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Jurečková, Dr. Shinya Tanaka, Dr. Ryota Yabe, and all the participants of my presentations

for their constructive comments. Their suggestions helped me improve the dissertation. I

1



2

also thank my parents, Ryomei and Ayako, for their enduring financial support.

Finally, this research has been partially supported by a Japan Society for the Promotion

of Science Research Fellowship for Young Scientists.

Yoshimasa Uematsu

September, 2013



Contents

1 Overview 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Overview: Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Overview: Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview: Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Asymptotic Efficiency of the OLS Estimator with a Singular Limiting Sample

Moment Matrix 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Slowly varying regressor . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Proofs of the results . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Testing for a Unit Root in the Presence of a Slowly Varying Regressor 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



4

3.2 Assumptions and Preliminary Results . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Slowly varying regressor . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Disturbances and preliminary results on asymptotics . . . . . . . . 34

3.3 Limit Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Limit distribution of the OLS estimator . . . . . . . . . . . . . . . 37

3.3.2 Limit distribution of the unit root test statistic . . . . . . . . . . . . 38

3.4 Properties of the Unit Root Test Statistics . . . . . . . . . . . . . . . . . . 40

3.4.1 Finite sample behaviors . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Improvement of the finite sample performance . . . . . . . . . . . 41

3.4.3 Generalization of the unit root test statistics . . . . . . . . . . . . . 43

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Lp-approximability . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.3 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . 48

4 Nonstationary Nonlinear Quantile Regression 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 The model and estimator . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 The classes of transformation . . . . . . . . . . . . . . . . . . . . 72

4.3 Local Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Fully-modified estimation . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Testing for parameter restrictions . . . . . . . . . . . . . . . . . . 78

4.5 Asymptotic Behavior of Linear-in-parameter Models . . . . . . . . . . . . 79

4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



5

4.6.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.1 Functional classes . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.2 Estimation of sparsity functions . . . . . . . . . . . . . . . . . . . 85

4.8.3 Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.4 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 117



Chapter 1

Overview

1.1 Introduction

The statistical properties of both stationary and nonstationary linear time series have been

intensively analyzed. From an applicational point of view, empirical econometricians fre-

quently use linear models because of their manageability. Although such models are known

to provide good approximations of economic phenomena in many cases, there are some

exceptions where a linear model does not adequately capture economic behavior; this is

typically observed in financial time series. It may also be natural to employ nonlinear mod-

els to determine the model best suited for capturing nonlinearities in economic activities.

Nonlinear models in time series appear in Teräsvirta et al. (2010), for instance. In terms of

the estimation and inference of nonlinear models, intrinsic difficulties arise in each model

that a researcher wants to employ. This is because complexity increases as a model becomes

more precise. One of the objectives for statisticians is to supply empirical researchers with

valid methods to identify the statistical properties of models and make greater inferences.

There are many ways to extend simple linear models to nonlinear ones even if we restrict

our attention to parametric models. In particular, this dissertation focuses on the following

two formulations that may capture some of the nonlinearities that arise in the analysis of

6



Overview 7

time series.

The first is characterized by a model with deterministic regressors as follows.

yt = α +β f (t)+ut ,

where the model is formulated to be linear-in-parameter, but the trend term f (t) is specified

as a nonlinear function of time t. A number of economic time series, such as economic

growth data, are distributed around deterministic functions of time. Therefore, this mod-

eling seems to be valid for determining the features of observations in a flexible manner.

Many articles, such as Vogelsang (1998), utilized a general l-dimensional vector of time-

trending regressors f (t) = [ f1(t), . . . , fl(t)]′ for t = 1, . . . ,n to construct a deterministically

time-trending model. In this case, it is assumed that there exist a diagonal normalization

matrix Dn and a vector of functions F(r) for r ∈ [0,1] so that

Dn f (t) = F(t/n)+o(1),
∫ 1

0
F(r)dr < ∞, det

[∫ 1

0
F(r)F(r)′dr

]
> 0.

These conditions are similar to a part of Grenander’s conditions and are general enough to

include many trend formulations, such as polynomials of t, possibly with structural changes.

However, they rule out regressors, which are asymptotically collinear in spite of their pos-

sible applications, meaning that they limit the scope of empirical analysis. Accordingly,

time series models with such regressors are investigated in Chapter 2 and 3. Their roles in

econometric analysis are summarized in Section 2.1.

The second formulation is marked by the parametric nonlinear model of the form

yt = α +g(xt ,β )+ut .

This type of formulation includes many econometric models, such as discrete choice mod-

els, logistic models, models with Box-Cox transformation, and smooth transition models.

In a time series context, numerous works have been produced with a focus on stationary

covariates. Park and Phillips (2001) considered models of this type with the covariate xt
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as an integrated time series. That paper sought to develop the asymptotic properties of the

estimators obtained by nonlinear least squares estimation. Their asymptotic distributions de-

pend heavily on the formulation of the regression function g. Following this seminal work

of Park and Phillips, a large number of related papers were published from theoretical and

applied perspectives. The reader may find a portion of these studies in Section 4.1. Given

this background, this thesis deals with this type of model and investigates the asymptotic

properties of the quantile regression estimators in Chapter 4.

1.2 Overview: Chapter 2

Chapter 2 presents a model that has an asymptotically efficient ordinary least squares (OLS)

estimator, irrespective of the singularity of its limiting sample moment matrix. In the litera-

ture on time series, Grenander and Rosenblatt’s result is necessary to judge the asymptotic

efficiency of the OLS estimator with requiring that the regressors satisfy Grenander’s con-

ditions. Without the conditions, however, it is not obvious whether the estimator is efficient.

In Chapter 2, we introduce such a model by analyzing the regression model with a slowly

varying (SV) regressor under a quite general assumption on errors. These regressors are

known to display asymptotic singularity in the sample moment matrices; that is, Grenan-

der’s condition fails.

A positive-valued function L on R+ is called SV if it satisfies, for any r > 0, L(rn)/L(n)→

1 as n → ∞. To deal with an SV function L, we suppose that L has the following Karamata’s

representation

L(n) = cL exp
(∫ n

B

ε(s)
s

ds
)

for n ≥ B

for some B > 0. Here, cL > 0, ε is continuous and ε(n)→ 0 as n → ∞. Note that any SV

function is of order o(nα) for all α > 0. With some additional conditions on L, we consider
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the following regression model

yt = β0 +β1L(t)+ut for t = 1, . . . ,n, or y = Xβ +u,

where y= [y1, . . . ,yn]
′, β = [β0,β1]

′ and X = [ι ,L] with ι = [1, . . . ,1]′ and L= [L(1), . . . ,L(n)]′.

The term ut represents the regression error and is modeled to include a very wide class of

stationary processes with a positive and continuous spectrum. If we write u = [u1, . . . ,un]
′,

the variance is given by

Var(u) =



γ0 γ1 · · · γn−1

γ1 γ0 · · · γn−2

...
... . . . ...

γn−1 γn−2 · · · γ0


= [Γ0,Γ1, . . . ,Γn−1] = Γ,

where Γt is the tth column vector of Var(u). We further denote the long-run variance of

{ut} as σ2. Using these notations, we may define the OLS and GLS estimators as β̂OLS =

(X ′X)−1X ′y and β̂GLS = (X ′Γ−1X)−1X ′Γ−1y, respectively.

The OLS estimator is said to be asymptotically efficient if

Fn

[
Var(β̂OLS)−Var(β̂GLS)

]
Fn → 0

is true for some common standardizing matrix Fn. In Chapter 2, the convergence is proved

for the SV model. That is, if regularity conditions hold, then Var(β̂OLS) and Var(β̂GLS) of

the model have the same asymptotic variance of the form

σ2


1

nε(n)2 − 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

(1+o(1)),

implying that the OLS estimator is asymptotically efficient with the standardizing matrix

Fn = diag[n1/2ε(n),n1/2L(n)ε(n)].
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1.3 Overview: Chapter 3

Chapter 3 considers a unit root test in the presence of a SV regressor L. The definition of the

SV function L follows from the preceding section, but the assumptions to be imposed here

are somewhat different. Consider the model

yt = α +βL(t)+ut and ut = ρut−1 + vt for t = 1, . . . ,n, (1.1)

where ρ = 1 and {vt} is assumed to be a one-summable linear process with E|vt |p < ∞ for

some p > 2. The regressor L(t) is given by an SV function that satisfies some regularity

conditions. The first result is to derive the limiting distribution of the OLS estimator:

1
n1/2

 ε(n)(α̂n −α)

L(n)ε(n)(β̂n −β )

 d−→ N

0,
2σ2

L
27

 1 −1

−1 1


 ,

where σ2
L is the long-run variance of vt . This weak convergence is obtained by Mynbaev’s

CLT (see Mynbaev 2009, 2011a), which is applicable for a weighted sum of linear processes.

Because any SV function possesses an asymptotic order of o(n1/2), the OLS estimators

cannot be consistent. This fact contrasts with the case where the simple trend t is employed.

Considering models with an SV regressor, we therefore remark that the existence of a unit

root leads to a meaningless regression and that testing for a unit root is indispensable.

Let W (·) denote the standard Brownian motion obtained in the limit of the partial sum

process σ−1
L n−1/2 ∑[ ·n]

t=1 vt . The next result we investigate is the asymptotic behaviors of the

unit root test statistics, that is, the estimated regression coefficient ρ̂n and corresponding

t-statistic tρ̂n , based on the regression residuals. Under the regularity conditions, we obtain

nε(n)2 (ρ̂n −1) d−→− U1

2V1
and ε(n)2tρ̂n

d−→−σL

σS

U1

2
√

V1
,

where σ2
S is the short-run variance of vt and U1 and V1 are given by

U1 =

{∫ 1

0
(1+ logr)W (r)dr

}2

and

V1 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

−
{∫ 1

0
(1+ logr)W (r)dr

}2

.
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These results are derived by an application of both Mynbaev’s CLT and FCLT for a linear

process. Testing a unit root by these statistics, however, will be useless because the finite

sample approximation is poor.

To overcome this difficulty, we first consider the following no-constant model

yt = βL(t)+ut and ut = ρut−1 + vt for t = 1, . . . ,n, (1.2)

where the same assumptions on L(t) and vt continue to hold. Then, we have the similar

weak convergence results

L(n)
n1/2

(
β̂n −β

)
d−→ N

(
0,

σ2
L

3

)
,

and

n(ρ̂n −1) d−→
U2 −σ2

S/σ2
L

2V2
and tρ̂n

d−→ σL

σS

U2 −σ2
S/σ2

L

2
√

V2
,

where

U2 =

{
W (1)−

∫ 1

0
W (r)dr

}2

and V2 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

.

In practice, it may not be appropriate to suppose that the true model has no constant term.

It is worth analyzing the situation where the true model is given by (1.1), which possesses

a constant term, but the no-constant model (1.2) is employed for regression. Then, we

still have the same asymptotic result based on the no-constant model with the effect of a

constant term declining at the rate O(n−1/2). This manipulation brings about a significant

improvement in terms of size and power in finite sample situations, and a unit root test based

on this procedure is recommended. Applying the result, we finally give general Phillips and

Perron type test statistics.

1.4 Overview: Chapter 4

Chapter 4 studies estimation and inference for nonlinear regression models with integrated

time series by quantile regression. Suppose that the scalar-valued random variable yt is
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generated from the following nonlinear model

yt = α0 +g(xt ,β0)+ut for t = 1, . . . ,n, (1.3)

where g : R×Rℓ → R is a known regression function, and xt and ut are the covariate and

error, respectively. In particular, xt is specified as a simple AR(1) unit root model xt =

xt−1 + vt , where vt is stationary. The ℓ-dimensional true parameter vector θ0 = (α0,β ′
0)

′ is

assumed to lie in the parameter set Θ = A×B ⊂ R×Rℓ. Moreover, let F and f denote

the cumulative distribution function (CDF) and pobability density function (PDF) of ut ,

respectively. Note that the τth quantile of ut for a fixed τ ∈ (0,1) is simply denoted by

F−1(τ) under some regularity conditions on ut . Let utτ = ut −F−1(τ) for t = 1, . . . ,n. We

may also rewrite the parameter so that α0(τ) = α0 +F−1(τ) in response to the error term

utτ and define the new parameter vector θ0(τ) =
(
α0(τ),β ′

0
)′.

The regression function (x,β ) 7→ g(x,β ) is classified into two functional classes as in

park and Phillips (2001). The first is the class of H-regular functions, which are defined by

g(λx,β ) = κ(λ )h(x,β )+R(x,λ ,β ),

where the functions κ and h are said to be the asymptotic order and limit homogeneous

function of g, respectively. The last term, R(x,λ ,β ), is a remainder. Polynomial functions,

distribution-like functions and logarithmic function are included in this H-regular class. The

second is the class of I-regular functions, which are characterized as bounded and integrable

functions with respect to x with sufficient smoothness in β . An example is an exponential

function of the form β exp(−x2).

With this setting, we may obtain the nonlinear quantile regression (NQR) estimator

θ̂n(τ) =
(

α̂n(τ), β̂n(τ)′
)′

of θ0(τ) by solving the minimization problem

θ̂n(τ) = argmin
θ∈Θ

n

∑
t=1

ρτ(yt −α −g(xt ,β )),

where ρτ(u) = uψτ(u) with ψτ(u) = τ −1(u < 0).
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To develop the analysis, we are required to make assumptions on errors ut and vt . We

construct two partial sum processes

Uψ
n (τ,r) =

1
n1/2

[nr]

∑
t=1

ψτ(utτ) and Vn(r) =
1

n1/2

[nr]

∑
t=0

vt+1.

The process {ψτ(utτ)} is assumed to be a martingale difference sequence. Further, we sup-

pose that the vector (Uψ
n ,Vn)(r) converges weakly to a vector Brownian motion (Uψ ,V )(r)

whose covariance matrix is Ω(r). In addition, we assume that vt is a linear process for an

I-regular g.

One of the main contributions of Chapter 4 is that the asymptotic distribution of the

NQR estimator θ̂n(τ) is derived with restricting our attention to the class of H-regular func-

tions. Note that the class of I-regular functions cannot be treated in the same framework

due to the irregular convergence rate n1/4; this class is investigated later with a restriction

to model (1.3). The regression function g(x, ·) is always supposed to be twice continuously

differentiable. Define notation of the first and second order derivatives as

ġ(x,β ) =
∂g
∂β

(x,β ) and G̈(x,β ) =
∂ 2g

∂β∂β ′ (x,β ),

and we further write g̈ = vec(G̈). Corresponding to the ℓ-dimensional vector ġ and ℓ2-

dimensional vector g̈, the asymptotic order matrices κ̇n (ℓ× ℓ) and κ̈n (ℓ2 × ℓ2) and the

vector of the limit homogeneous functions ḣ and ḧ are introduced when ġ and g̈ are H-

regular. We further let g̃ = (1, ġ′)′, h̃ = (1, ḣ′)′ and κ̃n = diag(1, κ̇n). To obtain the limiting

distribution, we need to suppose an additional assumption on the parameter vector θ so that

θ = θ0(τ)+n−1/2κ̃ ′−1
n π , where π lies in a compact set Π ⊂ R×Rℓ.

Define the derivative from the right of the objective function as

zt(θ) = g̃t(β )ψτ(yt −α −gt(β )).

Utilizing this function, we may derive the limiting distribution by considering the “first order

condition”

n−1/2κ̃−1
n

n

∑
t=1

zt(θ̂n(τ)) = op(1).
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This estimating equation leads to the Bahadur representation of the NQR estimator θ̂n(τ).

In consequence, we obtain the result. Let ġ and g̈ be H-regular on B. Then, under some

regularity conditions, we have

n1/2κ̃ ′
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ(r).

Note that the limiting distribution is not usually (mixed) normal because of the possible

nonzero correlation between Uψ and V . Therefore standard inferences are not applicable in

this case.

To overcome the difficulty, we suggest fully-modified NQR (FM-NQR) estimator based

on the results of Phillips and Hansen (1990) and de Jong (2002). The FM-NQR estimator is

constructed by

θ̂+
n (τ) = θ̂n(τ)−

n−1/2κ̃−1
n

̂f (F−1(τ))

ω̂ψv

ω̂2
v

S−1
n Tn,

where ̂1/ f (F−1(τ)), ω̂ψv and ω̂2
v are consistent estimators. The statistics Sn and Tn satisfy

Sn
p−→
∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr and Tn
d−→
∫ 1

0
h̃(V (r),β0)dV (r).

If some additional conditions of de Jong (2002) are satisfied, we then have

n1/2κ̃ ′
n
(
θ̂+

n (τ)−θ0(τ)
)

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ+(r),

where Uψ+(r) =Uψ(r)−ωψvω−2
v V (r). Therefore, the mixed normality of the limiting ran-

dom variable is brought to light immediately because Uψ+ is easily found to be uncorrelated

with V and, hence, independent of V . Because of the asymptotic normality of the FM-NQR

estimator, we can consider testing linear restrictions on the parameter vector.

We have considered the NQR estimator of the nonlinear model only in the case of H-

regular ġ and g̈. We then investigate the so-called linear-in-parameter model obtained by
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confining model (1.3) to

g(xt ,β0) = β0g(xt). (1.4)

The regression function g is either I-regular or H-regular and write gt = g(xt). The parameter

β0 is allowed ℓ-dimensional, but is assumed ℓ= 1 for the sake of brevity. Because the model

is linear in parameter, the asymptotics can be derived even if g is an I-regular function as

well as an H-regular one.

First, we consider model (1.3) under restriction (1.4) with I-regular regression function

derivative ġ. The limiting distribution of the NQR estimator θ̂n(τ) is summarized as follows.

Let g be I-regular on B, and suppose some regularity conditions. Then we have

DI
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

 Uψ(1)(
L(1,0)

∫ ∞

−∞
g(x)2dx

)−1/2

W (1)

 ,
where DI

n = diag(n1/2,n1/4) and the Brownian motion W (r) has variance rτ(1− τ), which

is the same as the variance of Uψ(r). This implies that α̂n(τ) and β̂n(τ) are asymptotically

independent; consequently, the limiting joint distribution is mixed normal of the form

MN

0,
ω2

ψ

f (F−1(τ))2

1 0

0 L(1,0)
∫ ∞
−∞ g(x)2dx


−1
 .

Hence, standard inferences are applicable in an asymptotic sense. For the case of H-regular

functions, we certainly have the same result obtained above.

Finally, we investigate finite sample performances of the NQR estimators with τ = 0.5

via comparison to nonlinear least squares (NLS) estimators by simulations. We observe

from simulations that our suggested NQR estimators are preferable to the NLS estimators

in terms of estimation accuracy and powers of tests when distributions of regression errors

possess fat tails.



Chapter 2

Asymptotic Efficiency of the OLS

Estimator with a Singular Limiting

Sample Moment Matrix

This chapter presents a model that has an asymptotically efficient ordinary least squares

estimator irrespective of the singularity of its limiting sample moment matrices. In the liter-

ature on time series, Grenander and Rosenblatt’s result is necessary to judge the efficiency

with requiring Grenander’s conditions. Without the conditions, however, it is not obvious

whether the estimator is efficient. In this chapter, we introduce such a model by analyzing

a model with a slowly varying regressor under quite general assumptions on errors. These

regressors are known to display asymptotic singularity in the sample moment matrices, or

namely Grenander’s condition fails.

2.1 Introduction

Discussion on the asymptotic relative efficiency of ordinary least squares (OLS) estima-

tors of a time series regression dates from the middle of the twentieth century. When the

16
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regressors are deterministic functions of time and the disturbances may be serially autocor-

related, Grenander (1954), Rosenblatt (1956), and Grenander and Rosenblatt (1957) (GR)

have shown the necessary and sufficient condition for OLS estimators to be asymptotically

efficient. Following the seminal work of GR, much attention has been given to stochastic

regressors. Krämer (1986) proved the asymptotic equivalence of the OLS and GLS estima-

tors when the regressor is a univariate integrated process. Phillips and Park (1988) extended

these results to multiple regressions. Krämer and Hassler (1998) studied the case where the

regressors are fractionally integrated. Shin and Oh (2002) generalized the class of regressors

to the class of unstable regressors containing a seasonally integrated process.

The present chapter reconsiders a model with deterministic regressors. In order to judge

its efficiency, the GR theorem requires the regressors to satisfy the well-known Grenander’s

conditions in the first place. In general, it is unclear whether the OLS estimator is efficient

or not unless Grenander’s conditions are satisfied and the GR theorem is applied.

Given this background, this chapter shows the existence of a model that has asymptot-

ically efficient OLS estimators even though it does not satisfy the conditions. The result

is derived through investigating the regression model with a slowly varying (SV) regres-

sor. Grenander’s conditions are known to be valid for many types of regressors, including a

polynomial of time, and many studies have restricted the regressors to this class. However,

this is not true for SV regressors (see Phillips (2007)), although there are many applica-

tions of such SV regressors. These include the log-periodogram regression of long memory

(Robinson (1995), Hurvich et al. (1998), Phillips (1999), and references therein), nonlinear

least squares estimation (Wu (1981), Phillips (2007), Mynbaev (2011)), and the study of

growth convergence (Barro and Sala-i-Martin (2004)). Concerning economic convergence

and transition modeling, Phillips and Sul (2007, 2009) designed a new model that represents

the behavior of economies in transition and proposed an associated test for convergence,

utilizing SV functions explicitly. Therefore, it is worth analyzing such SV models from an

applicational point of view. Furthermore, in view of a theoretical contribution, this yields a
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simple but significant example of models, as the results complement the GR theory because

the assumption to be made on the error term is identical to that of GR.

The remainder of the chapter is organized as follows: Section 2.2 includes some as-

sumptions and provides some preliminary theory. We especially consider models with SV

regressors as investigated by Phillips (2007) and Mynbaev (2009). Section 2.3 states the

main theorem for asymptotic efficiency and Section 2.4 concludes. Section 2.5 contains the

proofs for the results.

2.2 Preliminaries

2.2.1 Slowly varying regressor

We start with a definition of an SV function. A positive-valued function L on R+ is called

SV if it satisfies, for any r > 0, L(rn)/L(n) → 1 as n → ∞. In order to deal with an SV

function L, the following Karamata representation theorem is essential. That is, the function

L is SV if and only if it may be written in the form

L(n) = c(n)exp
(∫ n

a

ε(s)
s

ds
)

for n > a

for some a > 0, where c(n)→ c ∈ (0,∞) and ε(n)→ 0 as n → ∞. Considering regression

theory, however, we require a stronger assumption.

Assumption 1 Suppose all the conditions below:

(a) The function L is SV and has Karamata’s representation

L(x) = cL exp
(∫ x

B

ε(s)
s

ds
)

for x ≥ B

for some B > 0. Here cL > 0, ε is continuous and ε(x)→ 0 as x → ∞. Hereafter, this

part of the assumption is shortened to L = K(ε).

(b) ε = K(η), η = K(µ), where µ = (ε +η)/2, and η(n)2 = o(ε(n)).



Asymptotic Efficiency of the OLS Estimator 19

(c) L is monotonically increasing.

Remark 1 Condition (a) imposes more restrictive assumptions than the Karamata represen-

tation. This condition also appeared in Phillips (2007) and Mynbaev (2009). Condition (b)

is essential for Lemma 1 below (see Mynbaev (2011a, 4.2.4)). Condition (c) seems rather

stringent, but this reduces the burden of calculation in the proof. Note that any SV function

is of order o(nα) for all α > 0.

An application of Assumption 1 leads to the following lemma.

Lemma 1 (Phillips) If L(t) satisfies Assumption 1, then, for k = 0,1,2, . . . we have

1
n

n

∑
t=1

L(t)k = L(n)k − kL(n)kε(n)+ k2L(n)kε(n)2 + kL(n)kε(n)η(n)

+o
(

L(n)kε(n) [ε(n)+η(n)]
)
.

2.2.2 Regression model

Consider the following regression model:

yt = β0 +β1L(t)+ut for t = 1, . . . ,n, or y = Xβ +u, (2.1)

where y= [y1, . . . ,yn]
′, β = [β0,β1]

′, and X = [ι ,L] with ι = [1, . . . ,1]′ and L= [L(1), . . . ,L(n)]′.

Using these notations, we may define the OLS and GLS estimators as β̂OLS = (X ′X)−1X ′y

and β̂GLS = (X ′Γ−1X)−1X ′Γ−1y, respectively. The OLS estimator is said to be asymptoti-

cally efficient if

Fn

[
Var(β̂OLS)−Var(β̂GLS)

]
Fn → 0 (2.2)

is true for some common standardizing matrix Fn.

An assumption on the regression errors ut is required. As the objective here is not to de-

rive the asymptotic distribution of the OLS estimator, but to prove its asymptotic efficiency,

we need an assumption that is sufficiently general to include a very wide class of stationary

processes.
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Assumption 2 The error process {ut} is real and stationary with Eut = 0 and Eutut+h = γh.

Furthermore, {ut} has a spectral density f (λ ) that is positive and continuous in λ ∈ [−π,π].

Let u = [u1, . . . ,un]
′ and

Var(u) =



γ0 γ1 · · · γn−1

γ1 γ0 · · · γn−2

...
... . . . ...

γn−1 γn−2 · · · γ0


= [Γ0,Γ1, . . . ,Γn−1] = Γ,

where Γt−1 is the tth column vector of Var(u) for t = 1, . . . ,n.

Remark 2 The error term {ut} with Assumption 2 is quite general in that the GR result

requires the same condition. In particular, no summability condition is provided on γh. In

contrast, Phillips (2007) and Mynbaev (2009) assume that {ut} is a linear process with more

restrictive conditions because they attempt to derive the asymptotic distributions of the OLS

estimator.

Remark 3 Throughout the chapter, we let

σ2
n = nVar(ū) =

1
n

n

∑
s=1

n

∑
t=1

γs−t and σ2 = 2π f (0),

where σ2 is the long-run variance. If Assumption 2 holds, then we have σ2
n → σ2 as n → ∞

(see Fuller (1996, p. 310)). The boundedness of the limit σ2 is ensured by the continuity of

f . In addition, both the GR result and our subsequent analysis require the positiveness of f

because its reciprocal is needed for the expression of the variance of the GLS estimator.

Using Lemma 1, Phillips (2007) proved that

D−1
n X ′XD−1

n →

 1 1

1 1

 and Fn
(
X ′X

)−1 Fn →

 1 −1

−1 1

 ,
where Dn = diag(n1/2,n1/2L(n)) and Fn = diag(n1/2ε(n),n1/2L(n)ε(n)). This implies that

the covariance and its inverse have singular limits after standardization, thereby failing
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Grenander’s conditions; the GR result may thus not be applied directly. For further dis-

cussion on the GR result, see Anderson (1971, Sect. 10.2.3), for example.

2.3 Result

We now derive the asymptotic expression for the variance of the OLS and GLS estimators

of model (2.1). The first result yields the asymptotic variance of the OLS estimator.

Lemma 2 If Assumptions 1 and 2 are satisfied, then the OLS estimator of model (2.1) has

asymptotic variance

Var(β̂OLS) = σ2


1

nε(n)2 − 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

(1+o(1)).

The asymptotic expression of Var(β̂OLS) is the same as that derived by Phillips (2007, The-

orem 3.1) as a by-product of proving asymptotic normality, although the result of Lemma 2

is valid for a wider class of short-memory stationary errors.

We next derive the asymptotic variance of the GLS estimator.

Lemma 3 If Assumptions 1 and 2 are satisfied, then the GLS estimator of model (2.1) has

the same asymptotic variance as that given in Lemma 2.

To summarize, we state the theorem below.

Theorem 1 If Assumptions 1 and 2 are satisfied, then the OLS estimator of model (2.1) is

asymptotically efficient. In fact, (2.2) is true with the normalizing matrix Fn = diag(n1/2ε(n),n1/2L(n)ε(n)).

Remark 4 This result is given for the simple regression (2.1), although Phillips (2007) dealt

with polynomial and multiple regressions of SV regressors as well. In the same manner, our

result can be extended to the polynomial models since a power of L is also SV. However,
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the computation required would be burdensome. For a multiple regression with different SV

regressors, it may be difficult to verify the same result; see Mynbaev (2011b).

2.4 Conclusion

In the literature of stationary time series analysis and classical GR results, regressors are re-

quired to satisfy the Grenander conditions when researchers want to know whether the OLS

estimator is asymptotically efficient. In the present chapter, however, we have revealed the

existence of a model that has an asymptotically efficient OLS estimator even though it does

not satisfy Grenander’s conditions. The model and result have been given by proving the

asymptotic equivalence of the OLS and GLS estimators of the model with an SV regressor.

The assumption needed for the error term is quite general, and is identical to that for GR.

2.5 Appendix

2.5.1 Useful lemmas

Lemma 4 If Assumption 2 is satisfied, then, for all m,n ≥ 1, it follows that

m

∑
u=1

n

∑
v=1

γu−v =
∫ π

−π

sin(mλ/2)sin(nλ/2)cos((m−n)λ/2)
sin2(λ/2)

f (λ )dλ .

Proof From Assumption 2, we first note that the autocovariance γu−v is written as

γu−v =
∫ π

−π
ei(u−v)λ f (λ )dλ . (2.3)

Because

m

∑
u=1

eiuλ =
eiλ
(

1− eimλ
)

1− eiλ

=
eiλ
(

e−imλ/2 − eimλ/2
)

eimλ/2(
e−iλ/2 − eiλ/2

)
eiλ/2 =

sin(mλ/2)
sin(λ/2)

ei(m+1)λ/2,
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it follows from (2.3) that

m

∑
u=1

n

∑
v=1

γu−v =
∫ π

−π

m

∑
u=1

eiuλ
n

∑
v=1

e−ivλ f (λ )dλ

=
∫ π

−π

sin(mλ/2)sin(nλ/2)
sin2(λ/2)

ei(m−n)λ/2 f (λ )dλ

=
∫ π

−π

sin(mλ/2)sin(nλ/2)
sin2(λ/2)

{cos((m−n)λ/2)+ isin((m−n)λ/2)} f (λ )dλ .

Since γu−v is real, the result follows. ■

Lemma 5 Define gn(u) = ∑n
s=1 γs−u − σ2

n , g̃n(t) = ∑t
u=1 gn(u), hn(u) = ∑n

s=1 L(s)γs−u −

σ2
n L(u) and h̃n(t) = ∑t

u=1 hn(u). If Assumptions 1 and 2 are satisfied, then, for a sufficiently

large n, the following statements are true:

(a) max
1≤t≤n

|g̃n(t)| ≤C for some constant C > 0,

(b) max
1≤t≤n

∣∣h̃n(t)
∣∣= o(nL(n)ε(n)2).

Proof (a) Recalling σ2
n = n−1 ∑∑n

s,v=1 γs−v and applying Lemma 4, we have

|g̃n(t)|

=

∣∣∣∣∣ t

∑
u=1

n

∑
s=1

γs−u −
t
n

n

∑
s=1

n

∑
v=1

γs−v

∣∣∣∣∣
=

∣∣∣∣∫ π

−π

{
sin(tλ/2)sin(nλ/2)cos((t −n)λ/2)

sin2(λ/2)
− t

n
sin2(nλ/2)
sin2(λ/2)

}
f (λ )dλ

∣∣∣∣
≤ max

−π≤λ≤π
f (λ )

∫ π

−π

∣∣∣∣sin
tλ
2

sin
nλ
2

cos
(t −n)λ

2
− t

n
sin2 nλ

2

∣∣∣∣ dλ
sin2(λ/2)

.

(2.4)

Let the last integrand in (2.4) denote St,n(λ ). Then, St,n(λ ) is clearly bounded on [−π,π]

uniformly in t = 1, . . . ,n, and n ≥ 1 except at λ = 0. At this point only, the ratio is of

indeterminate form. Even if the point λ = 0 is included, however, boundedness can be

proved uniformly on [−π,π] as follows.
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Transforming the product of the trigonometric functions to their summations and apply-

ing l’Hôpital’s rule twice, we obtain

lim
λ→0

St,n(λ )

= lim
λ→0

∣∣∣∣−cosnλ + cos(t −n)λ +1− cos tλ − 2t
n
(1− cosnλ )

∣∣∣∣ 1
2(1− cosλ )

= lim
λ→0

|nsinnλ − (t −n)sin(t −n)λ + t sin tλ −2t sinnλ | 1
2sinλ

= lim
λ→0

∣∣n2 cosnλ − (t −n)2 cos(t −n)λ + t2 cos tλ −2nt cosnλ
∣∣ 1

2cosλ

=
∣∣n2 − (t −n)2 + t2 −2nt

∣∣ 1
2
= 0

(2.5)

identically for all t = 1, . . . ,n and n ≥ 1. Thus, the integral in (2.4) is uniformly bounded in

t = 1, . . . ,n and n ≥ 1, and this gives the proof of (a).

(b) Without loss of generality, we can set L(1) = 0. Applying summation by parts and

collecting terms gives

∣∣h̃n(t)
∣∣= ∣∣∣∣∣ n

∑
v=1

L(v)
t

∑
u=1

γv−u −
∑t

u=1 L(u)
n

n

∑
u=1

n

∑
v=1

γv−u

∣∣∣∣∣
=

∣∣∣∣∣L(n) n

∑
v=1

t

∑
u=1

γv−u −
n

∑
s=2

s−1

∑
v=1

t

∑
u=1

γv−u∆L(s)− ∑t
u=1 L(u)

n

n

∑
u=1

n

∑
v=1

γv−u

∣∣∣∣∣
≤

n

∑
s=2

∣∣∣∣∣ n

∑
v=1

t

∑
u=1

γv−u −
s−1

∑
v=1

t

∑
u=1

γv−u −
∑t

u=1 L(u)
nL(n)

n

∑
u=1

n

∑
v=1

γv−u

∣∣∣∣∣∆L(s).

If we use Lemma 4 as in (a),
∣∣h̃n(t)

∣∣ may be bounded by∣∣h̃n(t)
∣∣≤ max

−π≤λ≤π
f (λ )

n

∑
s=2

∫ π

−π

∣∣∣∣sin
tλ
2

sin
nλ
2

cos
(n− t)λ

2

−sin
tλ
2

sin
(s−1)λ

2
cos

(s− t −1)λ
2

− ∑t
u=1 L(u)
nL(n)

sin2 nλ
2

∣∣∣∣ dλ
sin2(λ/2)

∆L(s).
(2.6)

Let the integrand of (2.6) denote Ts,t,n(λ ). Since L(t) is positive and monotonically increas-

ing, we have the bound

0 ≤ ∑t
u=1 L(u)
nL(n)

≤ ∑n
u=1 L(u)
nL(n)

≤ 1 (2.7)

uniformly in t = 1, . . . ,n and n ≥ 1. Therefore, as in the proof of (a), Ts,t,n(λ ) is bounded

on [−π,π] uniformly in s, t = 1, . . . ,n and n ≥ 1 except at the indeterminate point λ = 0. By



Asymptotic Efficiency of the OLS Estimator 25

the same computational method as in (2.5), using bound (2.7) again, we can observe for a

large n that

lim
λ→0

Ts,t,n(λ ) =
1
2

∣∣∣∣2nt − t(s−1)−2n
∑t

u=1 L(u)
L(n)

∣∣∣∣= O(n2)

uniformly in s, t = 1, . . . ,n. Returning to the integral in (2.6), we split the area of the integral

In = (−δε(n)2/n,δε(n)2/n) and Jn = [−π,π]\An for any fixed δ > 0. Then we have∫ π

−π
Ts,t,n(λ )dλ =

∫
In

Tn,s,t(λ )dλ +
∫

Jn

Tn,s,t(λ )dλ

=
δε(n)2

n
O(n2)+O(1) = o(nε(n)2)

(2.8)

uniformly in s, t = 1, . . . ,n. From (2.6) and (2.8), we obtain the result that
∣∣h̃n(t)

∣∣= o(nL(n)ε(n)2)

uniformly in t = 1, . . . ,n. ■

2.5.2 Proofs of the results

Proof of Lemma 2 We can write

X ′ΓX =

 ι ′Γι ι ′ΓL

ι ′ΓL L′ΓL

 and σ2
n =

1
n

n

∑
s=1

n

∑
t=1

γs−t

and first show that

(i) ι ′Γι = σ2
n n,

(ii) ι ′ΓL = σ2
n ι ′L+o

(
nL(n)ε(n)2) ,

(iii) L′ΓL = σ2
n L′L+o

(
nL(n)2ε(n)2) .
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If these equations are true, the variance leads to

Var(β̂OLS) = (X ′X)−1X ′ΓX(X ′X)−1

=

 n ι ′L

ι ′L L′L


−1 ι ′Γι ι ′ΓL

L′Γι L′ΓL


 n ι ′L

L′ι L′L


−1

=
1

(nL′L− (ι ′L)2)
2

 L′L −ι ′L

−L′ι n


×σ2

n

 n ι ′L+o(nL(n)ε(n)2)

L′ι +o(nL(n)ε(n)2) L′L+o(nL(n)2ε(n)2)


 L′L −ι ′L

−L′ι n


=

σ2
n

n4L(n)4ε(n)4(1+o(1))

×

 n3L(n)4ε(n)2(1+o(1)) −n3L(n)3ε(n)2(1+o(1))

−n3L(n)3ε(n)2(1+o(1)) n3L(n)2ε(n)2(1+o(1))



=
σ2

n
1+o(1)


1

nε(n)2 − 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

(1+o(1)),

where we have used the fact that nL′L− (ι ′L)2 = n2L(n)2ε(n)2(1+o(1)) by Lemma 1, and

the result follows. Thus, it suffices to prove (i), (ii) and (iii).

(i) It is trivial by the definition of σ2
n .

(ii) Define gn(t) = ∑n
s=1 γs−t −σ2

n and g̃n(t) = ∑t
u=1 gn(u). Then, we see that

∣∣ι ′ΓL−σ2
n ι ′L

∣∣= ∣∣∣∣∣ n

∑
t=1

L(t)

(
n

∑
s=1

γs−t −σ2
n

)∣∣∣∣∣=
∣∣∣∣∣ n

∑
t=1

L(t)gn(t)

∣∣∣∣∣
=

∣∣∣∣∣L(n)g̃n(n)−
n

∑
t=2

g̃n(t −1)∆L(t)

∣∣∣∣∣
≤

n

∑
t=2

|g̃n(t −1)|∆L(t),

(2.9)

where the third equality holds by summation by parts, and the last inequality follows from

L(n)g̃n(n) = 0 and the monotonicity of L(t) with the triangle inequality. By Lemma 5
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(a), max1≤t≤n |g̃n(t)| ≤ C for some C. Thus, the last term of (2.9) is O(L(n)), which is

o(nL(n)ε(n)2).

(iii) It can be proved in a similar way. Define hn(t) =∑n
s=1 L(s)γs−t −σ2

n L(t) and h̃n(t) =

∑t
u=1 hn(u). Then, we see that∣∣L′ΓL−σ2

n L′L
∣∣= ∣∣∣∣∣ n

∑
t=1

L(t)

(
n

∑
s=1

L(s)γs−t −σ2
n L(t)

)∣∣∣∣∣=
∣∣∣∣∣ n

∑
t=1

L(t)hn(t)

∣∣∣∣∣
=

∣∣∣∣∣L(n)h̃n(n)−
n

∑
t=2

h̃n(t −1)∆L(t)

∣∣∣∣∣
≤ L(n)

∣∣h̃n(n)
∣∣+ n

∑
t=2

∣∣h̃n(t −1)
∣∣∆L(t)

= A(n)+B(n), say,

where the third equality holds by summation by parts, and the inequality follows from the

monotonicity of L(t) and the triangle inequality. Because of the symmetry of γs−t and the

result of (ii), the first term A(n) is evaluated by

A(n) = L(n)
∣∣h̃n(n)

∣∣= L(n)

∣∣∣∣∣ n

∑
t=1

(
n

∑
s=1

L(s)γs−t −σ2
n L(t)

)∣∣∣∣∣
= L(n)

∣∣∣∣∣ n

∑
t=1

L(t)

(
n

∑
s=1

γs−t −σ2
n

)∣∣∣∣∣= L(n)

∣∣∣∣∣ n

∑
t=1

L(t)gn(t)

∣∣∣∣∣= O(L(n)2).

(2.10)

Owing to Lemma 5 (b), the second term B(n) reduces to

B(n) =
n

∑
t=2

∣∣h̃n(t −1)
∣∣∆L(t) = o(nL(n)ε(n)2)O(L(n)) = o(nL(n)2ε(n)2). (2.11)

From (2.10) and (2.11),
∣∣L′ΓL−σ2

n L′L
∣∣ is found to be o(nL(n)2ε(n)2). ■

Proof of Lemma 3 Let γs−t denote the (s, t)th element of Γ−1 and define

ω2
n =

1
n

n

∑
s=1

n

∑
t=1

γs−t .

First, it should be proved that

(i) ι ′Γ−1ι = ω2
n n,

(ii) ι ′Γ−1L = ω2
n ι ′L+o

(
nL(n)ε(n)2) ,

(iii) L′Γ−1L = ω2
n L′L+o

(
nL(n)2ε(n)2) .
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These can be shown from the proof of Lemma 2 as long as the spectral density of γs−t is

continuous on [−π,π]. However, this is true for a sufficiently large n because of the fact in

Shaman (1975) that Γ−1 is asymptotically replaced by the matrix Γi, whose (s, t)th element

is defined by

γis−t =
1

(2π)2

∫ π

−π
ei(s−t)λ 1

f (λ )
dλ .

Here, f (λ )−1 is well-defined since f is positive on [−π,π] by Assumption 2, implying that

the spectral density of γs−t is asymptotically given by (2π)−2 f (λ )−1. Because Assumption

2 ensures its continuity, (i)–(iii) hold.

Utilizing (i), (ii) and (iii), we have

Var(β̂GLS) = (X ′Γ−1X)−1 =

 ι ′Γ−1ι ι ′Γ−1L

L′Γ−1ι L′Γ−1L


−1

=
ω−2

n
nL′L− (ι ′L)2 +o(n2L(n)2ε(n)2)

×

 L′L+o(nL(n)2ε(n)2) −ι ′L+o(nL(n)ε(n)2)

−L′ι +o(nL(n)ε(n)2) n


=

ω−2
n

n2L(n)2ε(n)2(1+o(1))

 nL(n)2(1+o(1)) −nL(n)(1+o(1))

−nL(n)(1+o(1)) n



=
ω−2

n
1+o(1)


1

nε(n)2 − 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

(1+o(1)).

Finally, we specify the asymptotic form of ω2
n , but we know that the value converges to

the long-run variance, or 2π times the spectrum evaluated at the origin. Therefore, it follows

that

ω2
n → 2π

1
4π2 f (0)

=
1

2π f (0)
=

1
σ2 ,

which yields the desired result. ■



Chapter 3

Testing for a Unit Root in the Presence of

a Slowly Varying Regressor

This chapter considers the unit root model with a slowly varying (SV) regressor. This regres-

sor is known to be asymptotically collinear with the constant term, so a standard asymptotic

theory is not directly applied. In this chapter, the estimated regression coefficients of the

constant term and SV regressor are proved to be asymptotically normal, but neither is con-

sistent if the error term has a unit root. Further, we derive the limiting distribution of the

unit root test statistic. Because of the influence of the collinear regressor, however, the finite

sample approximation turns out to be poor and asymptotic tests seem to be impracticable.

To overcome this difficulty, we recommend dropping the constant term intentionally from

the regression and constructing the statistics. This procedure provides a consistent estimator

even if the true model has the constant term. The powers and sizes of these statistics are

found to be significantly improved.

29
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3.1 Introduction

So far, considerable research on deterministic time-trending models has been produced.

Focusing on the formulations of trends, most of these studies (e.g., Vogelsang (1998)) em-

ployed a general vector of time-trending regressors like polynomials, but ruled out regres-

sors that are asymptotically collinear with a constant term like slowly varying (SV) regres-

sors. Nevertheless, there are many application examples of models with such regressors,

including the log-periodogram regression of long memory (Robinson (1995), Hurvich et

al. (1998), Phillips (1999) and references therein), nonlinear least squares estimation (Wu

(1981), Phillips (2007), Mynbaev (2011)), and the study of growth convergence (Barro and

Sala-i-Martin (2004)). Focusing on economic convergence and transition modeling, Phillips

and Sul (2007, 2009) designed a new model that represents the behavior of economies in

transition and proposed an associated test for convergence, utilizing SV functions explicitly.

Given this background, Phillips (2007) established the theory on stationary models pos-

sessing slowly varying (SV) regressors, which is now reviewed briefly. The typical model

is given by the logarithmic trend model

yt = α +β log t + vt for t = 1, . . . ,n, (3.1)

where {vt} is stationary and supposed to satisfy some regularity conditions. If the scaling

matrix F−1
n is given by diag[n1/2 log−1 n,n1/2], then the scaled sample covariance matrix

(X ′X)−1, where X = [X ′
1, . . . ,X

′
n]
′ with Xt = [1, log t], behaves like

F−1
n (X ′X)−1F−1

n →

 1 −1

−1 1

 , (3.2)

indicating the asymptotic collinearity of the regressors and singularity of the limiting matrix.

Phillips (2007) also demonstrated that the OLS estimator (α̂n, β̂n) is consistent and asymp-

totically normally distributed, but the convergence rate is affected by the presence of the

logarithmic trend. In view of asymptotic theories, Phillips (2007) relied on uniform strong
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approximation of partial sums by Brownian motions, but the condition was rather restrictive

and the proof is partially insufficient in dealing with SV regressors. Mynbaev (2009) then

applied the central limit theorem (CLT) based on the Lp-approximation technique to make

the proof rigorous under less stringent conditions. This sophisticated idea is utilized in this

chapter, and is reviewed in Section 3.2 and 3.6.1.

The present chapter extends Phillips’ stationary model to the integrated one and investi-

gates the properties of unit root tests, but a few problems arise. First, the OLS estimator of

the trend coefficient β̂n is inconsistent, as is that of the constant term α̂n. This means that

the regression is almost meaningless if the model has a unit root (Section 3.3.1). This phe-

nomenon may be understood to mean that an SV regressor is classified into a constant in the

asymptotic sense, and this feature is amplified under integrated errors. Of course, an analy-

sis like that of Canjels and Watson (1997) no longer makes sense. We must then emphasize

the necessity of unit root tests when it comes to employing an SV regressor. Second, when

we test a null of a unit root, if we construct a Phillips and Perron (PP)-type test statistic, the

finite sample distribution hardly approaches the limiting one. This makes it difficult to test

a unit root on the basis of the limiting critical values (Section 3.4.1). We present a solution

to this problem by using the misspecified regression model, in which we intentionally drop

a constant term. Such an intentionally misspecified procedure is asymptotically justified

even if the true model has a constant term. This manipulation brings about a significant

improvement in terms of size and power in finite sample situations (Section 3.4.2).

The rest of this chapter is as follows. Section 3.2 includes some assumptions and pre-

liminary theories for SV functions based on the results obtained by Phillips (2007) and

Mynbaev (2009). Section 3.3 and 3.4 state the main analytical results; the limiting distri-

butions of the OLS estimator and the unit root test statistics are derived in Section 3.3, and

3.4 studies the finite sample properties of the unit root test statistics derived in Section 3.3

through Monte Carlo simulations involving a procedure to improve the performance of the

tests. A general PP-type test statistic is also presented. Section 3.5 concludes. Section 3.6 is
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the appendix; Section 3.6.1 provides a summary of Lp-approximability, Section 3.6.2 gives

lemmas used in the proofs, and the proofs of the analytical results derived in Sections 3.3

and 3.4 are given in Section 3.6.3.

3.2 Assumptions and Preliminary Results

Our main objective in the chapter is to analyze the regression model with an SV regressor

under a unit root assumption. For this purpose, we start with a discussion about SV func-

tions and then give assumptions on the error term, including a review on the corresponding

asymptotic theory based on Phillips (2007) and Mynbaev (2009, 2011).

3.2.1 Slowly varying regressor

A positive function L on [A,∞), A > 0 is called slowly varying (SV) if it satisfies, for any r >

0, L(rx)/L(x)→ 1 as x→∞. To deal with such an SV function L, Karamata’s representation

theorem is well-known and essential. That is, the function L varies slowly if and only if it is

written in the form

L(x) = c(x)exp
(∫ x

B

ε(s)
s

ds
)

for x ≥ B ≥ A (3.3)

for some B > 0, where c(x)→ c ∈ (0,∞) and ε(x)→ 0 as x → ∞. Considering regression

theory, however, we require a stronger assumption on L in terms of its smoothness and

behavior for a large x.

Definition 1 We say L = K(ε,ϕε) if the function L satisfies all the conditions below:

(a) The function L is SV and has Karamata’s representation

L(x) = cexp
(∫ x

B

ε(s)
s

ds
)

for x ≥ B

for some B > 0. Here c > 0, ε is continuous and ε(x)→ 0 as x → ∞. Hereafter, this

part of the assumption is shortened to L = K(ε).
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(b) The function |ε| is SV.

(c) There exists a function ϕε on [0,∞) called a remainder that satisfies the following

properties,

– The function ϕε is positive, nondecreasing on [0,∞), ϕε(x)→ ∞, and there exist

positive numbers θ and X such that x−θ ϕε(x) is nonincreasing on [X ,∞).

– There exists a positive constant c satisfying

1
cϕε(x)

≤ |ε(x)| ≤ c
ϕε(x)

for x ≥ c.

Assumption 1 L = K(ε,ϕε) and ε = K(η ,ϕη).

Remark 1 Conditions (a) and (b) are more restrictive assumptions than in Karamata’s rep-

resentation (3.3), but they also appeared in Phillips (2007) and Mynbaev (2009) to cope

with asymptotics. Mynbaev (2009) introduced condition (c) to ensure that the asymptotic

analysis of the regressions was more rigorous. Many SV functions, including all the L(x)

tabulated in Table 3.1, possess the remainder ϕε(x) = 1/|ε(x)|. For further discussion of SV

with a remainder, see Mynbaev (2009, 2011) and Bingham, Goldie and Teugels (1987) in

Sections 2.3 and 3.12. Note that any SV function is of order o(nα) for all α > 0.

Under Assumption 1, we have an important result that is useful for deriving asymptotic

results as follows:

ε(n) =
nL′(n)
L(n)

→ 0 and η(n) =
nε ′(n)
ε(n)

→ 0 as n → ∞. (3.4)

This is easily obtained by the representation theorem. Consequently, (3.4) produces some

examples of L(t) in Table 3.1. Conversely, typical SV functions L in Table 3.1 satisfy

Assumption 1. Another application of Assumption 1 leads to the following lemma due to

Phillips (2007).
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Lemma 1 If Assumption 1 is satisfied, we have

1
n

n

∑
t=1

L(t)k = L(n)k (1− kε(n)[1+o(1)]) .

Lemma 1 is used for asymptotic expansion of the sum of SV functions to evaluate the lim-

iting behavior of estimators and is frequently employed in the proofs of our results.

We next make a more restrictive assumption on L.

Assumption 2 L is monotonically increasing.

When unit root test statistics are considered in Section 3.3.2 and 3.4, Assumption 2 is sup-

posed in addition to Assumption 1 in order to avoid a cumbersome argument on SV regres-

sors and improve the outlook for the proofs.

3.2.2 Disturbances and preliminary results on asymptotics

Next, we impose an assumption on the error term and review the CLT of a weighted sum of

a linear process achieved by Mynbaev, which is stated in Theorem 1 later. The CLT works

well under the assumption below, but is slightly stronger than necessary.

Assumption 3 The error sequence {vt} is modeled by the linear process

vt =C(L)et =
∞

∑
j=0

c jet− j,
∞

∑
j=0

j|c j|< ∞, C(1) ̸= 0,

where {et} is a sequence of martingale difference random variables with respect to the nat-

ural filtration Ft−1. Moreover, the sequence {e2
t } is uniformly integrable and E[e2

t |Ft−1] =

σ2
e < ∞ for all t.

Remark 2 (a) In order to make a functional CLT (FCLT) that holds for the process {vt} as

well as Mynbaev’s CLT, Assumption 3 requires the one-summability of the coefficients {c j}.

In fact, the CLT holds with the absolutely-summable condition, which is less restrictive

than the assumed one-summable condition. Meanwhile, the uniform integrability of {e2
t } is
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necessary for the CLT although it is redundant for the FCLT. Assumption 3 thus makes unit

root asymptotics with an SV regressor tractable in that it enables us to deal with the FCLT

and CLT simultaneously in subsequent sections. For further information on an FCLT and

a CLT of (a weighted sum of) a linear process, see Phillips and Solo (1992) and Mynbaev

(2009, 2011), respectively.

(b) A sufficient condition for the uniform integrability of {e2
t } is E|et |p < ∞ for some p > 2.

Let x̄ denote the sample mean of some variables x1, . . . ,xn. Under Assumption 3, we let

σ2
L = limn→∞ Var(n1/2v̄) = σ2

e C(1)2 and σ2
S = Var(vt) = σ2

e ∑∞
j=0 c2

j ; these are long-run and

short-run variance, respectively. If we suppose {vt} to be a sequence of serially uncorrelated

random variables, we know that σ2
L = σ2

S . This simplification is used in simulation studies

to exclude the effect of the long-run variance estimation error and focus on the influence of

an SV regressor.

As is mentioned in Remark 2, Assumption 3 is sufficient for Mynbaev’s CLT for a

weighted sum of linear processes. The key concept for the CLT is called Lp-approximability

(or Lp-closeness) of the weight to the continuous argument, and is reviewed in Appendix A.

The following theorem yields the CLT as in Mynbaev (2009, 2011).

Theorem 1 Let {vt} satisfy Assumption 3 and a sequence of weights wn = (wn1, . . . ,wnn)

be L2-close to f ∈ L2. Then, as n → ∞, we have

n

∑
t=1

wntvt
d−→ N

(
0,σ2

L

∫ 1

0
f (r)2dr

)
.

We then prepare for the asymptotic analysis of regression with an SV regressor. Utilizing

Theorem 1, Mynbaev (2009) gave a rigorous proof for the following lemma.

Lemma 2 Under Assumptions 1 and 3, we have, as n → ∞,

(i)
1

n1/2L(n)

n

∑
t=1

L(t)vt
d−→ N(0,σ2

L),

(ii)
1

n1/2L(n)ε(n)

n

∑
t=1

(L(t)− L̄)vt
d−→ N(0,σ2

L).
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Lemma 2 was first proved by Phillips (2007) by way of the strong approximation of the

partial sum process to the Brownian motion, although Mynbaev (2009) pointed out that it

was partially incomplete. If we consider the following regression model with stationary

errors,

yt = α +βL(t)+ vt for t = 1, . . . ,n, (3.5)

then the asymptotic distribution of the OLS estimator (α̂n, β̂n) is obtained under Assump-

tions 1 and 3; see Phillips (2007) and Mynbaev (2009, 2011) for the proof and discussion.

Theorem 2 If all the assumptions in Lemma 2 are satisfied, then, as n → ∞, the OLS esti-

mator of model (3.5) has the following limiting distribution:

n1/2

 ε(n)(α̂n −α)

L(n)ε(n)(β̂n −β )

 d−→ N

0, σ2
L

 1 −1

−1 1


 .

We may observe the singularity of the asymptotic covariance matrix in Theorem 2. This is

caused by the asymptotic collinearity of the regressors demonstrated in (3.2).

Instead of Assumption 3, we adopt the following assumption in the rest of this chapter

in order to consider a unit root case.

Assumption 4 The process {ut} possesses a unit root under the null hypothesis ρ = 1 in

ut = ρut−1 + vt , where {vt} is the same linear process as in Assumption 3.

3.3 Limit Distributions

The main purpose of this section is to reveal the asymptotic behavior of the OLS estimator

of the model with an SV regressor in the presence of a unit root. Specifically, the following

regression model is considered:

yt = α +βL(t)+ut , t = 1, . . . ,n, (3.6)
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where the SV regressor L(t) and disturbance ut are supposed to satisfy Assumptions 1 and

4, respectively. The limiting distribution of the OLS estimator (α̂n, β̂n) is obtained first in

Section 3.3.1, and the limit behavior of unit root test statistics is analyzed in Section 3.3.2.

3.3.1 Limit distribution of the OLS estimator

The derivation of the limiting distribution of the OLS estimator (α̂n, β̂n) from model (3.6)

requires a lemma that is an I(1) analogue of Lemma 2. In fact, the next lemma provides

the foundation for the rest of the chapter. Let W (·) denote the standard Brownian motion

obtained in the limit of the partial sum process σ−1
L n−1/2 ∑[ ·n]

t=1 vt .

Lemma 3 Under Assumptions 1 and 4, we have, as n → ∞,

(i)
1

n3/2L(n)

n

∑
t=1

L(t)ut
d−→ σL

∫ 1

0
W (r)dr,

(ii)
1

n3/2L(n)ε(n)

n

∑
t=1

(L(t)− L̄)ut
d−→ σL

∫ 1

0
(1+ logr)W (r)dr.

Remark 3 (a) The limiting distributions of (i) and (ii) in Lemma 3 turn out to be N(0,σ2
L/3)

and N(0,2σ2
L/27), respectively, by simple calculation. Furthermore, the integral in (ii) is

equivalent to
∫ 1

0 (W (r)−F1(r)/r)dr, where F1(r) =
∫ r

0 W (s)ds is the one-folded integrated

Brownian motion.

(b) In order to handle unit root test statistics later, Lemma 3 clarifies not only the limit laws

but the form of the limit random variables by an application of both Mynbaev’s CLT and the

FCLT for linear processes. Result (i) is indeed obtained by proving the asymptotic equiva-

lence of the left-hand side of (i) and n−3/2 ∑n
t=1 ut , which is achieved by an application of

Theorem 1 that shows that the weight of the difference between them is L2-close to zero.

Then, (i) follows because n−3/2 ∑n
t=1 ut converges in distribution to the right-hand side of

(i) by the FCLT. Result (ii) also holds by a similar manipulation.

According to Lemma 1, the sum ∑n
t=1(L(t)− L̄)2 is approximated by nL(n)2ε(n)2[1+

o(1)] for a large n. Thus, a direct application of Lemma 3 with the fact in Remark 3 (a) gives
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the limiting distribution of the OLS estimator.

Theorem 3 If all the assumptions in Lemma 3 are satisfied, then, as n → ∞, the OLS esti-

mator of model (3.6) has the following limiting distribution:

n−1/2

 ε(n)(α̂n −α)

L(n)ε(n)
(

β̂n −β
)
 d−→ N

0,
2σ2

L
27

 1 −1

−1 1


 .

Remark 4 It should be emphasized that, because any SV function possesses the asymptotic

order of o(n1/2), the OLS estimators, α̂n and β̂n, cannot be consistent. This result contrasts

with the case where the simple trend t is employed. Considering models with an SV regres-

sor, we therefore remark that the existence of a unit root leads to a meaningless regression

and that testing for a unit root is thus essential.

3.3.2 Limit distribution of the unit root test statistic

Using the results in Theorem 3, we then derive the limiting distribution of the OLS estimator

ρ̂n in the residual-based regression of ût on ût−1 with ρ = 1 under Assumption 4. These

residuals ût are obtained from the regression model (3.6), so that we have

ût = ut − ū− (L(t)− L̄)
(

β̂n −β
)

for t = 1, . . . ,n. (3.7)

From (3.7), the scaled OLS estimator ρ̂n is obtained by

n(ρ̂n −1) =
1
n

n

∑
t=2

ût−1 (ût − ût−1)

/[
1
n2

n

∑
t=2

û2
t−1

]

=

[
1

2n
(û2

n − û2
1)−

1
2n

n

∑
t=2

(ût − ût−1)
2

]/[
1
n2

n

∑
t=1

û2
t −

1
n2 û2

n

]
,

where the scale coefficient n is tentative. The asymptotic behavior depends on the four

terms û2
n, û2

1, ∑n
t=2(ût − ût−1)

2 and ∑n
t=1 û2

t . Their asymptotic behaviors are presented in the

following lemma.
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Lemma 4 If Assumptions 1, 2 and 4 are satisfied in model (3.6), we have, as n → ∞,

(i)
ε(n)2

n
û2

n = op(1),

(ii)
ε(n)2

n
û2

1
d−→ σ2

LU1,

(iii)
ε(n)2

n

n

∑
t=2

(ût − ût−1)
2 = op(1),

(iv)
1
n2

n

∑
t=1

û2
t

d−→ σ2
LV1,

where

U1 =

{∫ 1

0
(1+ logr)W (r)dr

}2

and

V1 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

−
{∫ 1

0
(1+ logr)W (r)dr

}2

.

Remark 5 From Lemma 4, the dominated term is found not to be û2
n, but û2

1. This can be

accounted for by (3.7). That is, û1 includes the difference L(1)− L̄ = O(L(n)), whereas ûn

has the difference L(n)− L̄ = O(L(n)ε(n)), which is indeed smaller than O(L(n)).

Since the dominated term is found to be û2
1 by Lemma 4, we conclude that the limiting

distribution of the unit root coefficient test statistic, nε(n)2(ρ̂n − 1), is given by the next

theorem.

Theorem 4 If all the assumptions in Lemma 4 are satisfied, then, as n → ∞, it follows that

nε(n)2 (ρ̂n −1) d−→− U1

2V1
.

Since the limiting distribution in Theorem 4 is free from the nuisance parameters σ2
S and σ2

L ,

it appears to be manageable. However, it will turn out to be useless because the finite sample

approximation is poor; see Section 3.4.1. The corresponding scaled t-statistic ε(n)2tρ̂n =

ε(n)2(ρ̂n −1)/s.e.(ρ̂n) for testing the null hypothesis, H0 : ρ = 1, is also obtained.

Corollary 1 If all the assumptions in Lemma 4 are satisfied, then, as n → ∞, it follows that

ε(n)2tρ̂n
d−→−σL

σS

U1

2
√

V1
.



Testing for a Unit Root 40

Remark 6 The test statistic tρ̂n in Corollary 1 requires the computation of s.e.(ρ̂n) or σ̂2
S ,

which is a consistent estimator of σ2
S = Var(vt). However, the natural candidate estimator,

n−1 ∑n
t=2(ût − ût−1)

2, is not consistent for σ2
S , but has a nondegenerate limit distribution,

as in Lemma 4 (iii). We will suggest a method to construct a consistent estimator, σ̂2
S , in

Remark 7.

3.4 Properties of the Unit Root Test Statistics

Theorem 4 and Corollary 1 have yielded the limiting distributions of the unit root regression

coefficient and corresponding t-statistic. In Section 3.4.1, we examine the effect of the SV

regressor on these statistics by simulation studies, but find that there is a serious problem

in testing. In Section 3.4.2, we remedy the problem. Finally, the general test statistics are

proposed in Section 3.4.3.

3.4.1 Finite sample behaviors

We first observe the finite sample behaviors of the simulated cumulative distribution func-

tions (CDFs) of the statistics investigated in Theorem 4 and Corollary 1. To do this, we

employ Assumption 4, but restrict {vt} to a sequence of i.i.d. Gaussian random variables

with mean zero and variance unity to exclude the influence caused by the long-run variance

estimation. If we need to embody the form of the regressor L(t) for simulation studies, we

always use log t. The number of replications is 10000 unless otherwise noted.

Figures 3.1 and 3.2 show the finite sample and limiting CDFs of the two statistics. For

each figure, the finite sample CDFs are expressed in dotted, dashed and solid lines for each

sample size 100, 500 and 50000, and the limiting CDF is expressed in bold lines, respec-

tively.

These figures indicate that the approaching manner of the finite sample CDFs to the
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limiting ones is not monotonic. That is, finite sample CDFs approach the limiting ones from

the left to the right in their upper tails first. Then, in their lower tails, the CDFs are attracted

from below to the above limits more slowly. As a consequence, fatal size distortions are

provoked in unit root testing based on the limiting critical values in their lower tails. Table

3.2 shows the percentage points of the limiting distributions. From these graphs and the

limiting percentage points, we are convinced that 5% empirical sizes are very close to zero

even if the sample size is 50000. This means that tests based on them are almost impossible.

So far, we have assumed that the regression model contains a constant term. In this case,

of course, the OLS estimator includes the sum of the squared deviations from the sample

mean, or n−1 ∑n
t=1 (L(t)− L̄)2. In view of Lemma 1, the first and second leading terms

asymptotically offset each other and only the third term survives. Therefore, this asymptotic

order is O(L(n)2ε(n)2), which fluctuates greatly. One solution may be obtained by avoiding

such computation.

3.4.2 Improvement of the finite sample performance

In this subsection, we first consider the regression without the constant term. The model is

defined as

yt = βL(t)+ut for t = 1, . . . ,n, (3.8)

with the error term ut satisfying Assumption 4. The following results are parallel to those in

the preceding section.

Theorem 5 If all the assumptions in Lemma 3 are satisfied, then, as n → ∞, the OLS esti-

mator of model (3.8) has the following limiting distribution:

L(n)
n1/2 (β̂n −β ) d−→ N

(
0,

σ2
L

3

)
.
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Lemma 5 If all the assumptions in Lemma 4 are satisfied in model (3.8), we have, as n→∞,

(i)
1
n

û2
n

d−→ σ2
LU2,

(ii)
1
n

û2
1 = op(1),

(iii)
1
n

n

∑
t=2

(ût − ût−1)
2 p−→ σ2

S ,

(iv)
1
n2

n

∑
t=1

û2
t

d−→ σ2
LV2,

where

U2 =

{
W (1)−

∫ 1

0
W (r)dr

}2

and V2 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

.

Theorem 6 If all the assumptions in Lemma 4 are satisfied in model (3.8), we have, as

n → ∞,

n(ρ̂n −1) d−→
U2 −σ2

S/σ2
L

2V2
.

Corollary 2 If all the assumptions in Lemma 4 are satisfied in model (3.8), we have, as

n → ∞,

tρ̂n
d−→ σL

σS

U2 −σ2
S/σ2

L

2
√

V2
.

In practice, it may not be appropriate to suppose that the true model has no constant

term. However, it is worth analyzing the situation where the true model is given by (3.6),

which possesses a constant term, but the no-constant model (3.8) is employed for regression.

We find that it works well asymptotically from the following theorem.

Theorem 7 Assume that all the Assumptions in Lemma 4 are satisfied. Furthermore, we

suppose that the true data-generating process (DGP) is given by (3.6), but (3.8) is employed

for regression. Then we still have the same asymptotic result given in Theorem 5 with the

effect of a constant term declining at the rate O(n−1/2).
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By Theorem 7, the test statistics constructed in the same way also have the same asymptotic

behavior as in Theorem 6 and Corollary 2. This suggests that even if the DGP includes a

nonzero constant term, regression without it may still be beneficial under integrated errors,

and may provide a good test statistic. We study the finite sample properties of such test

statistics in the rest of this subsection.

Remark 7 (a) If we let σ̂2
S = n−1 ∑n

t=2(ût − ût−1)
2 in Lemma 5, which is constructed on the

basis of the philosophy of Theorem 7, σ̂2
S is used as a consistent estimator of σ2

S .

(b) If we use the regression model yt = α +ut against the true model (3.6), a similar result

is obtained. In this case, however, the declining rate of the irrelevant constant term becomes

O(L(n)n−1/2), which is slightly slower than that obtained in Theorem 7, Op(n−1/2).

Using the no-constant model (3.8) for regression with (3.6) being the DGP (α is set to

0, 1, and 5 for the simulation), we have Table 3.3, Tables 3.4 to 3.6, Figures 3.3 to 3.8, and

Figures 3.9 to 3.14 under Assumption 4 with vt i.i.d., just as in the preceding subsection.

Figures 3.3 to 3.8 display the finite sample behaviors of the CDFs. Tables 3.4 to 3.6 indicate

the empirical sizes and Figures 3.9 to 3.14 show the size-adjusted powers. From Figures

3.3 to 3.8 and Tables 3.4 to 3.6, we may observe the significant improvement of their finite

sample approximation although the size distortion tends to increase when α is large. We

further notice that the power tends to be low when α is large and n is small. However, it is

asymptotically justified that the data are shifted to intersect around the origin when |α | is

expected to be large. In consequence, the influence of an SV regressor on the test statistics

can be removed and the tests are suitable for practical use even though some slight size

distortion remains.

3.4.3 Generalization of the unit root test statistics

The test statistics in the preceding subsection have nuisance parameters in their limit de-

spite their good performances. Finally, we introduce Phillips and Perron (1988) (PP)-type
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statistics on the basis of the discussion in the preceding subsection.

Theorem 8 Construct the following two statistics from the no-constant regression model

(3.8) against the natural DGP (3.6):

Zρ̂n = n(ρ̂n −1)−
n2(σ̂2

L − σ̂2
S )

2∑n
t=1 û2

t−1
and Zt =

σ̂S

σ̂L
tρ̂n −

n(σ̂2
L − σ̂2

S )

2σ̂L

√
∑n

t=1 û2
t−1

,

where

σ̂2
S =

1
n

n

∑
t=2

(∆ût)
2 and σ̂2

L = σ̂2
S +

2
n

k

∑
j=1

(
1− j

k+1

) n

∑
t= j+1

∆ût∆ût− j

with k = o(n1/4). If all the Assumptions in Lemma 4 are satisfied, then, as n → ∞, it follows

that

Zρ̂n
d−→ U2 −1

2V2
and Zt

d−→ U2 −1
2
√

V2
.

These limiting distributions have the same percentage points of n(ρ̂n −1) and tρ̂n , as shown

in Table 3.3.

Remark 8 It may be possible to reduce the size distortion caused by the estimation of the

long-run variance by using a method such as that of Perron and Ng (1996). However, this is

beyond the scope of this chapter, and is left to future studies.

3.5 Conclusion

We have studied the model with an SV regressor in the presence of integrated errors and

found three main results. First, the estimated regression coefficients are asymptotically

normally distributed, but they are not consistent. We thus observe that there is a contrast

between a simple time trend and an SV regressor. Second, ordinary unit root test statistics

based on the residuals behave badly because of the coexistence of a constant term and an SV

regressor, and it is not recommended to conduct tests based on them. Third, in spite of this
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difficulty, correction of sizes is possible by intensionally eliminating the constant term from

the regression model. It is shown that the statistics constructed by this approach are still

consistent even when the DGP has a constant term. Applying this result, we give PP-type

test statistics.

3.6 Appendix

3.6.1 Lp-approximability

The key concept of the CLT in Theorem 1 is the Lp-approximability of the weight, and is

reviewed here. Let ∥ f∥p =
(∫ 1

0 | f (x)|pdx
)1/p

for p ∈ [1,∞) and let Lp denote the space

of measurable functions on [0,1) satisfying ∥ f∥p < ∞. Further, we partition the interval

[0,1) into subintervals it = [(t −1)/n, t/n) for t = 1, . . . ,n. Then we obtain a discretization

operator δnp : Lp → Rn defined by

(δnp f )t = n1−1/p
∫

it
f (x)dx for t = 1, . . . ,n.

Let lp denote a discrete analogue of Lp with the norm ∥w∥p = (∑t |wt |p)1/p. Then, we say

that a sequence {wn}, wn ∈ Rn is Lp-approximable (or Lp-close) to f ∈ Lp if it satisfies, as

n → ∞,

∥wn −δnp f∥p → 0. (3.9)

Instead of the discretization operator δnp, it is sometimes convenient to use the interpolation

operator ∆np : Rn → Lp defined by

∆npwn = n1/p
n

∑
t=1

wnt1it , (3.10)

where 1it is the indicator of it . It is known that ∥∆npwn − f∥p → 0 is equivalent to (3.9).
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3.6.2 Useful lemmas

Lemma 6 Under all the assumptions of Lemma 3 (ii) with the same notations as in that

proof, we have, as n → ∞,∥∥∥∥∥1
n

n

∑
s=[nu]+1

(
1+ log

s
n

)
+u logu

∥∥∥∥∥
2,(0,1)

→ 0. (3.11)

Proof of Lemma 6 We use the same Bb as in Lemma 3 (i) and let δ ∈ (0,1/2] be fixed. The

left-hand side of (3.11) is bounded above by∥∥∥∥∥1
n

n

∑
s=[nu]+1

(
1+ log

s
n

)
+u logu

∥∥∥∥∥
2,(δ ,1)

+∥u logu∥2,(0,δ )+

∥∥∥∥∥1
n

n

∑
s=[nu]+1

(
1+ log

s
n

)∥∥∥∥∥
2,(0,δ )

.

(3.12)

We then prove that the three terms are asymptotically negligible.

Consider the case of u ∈ [δ ,1). For a large n and r ∈ [δ ,1+1/(2Bb)] satisfying nr ∈ N,

we have

1
n

n

∑
s=nr

(
1+ log

s
n

)
=−r logr+o(1)

uniformly in r ∈ [δ ,1+1/(2Bb)] because of the expansion of ∑ logs based on Lemma 1. If

we define r = [nu+1]/n, the same argument in Case 1 in the proof of Lemma 3 (i) leads to

the convergence that

1
n

n

∑
s=[nu]+1

(
1+ log

s
n

)
+u logu → 0

uniformly in u ∈ (δ ,1), and hence the first term in (3.12) tends to zero.

Consider the case of u ∈ [0,δ ). The second term in (3.12) can be made as small as

desired if we choose a small δ > 0. For the third term in (3.12), note that∣∣∣∣∣1n n

∑
s=[nu]+1

(
1+ log

s
n

)∣∣∣∣∣≤
∣∣∣∣1− [nu]

n

∣∣∣∣+
∣∣∣∣∣1n n

∑
s=[nu]+1

log
[nu]+1

n

∣∣∣∣∣
=

∣∣∣∣1− [nu]
n

∣∣∣∣{1+
∣∣∣∣log

[nu]+1
n

∣∣∣∣}≤ 2
{

1∨
∣∣∣∣log

[nu]+1
n

∣∣∣∣} .
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In this upper bound, log(([nu]+1)/n) is identical to the G-function G([nu]+1,n) in the case

that L(x) is given by logx. Thus, Cases 2 and 3 in the proof of Theorem 4.4.1 in Mynbaev

(2011) directly provide the result. ■

Lemma 7 Under all the assumptions of Lemma 3 (ii) with the same notations as in that

proof, we have, as n → ∞,∥∥∥∥∥1
n

n

∑
s=[nu]+1

L(s)− L̄
L(n)ε(n)

+
[nu]

n
G([nu],n)

∥∥∥∥∥
2,(0,1)

→ 0. (3.13)

Proof of Lemma 7 We see that

1
n

n

∑
s=[nu]+1

L(s)− L̄
L(n)ε(n)

=
1

nL(n)ε(n)

(
n

∑
s=1

L(s)−
[nu]

∑
s=1

L(s)−nL̄+[nu]L̄

)

=− 1
nL(n)ε(n)

(
[nu]

∑
s=1

L(s)− [nu]
n

n

∑
s=1

L(s)

)

=− [nu]
n

{
G([nu],n)−

(
L([nu])

L(n)
ε([nu])

ε(n)
−1
)
+

L([nu])
L(n)ε(n)

o(ε([nu]))−o(1)
}
,

(3.14)

where the last equality follows from the expansions of the two sums based on Lemma 1 and

the definition of a G-function. From (3.14) with [nu]/n ≤ 1 and the triangle inequality, the

left-hand side of (3.13) reduces to and is bounded by∥∥∥∥ [nu]
n

{(
L([nu])

L(n)
ε([nu])

ε(n)
−1
)
− L([nu])

L(n)ε(n)
o(ε([nu]))+o(1)

}∥∥∥∥
2,(0,1)

≤
∥∥∥∥(L([nu])

L(n)
ε([nu])

ε(n)
−1
)
− L([nu])

L(n)ε(n)
o(ε([nu]))

∥∥∥∥
2,(0,1)

+o(1)

≤
∥∥∥∥L([nu])

L(n)
−1
∥∥∥∥

2,(0,1)

(∥∥∥∥ε([nu])
ε(n)

∥∥∥∥
2,(0,1)

(1+o(1))

)

+

∥∥∥∥ε([nu])
ε(n)

−1
∥∥∥∥

2,(0,1)
+o

(∥∥∥∥ε([nu])
ε(n)

∥∥∥∥
2,(0,1)

)
+o(1).

(3.15)

From the proof of Lemma 4.4.6 (i) in Mynbaev (2011), ∥L([nu])/L(n)−1∥2,(0,1) converges

to zero. Similarly, the convergence of ∥ε([nu])/ε(n)− 1∥2,(0,1) to zero is ensured by ε =

K(η ,ϕη) in Assumption 1. Therefore, the right-hand side of (3.15) converges to zero and
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(3.13) follows. ■

Lemma 8 Let Assumptions 1 and 2 hold. For a sufficiently large n and j = 0,1, . . . ,k < n

for some fixed k, it follows that

n

∑
t= j+1

∆L(t)∆L(t − j) = o(L(n)2).

Proof of Lemma 8 For all j and t = j+1, . . . ,n, Assumptions 1 and 2 and (3.4) imply that

∆L(t − j)≥ 0 and ∆L(t − j)≤ K for some K ≥ 0, so we have∣∣∣∣∣ n

∑
t= j+1

∆L(t)∆L(t − j)

∣∣∣∣∣≤ K
n

∑
t= j+1

∆L(t − j)

≤ K(L(n)−L(1)) = O(L(n)) = o(L(n)2),

which gives the result. ■

3.6.3 Proofs of the main results

Proof of Lemma 3 (i) Because the partial sum process n−3/2 ∑n
t=1 ut converges weakly to

the random variable σL
∫ 1

0 W (r)dr, it suffices to show the asymptotic equivalence

1
n3/2

n

∑
t=1

ut −
1

n3/2L(n)

n

∑
t=1

L(t)ut
p−→ 0. (3.16)

The left-hand side of (3.16) can be rewritten as the weighted sum of the linear process {vt}:

n

∑
t=1

{ n

∑
s=t

L(n)−L(s)
n3/2L(n)

}
vt . (3.17)

In order to get result (3.16), we have only to prove the L2-closeness of the weight wn =

(wn1, . . . ,wnn) to the function f = 0, where wnt = ∑n
s=t {L(n)−L(s)}/{n3/2L(n)} appears

in (3.17), or to prove ∥∆n2wn − f∥2,(0,1) = ∥∆n2wn∥2,(0,1) → 0 as n → ∞. Here, ∥ · ∥2,(0,1) is

the L2 norm on (0,1); see the discussion in Section 3.2.2 and 3.6.1. Then, the convergence in
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(3.16) follows immediately by the CLT of Theorem 1 because the convergence in probability

to zero is equivalent to the convergence in distribution to a random variable that equals zero

a.s.

Following the proof of Theorem 4.4.1 in Mynbaev (2011), we can write

(∆n2wn)(u) =
1

nL(n)

n

∑
s=[nu]+1

{L(n)−L(s)} for 0 ≤ u < 1.

Let δ ∈ (0,1/2] be fixed. With the number Bb from Lemma 4.3.5 of Mynbaev (2011), the

interval (Bb/n,δ ) is not empty for n > n1 ≡ Bb/δ , and the bound is obtained by the triangle

inequality:

∥∆n2wn∥2,(0,1) ≤ ∥∆n2wn∥2,(δ ,1)+∥∆n2wn∥2,(0,Bb/n)+∥∆n2wn∥2,(Bb/n,δ ). (3.18)

For the three terms of the upper bound in (3.18), we consider three cases.

Case 1: u ∈ [δ ,1). For a large n and r ∈ [δ ,1+1/(2Bb)] satisfying rn ∈ N, we have

1
nL(n)

n

∑
s=rn

{L(n)−L(s)}= 1− r− 1
nL(n)

n

∑
s=rn

L(s). (3.19)

The last term in (3.19) may be evaluated as

1
nL(n)

n

∑
s=rn

L(s) =
1

nL(n)

(
n

∑
s=1

L(s)−
rn

∑
s=1

L(s)

)
= 1− r+o(1)

uniformly in r ∈ [δ ,1+1/(2Bb)] because of Lemma 1 and the uniform convergence theorem

(see Mynbaev (2011, 4.1.2)). Thus, the right-hand side of (3.19) tends to zero uniformly in

r ∈ [δ ,1+1/(2Bb)]. If we define r = [nu+1]/n with the inequality nu < [nu+1]≤ nu+1,

we have

δ ≤ u < r ≤ u+
1
n
< 1+

1
n1

≤ 1+
1

2Bb
. (3.20)

This implies that r = u+o(1) and r ∈ [δ ,1+1/(2Bb)]. Consequently, we have (∆n2wn)(u)=

o(1) uniformly in u ∈ [δ ,1). This proves, as n → ∞,

∥∆n2wn∥2,(δ ,1) → 0. (3.21)
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Case 2: u ∈ [Bb/n,δ ). For a large n > n2 ≡ (n1 ∨2), we have

|(∆n2wn)(u)| ≤
1

nL(n)

n

∑
s=[nu]+1

{L(n)+L(s)}

≤ 1
nL(n)

(
nL(n)+

n

∑
s=1

L(s)

)
= 2+o(1)

(3.22)

uniformly in u ∈ [Bb/n,δ ) because of L(s)> 0 and Lemma 1. Integrating the terms gives

∥(∆n2wn)(u)∥2
2,(Bb/n,δ ) ≤

∫ δ

Bb/n
(4+o(1))du ≤ 4δ (1+o(1)). (3.23)

Case 3: u ∈ (0,Bb/n). In this case, the same bound as in (3.22) holds uniformly in

u ∈ (0,Bb/n). Therefore, integrating the terms yields

∥(∆n2wn)(u)∥2
2,(0,Bb/n) ≤

∫ Bb/n

0
(4+o(1))du =

Bb

n
(4+o(1)). (3.24)

From (3.21), (3.23) and (3.24), we can choose a small δ and large n to make the left-

hand side of (3.18) as small as desired. This, in turn, implies (3.16). ■

(ii) We basically take the same manipulation as in (i). Because the partial sum process

n−3/2 ∑n
t=1(1+ log(t/n))ut converges weakly to the random variable σL

∫ 1
0 (1+ logr)W (r)dr

by Phillips (2007, Eq.(9)), it suffices to show

1
n3/2

n

∑
t=1

(
1+ log

t
n

)
ut −

1
n3/2L(n)ε(n)

n

∑
t=1

(L(t)− L̄)ut
p−→ 0. (3.25)

The left-hand side of (3.25) can be rewritten as the weighted sum of the linear process {vt}:

n

∑
t=1

{ n

∑
s=t

L(n)ε(n)(1+ log(s/n))− (L(s)− L̄)
n3/2L(n)ε(n)

}
vt . (3.26)

In order to get result (3.25), we have only to prove the L2-closeness of the weight wn =

(wn1, . . . ,wnn) to the function f = 0, where wnt is defined as the sum in curly brackets {·} in

(3.26); that is, we prove ∥∆n2wn − f∥2,(0,1) = ∥∆n2wn∥2,(0,1) → 0 as n → ∞.

Following the proof of Theorem 4.4.1 in Mynbaev (2011), we can write

(∆n2wn)(u) =
1
n

n

∑
s=[nu]+1

{(
1+ log

s
n

)
− L(s)− L̄

L(n)ε(n)

}
for 0 ≤ u < 1.
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Hereafter, we use the notation G(t,n) = (L(t)− L(n))/(L(n)ε(n)), called the G-function;

see Mynbaev (2011, 4.2.6). We first observe from the triangle inequality that

∥∆n2wn∥2,(0,1) ≤

∥∥∥∥∥1
n

n

∑
s=[nu]+1

(
1+ log

s
n

)
+u logu

∥∥∥∥∥
2,(0,1)

+

∥∥∥∥∥1
n

n

∑
s=[nu]+1

L(s)− L̄
L(n)ε(n)

+
[nu]

n
G([nu],n)

∥∥∥∥∥
2,(0,1)

+

∥∥∥∥ [nu]
n

G([nu],n)−u logu
∥∥∥∥

2,(0,1)
.

(3.27)

The first and second terms of the upper bound in (3.27) converge to zero by Lemmas 6 and

7, respectively. For the third term, we have∥∥∥∥ [nu]
n

G([nu],n)−u logu
∥∥∥∥

2,(0,1)

≤
∥∥∥∥ [nu]

n

∥∥∥∥
2,(0,1)

∥G([nu],n)− logu∥2,(0,1)+

∥∥∥∥ [nu]
n

−u
∥∥∥∥

2,(0,1)
∥logu∥2,(0,1)

≤ ∥G([nu],n)− logu∥2,(0,1)+2
∥∥∥∥ [nu]

n
−u
∥∥∥∥

2,(0,1)
.

(3.28)

The first term in the right-hand side of (3.28) converges to zero because of the L2-closeness

of the G-function to the logarithmic function; see Mynbaev (2011, 4.4.1). The second term

also converges to zero since [nu]/n converges to u uniformly in u ∈ [0,1]. In consequence,

we obtain ∥∆n2wn∥2,(0,1) → 0 by (3.27) and the result follows. ■

Proof of Theorem 3 The marginal limiting distribution of β̂n is clear from Lemma 3. The

remaining claim is the distribution of α̂n and their joint behavior. It is easy to see that

ε(n)
n1/2 (α̂n −α) =

ε(n)
n3/2

n

∑
t=1

ut −
ε(n)
n1/2

L̄∑n
t=1 L(t)ut − L̄2 ∑n

t=1 ut

∑n
t=1(L(t)− L̄)2

= Op(ε(n))−
ε(n)L̄
n1/2 (β̂n −β )

= op(1)−
L(n)ε(n)

n1/2 (β̂n −β )[1+O(ε(n))]

=−L(n)ε(n)
n1/2 (β̂n −β )+op(1).

Thus, symmetry on the origin of the limiting normal distribution of the last term implies the

desired result. ■
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Proof of Lemma 4 (i) From (3.7) and Theorem 3, applying the FCLT, together with the

continuous mapping theorem, yields

1
n

û2
n =

{
un

n1/2 −

(
1
n

n

∑
t=1

ut

n1/2

)
− L(n)− L̄

n1/2 (β̂n −β )

}2

=

{
un

n1/2 −

(
1
n

n

∑
t=1

ut

n1/2

)
− L(n)−L(n)+L(n)ε(n)[1+O(ε(n))]

n1/2 (β̂n −β )

}2

d−→ σ2
L

{
W (1)−

∫ 1

0
W (r)dr−

∫ 1

0
(1+ logr)W (r)dr

}2

,

as stated. ■

(ii) By a similar manner to the proof of (i), we obtain

1
n

û2
1 =

{
u1

n1/2 −

(
1
n

n

∑
t=1

ut

n1/2

)
− L(1)− L̄

n1/2 (β̂n −β )

}2

=

{
Op

(
1

n1/2

)
−Op(1)−

L(1)−L(n)+L(n)ε(n)[1+O(ε(n))]
n1/2 (β̂n −β )

}2

.

(3.29)

Since (3.29) multiplied by ε(n)2 is Op(1), we obtain

ε(n)2

n
û2

1 =

{
op(1)+

L(n)ε(n)
n1/2 (β̂n −β )(1+op(1))

}2

d−→ σ2
L

{∫ 1

0
(1+ logr)W (r)dr

}2

.

(3.30)

Hence, (3.30) gives the conclusion. ■

(iii) We have

1
n

n

∑
t=2

(ût − ût−1)
2 =

1
n

n

∑
t=2

(
vt −∆L(t)(β̂n −β )

)2

≤ 2
n

n

∑
t=2

v2
t +2

(
β̂n −β

n1/2

)2 n

∑
t=2

(∆L(t))2.

(3.31)

The first term converges to 2σ2
S in probability. For the second term, we have(

β̂n −β
n1/2

)2 n

∑
t=2

(∆L(t))2 = Op

(
1

L(n)2ε(n)2

)
o
(
L(n)2)= op

(
1

ε(n)2

)
(3.32)
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by Theorem 3 and Lemma 8. We therefore conclude that ε(n)2 times (3.31) is op(1). ■

(iv) If we use ∑n
t=1 L(t) = nL(n)[1+O(ε(n))], ∑n

t=1 L(t)2 = nL(n)2[1+O(ε(n))] and

Lemma 3 (i), it follows that

1
n2

n

∑
t=1

û2
t =

1
n

n

∑
t=1

(
ut

n1/2 −

(
1
n

n

∑
s=1

us

n1/2

)
− β̂n −β

n1/2 (L(t)− L̄)

)2

=
1
n

n

∑
t=1

(
ut

n1/2

)2

+

(
1
n

n

∑
s=1

us

n1/2

)2

+

(
β̂n −β

n1/2

)2
1
n

n

∑
t=1

(L(t)− L̄)2

−2

(
1
n

n

∑
t=1

ut

n1/2

)2

− L(n)ε(n)(β̂n −β )
n1/2

2
n3/2L(n)ε(n)

n

∑
t=1

(L(t)− L̄)ut

=
1
n

n

∑
t=1

(
ut

n1/2

)2

−

(
1
n

n

∑
s=1

us

n1/2

)2

−

(
L(n)ε(n)(β̂n −β )

n1/2

)2

[1+O(ε(n))]

d−→ σ2
L

∫ 1

0
W (r)2dr−σ2

L

(∫ 1

0
W (r)dr

)2

−σ2
L

{∫ 1

0
(1+ logr)W (r)dr

}2

,

which completes the proof. ■

Proof of Theorem 4 and Corollary 1 It is clear from Lemma 4. ■

Proof of Theorem 5 The result follows from Lemma 3. ■

Proof of Lemma 5 (i) Note that

ût = ut − (β̂n −β )L(t)

under model (3.8). Following from Theorem 5, we obtain

1
n

û2
n =

(
1

n1/2 un −
L(n)
n1/2

(
β̂n −β

))2
d−→ σ2

L

(
W (1)−

∫ 1

0
W (r)dr

)2

,

which gives the proof. ■
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(ii) It follows from u1 = Op(1) and Theorem 5 that

1
n

û2
1 =

(
1

n1/2 u1 −
L(1)
n1/2

(
β̂n −β

))2

=

(
Op

(
1

n1/2

)
−Op

(
1

L(n)

))2

.

Hence, this converges to zero in probability. ■

(iii) Using Theorem 5, together with Lemma 8, we have

1
n

n

∑
t=2

(ût − ût−1)
2 =

1
n

n

∑
t=2

(
vt −∆L(t)(β̂n −β )

)2

=
1
n

n

∑
t=2

v2
t +

(
β̂n −β

n1/2

)2 n

∑
t=2

(∆L(t))2 − 2(β̂n −β )
n

n

∑
t=2

vt∆L(t)

= σ2
S +op(1)+Op

(
1

n1/2L(n)

) n

∑
t=2

vt∆L(t).

(3.33)

Thus, the proof is completed if the last term in (3.33) is op(1). From the Schwarz inequality

and Lemma 8, we get∣∣∣∣∣ n

∑
t=2

vt∆L(t)

∣∣∣∣∣≤
(

n

∑
t=2

v2
t

)1/2( n

∑
t=2

(∆L(t))2

)1/2

= n1/2 (σ2
S +op(1)

)1/2 (
op
(
L(n)2))1/2

= op

(
n1/2L(n)

)
.

Therefore, the last term in (3.33) is op(1) and the result follows. ■

(iv) It follows from Lemma 3 (i) and Theorem 5 that

1
n2

n

∑
t=1

û2
t =

1
n

n

∑
t=1

(
ut

n1/2

)2

−2
L(n)
n1/2

(
β̂n −β

) 1
n3/2L(n)

n

∑
t=1

L(t)ut

+
L(n)2

n

(
β̂n −β

)2
[1+O(ε(n))]

d−→ σ2
L

∫ 1

0
W (r)2dr−2σ2

L

(∫ 1

0
W (r)dr

)2

+σ2
L

(∫ 1

0
W (r)dr

)2

.

Collecting terms gives the result. ■

Proof of Theorem 6 and Corollary 2 It is clear from Lemma 5. ■
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Proof of Theorem 7 We consider the following situation

True DGP : yt = α +βL(t)+ut ,

Regression : Regress yt on only L(t) to get β̂n.

Then, the OLS estimator is

β̂n =
∑n

t=1 L(t)yt

∑n
t=1 L(t)2 = α ∑n

t=1 L(t)
∑n

t=1 L(t)2 +β +
∑n

t=1 L(t)ut

∑n
t=1 L(t)2

= α
nL(n)[1+O(ε(n))]
nL(n)2[1+O(ε(n))]

+β +Op

(
n1/2

L(n)

)

= α
1+o(1)

L(n)[1+o(1)]
+β +Op

(
n1/2

L(n)

)

by Lemma 3 and Theorem 3. Collecting terms and scaling by L(n)/n1/2, we have n−1/2L(n)(β̂n−

β ) = O(n−1/2)+Op(1). Thus, it leads to the same limiting result as in Theorem 5. The con-

clusions for the other statistics in this situation are also derived in the same way via Lemma

5. ■

Proof of Theorem 8 It suffices to prove the consistency of the estimated long-run variance

σ̂2
L . First, it can be written as

1
n

n

∑
t= j+1

∆ût∆ût− j =
1
n

n

∑
t= j+1

vtvt− j −
β̂n −β

n

n

∑
t= j+1

vt∆L(t − j)

− β̂n −β
n

n

∑
t= j+1

vt− j∆L(t)+
(β̂n −β )2

n

n

∑
t= j+1

∆L(t)∆L(t − j).

(3.34)

Then, the last three terms of (3.34) are op(1) from the Schwarz inequality and Lemma 8 as

in the proof of Lemma 5 (iii). Therefore, we have

1
n

n

∑
t= j+1

∆ût∆ût− j −
1
n

n

∑
t= j+1

vtvt− j = op(1).

Combining the fact that σ̂2
S −σ2

S = op(1), we conclude that σ̂2
L is consistent for σ2

L from

Theorem 2 in Newey and West (1987). ■
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Table 3.1: ε(x) and η(x) associated with some L(x). γ > 0.

L(x) ε(x) η(x)

logγ x γ/ logx −1/ logx

1/ logγ x −γ/ logx −1/ logx

log logx 1/(logx log logx) −1/(logx log logx)−1/ logx

1/ log logx −1/(logx log logx) −1/(logx log logx)−1/ logx
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Table 3.2: Percentage points of the limiting distributions.

Probability (%)

Statistic 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

nε(n)2(ρ̂n −1) -2.13 -1.69 -1.38 -1.05 -0.01 -0.00 -0.00 -0.00

ε(n)2tρ̂n -0.63 -0.50 -0.41 -0.31 -0.00 -0.00 -0.00 -0.00

Table 3.3: Percentage points of the limiting distributions.

Probability (%)

Statistic 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

n(ρ̂n −1) based on (3.8) -19.69 -15.88 -12.91 -10.02 -0.15 0.45 0.95 1.45

tρ̂n based on (3.8) -3.07 -2.75 -2.48 -2.17 -0.08 0.27 0.55 0.91
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Table 3.4: Empirical size of tests with α = 0 (%).

# observations

Statistic 100 200 300 500

n(ρ̂n −1) based on (3.8) 8.74 8.46 7.99 7.55

tρ̂n based on (3.8) 10.66 9.40 8.86 7.97

Table 3.5: Empirical size of tests with α = 1 (%).

# observations

Statistic 100 200 300 500

n(ρ̂n −1) based on (3.8) 8.78 8.59 8.05 7.57

tρ̂n based on (3.8) 11.03 9.56 8.91 8.16

Table 3.6: Empirical size of tests with α = 5 (%).

# observations

Statistic 100 200 300 500

n(ρ̂n −1) based on (3.8) 10.63 10.43 9.27 8.54

tρ̂n based on (3.8) 21.37 15.15 12.23 10.41
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Figure 3.1: CDFs of nε(n)2(ρ̂n −1).
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Figure 3.2: CDFs of ε(n)2tρ̂n .
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Figure 3.3: CDF of n(ρ̂n −1) based on (3.8) with α = 0.
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Figure 3.4: CDF of tρ̂n based on (3.8) with α = 0.
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Figure 3.5: CDF of n(ρ̂n −1) based on (3.8) with α = 1.
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Figure 3.6: CDF of tρ̂n based on (3.8) with α = 1.
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Figure 3.7: CDF of n(ρ̂n −1) based on (3.8) with α = 5.

100 

300 

50000 

limit 

­5.0 ­4.5 ­4.0 ­3.5 ­3.0 ­2.5 ­2.0 ­1.5 ­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 

300 

50000 

limit 

Figure 3.8: CDF of tρ̂n based on (3.8) with α = 5.
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Figure 3.9: Power of n(ρ̂n −1) based on (3.8) with α = 0.
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Figure 3.10: Power of tρ̂n based on (3.8) with α = 0.
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Figure 3.11: Power of n(ρ̂n −1) based on (3.8) with α = 1.
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Figure 3.12: Power of tρ̂n based on (3.8) with α = 1.
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Figure 3.13: Power of n(ρ̂n −1) based on (3.8) with α = 5.
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Figure 3.14: Power of tρ̂n based on (3.8) with α = 5.



Chapter 4

Nonstationary Nonlinear Quantile

Regression

This chapter studies estimation and inference for nonlinear regression models with inte-

grated time series by quantile regression method. The derivatives of regression function are

specified as asymptotically homogeneous function, which has been analyzed by nonlinear

least squares in Park and Phillips (2001, Econometrica) (PP). In this chapter, we derive the

limiting distributions of the nonlinear quantile regression (NQR) estimator when it is close

to the true parameter. We find that the estimator does not converge weakly to a mixed nor-

mal distribution as in PP. In that case, a fully-modified type NQR estimator is proposed.

The class of integrable regression function derivatives are considered only when the model

is linear in parameter. Finally, we observe from simulations that the NQR estimators are

desirable when distributions of regression errors possess fat tails.

4.1 Introduction

Since the seminal works of Park and Phillips (1999, 2001) (PP hereafter), the literature

on the analysis of unit root nonstationary nonlinear time series has been highly developed.

66
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PP (2001) derived limiting distributions of nonlinear least squares (NLS) estimators for

two cases of regression function derivatives: integrated and asymptotically homogeneous

functions. Along these lines, many related works have appeared in the last ten years. Park

and Phillips (2000) analyzed the maximum likelihood estimation of a nonstationary binary

choice and Chang and Park (2003) extended it to index models. Moon (2004) and Guerre

and Moon (2006) dealt with the maximum score and semiparametric estimation in reference

to it. Nonstationary nonlinear heteroskedasticity was analyzed in Park (2002) and Chung

and Park (2007). Moon and Schorfheide (2002) proposed the limit distribution of minimum

distance estimators. Phillips et al. (2004) presented the instrumental variable estimation.

Marmer (2008) studied nonstationary nonlinearity from a forecasting perspective. Recently,

the misspecification problem was addressed in Kasparis (2010, 2011).

The quantile regression method has become widely used in several aspects of theoretical

and applied works since the novel work of Koenker and Basset (1978). There are many

articles on parametric quantile regression and least absolute deviation (LAD) estimation in

the time series context, including works by Knight (1989, 1991), Phillips (1995), Herce

(1996), Koenker and Xiao (2004) and Xiao (2009). Studies on nonlinear quantile regres-

sions include Powel (1984, 1986), Weiss (1991), Jurečková, J. and B. Procházka (1994),

Wang (1995), Koenker and Park (1996), Mukherjee (1999), Oberhofer and Haupt (2006)

and Chen et al. (2009). Recently, Honda (2013) studied the nonparametric LAD estimation

of the nonlinear model with an integrated covariate. However, to the best of the author’s

knowledge, there is no work on the quantile regression of nonstationary nonlinear models

like PP’s. Given this background, this chapter explores the theory of nonstationary nonlinear

quantile regression, which is located on the intersection of these two bodies of literatures.

It is well-known that inference based on an order statistic is generally more robust than

that based on a sample mean in the presence of fat-tailed behavior; see van der Vaart (2000,

chapter 14.1) and Koenker (2005, chapter 3.5.1), for instance. Similarly, compared to the

NLS estimator, the LAD estimator, which is the same as 50%-quantile regression estimator,
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may be expected to provide robust inference when regression errors have fat-tailed distri-

bution. Since many time series are believed to possess fat-tailed distributions, the quantile

regression-based method may be desirable in terms of robustness. Furthermore, in finan-

cial econometrics, quantile regression applies to risk estimation measures called conditional

value-at-risks by focusing on quantiles of the lower tail; see Chernozhukov and Umantsev

(2001) and Engle and Manganelli (2004), for instance. The latter article proposed a condi-

tional VaR as a regression quantile of a nonlinear model. In this way, the establishment of a

foundation of statistical analysis for nonstationary nonlinear models by quantile regression

will be a further step in studies on time series econometrics.

The first contribution of the chapter is to derive the asymptotic distribution of the nonlin-

ear quantile regression (NQR) estimator when the regression function derivative is specified

as an asymptotically homogeneous function and the estimator is close to the true parame-

ter. We then find that the estimator is not asymptotically mixed normal as in PP (2001).

Therefore, the second contribution is to propose the fully-modified-type NQR estimator for

that case to recover the mixed normality. The estimator makes standard inference, such as

the Wald test, available. When the regression function derivative is given by an integrable

function, we restrict the nonlinear model to be linear in parameters. Finally the third contri-

bution is the observation from simulations that our suggested NQR estimators are desirable

relative to the NLS estimators in terms of estimation accuracy and powers of tests when

distributions of regression errors possess fat tails.

This chapter is organized as follows. The model, assumptions and preliminary results

for nonstationary NQR estimators are introduced in Section 4.2. The main analytical results

are stated in Sections 4.3 to 4.5. Section 3 derives the limiting distributions of the estimators

for the class of asymptotically homogeneous regression functions. In Section 4.4, we con-

struct the fully-modified-type NQR estimator and provide an asymptotic test on parameter

restrictions based on it. Section 4.5 studies linear-in-parameter models with the classes of

regression functions, including the class of integrable ones, and derive the limiting distri-



Quantile Regression 69

butions again. Section 4.6 deals with simulation studies to determine the performances of

suggested NQR estimators in comparison to the NLS estimators. In Section 4.7, we con-

clude.

For a matrix A = (ai j) and a vector x = (xi), we introduce some notations. The modulus

| · | is taken element by element such that |A| = (|ai j|) and |x| = (|xi|). The norm ∥ · ∥ is

defined as the maximum of the moduli such that ∥A∥= maxi j |ai j| and ∥x∥= maxi |xi|. For

a function g, which is a scalar or vector, the norm ∥g∥p is defined as (E∥g(x)∥p)1/p.

4.2 Preliminaries

4.2.1 The model and estimator

Suppose that a scalar-valued random variable yt is generated from the following nonlinear

model

yt = α0 +g(xt ,β0)+ut (4.1)

for t = 1, . . . ,n, where g : R×Rℓ → R is a known regression function specified later and

the error term ut is a zero-mean stationary process. Hereafter, we simply denote g(xt ,β ) as

gt(β ). The covariate xt is a univariate I(1) time series defined by

xt = xt−1 + vt , (4.2)

where x0 = Op(1) is allowed, but we set x0 = 0 for simplicity. The innovation {vt} is

assumed to be stationary and mean zero. We then let Ft−1 denote an increasing filtration

generated by {ut− j, j ≥ 1;vt−k,k ≥ 0}. Furthermore, let Et−1[ · ] denote the conditional

expectation with respect to the filtration Ft−1.

The (1+ ℓ)-dimensional true parameter vector θ0 = (α0,β ′
0)

′ is assumed to lie in the

parameter set Θ = A×B, where A ⊂ R and B ⊂ Rℓ. PP (2001) analyzed the asymptotic
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properties of the NLS estimator of a model like (4.1), whereas we investigate the asymptotic

behavior of the estimator based on the NQR.

The NQR estimator θ̂n of θ0 can be obtained by solving the minimization problem

θ̂n = argmin
θ∈Θ

n

∑
t=1

ρτ(yt −α −gt(β )) (4.3)

where ρτ(u) = u(τ − 1(u < 0)) is referred to as a check f unction. In the special case τ =

1/2, the NQR estimator agrees with the nonlinear LAD (NLAD) estimator. Here, we set

ψτ(u) = τ −1(u < 0).

Let F and f denote the distribution function and density function of ut , respectively. Let

α0(τ) = α0 +F−1(τ) and define the new parameter vector θ0(τ) = (α0(τ),β ′
0)

′. We may

also rewrite the error term so that

utτ = yt −α0(τ)−gt(β0) = ut −F−1(τ).

Notice that Eψτ(utτ) = 0 and Qutτ (τ) = 0, where Qut (τ) is the τth quantile of ut . Further-

more we need some assumptions on the distribution of ut .

Assumption 1 (a) The distribution function of {ut}, F , is strictly increasing and has a

continuous density function, f ∈ (0,∞), defined on {F ∈ (0,1)}.

(b) The density function f satisfies f (F−1(τ))> 0 and maxu∈R f (u)≤K for some K <∞.

(c) The conditional distribution function Ft−1(u) = P(ut < u|Ft−1) has its derivative ft−1

a.s. with E[ f r
t−1]< ∞ for some r > 1.

Remark 1 If Assumption 1 (a) is satisfied, then the inverse function of F , F−1, is well-

defined. Assumption 1 (b) is required for a technical reasons. The conditional density

is asymptotically associated with the unconditional one under Assumption 1 (c). This as-

sumption is utilized in many researches, such as Knight (1989), Herce (1996), Koenker and

Xiao (2006) and Xiao (2009).
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For the error terms utτ and vt , we construct two partial sum processes

Uψ
n (τ,r) = n−1/2

[nr]

∑
t=1

ψτ(utτ) and Vn(r) = n−1/2
[nr]

∑
t=0

vt+1. (4.4)

To develop the asymptotic theory, we should impose some assumptions on the processes

(4.4).

Assumption 2 {ψτ(utτ),Ft} is a martingale difference sequence.

To determine the asymptotic behavior of Vn, either Assumption 3 or 4 below is required in

response to the class of a transformation g.

Assumption 3 {xt} is adapted to the filtration Ft−1 and, for all r ∈ [0,1], the vector (Uψ
n (τ,r),Vn(r))

converges weakly to a two-dimensional vector Brownian motion (Uψ(τ,r),V (r)) with the

covariance matrix

rΩ(τ) = r

ωψ(τ)2 ωψv(τ)

ωvψ(τ) ω2
v

 .
Remark 2 We may easily confirm that the assumption of PP on errors is satisfied under

Assumptions 2 and 3 for an H-regular g introduced later. Under Assumption 2, it follows

that Uψ
n (τ,r)→d Uψ(τ,r), where Uψ(τ,r) is viewed as a Brownian motion with variance

rωψ(τ)2 = rτ(1− τ) for a fixed τ . Thus, for each fixed pair (τ,r), Uψ(τ,r) is distributed

as N(0,rωψ(τ)2). Assumption 3 also requires Vn to converge weakly jointly with Uψ
n to a

vector Brownian motion; this requirement is standard in time series analysis.

For a certain class of a transformation g, a stronger assumption on {vt} is needed to

derive the asymptotic results, but is utilized only in Section 4.5.

Assumption 4 Suppose Assumption 3 is satisfied. In addition, we assume:

vt = C(L)εt = ∑∞
j=0 c jεt− j with C(1) ̸= 0 and ∑∞

j=0 j|c j| < ∞. The innovation {εt} is a

sequence of i.i.d. random variables with mean zero and E|εt |p < ∞ for some p > 8, the

distribution of which is absolutely continuous with respect to the Lebesgue measure and has

the characteristic function φ(λ ) with λ δ φ(λ )→ 0 as λ → ∞ for some δ > 0.
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This requirement is somewhat restrictive and not necessary for some results. However, this

still holds for many processes including all invertible Gaussian ARMA models.

We introduce an important concept called the local time of the Brownian motion V at x

up to time t. This is defined by

L(t,x) = lim
ε↘0

1
2ε

∫ t

0
1{|V (r)− x| ≤ ε}dr. (4.5)

This random variable measures the time spent by the Brownian motion V in the neighbor-

hood of x up to time t. It is known that the local time is a.s. continuous in t and x. For

further information, see PP (1999, 2001) and Chung and Williams (1990).

4.2.2 The classes of transformation

We define the classes of regression functions as in PP. Our subsequent analysis is based

on the classification of the regression functions into H- and I-regular functions. Here, we

review these classes briefly; their precise definitions are listed in Appendix A.

An H-regular function (x,β ) 7→ g(x,β ) (see Definition 2) is guided by a regular function

(x,β ) 7→ h(x,β ) (see Definition 1) and is defined by

g(λx,β ) = κ(λ )h(x,β )+R(x,λ ,β ), (4.6)

where the function κ is said to be the asymptotic order of g and the regular function h in

(4.6) is called the limit homogeneous function of g. The last term, R(x,λ ,β ), is a remainder.

Polynomial functions, distribution-like functions and logarithmic functions are included in

this H-regular class; see also PP (2001, p.135 and p.140). From the definition of an H-

regular function g and the property of a regular function h, we have an intuition that

κ(n1/2)−1g(xt ,β )≈ h(n−1/2xt ,β )≈ h(V (r),β )

uniformly in β ∈ B for a sufficiently large n with an I(1) covariate xt . Thus, the asymptotic

properties of an H-regular transformation come to those of a regular function h; see PP



Quantile Regression 73

(1999, 2001) for details. We use the brief notation κn instead of κ(n1/2) hereafter. Further,

we write a limit homogeneous function ht(β ) = h(n−1/2xt ,β ) like gt(β ) = g(xt ,β ).

An I-regular function (x,β ) 7→ g(x,β ) (see Definition 3) is characterized as a bounded

and integrable function with respect to x with sufficient smoothness in β . An example is an

exponential function of the form exp(−βx2) for β > 0.

After this, the argument τ is always fixed, so we omit the argument τ unless otherwise

confused in the remaining sections. The τth quantile of ut , F−1(τ) is written by F−1 and

the Brownian motion Uψ
n (τ,r) is simply denoted by Uψ

n (r).

4.3 Local Asymptotic Behavior

In this section, we derive the asymptotic distribution of NQR estimator θ̂n. We restrict our

attention to the class of H-regular functions and investigate the local behavior of the NQR

estimator. The proof is completed by Huber’s (1967) method with some modifications; a

similar proof can be found in Powell (1984, 1986) and Weiss (1991), for example. Note that

the class of I-regular functions cannot be treated in the same framework due to the irregular

convergence rate n1/4; see the proof in Appendix for detail. This class will, however, be

dealt with in the later section with a restricted model specification.

In the proof, we will need to apply the mean value theorem twice to a regression function

g with respect to the parameter vector β . Hence g(x, ·) is always supposed to be twice

continuously differentiable. Define notation of the first and second order derivatives as

ġ(x,β ) =
∂g
∂β

(x,β ) and G̈(x,β ) =
∂ 2g

∂β∂β ′ (x,β ),

and we further write g̈ = vec(G̈). Corresponding to the ℓ-dimensional vector ġ and ℓ2-

dimensional vector g̈, the asymptotic order matrices κ̇n (ℓ×ℓ) and κ̈n (ℓ2×ℓ2) and the vector

of the limit homogeneous functions ḣ and ḧ are introduced when ġ and g̈ are H-regular. We

further let g̃ = (1, ġ′)′, h̃ = (1, ḣ′)′ and κ̃n = diag(1, κ̇n).
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To obtain the limiting distribution of the NQR estimator θ̂n, we need to suppose an

additional assumption on the parameter vector θ .

Assumption 5 The parameter vector θ = (α ,β ′)′ ∈ R×Rℓ is specified as θ = θ0(τ) +

n−1/2κ̃ ′−1
n π , where π lies in a compact set Π ⊂ R×Rℓ.

We may regard the parameter θ as a function of π under Assumption 5 and, if necessary,

denote θ = θ(π) with θ(π) = θ0(τ)+ n−1/2κ̃−1
n π for notational convenience. Note that

θ(0) = θ0(τ).

Define the derivative from the right of the objective function (4.3) as

zt(θ) = g̃t(β )ψτ(yt −α −gt(β ))

= g̃t(β )ψτ(utτ − [α −α0(τ)+gt(β )−gt(β0)]).

(4.7)

Utilizing the function (4.7), we may derive the limiting distribution by considering the “first

order condition”

n−1/2κ̃−1
n

n

∑
t=1

zt(θ̂n) = op(1). (4.8)

This estimating equation leads to the Bahadur representation of the NQR estimator θ̂n. The

following lemma ensures that (4.8) holds and then the main result is obtained in the next

theorem.

Lemma 1 Let ġ and g̈ be H-regular on B. If Assumptions 1–3 and 5 are assumed, then the

estimating equation (4.8) holds with the NQR estimator θ̂n.

Theorem 1 Let ġ and g̈ be H-regular on B, and suppose that Assumptions 1–3 and 5 hold.

Furthermore, the identifiability condition∫ δ

−δ
ḣ(x,β0)ḣ(x,β0)

′dx > 0 for all δ > 0 (4.9)

and
∥∥κ̇−1

n
∥∥2 ∥κ̈n∥< ∞ are assumed to hold. Then we have

n1/2κ̃ ′
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ(r).
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Remark 3 (a) The same identifiability condition in (4.9) is employed in Theorem 5.2 of PP

(2001), whereas the condition on the asymptotic order is different from that in Theorem 5.2

of PP (2001); that assumes ∥(κ̇n ⊗ κ̇n)
−1κnκ̈n∥< ∞.

(b) The limiting distribution in Theorem 1 is not usually (mixed) normal because of the

possibly nonzero correlation between Uψ and V . Therefore standard inferences are not

applicable in this case.

(c) The limiting random variable in Theorem 1 resembles that of the NLS estimator derived

in Theorem 5.2 in PP (2001), but the critical difference lies in the coefficient. The NQR

estimator depends on the variance of Uψ , ω2
ψ , which is the function of the predetermined τ

and the functional form of the density f of {ut}, while the PP’s NLS estimator depends on

the variance of {ut}. This is typical in investigating the relative efficiency of two statistics,

such as sign versus t-test; see van der Vaart (2000, chapter 14.1).

4.4 Inferences

4.4.1 Fully-modified estimation

By Assumption 3 (or 4), we see that ∑∞
0 Evtψτ(ut+ j) is zero, but ∑∞

−∞ Evtψτ(ut+ j) and

∑∞
0 Evtvt+ j are not. In this subsection, we eliminate the endogeneity bias by means of fully

modified (FM) type estimation developed by Phillips and Hansen (1990) in linear cointe-

grating models. Along this line, Phillips (1995) and Xiao (2009) suggested the FM type

quantile regression estimator for linear time series. In the literature of nonlinear regressions

with integrated time series, Chang et.al. (2001) worked out the so-called efficient nonsta-

tionary nonlinear least squares (EN-NLS) estimator, which is parametrically constructed

through AR approximation of ∆xt = vt . In the present chapter, however, we suggest the

FM-NQR estimator based on the results of Phillips and Hansen (1990) and de Jong (2002).

To utilize the result of de Jong (2002), we write ∇ḣ(x,β ) = ∂ ḣ(x,β )/∂x and introduce ad-
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ditional assumptions on an H-regular transformation and the weak dependence structure of

vt .

Assumption 6 (a) vt is near-epoch dependent in L2-norm (L2-NED) of size −1 on wt ,

where wt is an α-mixing array of size −2p/(p−2) or vt is L2-NED of size −1 on wt ,

where wt is a ϕ -mixing array of size −p/(p−1);

(b) for all β ∈ B, ∇ḣ(x,β ) is continuous in x ∈ R;

(c) for any sequence δn such that δn → 0 as n → ∞, and for any β ∈ B and c > 0,

limsup
n→∞

sup
|x|≤c

sup
y:|x−y|≤δn

∥∥ḣ(x,β )− ḣ(y,β )
∥∥2

= 0.

Remark 4 (a) On Assumption 6 (a), we say that vt is L2-NED of size −1 on wt if vt satisfies

∥vt −E[vt |wt−m, . . . ,wt+m]∥2 ≤ Ψ(m) = O(m−φ)

for some φ > 1. For more information on the concepts of mixing and NED sequences, see

Davidson (1994).

(b) Assumption 6 (b) and (c) provide the smoothness of a function; (c) is referred to as

asymptotic uniform equicontinuity, which is seen in Davidson (1994, p. 90), for example.

The idea of the FM-NQR is based on the decomposition of the integral appearing in the

limiting variable of n1/2κ̃ ′
n(θ̂n(τ)−θ0(τ)) in Theorem 1 so that∫ 1

0
h̃(V (r),β0)dUψ(r)

=

[∫ 1

0
ḣ(V (r),β0)dUψ(r)−

ωψv

ω2
v

∫ 1

0
h̃(V (r),β0)dV (r)

]
+

ωψv

ω2
v

∫ 1

0
h̃(V (r),β0)dV (r).

Taking note of the integrals in the brackets, we may define a new Gaussian process

Uψ+(r) =Uψ(r)−
ωψv

ω2
v

V (r).

Then, Uψ+ is easily found to be uncorrelated with V and, hence, independent of V . There-

fore, we can construct a new estimator of β0 that has the limiting variable integrated with
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respect to the integrator dUψ+ instead of dUψ . For this purpose, it is necessary to form two

statistics Sn and Tn satisfying

Sn
p−→
∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr and Tn
d−→
∫ 1

0
h̃(V (r),β0)dV (r)

and arrange consistent estimators ̂1/ f (F−1(τ)), ω̂ψv, ω̂2
v and λ̂ . It should be remarked

that estimation of the sparsity function, 1/ f (F−1(τ)), is a frequent problem in quantile

regression. A portion of the method is introduced in Appendix. For further details, see

Koenker (2005, section 3.4.1) and Koenker and Xiao (2004). Note, moreover, that λ is

the one-sided long-run variance λ defined by ∑∞
j=0 Evtvt+ j. Using these statistics, we may

accommodate the FM-NQR estimator

θ̂+
n (τ) = θ̂n(τ)−

n−1/2κ̃ ′−1
n

̂f (F−1(τ))

ω̂ψv

ω̂2
v

S−1
n Tn, (4.10)

where

Sn = n−1
n

∑
t=1

h̃(n−1/2xt , β̂n(τ))h̃(n−1/2xt , β̂n(τ))′,

Tn = n−1/2
n

∑
t=1

{
h̃(n−1/2xt , β̂n(τ))∆xt −n−1/2λ̂∇h̃(n−1/2xt , β̂n(τ))

}
.

Theorem 2 If all Assumptions in Theorem 1 and Assumption 6 are satisfied, then we have

n1/2κ̃ ′
n(θ̂+

n (τ)−θ0(τ))

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ+(r).

Remark 5 (a) The mixed normality of the limiting random variable in Theorem 2 is brought

to light immediately because of the construction of Uψ+. Indeed, it may be expressed as

MN

(
0,

ω2
ψ −ω2

ψv/ω2
v

f (F−1(τ))2

[∫ 1

0
ḣ(V (r),β0)ḣ(V (r),β0)

′dr
]−1
)
. (4.11)

(b) The consistent estimators of the nuisance parameters are obtained by a standard non-

parametric method as in Xiao (2009). That is, if we let the sample variance and covariance

denote

C2
v ( j) =

1
n

n− j

∑
t=1

vtvt+ j and Cψv( j) =
1
n

n− j

∑
t=1

vtψτ(ût+ j,τ),
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then we may utilize

ω̂2
v =

M

∑
j=−M

k
(

j
M

)
C2

v ( j), ω̂ψv =
M

∑
j=−M

k
(

j
M

)
Cψv( j), λ̂ =

M

∑
j=0

k
(

j
M

)
C2

v ( j).

Here, k(·) is a lag window on [−1,1] with k(0) = 1 and M is a bandwidth satisfying M → ∞

and M/n → 0. A typical order is M = O(n1/3).

4.4.2 Testing for parameter restrictions

We consider testing linear restrictions on the parameter vector according to FM-NQR esti-

mator proposed in the previous subsection.

A null hypothesis is supposed to be of the simple form

H0 : Rθ0(τ) = q,

where R denotes an (m× (1+ ℓ)) matrix and q denotes an m-dimensional vector. By Theo-

rem 2 and (4.11), we have, under H0,(
ω2

ψ −ω2
ψv/ω2

v

f (F−1(τ))2 R
[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1

R′

)−1/2 [
RDnθ̂+

n (τ)−q
]

d−→ N(0, Im),

where Dn = n1/2κ̃ ′
n and N(0, Im) is an m-dimensional standard normal random variable.

Therefore, for each τ , we may construct the Wald statistic Wn(τ) below:

Wn(τ) =
̂f (F−1(τ))2

ω2
ψ − ω̂2

ψv/ω̂2
v

[
RDnθ̂+

n (τ)−q
]′ (

RS−1
n R′)−1 [

RDnθ̂+
n (τ)−q

]
,

where Sn is defined in Theorem 2. The asymptotic behavior of Wn(τ) is summarized as

follows:

Theorem 3 Suppose all Assumptions of Theorem 2 are satisfied. Then, under the null hy-

pothesis H0, we have

Wn(τ)
d−→ χ2

m,

where χ2
m is a chi-square random variable with m degrees of freedom.
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4.5 Asymptotic Behavior of Linear-in-parameter Models

We have considered the NQR estimator of the nonlinear model only in the case of H-regular

ġ and g̈. In this section, we then investigate the so-called linear-in-parameter model obtained

by confining model (4.1) to

g(xt ,β0) = β0g(xt). (4.12)

The regression function g is either I-regular or H-regular and write gt = g(xt). The parameter

β0 is allowed ℓ-dimensional, but is assumed ℓ= 1 for the sake of brevity. Because the model

is linear in parameter, the asymptotics of the quantile regression estimator β̂n can be derived

even if g is an I-regular function as well as an H-regular one. The proof is quite different

from that of Theorem 1; Theorems 4 and 5 below are shown after the fashion of the proofs

for linear models achieved by Knight (1989, 1991), Herce (1996), Koenker and Xiao (2004)

and Xiao (2009), for example. To make the discussion simple, we employ the following

assumption.

Assumption 7 {ut} is a sequence of independent random variables.

Define the localized parameter π = Dn(θ −θ0) in a compact parameter set Π ⊂ R×R.

The scaling coefficient Dn is given by either DI
n = diag(n1/2,n1/4) for an I-regular model

or DH
n = n1/2κ̃n with κ̃n = diag(1,κn) for an H-regular model. Then θ is considered as a

function of π so that θ = θ(π) = β0 +D−1
n π . It may be understood that θ̂n is the minimizer

of the re-parameterized objective function Mn(θ) = Mn(θ(π)) defined by

Mn(θ(π)) =
n

∑
t=1

[
ρτ
(
utτ −π ′D−1

n g̃t
)
−ρτ(utτ)

]
.

First, we consider model (4.1) under restriction (4.12) with I-regular regression function

derivative ġ. The limiting distribution of the NQR estimator θ̂n is summarized as follows.
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Theorem 4 Let g be I-regular on B, and suppose that Assumptions 1, 4 and 7 hold. Fur-

thermore, the identifiability condition

∫ ∞

−∞
g(x)2dx > 0

is assumed to be satisfied. Then we have

DI
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

 Uψ(1)(
L(1,0)

∫ ∞

−∞
g(x)2dx

)−1/2

W (1),


where W (r) is the Brownian motion independent of (Uψ(r),V (r)).

Remark 6 The Brownian motion W (r) in Theorem 4 has variance rτ(1− τ), which is the

same as rω2
ψ , the variance of Uψ(r); see Theorem 3.2 of PP (2001) for detail. This implies

that α̂n and β̂n are asymptotically independent; consequently, the limiting joint distribution

is mixed normal of the form

MN

0,
ω2

ψ

f (F−1(τ))2

1 0

0 L(1,0)
∫ ∞
−∞ g(x)2dx


−1
 . (4.13)

Hence, standard inferences are applicable in an asymptotic sense.

Finally, we derive the asymptotic distribution again for the H-regular case to pursue the

completeness.

Theorem 5 Let g be H-regular on B, and suppose that Assumptions 1, 3 and 7 hold. Fur-

thermore, the identifiability condition

∫ δ

−δ
h(x)2dx > 0

for all δ > 0 is assumed to be satisfied. Then we have

n1/2κ̃n(θ̂n(τ)−θ0(τ))
d−→ 1

f (F−1(τ))

[∫ 1

0
h(V (r))2dr

]−1 ∫ 1

0
h(V (r))dUψ(r).
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4.6 Simulations

We investigate the finite sample performances of the NQR estimators with τ = 0.5 by com-

parison to NLS estimators by simulations. Note that the NQR estimator here is equivalent

to the nonlinear lease absolute deviation (NLAD) estimator. In the following subsections,

we will consider estimation accuracy first and then observe the performance of tests under

fat-tailed behavior. All the computations are implemented by R version 2.14.1. The NLAD

estimators are obtained by the interior point algorithm through the nlrq command in the

quantreg package. For more information on computational aspects, see Koenker (2005,

Appendix A) and Koenker and Park (1994).

Throughout this section, the distributions of the regression error sequence {ut} for t =

1, . . . ,n are supposed to be standard normal (SN) or student’s t with k-degrees of freedom (tk)

for k = 3,4. The integrated covariate {xt} for t = 1, . . . ,n is assumed to be driven by the error

sequence {vt}, which is specified by SN or student’s t9. The sample size is either n = 250

or 500 in all the experiments, and the number of replications is 500 for each computation.

To clarify the objective and pursue simplicity, {ut} and {vt} are assumed to be i.i.d. and

mutually independent.

Two linear-in-parameter models and one nonlinear model are used as examples of I-

and H-regular regression functions. The first has an I-regular regression function called an

exponential-type model, which is given by

yt = β01 exp
(
−cx2

t
)
+ut , (4.14)

where β01 ∈ R is a parameter of interest and c is a known positive constant. The true value

of β01 is set to 2. We should pay attention to the value of this type of regression function in

practice. If exponential functions like (4.14) are used, the functional value tends to be close

to zero very quickly for a relatively large value of |xt |. As a result, numerical optimization

will become unstable. In our settings, the constant c is set to 0.01 to stabilize a variation of

cx2
t in (4.14). The second is a smooth transition model, which is an example of H-regular
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functions, and is given by

yt =
β02 exp(xt)

1+ exp(xt)
+ut , (4.15)

where β02 ∈ R is unknown and to be estimated, and the true value of β02 is set to 2. The

asymptotic order and asymptotically homogeneous function associated with this regression

function derivative are calculated as κ̇n = 1 and ḣ(x,β02) = 1(x ≥ 0), respectively. The third

is a reformulated version of the regression function g(x,β03) = (x+ β03)
2 investigated in

Example 4.1(c) of PP(2001), which is an example of nonlinear H-regular functions, and is

given by

yt = 2β03xt +β 2
03 +ut , (4.16)

where β03 ∈ R is unknown and to be estimated, and the true value of β03 is set to 2. The

asymptotic order and asymptotically homogeneous function associated with this regression

function derivative are calculated as κ̇n = n1/2 and ḣ(x,β03) = 2x, respectively.

4.6.1 Estimation

For each model, we observe tolerances of the NLS and NLAD estimators for fat-tailed errors

by comparing their root mean squared errors (RMSEs). The results are shown in Tables 4.1

to 4.3.

From Table 4.1, which indicates the RMSEs for I-regular model (4.14), we may observe

that the NLAD estimators are relatively superior to the NLS estimators when the regression

error sequence {ut} has a fat-tailed distribution although the NLS estimators have an advan-

tage in case of a Gaussian error sequence {ut}. Meanwhile, the fat-tailedness of {vt} is not

very effective in this experiment. From Tables 4.2 and 4.3, which indicate the RMSEs for

H-regular models (4.15) and (4.16), we may find the same tendency as in Table 4.1. As a

result, it may seem desirable to rely on the NLAD estimation relative to the NLS method if

Gaussianity for errors is unlikely to be satisfied.
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4.6.2 Testing

We examine the empirical sizes and size-adjusted powers of t-tests based on the estimated

parameters β̂01, β̂02 and β̂03 in models (4.14), (4.15) and (4.16), respectively. The nominal

size we desire is assumed to be 0.05. Tables 4.4 to 4.6 report the empirical sizes and Figures

4.1 to 4.12 display the size-adjusted powers under several error distributions.

For the NLAD estimation, we need to estimate a nuisance sparsity function s(τ) de-

fined as 1/ f (F−1(τ)). There are several ways to obtain the estimator ŝn(τ), but we adopt

a residual-based method here; see Appendix B. By Appendix B, we write (B) and (HS) for

the NLAD estimates based on Bofinger (1975) and Hall and Sheather (1988), respectively,

in Tables 4.4 to 4.6. Further, (0) in these tables means that their values are computed with

the true values of the nuisance parameters.

From Tables 4.4 to 4.6, we may observe that the sizes are at least almost good although

there are tendencies for under-rejections to arise to some degree in some NLAD estimates

and for over-rejections to occur slightly in some NLS estimates. We finally compare the

size-adjusted powers of the tests. In the figures, the values of coordinates on the horizontal

axis show the difference between the parameter estimate and parameter value under the null

hypothesis. Figures from 4.1 to 4.4 show the powers of the tests when I-regular model (4.14)

is used. We note that the tests based on the NLAD estimators are superior to those based

on the NLS estimators for fat-tailed regression errors in terms of the powers, and this is also

the case with the RMSEs. Figures 4.5 to 4.12 indicate the powers of the tests when I-regular

model (4.15) is used and we may find the same propensity.

4.7 Conclusion

The first contribution of this chapter is that we have investigated the asymptotic behavior

of the NQR estimators when the regression function derivatives are given by H-regular



Quantile Regression 84

functions and the covariate is given by an integrated time series. That is, we have obtained

the limit distributions of the estimator when it is close to the true value. For the second

contribution, we have proposed the FM-NQR estimator for an H-regular case since the

derived NQR estimator corresponding to an H-regular function does not converge weakly

to a mixed normal distribution. Due to this estimator, standard inference becomes available

in consequence. As the third contribution, we have derived the limiting distribution of the

NQR estimator for I-regular functions as well as H-regular ones when the model is linear in

a parameter. Finally, we observe from simulations that our suggested NQR estimators are

desirable relative to the NLS estimators in terms of estimation accuracy and powers of tests

when distributions of regression errors possess fat tails.

4.8 Appendix

4.8.1 Functional classes

Definition 1 A function h is called regular on B if it satisfies

(a) for all β ∈ B, h(·,β ) is continuous in a neighborhood of infinity,

(b) for any β ∈ B and compact subset K of R, there exist for each ε > 0 continuous

functions hε , hε and a constant δε > 0 such that hε(x,β ) ≤ h(y,β ) ≤ hε(x,β ) for all

|x− y|< δε on K, and such that
∫

K(hε(x,β )−hε(x,β ))dx → 0 as ε → 0, and

(c) for all x ∈ R, h(x, ·) is equicontinuous in a neighborhood of x.

Definition 2 A function g is called H-regular on B if it satisfies

(a) g(λx,β ) = κ(λ )h(x,β )+R(x,λ ,β ) with h being regular on B,

and either

(b-i) |R(x,λ ,β )| ≤ a(λ ,β )P(x,β ) with limsupλ→∞ supβ∈B ∥κ(λ )−1a(λ ,β )∥= 0, or
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(b-ii) |R(x,λ ,β )| ≤ b(λ ,β )P(x,β )Q(λx,β ) with limsupλ→∞ supβ∈B ∥κ(λ )−1b(λ ,β )∥ <

∞,

where

(c) supβ∈B P(·,β ) is locally bounded such that for some c > 0, supβ∈B P(x,β ) = O(ec|x|)

as |x| → ∞, and supβ∈B Q(·,β ) is bounded with supβ∈B Q(x,β ) = o(1) as |x| → ∞.

Definition 3 A function g is called I-regular on B if it satisfies both

(a) for each β0 ∈ B, there exist a neighborhood B0 of β0 and bounded integrable func-

tion T : R → R satisfying |g(x,β )− g(x,β0)| ≤ T (x)∥β − β0∥ for all β ∈ B0 and

supβ∈B0
|g(·,β )| is integrable, and

(b) for some c > 0 and k > 6/(p − 2) with p > 4 given in Assumption 4, |g(x,β )−

g(y,β )| ≤ c|x− y|k for all β ∈ B.

4.8.2 Estimation of sparsity functions

If we let F−1
n (t) = û(i) for t ∈ [(i−1)/n, i/n) with ith smallest regression residual û(i), ŝn(τ)

may be obtained by

ŝn(τ) =
F−1

n (τ +hn)−F−1
n (τ −hn)

2hn
,

where hn is a bandwidth. Let Φ and ϕ denote the distribution function and density function

of a standard normal random variable. The first way to estimate the bandwidth hn is due to

Bofinger (1975), which suggests computing

hn =

[
4.5ϕ(Φ−1(τ))4

n(2Φ−1(τ)2 +1)2

]1/5

. (4.17)

Another one is according to Hall and Sheather (1988), which recommends that

hn =

[
1.5z2

αϕ(Φ−1(τ))2

2nΦ−1(τ)2 +1

]1/3

, (4.18)

where zα satisfies Φ(za) = 1−α/2, and α denotes the size of the test, 0.05, in this case. For

more discussion on sparsity estimation, see Koenker (2005, chapter 4.10.1).
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4.8.3 Useful lemmas

Remember that zt(θ) = g̃t(β )ψτ(yt −α −gt(β )). Define the following values

λn(θ) =
1
n

n

∑
t=1

Et−1zt(θ),

µt(θ(π),d) = sup
η :∥π−η∥≤d

∥∥κ̃−1
n {zt(θ(π))− zt(θ(η))}

∥∥ ,
where θ(π) = θ0 + n1/2κ̃ ′

nπ and π lies in the compact set Π ⊂ R1+ℓ; see Assumption 5.

More specifically, we may write θ(π) = (α(π),β (π)′)′ with α(π) = α0(τ)+ n1/2π1 and

β (π) = β0 +n1/2κ̇ ′
nπ2.

Lemma 2 Let all the conditions in Theorem 1 hold. Then, for a sufficiently large n, there

exist positive numbers a,b,c, and d0 such that

(i) ∥κ̃−1
n λn(θ(π))∥ ≥ n−1/2a∥π∥ for ∥π∥ ≤ d0;

(ii) Et−1µt(θ(π),d)≤ n−1/2bd for ∥π∥+d ≤ d0, d ≥ 0;

(iii) Et−1µt(θ(π),d)2 ≤ n−1/2cd for ∥π∥+d ≤ d0, d ≥ 0.

Proof of Lemma 2 First we show (i). Since Assumption 2 implies τ = Ft−1(F−1(τ)), by

the definition of λn and applying the mean value theorem twice, we have

λn(θ) =
1
n

n

∑
t=1

Et−1zt(θ)

=
1
n

n

∑
t=1

g̃t(β ){Ft−1(F−1(τ))−Ft−1(F−1(τ)+α −α0(τ)+gt(β )−gt(β0))}

=−1
n

n

∑
t=1

g̃t(β ) ft−1(γt(θ)){α −α0(τ)+gt(β )−gt(β0)}

=−1
n

n

∑
t=1

ft−1(γt(θ))g̃t(β )g̃t(β̄ )′(θ −θ0(τ)),

(4.19)

where γt(θ) is a point between F−1(τ) and F−1(τ) + α − α0(τ) + gt(β )− gt(β0), and

β̄ is a point between β and β0. We now utilize Assumption 5. Under the assumption,

γt(θ(π)) →p F−1(τ) uniformly in π and t. Thus, γt(θ) is asymptotically replaced with
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F−1(τ) without loss of generality. By Assumption 1 (c), furthermore, ft−1(F−1(τ)) is

asymptotically replaced with f (F−1(τ)); see Xiao (2009) for example. In consequence,

noting that θ = θ(π), we have

λn(θ(π)) =− f (F−1(τ))
n

n

∑
t=1

g̃t(β (π))g̃t(β̄ (π))′(θ(π)−θ0(τ))(1+op(1)) (4.20)

Therefore, it follows that

∥κ̃−1
n λn(θ(π))∥

=
f (F−1(τ))

n

∥∥∥∥∥ n

∑
t=1

κ̃−1
n g̃t(θ(π))g̃t(θ̄(π))′

κ̃ ′−1
n

n1/2 π(1+op(1))

∥∥∥∥∥
=

f (F−1(τ))
n1/2

∥∥∥∥∫ ∞

−∞
L(1,s)h̃(s,β0)h̃(s,β0)

′dsπ(1+op(1))
∥∥∥∥

(4.21)

uniformly in π ∈ Π by PP (2001). Because the integration in (4.21) is eventually positive by

the identifiability condition, the last value is bounded below by n−1/2a∥π∥ for some a > 0.

Next, we prove (ii). By the definition of µt , the triangle inequality and the definition of

ψτ(·), we have

µt(θ(π),d)

= sup
η :∥π−η∥≤d

∥∥κ̃−1
n {zt(θ(π))− zt(θ(η))}

∥∥
≤ sup

η

∥∥κ̃−1
n {g̃t(β (π))− g̃t(β (η))}

× ψτ (utτ −α(η)+α0(τ)−gt(β (η))+gt(β0))∥

+ sup
η

∥∥κ̃−1
n g̃t(β (π)){ψτ (utτ −α(π)+α0(τ)−gt(β (π))+gt(β0))

− ψτ (utτ −α(η)+α0(τ)−gt(β (η))+gt(β0))}∥

≤ sup
η

∥∥κ̃−1
n {g̃t(β (π))− g̃t(β (η))}

∥∥
+
∥∥κ̃−1

n g̃t(β (π))
∥∥sup

η
|1(utτ < α(π)−α0(τ)+gt(β (π))−gt(β0))

−1 (utτ < α(η)−α0(τ)+gt(β (η))−gt(β0))| .

(4.22)

We focus on the second term of the last expression in (4.22). By monotonicity of the in-

dicator functions, the supremum part is equal to either 1(utτ < supη [α(η)+ gt(β (η))]−
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α0(τ)−gt(β0))−1(utτ <α(π)+gt(β (π))−α0(τ)−gt(β0)) or 1(utτ <α(π)+gt(β (π))−

α0(τ)− gt(β0))− 1(utτ < infη [α(η)+ gt(β (η))]−α0(τ)− gt(β0)). We then take condi-

tional expectations on µt(θ(π),d). If we apply the mean value theorem to the difference

Et−11(utτ < ·)−Et−11(utτ < ·) in either case, we have the expression so that

Et−1µt(θ(π),d)≤ sup
η

∥∥κ̃−1
n {g̃t(β (π))− g̃t(β (η))}

∥∥
+
∥∥κ̃−1

n g̃t(β (π))
∥∥ f̄ sup

η
|α(π)−α(η)+gt(β (π))−gt(β (η))|,

(4.23)

where f̄ is the upper bound of the density f . Applying the mean value theorem to g̃(·) and

g(·) in (4.23) and using the property of H-regular functions and ∥κ̃−1
n ∥2∥κ̈n∥< ∞, we have

Et−1µt(θ(π),d)≤
∥∥κ̃−1

n
∥∥sup

η
∥g̈t(β (η))∥sup

η
∥θ(π)−θ(η)∥

+
∥∥κ̃−1

n g̃t(β (π))
∥∥ f̄ sup

η
∥g̃t(β̄ (η))′(θ(π)−θ(η))∥

≤ n−1/2∥κ̃−1
n ∥2∥κ̈n∥sup

η
∥ḧt(β (η))+op(1)∥sup

η
∥π −η∥

+n−1/2 f̄ sup
η

∥∥h̃t(β (η))+op(1)
∥∥2 sup

η
∥π −η∥

≤ n−1/2bd,

(4.24)

where the last inequality in (4.23) follows from the local boundedness of the regular func-

tions ḣ and ḧ (Lemma A3 (b) of PP(2001), for a sufficiently large n and some b > 0.

Finally we show (iii). From (4.22), we have the bound

µt(θ(π),d)2

≤ 2sup
η

∥∥κ̃−1
n {g̃t(β (π))− g̃t(β (η))}

∥∥2

+2
∥∥κ̃−1

n g̃t(β (π))
∥∥2

sup
η

|1(utτ < α(π)−α0(τ)+gt(β (π))−gt(β0))

−1 (utτ < α(η)−α0(τ)+gt(β (η))−gt(β0))| .

(4.25)



Quantile Regression 89

Thus the same manipulation as in (4.23) and (4.24) yields

Et−1µt(θ(π),d)2

≤ 2n−1∥κ̃−1
n ∥4∥κ̈n∥2 sup

η
∥ḧt(β (η))+op(1)∥2 sup

η
∥π −η∥2

+2n−1/2 f̄ 2 sup
η

∥∥h̃t(β (η))+op(1)
∥∥3 sup

η
∥π −η∥

≤ n−1/2cd

(4.26)

for a sufficiently large n and some c > 0. ■

Lemma 3 Define

Qn(θ(η),θ(π)) =
∥∥κ̃−1

n ∑n
t=1{zt(θ(η))− zt(θ(π))−λn(θ(η))+λn(θ(π))}

∥∥
n1/2 +n

∥∥κ̃−1
n λn(θ(η))

∥∥ . (4.27)

Suppose all the conditions in Theorem 1. Then, for a sufficiently large n, we have

sup
∥η∥≤d0

Qn(θ(η),θ(0)) = op(1). (4.28)

Proof of Lemma 3 The idea of the proof is to subdivide the cube ∥η∥ ≤ d0 into a slowly

increasing number of smaller cubes and bound Qn(θ(η),θ(0)) in probability on each of

those smaller cubes. This way is identical to Huber (1967, pp. 227–230) except that:

• a fixed number γ (see eq. (36) in Huber (1967)) is now chosen arbitrary from (0,1/2)

in order to control the convergence rate in response to the localized parameter;

• terms of the form λ (·), nEµt(·, ·) and so on in Huber’s notation are replaced by those

of the form λn, ∑Et−1µt(·, ·) and so on (i.e., “averaged” counterparts and conditional

expectations are used) without affecting the validity of the argument if n is sufficiently

large; see, for example, Powell (1984) and Weiss (1991) for similar discussions.

In consequence, the proof is completed by the proof in Huber (1967, pp. 227–230) because

(N-3) in Huber (1967, p. 227) is satisfied from Lemma 2 and the other conditions (N-1) and
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(N-2) in Huber (1967, pp. 226–227) hold in this case. ■

Remark on Lemma 3 The result does not hold when ġ and g̈ are I-regular because of

the irregular convergence rate, n1/4, at least utilizing Qn defined in (4.27). We are then

required to rearrange Qn, in such a way as to make (4.28) hold, but it does not seem easy. A

completely different way might be needed.

Lemma 4 Define ζn =−D−1
n ∑n

t=1 g̃tψτ(utτ), where g is either I- or H-regular.

(a) Suppose that all Assumptions in Theorem 4 are satisfied. Then, ζn converges weakly

to ζ I , where

ζ I =−

 Uψ(1)(
L(1,0)

∫ ∞

−∞
g(s)2ds

)1/2

W (1)

 .
(b) Suppose that all Assumptions in Theorem 5 are satisfied. Then, ζn converges weakly

to ζ H , where

ζ H =−

 Uψ(1)∫ 1

0
h(V (r))dUψ(r)

 .
Proof of Lemma 4 The first element of ζn, which is identical in (a) and (b), converges

weakly to Uψ(1) by a central limit theorem for martingale difference sequences. For the

second element of ζn in (a) and (b), the result is immediately obtained from Theorems 3.2

and 3.3 of PP (2001), respectively. That is, in the case of (a), we have

n−1/4
n

∑
t=1

gtψτ(utτ)
d−→
(

L(1,0)
∫ ∞

−∞
g(s)2ds

)1/2

W (1), (4.29)

where W (r) is a Brownian motion independent of (Uψ(r),V (r)) and has variance rω2
ψ .

Since joint convergence is ensured from Lemma 5 in Chang et al. (2001), this leads to result

(a).



Quantile Regression 91

Similarly, in the case of (b), we have

n−1/2κ−1
n

n

∑
t=1

gtψτ(utτ)
d−→
∫ 1

0
h(V (r))dUψ(r). (4.30)

This in turn leads to result (b) since joint convergence is again ensured from Lemma 5 in

Chang et al. (2001). ■

Lemma 5 Define

Ξn(π) =
n

∑
t=1

(
π ′D−1

n g̃t −utτ
)[

1
{

π ′D−1
n g̃t > utτ > 0

}
−1
{

π ′D−1
n g̃t < utτ < 0

}]
,

where g is either I- or H-regular.

(a) Suppose that all Assumptions in Theorem 4 are satisfied. Then, Ξn(π) converges in

probability to π ′ΞIπ/2, where

ΞI = f (F−1(τ))

1 0

0 L(1,0)
∫ ∞

−∞
g(s)2dsθ 2

 .
(b) Suppose that all Assumptions in Theorem 5 are satisfied. Then, Ξn(π) converges in

probability to π ′ΞHπ/2, where

ΞH = f (F−1(τ))

 1
∫ 1

0
h(V (r))dr∫ 1

0
h(V (r))dr

∫ 1

0
h(V (r))2dr

 .
Proof of Lemma 5 Denote Vn =∑n

t=1Vtn with Vtn =
(
π ′D−1

n g̃t −utτ
)

1
{

π ′D−1
n g̃t > utτ > 0

}
.

We consider the truncation of Vtn by an indicator function It , which depends on the class of

g. In the I-regular case, we set It = II
t , where

II
t = 1(0 < gt ≤ m) (4.31)
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for some m > 0. In the H-regular case, we set It = IH
t , where

IH
t = 1

(
0 < κ−1

n gt ≤ m
)
= 1

(
0 < h

(
n−1/2xt

)
+op(1)≤ m

)
(4.32)

for some m > 0. Define Vnm and Vtnm as

Vnm =
n

∑
t=1

Vtnm =
n

∑
t=1

VtnIt . (4.33)

In addition, we define its conditional expectation as µtnm = Et−1Vtnm and its summation as

µnm = ∑n
t=1 µtnm.

Using the notations above, we will derive the probability limit of Vn through the fol-

lowing steps. First, we compute the limiting variable of µnm as n → ∞ and m → ∞. Next,

we check the asymptotic equivalence of Vnm and µnm. Finally, we verify that the effect of

truncation by It is asymptotically negligible.

For the first step, we have, from Assumption 7,

µnm =
n

∑
t=1

Et−1
[(

π ′D−1
n g̃t −utτ

)
1
(
π ′D−1

n g̃t > utτ > 0
)

It
]

=
n

∑
t=1

∫ π ′D−1
n g̃t+F−1(τ)

F−1(τ)

(
π ′D−1

n g̃t +F−1(τ)−u
)

f (u)duIt

=
n

∑
t=1

∫ π ′D−1
n g̃t+F−1(τ)

F−1(τ)

∫ π ′D−1
n g̃t+F−1(τ)

u
dv f (u)duIt

=
n

∑
t=1

∫ π ′D−1
n g̃t+F−1(τ)

F−1(τ)

∫ v

F−1(τ)
f (u)dudvIt

=
n

∑
t=1

∫ π ′D−1
n g̃t+F−1(τ)

F−1(τ)
(v−F−1(τ))

F(v)−F(F−1(τ))
v−F−1(τ)

dvIt ,

where the fourth equality follows from Fubini’s theorem. Under Assumption 7, we then get

µnm = f (F−1(τ))
n

∑
t=1

∫ π ′D−1
n g̃t+F−1(τ)

F−1(τ)
vdvIt

=
f (F−1(τ))

2
π ′D−1

n

n

∑
t=1

g̃t g̃′tItD
−1
n π.

(4.34)

We analyze µnm in (4.34) with explicit functional form of g. Hereafter, we use the notation

· I and ·H for several variables in the same way as II
t and IH

t .
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When g is I-regular, we remember that Dn = DI
n = diag(n1/2,n1/4) and It = II

t was given

in (4.31). Because the product of I-regular functions is again I-regular (Lemma A6 (b) of

PP (2001)), µnm in (4.34) deduces

µnm = µ I
nm =

f (F−1(τ))
2

n

∑
t=1

π ′

 n−1 n−3/4gt

n−3/4gt n−1/2g2
t

 II
t π

p−→ f (F−1(τ))
2

π ′

ξ I
11m 0

0 ξ I
22m

π =: µ I
m

(4.35)

as n → ∞, where

ξ I
11m =

∫ 1

0
1(0 < g(V (r))≤ m)dr,

ξ I
22m = L(1,0)

∫ ∞

−∞
g(s)21(0 < g(s)≤ m)ds.

Letting m → ∞, we then obtain

µ I
m

p−→ f (F−1(τ))
2

π ′

ξ I
11 0

0 ξ I
22

π =: µ I, (4.36)

where

ξ I
11 =

∫ 1

0
1(0 < g(V (r)))dr,

ξ I
22 = L(1,0)

∫ ∞

−∞
g(s)21(0 < g(s))ds.

For the next step, we show the asymptotic equivalence of V I
nm and µ I

nm for a sufficiently

large n. Note that {V I
tnm−µ I

tnm} forms a martingale difference sequence. Since g is I-regular,

we see that

π ′DI−1
n g̃tII

t
p−→ 0 (4.37)

uniformly in t = 1, . . . ,n. Then, it follows that

n

∑
t=1

Et−1V I2
tnm =

n

∑
t=1

Et−1

[(
π ′DI−1

n g̃t −utτ
)2

1
(
π ′DI−1

n g̃t > utτ > 0
)

II
t

]
≤

n

∑
t=1

Et−1
[
π ′DI−1

n g̃tII
t V I

tnm
]
≤ max

1≤t≤n

{
π ′DI−1

n g̃tII
t
}

Op(1)
p−→ 0.

(4.38)
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Therefore, from the arguments of Pollard (1984, p. 171), we conclude that V I
nm →p µ I

m as

n → ∞.

We finally prove V I
n →p µ I . This statement is true provided that the approximation error

brought by truncation at m is asymptotically negligible. That is, it suffices to show that, for

any ε > 0,

lim
m→∞

limsup
n→∞

P(|Vn −Vnm| ≥ ε) = 0 (4.39)

for Vn =V I
n and Vnm =V I

nm. However, we may observe that

limsup
n→∞

P
(
|V I

n −V I
nm| ≥ ε

)
≤ limsup

n→∞
P
(
|V I

n −V I
nm|> 0

)
= limsup

n→∞
P

(
n

∑
t=1

(
π ′DI−1

n g̃t −utτ
)

1
(
π ′DI−1

n g̃t > utτ > 0
)

1(gt > m)> 0

)

≤ limsup
n→∞

P

(
n∪

t=1

{gt > m}
)

= limsup
n→∞

P
(

max
1≤t≤n

gt > m
)
≤ P

(
max
x∈R

g(x)> m
)
.

(4.40)

Thus, (4.39) holds by letting m → ∞. In consequence, we obtain V I
n →p µ I . Because the

above argument is also true for −(π ′DI−1
n g̃t − utτ)1

{
π ′DI−1

n g̃t < utτ < 0
}

, result (a) fol-

lows.

When g is H-regular, we remember that Dn = DH
n = n1/2κ̃n and that It = IH

t was given

in (4.32). Then, µnm in (4.34) deduces

µnm = µH
nm =

f (F−1(τ))
2

n

∑
t=1

π ′

 n−1 n−1κ−1
n gt

n−1κ−1
n gt n−1κ−2

n g2
t

 IH
t π

p−→ f (F−1(τ))
2

π ′

ξ H
11m ξ H

12m

ξ H
21m ξ H

22m

π =: µH
m

(4.41)

as n → ∞, where

ξ H
11m =

∫ 1

0
1(0 < h(V (r))≤ m)dr,

ξ H
12m =

∫ 1

0
h(V (r))1(0 < h(V (r))≤ m)dr = ξ H

21m,

ξ H
22m =

∫ 1

0
h(V (r))21(0 < h(V (r))≤ m)dr.
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Letting m → ∞, we obtain

µH
m

p−→ f (F−1(τ))
2

π ′

ξ H
11 ξ H

12

ξ H
21 ξ H

22

π =: µH , (4.42)

where

ξ H
11 =

∫
1(0 < h(V (r)))dr,

ξ H
12 =

∫ 1

0
h(V (r))1(0 < h(V (r)))dr = ξ H

21,

ξ H
22 =

∫ 1

0
h(V (r))21(0 < h(V (r)))dr.

Next, we show the asymptotic equivalence of V H
nm and µH

nm as in the I-regular case. Since

g is H-regular, we have (4.37) again uniformly in t. Thus, from the same argument as in

(4.38), we observe that

n

∑
t=1

Et−1
[
V H2

tnm
]
≤ max

1≤t≤n

{
π ′DH−1

n g̃t1
(
0 < κ−1

n g̃t ≤ m
)}

Op(1)
p−→ 0. (4.43)

Therefore, from the arguments of Pollard (1984, p. 171), we conclude that V H
nm −µH

nm →p 0

as n → ∞.

We finally prove V H
nm →p µH , but (4.39) holds for Vn = V H

n and Vnm = V H
nm by a similar

calculation as in (4.40). That is, for any ε > 0, we have

limsup
n→∞

P(|V H
n −V H

nm| ≥ ε)≤ limsup
n→∞

P(|V H
n −V H

nm|> 0)

= limsup
n→∞

P

(
n

∑
t=1

(
π ′DH−1

n g̃t −utτ
)

1
(
π ′DH−1

n g̃t > utτ > 0
)

1
(
κ−1

n gt > m
)
> 0

)

≤ limsup
n→∞

P

(
n∪

t=1

{
κ−1

n gt > m
})

≤ limsup
n→∞

P
(

max
1≤t≤n

{
h
(

n−1/2xt

)
+op(1)

}
> m

)
≤ P

(
max
x∈K

h(x)> m
)
,

where K = [xmin − 1,xmax + 1] with xmin(max) = min(max)0≤r≤1V (r) in the last equation

(see Lemma A3 (b) of PP (2001)). Thus, (4.39) holds by letting m → ∞. Therefore V H
n →p

µH . Because the above argument is also true for −(π ′DH−1
n g̃t −utτ)1

{
π ′DH−1

n g̃t < utτ < 0
}

,
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the result (b) follows. ■

4.8.4 Proofs of the main results

Proof of Lemma 1 This is the same as Weiss (1991). See also Ruppert and Carroll (1980).

■

Proof of Theorem 1 Because we can write

n

∑
t=1

zt(θ̂n) =
n

∑
t=1

{zt(θ̂n)− zt(θ0)−λn(θ̂n)}+
n

∑
t=1

{zt(θ0)+λn(θ̂n)}, (4.44)

we have, from Lemmas 3 and 4.8,

∥κ̃−1
n ∑n

t=1{zt(θ0)+λn(θ̂n)}∥
n1/2 +n∥κ̃−1

n λn(θ̂n)∥
≤ sup

∥π∥≤d0

Qn(θ(π),θ0)+op(1) = op(1) (4.45)

Since n1/2∥κ̃−1
n λn(θ̂n)∥ is Op(1) from the proof of Lemma 2 (i), it follows from (4.44) and

(4.45) that

n−1/2κ̃−1
n

n

∑
t=1

zt(θ0)+n1/2κ̃−1
n λn(θ̂n) = op(1). (4.46)

By definitions of zt and λn, (4.46) is equivalent to

n−1/2κ̃−1
n

n

∑
t=1

g̃t(β0)ψτ(utτ)+n−1/2κ̃−1
n

n

∑
t=1

g̃t(β̂n)Et−1ψτ(yt − α̂n −gt(β̂n)) = op(1).

(4.47)

By the proof of Lemma 2 (i) again, we consequently have

n1/2κ̃ ′
n(θ̂n −θ0)

=

[
f (F−1(τ))

n

n

∑
t=1

h̃t(β0)h̃t(β0)
′

]−1[
−n−1/2

n

∑
t=1

h̃t(β0)ψτ(utτ)+op(1)

]
.

(4.48)
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Thus the result follows immediately by the limit theory of Park and Phillips (2001) and

Lemma 4 . ■

Proof of Theorem 2 First, we observe that

Sn = n−1
n

∑
t=1

h̃(xt/
√

n, β̂n)h̃(xt/
√

n, β̂n)
′ p−→

∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr (4.49)

and, by de Jong (2002),

Tn = n−1/2
n

∑
t=1

{
h̃(n−1/2xt , β̂n)∆xt −n−1/2λ̂∇h̃(n−1/2xt , β̂n)

}
p−→
∫ 1

0
h̃(V (r),β0)dV (r)+λ

∫ 1

0
∇h̃(V (r),β0)dr−λ

∫ 1

0
∇h̃(V (r),β0)dr

=
∫ 1

0
h̃(V (r),β0)dV (r),

(4.50)

where λ in the first integral of (4.50) is the one-sided long-run variance. Applying Theorem

1, and utilizing (4.49) and (4.50), we see that

n1/2κ̃ ′
n(θ̂+

n −θ0)

= n1/2κ̃ ′
n(θ̂n −θ0)−

1
̂f (F−1(τ))

ω̂ψv

ω̂2
v

S−1
n Tn

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ(r)

− 1
f (F−1(τ))

ωψv

ω2
v

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1[∫ 1

0
h̃(V (r),β0)dV (r)

]
.

If we let

Uψ+(r) =Uψ(r)−
ωψv

ω2
v

V (r),

then simple algebra gives the desired limiting variable

1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ+(r),

which completes the proof. ■
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Proof of Theorem 3 The result is immediately achieved by Theorem 2. ■

Proofs of Theorems 4 and 5 If we apply the identity

ρτ(u− γ)−ρτ(u) =−γψτ(u)+(γ −u){1(γ > u > 0)−1(γ < u < 0)}

to Mn(θ), it is written as

Mn(θ) = π ′ζ +Ξn(π), (4.51)

where

ζn =−D−1
n

n

∑
t=1

g̃tψτ(ut),

Ξn(π) =
n

∑
t=1

(
π ′D−1

n g̃t −utτ
)[

1
{

π ′D−1
n g̃t > utτ > 0

}
−1
{

π ′D−1
n g̃t < utτ < 0

}]
.

From Lemma 4, ζn converges weakly to ζ , where ζ = ζ I for I- and ζ = ζ H for H-regular

cases, respectively. According to Lemma 5, Ξn(π) converges to π ′Ξπ/2 in probability,

where Ξ = ΞI for I- and Ξ = ΞH for H-regular cases, respectively. Thus, (4.51) converges

weakly to the quadratic form so that

Mn(π)
d−→−π ′ζ +

1
2

π ′Ξπ =: M(π)

for both I- and H-regular cases. Note that Mn(π) and M(π) are minimized at π̂ =Dn(θ̂ −θ0)

and Ξ−1ζ , respectively. By the convexity lemma of Pollard (1991) and arguments of Knight

(1989), the results are achieved. ■
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Table 4.1: The RMSEs for estimating β10 in I-regular model (4.14).

n = 250 n = 500

ut vt NLS NLAD ratio NLS NLAD ratio

SN SN 0.1226 0.1439 0.85 0.1046 0.1222 0.86

SN t9 0.1232 0.1432 0.86 0.1091 0.1234 0.88

t3 SN 0.1948 0.1506 1.29 0.1707 0.1317 1.30

t3 t9 0.2050 0.1653 1.24 0.1831 0.1449 1.26
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Table 4.2: The RMSEs for estimating β20 in H-regular model (4.15).

n = 250 n = 500

ut vt NLS NLAD ratio NLS NLAD ratio

SN SN 0.3529 0.3974 0.89 0.3212 0.3665 0.88

SN t9 0.4970 0.5560 0.89 0.4602 0.5165 0.89

t3 SN 0.5387 0.4282 1.26 0.4999 0.3915 1.28

t3 t9 0.7800 0.6467 1.21 0.6623 0.5397 1.23
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Table 4.3: The RMSEs for estimating β30 in H-regular model (4.16).

n = 250 n = 500

ut vt NLS NLAD ratio NLS NLAD ratio

SN SN 0.0047 0.0053 0.88 0.0024 0.0029 0.85

SN t9 0.0043 0.0048 0.90 0.0020 0.0023 0.85

t3 SN 0.0085 0.0064 1.33 0.0040 0.0032 1.27

t3 t9 0.0062 0.0050 1.23 0.0033 0.0026 1.27
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Table 4.4: The empirical sizes of test when the model is (4.14).

n = 250

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.066 0.066 0.042 0.026 0.036

SN t9 0.054 0.060 0.042 0.038 0.042

t3 SN 0.056 0.044 0.058 0.032 0.040

t3 t9 0.054 0.056 0.036 0.026 0.036

n = 500

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.046 0.046 0.032 0.022 0.024

SN t9 0.064 0.070 0.058 0.056 0.058

t3 SN 0.058 0.054 0.060 0.048 0.048

t3 t9 0.060 0.056 0.046 0.044 0.050
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Table 4.5: The empirical sizes of test when the model is (4.15).

n = 250

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.072 0.070 0.052 0.046 0.054

SN t9 0.064 0.064 0.050 0.044 0.058

t3 SN 0.068 0.072 0.058 0.050 0.058

t3 t9 0.070 0.066 0.076 0.062 0.070

n = 500

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.078 0.080 0.054 0.046 0.060

SN t9 0.056 0.058 0.032 0.026 0.034

t3 SN 0.058 0.072 0.068 0.058 0.064

t3 t9 0.060 0.060 0.058 0.036 0.056
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Table 4.6: The empirical sizes of test when the model is (4.16).

n = 250

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.056 0.052 0.044 0.032 0.036

SN t9 0.058 0.068 0.030 0.028 0.032

t3 SN 0.238 0.054 0.068 0.040 0.050

t3 t9 0.202 0.032 0.054 0.024 0.026

n = 500

ut vt NLS (0) NLS NLAD (0) NLAD (B) NLAD (HS)

SN SN 0.062 0.064 0.056 0.050 0.058

SN t9 0.052 0.052 0.032 0.032 0.038

t3 SN 0.244 0.060 0.064 0.042 0.046

t3 t9 0.230 0.042 0.048 0.022 0.022
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Figure 4.1: The powers of test when the model is (4.14) with ut ∼ SN and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.2: The powers of test when the model is (4.14) with ut ∼ SN and vt ∼ t9. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.3: The powers of test when the model is (4.14) with ut ∼ t3 and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.4: The powers of test when the model is (4.14) with ut ∼ t3 and vt ∼ t9. The sample

sizes are 250 and 500 for the top and bottom pictures, respectively.



Quantile Regression 109

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLS

LAD(HS)

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLS

LAD(HS)

Figure 4.5: The powers of test when the model is (4.15) with ut ∼ SN and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.6: The powers of test when the model is (4.15) with ut ∼ SN and vt ∼ t9. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.7: The powers of test when the model is (4.15) with ut ∼ t3 and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.



Quantile Regression 112

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLS

LAD(HS)

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLS

LAD(HS)

Figure 4.8: The powers of test when the model is (4.15) with ut ∼ t3 and vt ∼ t9. The sample

sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.9: The powers of test when the model is (4.16) with ut ∼ SN and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.10: The powers of test when the model is (4.16) with ut ∼ SN and vt ∼ t9. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.11: The powers of test when the model is (4.16) with ut ∼ t3 and vt ∼ SN. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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Figure 4.12: The powers of test when the model is (4.16) with ut ∼ t3 and vt ∼ t9. The

sample sizes are 250 and 500 for the top and bottom pictures, respectively.
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