1

2

�
p+ (1� p)

p
v
� 1� p+ ppvp

v
� 1

1 + p
>
1

2
:
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Otherwise, this probability is

���1 = (1� p) + p
A2p
v
= (1� p) + p2

1 + p
=

1

1 + p
>
1

2
:

Hence, consistently with Proposition 3 the uninformed player wins the prize more

frequently than the informed player. Further, if v � (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = (1� p) A1 (1� A1)� A

2
1

A21 + A1 (1� A1)
+ pv

A1 (
p
v � A1)� A21

A21 + A1 (
p
v � A1)

= (1� p) p
�
1�
p
v
�2

> 0:

And if v > (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = � (1� p) + pvA2 (

p
v � A2)� A22

A22 + A2 (
p
v � A2)

=
1� p
p+ 1

(p(v � 1)� 1)

>
1� p
p

> 0:

That is, the payo¤of the informed player is greater than that of the uninformed player.

(We show in Proposition 5 below the information advantage is always rewarded in a

common-value Tullock contest, regardless of the number of players and the number

of states of nature.)

Under symmetric information the equilibrium total e¤ort in a Tullock contest is

E(V )=2 > maxf2A21; 2A22g; i.e., the total e¤ort when player 2 has an information
advantage is less than when both players have the same information.

In an all pay auction in which player 2 observes the value but player 1 does not,

the equilibrium total e¤ort is

TEAPA = 2 (1� p) p+ (1� p)2 + p2v = (1� p) (1 + p) + p2v:

As we showed above, if v � (1 + p)2 =p2; then the expected total e¤ort in the unique
equilibrium of the Tullock contest, which is interior, is TE = 2A22 = [1�p(1�

p
v)]2=2:

Hence

TEAPA � TE = (1� p) (1 + p) + p2v � (1� p(1�
p
v))

2

2
> 2p > 0:

12



However, if v > (1 + p)2 =p2; then the expected total e¤ort in the unique equilibrium

of the Tullock contest, which is a corner equilibrium, is TE = 2p2v= (1 + p)2 : Assume

that p = 1=4. Then

TEAPA � TE = 15

16
� 7

400
v:

Hence TEAPA < TE for v > 375=7.

5 n-Player Common-Value Tullock Contests

The following result is a direct implication of the theorem of Einy, Moreno and Shi-

tovitz (2002).

Theorem 2. Let X� = (X�
1 ; :::; X

�
n) be any equilibrium of an n-player common-

value Tullock contest. If player i has an information advantage over player j, then

Ui(X
�) � Uj(X�).

Proof. An n-player common-value Tullock contest (N; (
; p); (�i)i2N ; V ) is for-

mally identical to what Einy, Moreno and Shitovitz (2002) refer to as an oligopolist

industry (N; (
; p); P; c; (�i)i2N); where the demand and cost functions are de�ned

for (!; x) 2 
� R++ as
P (!; q) =

V (!)

x
;

and

c(!; x) = x;

respectively. With this convention, the pro�t of �rm i 2 N in the industry coincides

with the expected payo¤ of player i 2 N in the contest, i.e., for ! 2 
 and X 2 S;

ui(!;X) =
V (!)Pn
s=1Xs

Xi(!)�Xi(!)

= P (!;
nX
s=1

Xs(!))Xi(!)� c(!;Xi(!)):

Theorem 2 then follows from the theorem of Einy, Moreno and Shitovitz (2002). �

The following example shows that Proposition 2 does not extend to common-value

Tullock contests with more than two players. In the example, player 1 has only the

prior information whereas players 2 and 3 have complete information. In equilibrium

13



the expected e¤ort of the uninformed player is below that of each of the informed

players.

Example 2. Consider a 3-player common-value Tullock contest in which m = 2;

p1 = p2 = 1=2, v1 = 1 and v2 = 2: Player 1 has no information, i.e., his information

partition is �1 = f!1; !2g; and players 2 and 3 have complete information, i.e., their
information partitions are �2 = �3 = ff!1g; f!2gg: In the interior equilibrium of

this contest, which is readily calculated by solving the system of equations formed by

the players�reaction functions, the e¤ort of player 1 is X�
1 = (0:30899; 0:30899) while

the e¤orts of players 2 and 3 are X�
2 = X

�
3 = (0:20342; 0:46933). Note that

E(X�
1 ) = 0:30899 <

1

2
(0:20342 + 0:46933) = E(X�

2 ) = E(X
�
3 );

i.e., the expected e¤ort of player 1 is less than the expected e¤ort of players 2 and 3.

The next example shows that Proposition 3 does not extend to contests with

more than two players. In the example there is an informed player and a number of

uninformed players. Contrary to the natural extension of Proposition 3, the ex-ante

probability that the informed player wins the prize is above that of the uninformed

players.

Example 3. Consider an eight player common-value Tullock contest in which

m = 2; p1 = p2 = 1=2, v1 = 1 and v2 = 2: Players 1 to 7 have no information, i.e., their

information partition is �i = f!1; !2g for i 2 f1; :::; 7g; and player 8 is completely
informed, i.e., his information partitions is �8 = ff!1g; f!2gg: This contest has a
(corner) equilibrium given by

X�
1 = ::: = X

�
7 = (0:15551; 0:15551); X

�
8 = (0; 0:38694):

In equilibrium, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

���i =
1

2
(
1

7
+

0:155 51

7(0:155 51) + 0:386 94
) = 0:12413;

whereas the ex-ante probability that player 8 win the prize is

���8 = 1� 7(0:12413) = 0:13109:

Thus, the informed player wins the prize more frequently than an uninformed player.

14



6 Concluding remarks

Under broad conditions, Tullock contests have pure strategy equilibria. Two-player

common-value Tullock contests in which one player has an information advantage

exhibit interesting properties: equilibrium is unique, although it may not be interior.

And whether the equilibrium is interior or not, the player with an information ad-

vantage exerts the same expected e¤ort as his opponent, but obtains a greater payo¤

and wins the object less frequently. When the equilibrium is interior, i.e., when the

distribution of the players�common value is not too disperse, the players exert less ef-

fort than when they are symmetrically informed. (It is an open question whether this

property holds when the distribution of values is su¢ ciently disperse that the unique

equilibrium is a corner equilibrium.) While the information advantage is rewarded

in common-value Tullock contests whether there are two or more players, the other

properties of equilibrium obtained for two-player contests may not hold for contests

with more than two players. Interestingly, a Tullock contest does not necessarily

generates less e¤ort than an all-pay auction.

7 Appendix

Proof of Theorem 1. Let (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N) be a Tullock contest.
Since the cost function of each player is strictly increasing and convex in the player�s

e¤ort, it follows from (1) that there exists Q > 0 such that ui(�; x) < 0 for every i 2 N
and every x 2 Rn+; provided xi > Q: For any 0 < " < Q consider a variant of the

contest, denoted by G"; in which the e¤ort set of each player i is restricted to be the

bounded interval [";Q] : In G"; the set of strategies of player i, Si;", is identi�able with

the compact set [";Q]�i via the the bijection xi  ! (xi (�i))�i2�i. Player i�s expected

payo¤ function Ui is continuous on S" = �ni=1Si;" (since the success function � in (4)
is continuous if e¤orts are restricted to [";Q]), and it is concave in i�s own strategy

(as the state-dependent payo¤ function ui(�; x) is concave in the variable xi if e¤orts
are restricted to [";Q]). Nash�s Theorem thus guarantees existence of a Bayesian

equilibrium in G"; pick one such equilibrium and denote it by X�
" = (X

�
1;"; :::; X

�
n;").

We will now show that

lim inf
"!0+

�X�
" (�) > 0:

15



Indeed, suppose to the contrary that there is a vanishing positive sequence f"kg1k=1
such that

min
!2


lim �X�
"k
(!) = 0; (6)

and �x !� 2 
 such that
�X�
"k
(!�) = min

!2

�X�
"k
(!) (7)

for in�nitely many k (and thus, w.l.o.g., for every k). Since the expected payo¤ of

player i is negative in every state of nature when xi = Q; for any su¢ ciently small

"k the equilibrium strategy X�
i;"k

satis�es X�
i;"k
(�) < Q: Thus, for a given �i 2 �i;

X�
i (�i) 2 ["k; Q): Additionally, Xi and Xi (�i) can both be viewed as the argument

of the function Ui(X�
�i;"k ; Xi j �i); since Xi (�i) is the only numerical input needed to

determine the conditional expected payo¤ of player i given �i; when the equilibrium

strategies of players other than i are X�
�i;"k . Since the equilibrium strategy X�

i;"k
is a

(local) maximizer of Ui(X�
�i;"k ; Xi j �i) by (3), then

dUi(X
�
�i;"k ; Xi; j �i)
dXi (�i)

����
Xi(�i)=X�

i;"k
(�i)

� 0:

That is,
dE[ui(�; X�

�i;"k (�) ; Xi (�i) j �i]
dXi (�i)

����
Xi(�i)=X�

i;"k
(�i)

� 0;

or, equivalently,

E

�
dui(�; X�

�i;"k (�) ; X
�
i;"k
(�i))

dxi
j �i
�
� 0:

Using (4) and (1) we calculate the derivative explicitly,

E

"
Vi(�)
�X�
"k
(�)
�
X�
i;"k
(�i)Vi(�)
�X�
"k
(�)2

� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i

#
� 0:

Thus

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i
�
�X�

i;"k
(�i)E

"
Vi(�)
�X�
"k
(�)2
j �i

#
� 0;

which leads to

X�
i;"k
(�i) �

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i
�

E

"
Vi(�)
�X�
"k
(�)2
j �i

# : (8)
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Inequality (8) holds, in particular, for �i = �i (!�) : Since X�
i;"k
(!�) = X�

i;"k
(�i (!

�))

(as, by de�nition, !� 2 �i (!�)); (8) yields

X�
i;"k
(!�) �

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
Vi(�)
�X�
"k
(�)2
j �i (!�)

# : (9)

Summing over i 2 N we obtain

�X�
"k
(!�) �

nX
i=1

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
Vi(�)
�X�
"k
(�)2
j �i (!�)

# ;

or (since �X�
"k
(!�) � n" > 0)

1 �
nX
i=1

E

� �X�
"k
(!�)

�X�
"k
(�)

Vi(�)� �X�
"k
(!�) d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
�X�
"k
(!�)2

�X�
"k
(�)2

Vi(�) j �i (!�)
# : (10)

By the de�nition of �X�
"k
(!�) (see (7)),

0 �
�X�
"k
(!�)

�X�
"k
(!)
� 1

for every ! 2 
: Hence we assume w.l.o.g. (by moving to a subsequence if necessary)
that the limit

a (!) = lim
k!1

�X�
"k
(!�)

�X�
"k
(!)

exists for every ! 2 
: Note also that a (!) = 1 for ! = !�, which occurs with positive
probability by our assumption on p; and thus

lim
k!1

E

"
�X�
"k
(!�)2

�X�
"k
(�)2

Vi(�) j �i (!�)
#
= E

�
a (�)2 Vi(�) j �i (!�)

�
> 0: (11)

Also, since dci (�; 0) =dxi is well de�ned (because ci is concave), then (6) and (7) imply

lim
k!1

E

"
�X�
"k
(!�)

dci
�
�; X�

i;"k
(!�)

�
dxi

j �i (!�)
#
= 0: (12)
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Taking limit on the right-hand side of (10), which exist by (11) and (12), we get

1 �
nX
i=1

E[a (�)Vi(�) j �i (!�)]
E[a (�)2 Vi(�) j �i (!�)]

:

Furthermore, as 0 � a (�)2 � a (�) � 1; we obtain

1 �
nX
i=1

E[a (�)Vi(�) j �i (!�)]
E[a (�)2 Vi(�) j �i (!�)]

� n:

Since by assumption n � 2; we have reached a contradiction. This proves that,

indeed,

lim inf
"!0+

�X�
" (�) > 0: (13)

Now let f"�kg1k=1 be a vanishing positive sequence such that the limit

X�
i (!) � lim

k!1
X�
i;"k
(!)

exists for every i 2 N and ! 2 
: (Such a sequence exists since all X�
i;" (!) belong

to the compact interval [0; Q]:) Obviously, X� = (X�
1 ; :::; X

�
n) constitutes a strategy

pro�le in the contest G; and it follows from (13) that

�X� (�) > 0: (14)

We will show that X� is a Bayesian equilibrium of G.

Since the state-dependent payo¤ function ui(�; x) is continuous at any point x with
�x > 0, then for every i 2 N , every �i 2 �i; and every sequence fYkg1k=1 of strategy
pro�les such that Yi;0 (!) = limk!1 Yi;k (!) for every i and !; and Y0 (�) > 0; we have

lim
k!1

Ui(Y1;k; :::; Yn;k j �i) = Ui(Y1;0; :::; Yn;0 j �i): (15)

Since every X�
" is a Bayesian equilibrium in G"; then for every su¢ ciently large k and

every strategy Xi of player i satisfying 0 < Xi (�) � Q we have

Ui(X
�
"�k
j �i) � Ui(X�

�i;"�k
; Xi j �i): (16)

The inequality (14) and equation (15) allow us to apply the limit as k !1 to both

sides of inequality (16), which shows that

Ui(X
� j �i) � Ui(X�

�i; Xi j �i) (17)
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for every strategy Xi of player i satisfying 0 < Xi (�) � Q and every �i 2 �i:
It is easy to see that

lim inf
xi!0+

Ui(X
�
�i; xi; ) � Ui(X�

�i; 0 j �i);

where xi > 0 (respectively, xi = 0) is identi�ed with a strategy of i for whichXi (�i) =

xi (respectively, Xi (�i) = 0): Thus (17) in fact holds for every for every strategy Xi

satisfying 0 � Xi (�) � Q (i.e., the deviations of i may be zero at some states of

nature).

Finally, note that player i can improve upon any strategy Xi for which Xi (!) > Q

at some ! by lowering the e¤ort on �i(!) to zero and thus receiving non-negative

expected payo¤ conditional on �i(!): Thus, in contemplating a unilateral deviation

from X�
i ; player i is never worse o¤ by limiting himself to strategies Xi satisfying

0 � Xi (�) � Q: But this implies that (17) holds for every strategy Xi 2 Si: Since this
is the case for every i 2 N , we have shown that X� is a Bayesian equilibrium of G. �

Proof of Lemma 1. Assume that
p
v�k � A�k for some �k < m:

We show that
p
vk > Ak for all k > �k: Suppose not; let k̂ > �k be the �rst index

such that for
p
vk̂ � Ak̂: Since

p
vk̂�1 � Ak̂�1; then0@1 + mX

s=k̂�1

ps

1Apvk̂�1 �
0@1 + mX

s=k̂�1

ps

1AAk̂�1 = mX
s=k̂�1

ps
p
vs:

Thus, vk̂ > vk̂�1 and
p
vk̂�1 � Ak̂�1 imply0@1 + mX

s=k̂

ps

1Apvk̂ >

0@1 + mX
s=k̂�1

ps

1Apvk̂�1 + pk̂pvk̂
�

0@1 + mX
s=k̂�1

ps

1AAk̂�1 + pk̂pvk̂
=

mX
s=k̂�1

ps
p
vs + pk̂

p
vk̂

=

0@1 + mX
s=k̂

ps

1AAk̂;
which contradicts that

p
vk̂ � Ak̂:
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Now we show that A�k � Ak for all k > �k: Suppose not; let ~k > �k be the �rst

index k > �k such that A�k < Ak: Since A�k � A~k�1 and
p
v~k�1 � A~k�1 (as we have just

showed), then0@1 + mX
s=~k�1

ps

1AA~k�1 =

mX
s=~k�1

ps
p
vs

= p~k�1
p
v~k�1 +

mX
s=~k

ps
p
vs

� p~k�1A~k�1 +

0@1 + mX
s=~k

ps

1AA~k:
Hence 0@1 + mX

s=~k�1

ps

1AA~k�1 � p~k�1A~k�1 �
0@1 + mX

s=~k

ps

1AA~k;
i.e., 0@1 + mX

s=~k

ps

1AA~k�1 �
0@1 + mX

s=~k

ps

1AA~k:
Thus, A�k � A~k�1 � A~k; which yields a contradiction. �

Proof of Proposition 1. Let (X;Y ); where X = (x; :::; x) and Y = (y1; :::; ym),

be a Bayesian equilibrium. It is easy to see that x + ys > 0 for all s 2 f1; :::;mg: If
x + ys = 0 for some s 2 f1; :::;mg; since �Ti (0) < 1 for some i 2 f1; 2g; then player i
by exerting an arbitrarily small e¤ort " > 0 wins the prize with probability one when

the state is !s, and therefore can pro�tably deviate.

Moreover, since x maximizes player 1�s payo¤ given Y , then
mX
s=1

psvs
ys

(x+ ys)
2 � 1 � 0; (18)

holds (with with equality if x > 0). And since ys maximizes player 2�s payo¤ in state

!s given x; then

vs
x

(x+ ys)
2 � 1 � 0; (19)

holds (with equality if ys > 0) for each s = 1; :::;m.

We show that x > 0: If yk = 0 for some k; then x > 0; since as shown above

x + yk > 0 for all k: If yk > 0 for some k, then yk =
p
x
�p
vk �

p
x
�
> 0 by (19),

which implies x > 0: Thus, in either case x > 0.
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We show that if yk > 0 for some k < m; then yk0 > 0 for all k0 > k: Since x > 0;

if yk > 0; then yk =
p
x
�p
vk �

p
x
�
by (19), and since vk0 > vk for all k0 > k; then

p
x
�p
vk0 �

p
x
�
> 0, i.e.,

vk0
x

x2
� 1 > 0;

for all k0 > k: Then yk0 = 0 would violate the inequality (19) for s = k0: Hence yk0 > 0:

Let k� be the smallest index such that yk � 0: Therefore x > 0 and (18) imply
mX
s=1

psvs
ys

(x+ ys)
2 =

mX
s=k�

psvs
ys

(x+ ys)
2 = 1;

and (19) implies yk0 =
p
x
�p
vk0 �

p
x
�
> 0 for all k0 � k�: Hence x = A2k; yk =

Ak�
�p
vk� � Ak�

�
for all k � k�; and yk = 0 for all k < k�:

We show that k� = k�, which establishes that the pro�le (x�; y�1; :::; y
�
m) identi�ed

in Proposition 1 is the unique equilibrium. Clearly k� � k�: If k� < k�; since k�

is the smallest index such that
p
vk � Ak; then

p
vk� < Ak� ; and therefore yk� =

p
x
�p
vk� �

p
x
�
= Ak�

�p
vk � Ak�

�
< 0; which contradicts that k� satis�es yk� � 0:

Assume that k� > k�: Therefore yk� = 0: Since
p
vk� � Ak� ; then A2k� � A2k� = x by

Lemma 1, and therefore

vk�
x

x2
� 1 = A2k�

A4k�

�
vk� � A2k�

�
> 0:

Hence yk� = 0 violates the inequality (19) for s = k�: �

Proof of Proposition 3. Let us be given a two-player common-value Tullock contest

in which player 2 has an information advantage over player 1. Given (yk� ; ::::; ym) 2
Rk�+ de�ne the function

�p2 (yk� ; :::; ym) :=
mX

k=k�

pkyk
yk +

Pm
s=k� psys

:

Hence ��2 = �p2 (y
�
k� ; :::; y

�
m). We show that the maximum value of �p2 on K =

f(yk� ; ::::; ym) 2 Rk
�
+ j yk� � yk�+1::: � ymg is reached at yk� = ::: = ym: Hence

max
K
�p2 =

mX
k=k�

pk
1 +

Pm
s=k� ps

� 1
2
;

and therefore y�k� < ::: < y�m implies ��2 = �p2 (y
�
k� ; :::; y

�
m) < maxK �p2 � 1=2, which

establishes Proposition 3.
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Di¤erentiating �p2 with respect to yk for k 2 fk�; :::;mg we get

@�p2
@yk

= pk

 
mX

t=k�;t6=k

ptyt
(yk +

Pm
s=k� psys)

2
�

mX
t=k�;t6=k

ptyt
(yt +

Pm
s=k� psys)

2

!
; (20)

Hence yk� = ::: = ym implies
@�p2
@yk

= 0

for all k 2 fk�; :::;mg: Moreover, for every(yk� ; :::; ym) 2 K such that yk� � yk�+1 �
::: � ym; then @�p2=@yk� > 0; and therefore yk� = yk�+1. Suppose now that yk� =

yk�+1 = ::: = yk = y ; m � 1 � k > 1: We will show that yk+1 = y as well. If

yk� = yk�+1 = ::: = yk, then by (20) we obtain that @�p2=@yk > 0; and therefore

yk = yk+1. �
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