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Abstract
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1 Introduction

One of the most important problems in classical hypothesis testing is the fact that a certain

test may have power when the model involves parameter values that are close to the null

hypothesis, but loses power as they get distant from the null region. This is called the

nonmonotonic power problem and is found to be widespread in structural change tests.1 As

far as the authors know, Perron (1991) is the �rst paper that points out this problem in

structural change tests. Later, Vogelsang (1999) documents that various structural change

tests applied to a model with lagged dependent variables lose power as the magnitude of the

break increases. Crainiceanu and Vogelsang (2007) point out that the same problem occurs

even in a model without lagged dependent variables, but the variances are estimated using a

standard nonparametric heteroskedasticity and autocorrelation consistent (HAC) estimator.

Subsequent literature carries out asymptotic analyses of the power problem for the case of

CUSUM and CUSUM squared tests (Deng and Perron, 2006), the tests proposed by Andrews

(1993) and Andrews and Ploberger (1994) (Kim and Perron, 2009), and Elliott and M�uller's

(2006) dqLL test (Perron and Yamamoto, 2013). In these cases, one of the important sources
of nonmonotonic power is found to be the problem of identifying the persistence parameter

and structural change in the conditional mean of the model. As documented by Perron

(1990), unaccounted-for structural change in the conditional mean of the model generates

a bias of the persistence parameter estimate toward one. This occurs either in the model

parameter or the variance estimates of the tests, and results in the structural change tests

becoming uninformative. In other words, the persistence parameter is not correctly identi�ed

under the alternative hypothesis of structural change.2

This paper casts new light on this nonmonotonic power problem in considering the factor

loading structural change tests recently proposed by Breitung and Eickmeier (2011) (here-

after, BE tests) in the context of dynamic factor models.3 Our focus is on the case in which

the factor loadings exhibit structural changes at common dates over cross-sections. The

1See Perron (2006) for a comprehensive review. In the context outside of structural change tests, Nelson
and Savin (1990) uncover the case of the Wald test in a nonlinear logit model. Hall (2000) documents the
case of the overidenti�cation restrictions test.

2Incorrectly identi�ed persistence parameter is not su�cient for the nonmonotonic power problem to
occur. Indeed, Perron and Yamamoto (2013) show that the SupWald test does not su�er from this problem
when the coe�cients have multiple breaks or when the coe�cients follow random walks, even if the persistence
parameter is not correctly identi�ed in these cases.

3Recently, two other factor loading structural change tests have been proposed by Chen et al. (2012) and
Han and Inoue (2013). However, the scope of both tests is di�erent from ours, since they need to test factor
loadings of many response variables jointly and cannot be applied to factor loadings of a particular variable.
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BE tests are based on the standard tests of Andrews (1993) and Andrews and Ploberger

(1994) applied to the regression of one response variable on the principal components fac-

tors. Furthermore, given that the principal components consistently estimate the original

factors (up to rotation), the tests have standard limit distributions. A crucial assumption

is that the model must have no or very small structural changes in the factor loadings so

that the original factors are consistently estimated prior to testing. Therefore, as long as

the common breaks in the factor loadings are small, the original factors are indeed identi�ed

and consistently estimated, resulting in the tests having power. However, when the breaks

are larger, these breaks generate extra common factors (we call them spurious factors) that

can have factor loadings with no structural change. If so, the tests applied to the model with

these loadings only have trivial power. Thus, the source of power problem is identi�cation

problem between common factors and factor loadings.

This motivates two goals of this paper. First, we carry out a power analysis of the BE

tests by investigating their asymptotic properties under the alternative hypothesis of common

breaks. Following the literature, we use local and non-local asymptotic frameworks. The

local framework assumes that the magnitudes of structural changes shrink at a fast rate

as the sample size increases,4 whereas the non-local framework assumes that magnitudes

of breaks are �xed. We �nd that in the former approach, the BE tests can be increasing

functions of the break magnitudes and the asymptotic result approximates �nite sample

behavior of the tests under small breaks. On the other hand, in the latter approach, the test

statistics are neither consistent nor increasing in break magnitudes. This result is valid when

the breaks are moderate or large. The novel thing in this paper is that nonmonotonic power

occurs even if the model includes no lagged dependent variables or the serial correlation in

the errors is unaccounted for.

The second goal of this paper is to propose a new test for factor loading structural change,

which is robust to this nonmonotonic power problem. The idea of the test is to eliminate

the e�ects of the spurious factors that appear only under the alternative hypothesis. This is

carried out by maximizing the test statistic over possible numbers of factors. This approach

is e�ective because the original factors are not identi�ed under the alternative hypothesis

of common breaks. The proposed test is shown to have a simple asymptotic distribution

under the null hypothesis and is consistent under the alternative hypothesis. These facts are

con�rmed via Monte Carlo simulations under various settings.

Finally, we present an empirical example using U.S. Treasury yield curve data by changing

4In the same context, this framework is used by Bates et al. (2013).
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the sample period of 10-year rolling windows starting from November 1985. The new test

clearly �nds structural changes in factor loadings of most maturities when the sample includes

either of the recessions in 1990-91, 2001, and 2008-09. In other periods, the factor structure

is stable overall. However, if we use the SupWald version of the BE test, the test gives fewer

rejections that are very similar throughout di�erent sample periods. If the SupLM version of

the BE test is used, the test never shows a rejection and is completely uninformative. This

result highlights the validity of the asymptotic power analysis and usefulness of the new test.

This paper is structured as follows. In Section 2, we present the models and assumptions.

In Section 3, we introduce two asymptotic frameworks and carry out asymptotic power

analysis of the BE tests. In Section 4, we propose a modi�ed test that is robust to the

nonmonotonic power problem. In Section 5, we use Monte Carlo simulations to investigate

the �nite sample validity of the power analysis and �nite sample properties of the new tests.

In Section 6, we provide an empirical example based on the U.S. Treasury yield curve data.

In Section 7, we present our conclusions. Throughout the paper, the following notations

are used. The Euclidean norm of vector x is denoted by kxk. For matrices, the vector-
induced norm is used. The symbols O(�) and o(�) denote the standard asymptotic orders
of sequences. The symbol

p! represents convergence in probability under the probability

measure P and the symbol ) denotes convergence in distribution. Op(�) and op(�) are the
orders of convergence in probability under P .

2 Models and test statistics

Consider a factor model

X = F�0 + e; (1)

where X is a T�N matrix of response variables, F is a T�r matrix of unobservable common
factors, � is an N � r matrix of factor loadings, and e is a T �N matrix of the idiosyncratic

errors. Denote the ith row of � by �0i and the tth row of X; F and e by X 0
t; F

0
t ; and e

0
t,

respectively. Further, let xit and eit be the (i; t) th elements of X
0 and e0, respectively. The

following assumptions hold for this model:

Assumption 1:

(a) E kFtk4 �M <1 and F 0F=T
p! �F , a positive de�nite matrix.

(b) E k�ik2 � � <1 and �0�=N
p! ��, a positive de�nite matrix.

(c) E(eit) = 0 and
1
NT

PN
i=1

PT
t=1 eit

p! �2e, a positive constant.

(d) Etrace
h
(ee0)j

i
= O(NT �max fN; Tgj�1) for j = 1; 2; and 3:
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(e) E
PT

t=1

PT
s=1

�PN
i=1 �

0
iFteis

�2
= O(NT 2):

(f) E
PT

t=1

PN
i=1 �

0
i�ie

2
it = O(NT ):

(g) E
PN

i=1

PT
t=1 Fteit

2 = O(NT ):
Assumption 2: Ft; �i, and eis are independent for all i; t; and s.

Assumption 1 is equivalent to the set of assumptions discussed by Bai and Ng (2002)

and adopted by Amengual and Watson (2006). It enables us to consistently estimate the

number of factors r by using the standard information criteria suggested by Bai and Ng

(2002). It also corresponds to the assumptions of Bai (2003) that enable Gaussian asymp-

totic inference on the common factor space and the associated factor loadings by using the

principal components estimators. Parts (a), (b), and (c) are standard assumptions. Part (d)

is a key assumption to consistently estimate the number of common factors by imposing a

restriction on the cross-sectional correlations in the idiosyncratic error terms. Parts (e), (f),

and (g) restrict dependency among the components �i; Ft; and eit, respectively. Assump-

tion 2 imposes a more stringent condition than Assumption 1 (e), (f), and (g). However,

it greatly simpli�es the derivation of our results without losing much substance. Note that

Assumption 2 is also employed in Breitung and Eickmeier (2011), who derived the limiting

distributions of structural change tests that this paper focuses on.

We are interested in assessing if the factor loadings of the ith response variable �i have

structural changes.5 To this end, we take a leading example of the tests proposed by Breitung

and Eickmeier (2011). Suppose that there are two regimes and we denote the loadings in

each regime by �
(1)
i and �

(2)
i . Then, the null hypothesis is �

(1)
i = �

(2)
i and the alternative

hypothesis is �
(1)
i 6= �(2)i . If the change date is unknown, the tests are simply constructed as

the SupWald, SupLM, or SupLR test for the coe�cients in the time-series regression of Xi

the ith column of X on the principal components factor estimates F̂ suggested by literature

so that

BENT;i = sup
����1��

SNT;i(�);

with SNT;i(�) = T (SSRr;i � SSR(�)i)=SSR(�)i for the Wald test, SNT;i(�) = T (SSRr;i �
SSR(�)i)=SSRr;i for the LM test, and SNT;i(�) = T (log(SSRr;i)� log(SSR(�)i)) for the LR

5Following Bai and Ng (2007), the model (1) is also interpreted as a dynamic factor model.

xit = �
0
i0ft + �

0
i1ft�1 + � � �+ �0iqft�q + eit;

by de�ning �i = [�0i0 �
0
i1 � � � �0iq]0 and Ft = [f 0t f

0
t�1 � � � f 0t�q]0 so that we can simply work out structural

changes in �i.
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test. [�; 1� �] speci�es the permissible break fraction with a trimming parameter �. The sum
of squared residuals are

SSRr;i =
PT

t=1(Xit � �̂
0
iF̂t)

2;

SSR(�)i =
P[T� ]

t=1 (Xit � �̂
(1)0
i F̂t)

2 +
PT

t=[T� ]+1(Xit � �̂
(2)0
i F̂t)

2;

with �̂i =
�PT

t=1 F̂tF̂
0
t

��1 �PT
t=1 F̂tXit

�
, �̂

(1)

i =
�P[T� ]

t=1 F̂tF̂
0
t

��1 �P[T� ]
t=1 F̂tXit

�
and �̂

(2)

i =�PT
t=[T� ]+1 F̂tF̂

0
t

��1 �PT
t=[T� ]+1 F̂tXit

�
: The tests are modi�ed accordingly when heteroskedas-

ticity and serial correlations are suspected in the errors by using standard heteroskedasticity

and autocorrelation covariance matrix.6

When the tests are constructed, the unknown number of factors must be estimated

by, for example, the standard information criteria of Bai and Ng (2002) such that r̂ =

argmin0�q��r IC(q) where

IC(q) = ln
�
V (q; F̂ q)

�
+ q � g(N; T );

V (q; F̂ q) = (NT )�1
PN

i=1

PT
t=1 ê

2
it and êit is the idiosyncratic residual from the regression

of Xit on the �rst q principal component factors. The penalty satis�es g(N; T ) ! 0 and

c2NT � g(N; T )!1 where cNT = minf
p
N;
p
Tg.7 �r is the prespeci�ed maximum number of

factors.

Speci�cally, we consider a model with m time structural changes in the factor loadings

of all or many response variables at common dates fT1; :::; Tmg. Let �(j) be an N � r matrix
of factor loadings at regime j (j = 1; � � � ;m+ 1) so that the model is now

Xt = �
(j)Ft + et; (2)

where

�(j) =

8>>>>>><>>>>>>:

�(1) for t � T1
�(2) for T1 + 1 � t � T2

...

�(m+1) for Tm + 1 � t � T:

(3)

6There are two remarks. First, if the change date is known, one naturally uses the Chow test. Second,
these tests must apparently have power against multiple breaks, although explicitly accounting for them;
say, employing Bai and Perron's (1998) double maximum tests must result in power gain.

7Bai and Ng (2002) suggest three types of g(N;T ): q
�
N+T
NT

�
ln
�
NT
N+T

�
; q
�
N+T
NT

�
ln(c2NT ), and q

�
ln c2NT

c2NT

�
.

They de�ne the information criteria with these penalties as ICp1, ICp2, and ICp3, respectively.
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Then, the magnitudes of the jth break are �(j) = �(j+1) � �(j), where �(j) denotes either

�xed or random quantities. For later use, we denote the L2-norm of the matrix
�(j)

 = �(j)
and � = maxj �

(j). This model includes the case where only a subset of response variables

has the stated common breaks. In this case, the rows of �(j) corresponding to the stable

loadings are simply zeros. It is not hard to �nd empirical examples of such common breaks

in factor loadings. For example, Stock and Watson (2009) document evidence of a break

in many factor loadings around 1984 in the U.S. macroeconomic time series. Bai (2010)

discusses several examples of common breaks in panel data models.

When the factor loadings are modeled as (3), model (2) can be rewritten as

X = F�(1)0 + S�0 + e; (4)

where S is a T �mr matrix of the so-called spurious factors

S =

26666664
0 0 0

FT1+1:T2 0 0

0
. . . 0

0 0 FTm+1:T

37777775 ;

with FTj+1:Tj+1 = [FTj+1 FTj+2 � � � FTj+1 ]0; and � is an N �mr matrix

� =
h
�(2) � � � �(m+1)

i
;

where �(j) = �(j) � �(1) and let �(1) = �(1). Further, we let 0i be the ith row of � with

dimension mr and 
(j)0
i be the ith row of �(j) with dimension r. We call (4) spurious factor

representations of the original factor model (2) with common breaks in the factor loadings

(3). Under this representation, Assumptions 1 (a) and (b) are extended as follows.

Assumption 1': If the m common breaks exist, with F � = [F S] and �� = [�1 �],

(a) F �0F �=T
p! ��F , a positive de�nite matrix.

(b) E
(j)i 2 � � <1 and ��0��=N

p! ���, a positive de�nite matrix.

Note that, under the null hypothesis of no breaks, models (1) and (2) coincide by notating

�(1) = �. Hence, Assumptions 1' (a) and (b) nest Assumptions 1 (a) and (b) under the null

hypothesis. Thus, we replace them and rename Assumptions 1 (a) and (b) in the following

analysis.
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3 Asymptotic power analysis

The goal of this section is to obtain theoretical results that can reasonably approximate the

exact behavior of the BE test statistics. To this end, we derive asymptotic results based on

two di�erent frameworks. The �rst method is a local alternative asymptotic framework and

is popular in literature. In a related work, Bates et al. (2013) derive conditions in which the

factors are consistently estimated using local asymptotic frameworks under various factor

loading processes. The second approach is non-local and designs the break magnitudes to be

�xed as the sample size increases. This approach is called the �xed alternative asymptotic

framework.8 The following assumptions elaborate these methodologies.

Assumption 3a: (Local alternative asymptotic framework) The break magni-

tudes shrink so that �
(j)
NT = �

(j)=kNT , where kNT = maxf
p
N;
p
Tg.

Assumption 3b: (Fixed alternative asymptotic framework) The break magni-

tudes �(j) comprise an N � r matrix of constants or a random matrix such that
�(j)

 =
Op(1).

Assumption 3a introduces a scaling factor kNT as an increasing function of N and/or

T . The speci�ed rate kNT = maxf
p
N;
p
Tg is actually derived in Proposition 1 so that

the original factors are identi�ed. As we will see below, this device enables us to derive

the standard power function that is increasing in the break magnitudes. On the other hand,

Assumption 3b simply assumes that the break magnitudes are �xed as the sample size grows.

Because the factor number identi�cation substantially a�ects the testing results, we take

the standard approach by using information criteria suggested by Bai and Ng (2002).9 The

following proposition is obtained.

Proposition 1 Let r̂ be the number of factors estimated by Bai and Ng's (2002) method

and Assumptions 1-3 hold. (i) Under the local alternative asymptotic framework with kN;T =

maxf
p
N;
p
Tg, r̂ p! r as N; T !1; and (ii) under the �xed alternative asymptotic frame-

work, r̂
p! r(m+ 1) as N; T !1.

8See Perron and Yamamoto (2013), for example.
9Recently, other methods to estimate the number of factors have been proposed, for example, Onatski

(2010) and Ahn and Horenstein (2013). Extending our theoretical results to these method is beyond the
scope of this paper, however, we conducted a simulation analysis and discuss it in the Monte Carlo section.
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The �rst part pertains to the fact that the number of original factors r can still be

identi�ed in the presence of common breaks that shrink. In this case, time variations of

the factor loadings are so small that they are considered to be a part of the idiosyncratic

errors, rather than variations in the common part. The second part suggests that when the

common breaks are medium or large, the methods identify the original factors as well as all

the spurious factors through the principal components.

We move on to the main asymptotic properties of the test statistics when they are

constructed based on r̂ factors. The following theorem provides the results.

Theorem 1 Let BENT;i be one of the SupLR, SupLM, and SupWald structural change tests

proposed by Breitung and Eickmeier (2011), assuming i.i.d. errors for the null hypothesis

of �i being stable. Suppose that the number of factors is estimated by Bai and Ng's (2002)

method and Assumptions 1-3 hold. i) Under the local alternative asymptotic framework with

kNT = maxf
p
N;
p
Tg,

BENT;i =

8<: Op(�
2) if lim inf N=T = 0

Op(1) if lim inf T=N = 0
;

as N; T !1. ii) Under the �xed alternative asymptotic framework,

BENT;i =

8<: Op(1) if lim inf
p
T=N = 0

Op(TN
�2) if lim inf

p
T=N > 0

;

as N; T !1.

This theorem has useful implications for the power of the BE tests. First, part i) says

that under the local approach, the tests are increasing in the break magnitude, especially

when T is large as compared to N . This result captures the standard upward behavior of

the power function as long as the breaks are small. On the other hand, when N grows faster,

the test statistics are not increasing in magnitude, and therefore, upward behavior is not

expected. Second, part ii) says that if the breaks are not very small, the statistics are not

increasing functions of the magnitudes. Furthermore, in the usual situation where N is not

so small as compared to T so that
p
T=N ! 0 is relevant, the test statistics are simply Op(1)

and are inconsistent. When N is very small such that
p
T=N ! 0 would be irrelevant, the

tests are consistent but only at the rate TN�2.

Based on the above investigation, we also provide the following theorem to reveal another

aspect of the test statistics. This property can help understand testing results that are often

too sensitive to the choice of the number of factors used in empirical analysis.

8



Theorem 2 Let BENT;i be one of the SupLR, SupLM, and SupWald structural change tests

proposed by Breitung and Eickmeier (2011), assuming i.i.d. errors for the null hypothesis

of �i being stable. Suppose that the number of factors is assumed to be r
�, where r � r� <

r(m+ 1) and Assumptions 1-3 hold. Under the �xed alternative asymptotic framework,

BENT;i = Op(T );

as N; T ! 1. In the special case of m = 1 and the SupWald test being used, BENT;i =

Op(T�
2):

A proof of this theorem is provided in the Appendix and it goes as follows. Suppose

that the factor model has common breaks such that the model can also be written as the

spurious factor representation with no break in the factor loadings. However, if we select

only a subset of the total factors, then the representation is incomplete and the components

pertaining to the non-selected factors will generate structural changes in the factor loadings

of the selected factors. This leads to the structural change tests that have standard power

properties.10

4 A modi�ed test

This section proposes a modi�ed Breitung and Eickmeier (2011) test (hereafter, MBE test)

for factor loading structural change of one response variable. Our test is robust to the non-

monotonic power problem under the common breaks described in the previous section. We

have found that the source of power loss is the failure to identify factors and factor loadings,

that is, the fact that original factors are not identi�ed under the alternative hypothesis. The

modi�ed test takes the maximum of the SupWald structural change test statistics that are

applied to the regressions of the response variable on each individual principal component

estimate up to the r̂th one. It is formed as follows:

MBENT;i = max
1�j�r̂

sup
�2�"

WNT;i(�; j);

where �" speci�es the permissible break dates and WNT;i(�; j) is the Wald test statistic for

the null hypothesis of H0 : �
(1)
ji = �

(2)
ji in the regression of xit on the jth principal component

f̂jt estimated using all the variables. That is,

xit = �jif̂jt + error;

10The results are consistent with the results of these test statistics using the standard model derived by
Kim and Perron (2009) and Perron and Yamamoto (2013).
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where �ji possibly takes di�erent values before and after t = b�T c so that

�ji =

8<: �
(1)
ji for t � b�T c

�
(2)
ji for t � b�T c+ 1

:

To ease notation, we rede�ne the model (1) by using FK and �K�1, where K =

p lim(�0�=N)(F 0F̂ =T )V �1 and V is an r � r diagonal matrix of the r largest eigenvalues
of XX 0=(NT ). We denote FK by F and �K�1 by � in this subsection. Let fjt be the jth

element of Ft and �ji be the jth element of �i and rewrite the model (1) in scalar form as

follows:

xit = �jifjt +
P

l 6=j �liflt + eit;

= �jifjt + vjit;

where vjit �
P

l 6=j �liflt + eit. We make the following assumptions:

Assumption 4: Under the null hypothesis, �ji (j = 1; � � � ; r) are independent and
E(�ji) = 0.

Assumption 5: Under the null hypothesis of no structural change in the factor loadings

in the original representation, the following hold:

a) T�1
P[T�]

t=1 FtF
0
t

p! �Ir; uniformly in � 2 [0; 1], and E(FtF 0t) = Ir.
b) 1

T

P[T�]
t=1

P[T�]
s=1 E(fjtfjsvjitvjis)

p! ��2vji;uniformly in � 2 [0; 1].
c) 1p

T

P[T�]
t=1 fjtvjit ) �vjiW (�) with W (�) being a univariate Wiener process de�ned on

� 2 [0; 1].

Assumption 4 is somewhat more restrictive than the standard assumption. However, the

robustness of �nite sample size of the test when this assumption is not satis�ed is examined

via Monte Carlo simulations. The �rst part of Assumption 5a) is implied by the original

representation (1) with rotation adjustment. We also have an additional identi�cation as-

sumption of the constant second moment of factors.11 Parts b) and c) of Assumption 5

are standard in the literature to derive the limit distribution under the i.i.d. assumption;

however, potential serial correlations and conditional heteroskedasticity can be accounted

for using the standard heteroskedasticity and autocorrelation consistent variance estimates.

11Han and Inoue (2013) use the same assumption of constant second moment of factors.
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Theorem 3 Let Wj(�) (j = 1; :::; r) be the jth component of r independent Wiener processes
W de�ned on [0,1]. i) Suppose Assumptions 1, 2, 4, and 5 hold. Under the null hypothesis

of no breaks

MBENT;i ) max
1�j�r

sup
�2��

[�Wj(1)�Wj(�)]
2

�(1� �) ;

ii) Suppose Assumptions 1-3 hold. Let �ji have the largest break among j = 1; � � � ; r with
the magnitude �� and the rest of the loadings have breaks with magnitudes �. Under the �xed

alternative framework, MBENT;i = Op(T�
�2��2).

Part i) of Theorem 3 provides the asymptotic distribution of the MBE test. The critical

values are tabulated using 10,000 replications of 10,000 discrete step Wiener processes in

Table 1. Part ii) guarantees the consistency of the test and upward behavior of power

functions.

Remark 1 It is easily understood that the MBE test is consistent under any alternative

hypothesis under which the BE test is consistent. This is because BENT;i � MBENT;i as

long as the maximum number of factors used for MBENT;i is equal to (or possibly larger

than) the number of factors used for BENT;i. Hence, the MBE test is expected to have power

under the alternative hypothesis that is not necessarily common breaks.

Remark 2 We alternatively consider the test that maximizes the SupWald statistics for

the regressions of xi on the �rst j factors over j up to r̂. However, various Monte Carlo

simulation results �nd that this test is less powerful than the proposed test. Hence, this

method is not considered in this paper.

5 Finite sample evidence

In this section, we use Monte Carlo simulations to provide �nite sample evidence of the

theoretical results derived in the previous sections. Throughout the section, we consider the

following r factor data generating process:

xit = �
(j)0
i ft + eit; for i = 1; � � � ; N , t = 1; � � � ; T; and j = 1; � � � ;m; (5)

where ft � i:i:d:N(0; Ir) and eit � i:i:d:N(0; 1), unless otherwise speci�ed. The factor

loadings exhibit m time common structural changes at fT1; � � � ; Tmg for all i. Speci�cally,
for the initial value, each component of �

(1)
i follows i:i:d:N(0; 1) for all i and the loadings

follow

�
(j+1)
i = �

(j)
i + �

(j)
i for i = 1; � � � ; N and j = 1; � � � ;m; (6)
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where the break magnitude �
(j)
i is generated by i:i:d:N(0; �Ir). The m break dates are

located with equal intervals, that is, at Tj = j�bT=(m+ 1)c for j = 1; � � � ;m. The number
of replications is 3,000 throughout the experiments.

5.1 Number of factors

We are �rst interested in the e�ect of the common breaks on the number of factors estimated

by Bai and Ng's (2002) information criteria. To this end, we compute the mean of the

estimated numbers under cases of r = 2; 3; and 4. When r = 2; the number of the common

breaks is eitherm = 1; 2; 3; and 4, so that the total (true plus spurious) factors are r(m+1) =

4; 6; 8; and 10, respectively. When r = 3; m = 1 and 2, so that r(m+1) = 6 and 9 respectively

are considered. When r = 4; a case of m = 1 such that r(m + 1) = 8 is considered.12 The

sample sizes are combinations of T = 100; 200; 500 and N = 100; 200; 500. The results

based on the three information criteria ICp1; ICp2; and ICp3 are reported in Table 2. To

see how the local approach works, we set the magnitude of the break � = 5=maxf
p
N;
p
Tg,

the rate derived in Proposition 1. In most cases, the number of factors is close to the original

number r and also gets closer as the sample size increases. Table 3 shows the results when

the breaks are relatively large and �xed (� = 5) over the sample sizes. In this case, we

expect the number estimates to approach r(m+ 1), not r. Indeed, the results are very close

to this expectation in most cases. Thus, �nite sample evidence of Proposition 1 is obtained.

5.2 The BE test

We move on to �nite sample power of the BE structural change tests. To construct the tests,

the number of factors is estimated using the ICp2 criterion as r̂ and the structural change

tests are applied to the r̂ loadings of the �rst response variable.13 The experiment pertains to

the power in relation to the sample size. The data are generated by models (5) and (6) with

r = 2 and m = 1. We consider � = 5=maxf
p
N;
p
Tg and 10=maxf

p
N;
p
Tg to investigate

the local approach and � = 5 and 10 for the �xed approach. The rejection frequencies with

various sample sizes are reported in Table 4. The results capture the theoretical results very

well. First, under local breaks and when T is larger than N , the power tends to go up as

the magnitudes increase. This is prominent when (T;N) = (500; 20) and (500; 50), where

the rejection frequencies go up by more than 0.2 percentage points. However, when N is

12We set the maximum number of factors at 12 throughout the simulations.
13We also computed power functions of the BE tests using the ER and GR statistics of Ahn and Horenstein

(2013) and got similar results. The results based on Onatski (2010) are less sensitive to common breaks.
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relatively large, the increase of power is smaller. Second, the results for �xed breaks are not

sensitive to the break magnitudes and provide very similar power for � = 5 and � = 10. This

result supports the fact that the statistic is Op(1) in most cases under the �xed alternative

asymptotic framework.

We proceed to the computation of power functions with respect to the break magnitudes.

The models are (5) and (6), the number of factors r = 2, and cases of m = 1; 2; 3; and 5 are

considered. The power functions of the 5% nominal level in terms of the magnitudes of �

from 0 through 5, are reported in Figure 1. We �rst set the sample size (N; T ) = (100; 100).

For the SupWald test (left panel), the power functions show similar patterns over the values

of m. The power initially goes up as � increases. This reects the local asymptotic results

where the tests are Op(�). However, the powers quickly reach their peaks and start to decline.

After some points of �, they become at functions. Thus, the SupWald test exhibits clear

evidence of nonmonotonic power. The right panel of Figure 1 shows the power functions of

the SupLM test; these are very similar to those of the SupWald test. Both results imply that

the SupLR test also provides similar patterns in its power function. What is impressive is

that either of the SupWald, SupLM, and SupLR tests exhibit nonmonotonic power functions.

Theorem 1 suggests that the asymptotic behavior of the tests depends on the relative

rate between N and T . Based on this result, we also compute power functions with di�erent

sample sizes. Figure 2 illustrates the power functions under the same setting, but the sample

size is now T = 50 and N = 200. When T is small relative to N , Theorem 1 shows that

the power under small breaks is not a function of �; hence, the functions are more at than

in the case of T = 100 and N = 100. On the other hand, Figure 3 shows power functions

with T = 200 and N = 50, corresponding to a case with a larger T relative to N . In this

case, we observe a larger increase of the power for small breaks, because it is more explicitly

an increasing function in magnitude. However, the powers quickly peak out and eventually

become at. Hence, our theoretical results on nonmonotonic power are con�rmed by �nite

sample experiments.

Figure 4 illustrates power functions when the number of factors is arbitrarily chosen. The

data are generated with r = 2 and m = 3, so that r(m+1) = 8. The sample size is T = 100

and N = 100. We draw power functions when the number of factors is set at r� = 3; 5; 8;

and 10. The �gure also includes the power when the number is selected by the ICp2 criterion

(labeled IC). Of particular interest is the standard shape of power functions when we set r�

to be smaller than 8, so that Theorem 2 is valid. It shows that when r� is 3 or 5, we see

standard power functions; however, the tests lose power when r� is equal to or larger than 8
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or when the ICp2 criterion is used.

The experiments so far are all based on tests assuming i.i.d. errors. An interesting ques-

tion is what happens when the errors are corrected by the standard method of heteroskedas-

ticity and autocorrelation consistent (HAC) estimates. The literature suggests that when

LM-based structural change tests are used instead of Wald-based tests, they are a source of

nonmonotonic power (see Kim and Perron, 2009). To this end, we compute power functions

under the same setting as Figure 1 but with the HAC standard errors suggested by Andrews

(1991), using Bartlett kernel with AR1 approximation in Figure 5. The left panel shows

that the SupWald test exhibits nonmonotonic power, although the results are quite similar

to those obtained in Figure 1. It is remarkable that the SupLM test loses all the power in

every case of m (right panel). Hence, the problem worsens if the SupLM test is used. This

is consistent with the �ndings in the literature.

Finally, we proceed to an extension that is not fully covered by the theory presented in this

paper, but is popular in both theoretical and empirical studies, that is, the parameters follow

random walks14. Of particular interest is that the N dimensional random walk innovations

only have a few (q) common sources. We consider the factor loadings �it to be varying at

every time period, instead of �ji in (6) varying only m times, so that the N � r matrix
�t = (�it) follows the following process

�t = �Bt; (7)

where � is an N � q matrix and Bt is a q � r independent random walk process where

vec(Bt) = vec(Bt�1) + ut. Let every qr component in ut follows the i.i.d. standard normal

distribution. The components in � are generated from i.i.d. U [0; 1] and are �xed over time.

Other speci�cations are the same as the model (5). Power functions of the tests with i.i.d.

standard errors, various q values (q = 2; 4; 6; and 10), and sample size T = 100 and N = 100

are presented in Figure 6. The results are largely the same as those of the models with

common breaks, with the number of breaks m corresponding to the rank q. Hence, we show

that the power loss of the structural change tests could be prevalent in empirical models that

assume the factor loadings to be random walks with a few common sources of innovations.

5.3 The modi�ed BE test

This section investigates the �nite sample size and power of the MBE test. To see the

size, the data is generated by (5) with the factor loadings �
(j)
i = �i for all j drawn from

14The cases Bates et al. (2013) consider include this example.
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i:i:d:N(0; Ir) and �xed within a replication. The true number of factors r considered is 1

through 8; the number is estimated by ICp2 criteria and used as the upper bound r̂.
15 The

�rst case generates factors by i:i:d:N(0; Ir). We also consider the case of serially correlated

factors by the following AR1 processes:

fjt = �jfjt�1 + vjt; vjt � i:i:d:N(0; 1)
�j = 0:4� (j � 1)� 0:05 for j = 1; � � � ; r:

Thus, each factor has a di�erent persistency parameter. With the i.i.d. factors, the non-

robust standard errors are used to construct the test. With the serially correlated factors, the

correlation is accounted for by using the nonparametric HAC variance with Bartlett kernel

and bandwidth selected using an AR1 approximation proposed by Andrews (1991). Table

5-1 reports the 5% nominal size with the sample size (N; T ) = (100; 100); (50; 200); and

(200; 50). The truncation parameter " specifying the permissible break dates �" = ["; 1� "]
is 0:05; 0:1, and 0:15, respectively. The results show that the non-robust test has very good

size properties for various speci�cations and con�rms Theorem 3 (i). When we use the

HAC variance, we see some size-distortions. However, this is within the �nite sample size

distortions of the SupWald structural change test documented in the literature.16 We next

check the robustness of the size properties when E(�ji) = 0 in Assumption 4 is not satis�ed,

by generating �ji from i.i.d. U [0; 1]. Table 5-2 shows that the size of the MBE test is not

a�ected by this change.

We next investigate the power of the MBE test. The data is generated from the models

(5) and (6) with r = 2 and the sample size (N; T ) = (100; 100). For the process of factor

loadings, we �rst consider multiple common structural changes with the number of breaks

m = 2; 3; 5; and 8. Figure 7 reports power functions of the MBE test with non-robust

variance estimates in the left panel and power functions of the test with the HAC variance

in the right panel. The power with sample sizes (N; T ) = (50; 200) and (200; 50) are also

computed; however, they are on the same lines and are not reported. They clearly show

that the MBE test has standard power functions and con�rm Theorem 3 (ii) with either the

non-robust or HAC robust test. Figure 8 shows power functions of the MBE test when the

factor loadings follow reduced rank random walk (7). We see that the power is much better

than the BE test that was illustrated in Figure 6. Overall, the Monte Carlo simulations show

good power properties of the new test.

15The size and power of the MBE test using the methods of Ahn and Horenstein (2013) and Onatski
(2010) to estimate numbers are also computed. The results are basically the same.
16See Kejriwal (2009) etc.
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6 Empirical illustration

In this section, we provide an empirical example to illustrate how useful the results obtained

in this paper are in practice. We use the U.S. Treasury yield curve data of G�urkaynak, Sack,

and Wright (2007) and updated by these authors. The data span from June 1961 through

June 2011. Since maturities as long as thirty years are available only after November 1985,

data only after that month are used and the maturity years are numbered from 1 through

30 (N = 30). To reduce the computational burden, the original daily data are converted

into monthly data by picking the daily observation on the last day of each month. Figure 9

illustrates the yields of the selected maturities: 1, 5, 10, and 30 years. We conjecture that

there may be common breaks in the factor loadings for a few time-periods, for example,

around the recessions in 1990-91, 2001, and 2008-09.

Since the level data are likely to have stochastic trends in the factors, the data are �rst

di�erenced. It is of interest to see whether the results are a�ected by a possible inclusion of

recessions; so, we use a 10-year rolling window that starts from the sample of November 1985

through October 1995 (T = 120) and ends at the sample of July 2001 through June 2011. In

every window, the data are demeaned in time and the number of factors is estimated using

the ICp2 criterion. The estimated number is r̂ = 11 up to the sample ending at June 1997

and r̂ = 10 thereafter. We also obtain similar results when ICp1 or ICp3 is used.

We carry out the BE tests of the SupWald and SupLM versions as well as the MBE

test, all with the HAC variance estimates, for factor loadings of every maturity in a window.

The results regarding each maturity for which the null of no break is rejected are stored.

We then move the window by one month and repeat the same exercise. This is continued

until the end of the window reaches June 2011. Figure 10 provides detailed information on

which maturity is rejected or not rejected in each 10-year sample period. The horizontal

axis corresponds to the end of the 10-year window and the vertical axis shows maturity. The

points in black, dark gray and light gray show signi�cance at the 1%, 5%, and 10% levels,

respectively. If we use the MBE test, structural changes are found in factor loadings of most

maturities in the periods that include either the recessions of 2001 or 2008-09,17 suggesting

that there are likely common breaks in the factor structure of the U.S. Treasury yield curve

in these periods. Rejections are also seen in the late 1990s. On the other hand, there is a

stable period between the two recessions in which most points are in white. The SupWald

17We set the permissible break dates from 0:15T to 0:85T , so that the rejections will appear 1.5 years after
the breaks.
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version of the BE test is not very informative in the sense that the results are very similar in

any sample period. If the SupLM version of the BE test is used, the test almost never rejects

at any window so that the colored points do not appear in the �gure. This is consistent

with the Monte Carlo study where the SupLM version of the BE test has no power when the

HAC variance is used. Hence, these �gures clearly illustrate the usefulness of the modi�ed

test in investigating the stability of the factor structure of the U.S. Treasury yield curve.

7 Conclusion

This paper proposes a new test for factor loading structural change in the context of dynamic

factor models. To illustrate the usefulness of the proposed test, we carry out an asymptotic

power analysis for the leading test proposed by Breitung and Eickmeier (2011) under common

breaks. We use two complementary asymptotic frameworks to approximate the �nite sample

behavior of the BE test. Both theoretical and simulation results indicate that the tests have

nonmonotonic power under common breaks. The new test maximizes the test statistic over

possible number of factors and is robust to this nonmonotonic power problem. This approach

is e�ective, because the original factors are not identi�ed under the alternative hypothesis

of common breaks. An empirical analysis using the U.S. Treasury yield curve data clearly

illustrates the usefulness of the proposed test.
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Appendix : Technical derivations

In the Appendix, we denote the model under the alternative hypothesis (4) as

X = F ���0 + e; (A.1)

where F � = [F S] is a T � r(m+ 1) matrix and �� = [� �] is an N � r(m+ 1) matrix. We
also notate kNT by k.

Lemma A1. Let s0t be the tth row of S. Under Assumption 1, (i) E j0istj
2 = O(1); (ii)

E j0iij = O(m); (iii) E js0tstj = O(1); for all i and t.

Proof of Lemma A1: For (i), E j0istj
2 = E

���(j)0i Ft

���2 = O(1) since 
(j)0
i Ft includes

r2 terms that are all bounded. This is because E kFtk2 < 1 by Assumption 1(a) and

E
(j)i 2 < 1 by Assumption 1'(b). For (ii), E j0iij �

Pm
j=1E

(j)i 2 = O(m); since

E
(j)i 2 < 1 by Assumption 1'(b). For (iii), E js0tstj � E jF 0tFtj = O(1); by Assumption

1(a).

Proof of Proposition 1: For part i), we �rst show that under the local alternative

asymptotic framework with k = maxf
p
N;
p
Tg, the original factor space F is consistently

estimated even in the presence of S�. To this end, we de�ne the new idiosyncratic error
term uit + eit, where uit = 

0
ist=k. Since uit is a linear combination of Ft and is independent

of eit and the latter satis�es Assumption 1, we consider whether or not the new errors uit
satisfy Assumption 1. Parts (a) and (b) are una�ected by this change of the errors from eit
to uit + eit. For part (c),

(NT )�1
PN

i=1

PT
t=1 uit

2 = k�2(NT )�1
PN

i=1

PT
t=1 (

0
ist)

2
= Op(k

�2); (A.2)

by Lemma A1(i). Hence, (NT )�1
PN

i=1

PT
t=1 uit

2 vanishes as k !1. For part (d), Etrace [(uu0)j]
is a sum of N jT j terms that are all bounded by E j0istj

2j. Hence,

Etrace
�
(uu0)j

�
� O(N jT jk�2j):

It is required that
N jT jk�2j � NT �max fN; Tg ;

for j = 1; 2; 3:
For part (e),

E
PT

t=1

PT
s=1

�PN
i=1 �

0
iFtuis

�2
= k�2E

PT
t=1

PT
s=1

�PN
i=1 �

0
iFt

0
iss

�2
� k�2

PT
t=1

PT
s=1

�PN
i=1E j�

0
iFtj

2
��PN

i=1E j0issj
2
�

= O(N2T 2k�2):
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This follows from the Cauchy-Schwarz inequality and Lemma A1(i). In order to satisfy the
whole term Op(NT

2), we require N � k2.
For part (f),

E
PT

t=1

PN
i=1 �

0
i�iu

2
is = k

�2E
PN

i=1

PT
t=1

�
(�0i�i) (

0
ist)

2
�
= O(NTk�2);

since E j�0i�ij = O(1) by Assumption 1(b) and so is E j0issj
2 by Lemma A1(i). This is

smaller than O(NT ) because k !1.
For part (g),

E
PN

i=1

PT
t=1 Ftuit

2 = k�2E
PN

i=1

PT
t=1 Ft (

0
ist)
2

� k�2
PN

i=1E
�PT

t=1 kFtk
2
�
E
�PT

t=1 k0istk
2
�
= O(NT 2k�2)

by Cauchy-Schwarz inequality, Assumption 1(a) and Lemma A(i). Then, it holdsO(NT 2k�2) �
O(NT ) if k2 � T . Finally, we con�rm that the condition in Lemma 2 in Amengual and Wat-
son (2006) is shown straightforwardly by (A.2) if k2 � min fN; Tg. Therefore, the set of
Assumption 1 holds for the model (1) if the following conditions are satis�ed.

k�2 � max fN; Tg ;
NTk�4 � max fN; Tg ;

N2T 2k�6 � max fN; Tg ;
N � k2;

T � k2;

k2 � min fN; Tg :

The su�cient condition that satis�es the above six is k = maxf
p
N;
p
Tg.

For part (ii), we show that the set of Assumption 1 holds for the model (A.1). Parts
(a) and (b) are directly shown by Assumption 1'. Part (e) holds because E(eit) = 0 and
st and eit are independent by Assumption 2. Part (g) holds because ksteisk = kFteisk
so that kF �t eisk = 2 kFteisk. Multiplication with a constant does not a�ect the order ofPN

i=1

PT
t=1 Fteis

2.
Proof of Theorem 1 (i): We consider the regression model

xit = �
0
itFt + eit:

The residuals from the regression of xit on F̂t assuming constant factor loadings are

êit = eit + �
0
itFt � �̂

0
iF̂t;

where �̂i = (F̂ 0F̂ )�1(F̂ 0Xi) = T�1F̂ 0Xi by using the property of principal components
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F̂ 0F̂ =T = I. Also,

�̂i = T�1
PT

t=1 F̂tF
0
t�it + T

�1PT
t=1 F̂teit

= T�1
Pm

j=1

�PTj
t=Tj�1+1

F̂tF
0
t

�

(j)
i + T�1

PT
t=1 F̂teit

= k�1T�1
Pm

j=1

h�PTj
t=Tj�1+1

F̂tF
0
t

�Pj
l=1 �

(l)
i

i
| {z }

=Op(T�)

+ T�1
PT

t=1 F̂teit| {z }
=Op(T�1=2)

;

where �
(l)
i is the ith row of �(l). Note that we denote the magnitude of breaks by � =

maxl

�(l)i . Therefore, the order of �̂i is the maximum ofOp(k�1�) where k = maxfpN;pTg
and Op(T

�1=2). In other words,

�̂i =

8<: Op(T
�1=2�) if lim inf N=T = 0

Op(T
�1=2) if lim inf T=N = 0

: (A.3)

Let us now consider the restricted SSR.

SSRr =
PT

t=1

�
eit + �

0
itFt � �̂

0
iF̂t

�2
;

=
PT

t=1 e
2
it + k

�2Pm
j=1

hPj
l=1 �

(l)0
i

�PTj
t=Tj�1+1

FtF
0
t

�Pj
l=1 �

(l)
i

i
| {z }

=Op(T�
2)

+2k�1
Pm

j=1

hPj
l=1 �

(l)0
i

�PTj
t=Tj�1+1

Fteit

�i
| {z }

=Op(
p
T�)

+ �̂
0
i|{z}

=(A:3)

�PT
t=1 F̂tF̂

0
t

�
| {z }

=Op(T )

�̂i|{z}
=(A:3)

�2 �̂
0
i|{z}

=(A:3)

�PT
t=1 F̂teit

�
| {z }

=Op(T 1=2)

� 2k�1 �̂0i|{z}
=(A:3)

Pm
j=1

h�PTj
t=Tj�1+1

F̂tF
0
t

�Pj
l=1 �

(l)
i

i
| {z }

=Op(T�)

= I + II + III + IV + V + V I:

Hence, I = Op(T ); II = Op(Tk
�2�2), and III = Op(Tk

�1�). The terms IV; V; and V I

depend on the rate of �̂i. If lim inf N=T = 0, then k =
p
T and �̂i = Op(T

�1=2�). In this
case, I = Op(T ); II = Op(�

2), III = Op(T
1=2�), IV = Op(�

2), V = Op(�), and V I = Op(�
2).

Term I dominates and SSRr is shown to be Op(T ) . Second, if lim inf T=N = 0, then k =
p
N

and �̂i = Op(T
�1=2). In this case, I = Op(T ); II = Op(TN

�1�2), III = Op(TN
�1=2�),

IV = Op(1), V = Op(1), and V I = Op(T
1=2N�1=2�2). Term I dominates and the whole term

is Op(T ).
We next consider unrestricted residuals assuming one break in �i at t = b�T c. Let � be

a constant with 0 < � < 1 and b�c be an operator returning the integer part. Further, de�ne
F̂
(1)
t = F̂t � I(t � b�T c) and F̂ (2)t = F̂t � I(t > b�T c) for t = 1; � � � ; T where I(�) is the
indicator function. The unrestricted residuals are

êit(�) = eit + �
0
itFt � �̂

(1)0
i F̂

(1)
t � �̂(2)0i F̂

(2)
t :
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First, we determine the order of �̂
(1)

i and �̂
(2)

i . They coincide with the order of T
�1Pb�T c

t=1 F̂txit
and T�1

PT
t=b�T c+1 F̂txit. Now,

T�1
Pb�T c

t=1 F̂txit = k
�1T�1

Pm
j=1

h�PTj
t=Tj�1+1

F̂
(1)
t Ft

�Pj
l=1 �

(l)0
i

i
| {z }

=Op(T�)

+ T�1
PT

t=1 F̂
(1)
t eit| {z }

=Op(T�1=2)

;

so that it has the same order as �̂i. Similarly, it is shown that �̂
(2)

i has the same order as �̂i.
The unrestricted SSR, assuming one break at t = b�T c is

SSR(�) =
PT

t=1

�
eit + �

0
itFt � �̂

(1)0
i F̂

(1)
t � �̂(2)0i F̂

(2)
t

�2
;

=
PT

t=1 e
2
it + k

�2Pm
j=1

hPj
l=1 �

(l)0
i

�PTj
t=Tj�1+1

FtF
0
t

�Pj
l=1 �

(l)
i

i
| {z }

=Op(T�
2)

+2k�1
Pm

j=1

hPj
l=1 �

(l)0
i

�PTj
t=Tj�1+1

Fteit

�i
| {z }

=Op(T 1=2�)

+ �̂
(1)0
i|{z}

=(A:3)

�Pb�T c
t=1 F̂tF̂

0
t

�
| {z }

=Op(T )

�̂
(1)

i|{z}
=(A:3)

+ �̂
(2)0
i

�PT
t=b�T c+1 F̂tF̂

0
t

�
�̂
(2)

i

�2 �̂(1)0i|{z}
=(A:3)

�Pb�T c
t=1 F̂tet

�
| {z }

=Op(T 1=2)

� 2 �̂(2)0i

�PT
t=b�T c+1 F̂teit

�

�2k�1 �̂(1)0i|{z}
=(A:3)

Pm
j=1

h�PTj
t=Tj�1+1

F̂
(1)
t F 0t

�Pj
l=1 �

(l)
i

i
| {z }

=Op(T�)

�2k�1�̂(2)0i

Pm
j=1

h�PTj
t=Tj�1+1

F̂
(2)
t F 0t

�Pj
l=1 �

(l)
i

i
;

= I + II + III + IV (1) + IV (2) + V (1) + V (2) + V I(1) + V I(1):

Similar to the restricted SSR, if lim inf N=T = 0, then I = Op(T ); II = Op(�
2), III =

Op(T
1=2�), IV = Op(�

2), V = Op(�), and V I = Op(�
2) so that the whole term is Op(T ).

If lim inf T=N = 0, then I = Op(T ); II = Op(TN
�1�2), III = Op(TN

�1=2�), IV = Op(1),
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V = Op(1), and V I = Op(T
1=2N�1=2�2) and the whole term is Op(T ). Finally,

SSRr � SSR(�) = �̂
0
i

�PT
t=1 F̂tF̂

0
t

�
�̂i � �̂

(1)0
i

�Pb�T c
t=1 F̂tF̂

0
t

�
�̂
(1)

i � �̂(2)0i

�PT
t=b�T c+1 F̂tF̂

0
t

�
�̂
(2)

i

�2�̂0i
�PT

t=1 F̂teit

�
+ 2 �̂

(1)0
i

�Pb�T c
t=1 F̂teit

�
+ 2 �̂

(2)0
i

�PT
t=b�T c+1 F̂teit

�
�2k�1�̂0i

Pm
j=1

h�PTj
t=Tj�1+1

F̂tF
0
t

�Pj
l=1 �

(l)
i

i
+2k�1�̂

(1)0
i

Pm
j=1

h�PTj
t=Tj�1+1

F̂
(1)
t F 0t

�Pj
l=1 �

(l)
i

i
+2k�1�̂

(2)0
i

Pm
j=1

h�PTj
t=Tj�1+1

F̂
(2)
t F 0t

�Pj
l=1 �

(l)
i

i
= IV � IV (1)� IV (2) + V � V (1)� V (2) + V I � V I(1)� V I(2):

If lim inf N=T = 0, then IV = Op(�
2), V = Op(�), and V I = Op(�

2). In this case, the terms
IV s and V Is dominate, and this is Op(�

2). If lim inf T=N = 0, then IV = Op(1), V = Op(1),
and V I = Op(T

1=2N�1=2�2). Since T=N ! 0, the whole term is Op(1). Therefore,

Wald(�) =
SSRr � SSR(�)
SSR(�)=T

=

8<: Op(�
2) if lim inf N=T = 0

Op(1) if lim inf T=N = 0
;

LM(�) =
SSRr � SSR(�)

SSRr=T
=

8<: Op(�
2) if lim inf N=T = 0

Op(1) if lim inf T=N = 0
;

uniformly in �: The relationship Wald > LR > LM implies that LR(�) has the same order

uniformly in � and Theorem 1(i) follows.

Proof of Theorem 1 (ii): We consider the regression

xit = �
�0
i K

0�1F̂ �t + �
�0
i K

0�1
�
K 0F �t � F̂ �t

�
+ eit;

where ��i = [�0i 
0
i]
0; F �t = [F 0t s

0
t]
0, and K = (��0��=N)

�
F �0F̂ �=T

�
V �1 with V an r(m +

1)� r(m+ 1) diagonal matrix of the r(m+ 1) largest eigenvalues of XX 0=(NT ). The Proof
of Proposition 1 shows that the set of assumptions holds for the model (A.1). Hence, using

the results of Bai (2003) for the PC estimator F̂ �t , it holds that

T�1
PT

t=1

F̂ �t �K 0F �t

2 = Op(c
�2); (A.4)

T�1(F̂ � � F �K)0ei = Op(c
�2); (A.5)

T�1(F̂ � � F �K)0F̂ � = Op(c
�2); (A.6)

where c = minf
p
T ;
p
Ng.
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The restricted residuals from the regression of xit on F̂
�
t under no changes in the factor

loadings are

êit = eit + �
�0
i K

0�1(K 0F �t � F̂ �t ) + (��0i K 0�1 � �̂�0i )F̂ �t :

We also de�ne F̂
�(1)
t = F̂ �t � I(t � b�T c) and F̂ �(2)t = F̂ �t � I(t > b�T c) for t = 1; � � � ; T .

Then, the unrestricted residuals, assuming one break in the loadings at t = b�T c are

êit(�) = eit + �
�0
i K

0�1(K 0F �t � F̂ �t ) + (��0i K 0�1 � �̂�(1)0i )F̂
�(1)
t + (��0i K

0�1 � �̂�(2)0i )F̂
�(2)
t ;

where �̂
�(1)
i = (

Pb�T c
t=1 F̂

�
t F̂

�0
t )

�1(
Pb�T c

t=1 F̂
�
t xit) and �̂

�(2)
i = (

PT
t=b�T c+1 F̂

�
t F̂

�0
t )

�1(
PT

t=b�T c+1 F̂
�
t xit).

The restricted SSR is

SSRr = e
0
iei + �

�0
i K

0�1(F �K � F̂ �)0(F �K � F̂ �)| {z }
=Op(Tc�2) by (A.4)

K�1��i + 2 e
0
i(F

�K � F̂ �)| {z }
=Op(Tc�2) by (A.5)

K�1��i

+(��0i K
0�1 � �̂�0i )| {z }
=Op(s)

F̂ �0F̂ �| {z }
=Op(T )

(K 0�1��i � �̂
�
i )| {z }

=Op(s)

+ 2 e0iF̂
�|{z}

=Op(T 1=2)

(K�1��i � �̂
�
i )| {z }

=Op(s)

+2��0i K
0�1(F �K � F̂ �)0F̂ �| {z }

=Op(Tc�2) by (A.6)

(K�1��i � �̂
�
i )| {z }

=Op(s)

;

= I + II + III + IV + V + V I:

However, I = Op(T ); II = Op(Tc
�2); III = Op(Tc

�2); IV = Op(Ts
2); V = Op(T

1=2s);

and V I = Op(Tsc
�2), where s represents the order of

�̂�i �K�1��i

. Under the standard
assumption as ours, Bai (2003) shows

s =

8<: T�1=2 if lim inf
p
T=N = 0

N�1 if lim inf
p
T=N > 0

:

Let us �rst suppose that lim inf T=N = 0. This case gives s = T�1=2 and c =
p
T . Hence,

I = Op(T ); II = Op(1); III = Op(1); IV = Op(1); V = Op(1); and V I = Op(T
�1=2).

The term I dominates and SSRr = Op(T ). Second, suppose that lim inf T=N > 0 and

lim inf
p
T=N = 0. This case gives s = T�1=2 and c =

p
N so that I = Op(T ); II =

Op(TN
�1); III = Op(TN

�1); IV = Op(1); V = Op(1); and V I = Op(T
1=2N�1): Again

the term I dominates and SSRr = Op(T ). Finally suppose lim inf
p
T=N > 0. This case

gives s = N�1 and c =
p
N . Hence, I = Op(T ); II = Op(TN

�1); III = Op(TN
�1);

IV = Op(TN
�2); V = Op(T

1=2N�1); and V I = Op(TN
�2) so that the term I dominates

and SSRr = Op(T ): Therefore, SSRr = Op(T ) for every relative rate of N and T . The

23



unrestricted SSR is

SSR(�) = e0iei + �
�0
i K

0�1(F �K � F̂ �)0(F �K � F̂ �)| {z }
=Op(Tc�2) by (A.4)

K�1�i

+2 e0i(F
�K � F̂ �)| {z }

=Op(Tc�2) by (A.5)

K�1��i

+(��0i K
0�1 � �̂�(1)0i )| {z }
=Op(s)

�Pb�T c
t=1 F̂

�
t F̂

�0
t

�
| {z }

=Op(T )

(K�1��i � �̂
�(1)
i )| {z }

=Op(s)

+(��0i K
0�1 � �̂�(2)0i )

�PT
t=b�T c+1 F̂

�
t F̂

�0
t

�
(K�1��i � �̂

�(2)
i )

+2
�Pb�T c

t=1 eitF̂
�0
t

�
| {z }

=Op(T 1=2)

(K�1��i � �̂
�(1)
i )| {z }

=Op(s)

+ 2
�PT

t=b�T c+1 eitF̂
�0
t

�
(K�1��i � �̂

�(2)
i )

+2��0i K
0�1
hPb�T c

t=1 (K
0F �t � F̂ �t )F̂ �0t

i
| {z }

=Op(Tc�2) by (A.6)

(K�1��i � �̂
�(1)
i )| {z }

=Op(s)

+2��0i K
0�1
hPT

t=b�T c+1(K
0F �t � F̂ �t )F̂ �0t

i
(K�1��i � �̂

�(2)
i )

= I + II + III + IV (1) + IV (2) + V (1) + V (2) + V I(1) + V I(2):

For all the terms I; II; III; IV s; V s; and V Is, the same discussion as for the restricted SSR
goes through to evaluate the orders of convergence. Therefore, similarly we can show that
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SSR(�) is Op(T ) uniformly in �. Finally,

SSRr � SSR(�) = (��0i K 0�1 � �̂�0i| {z }
=Op(s)

)F̂ �0F̂ �| {z }
=Op(T )

(K�1��i � �̂
�
i| {z }

=Op(s)

)

�(��0i K 0�1 � �̂�(1)0i )| {z }
=Op(s)

�Pb�T c
t=1 F̂

�
t F̂

�0
t

�
| {z }

=Op(T )

(K�1��i � �̂
�(1)
i| {z }

=Op(s)

)

�(��0i K 0�1 � �̂�(2)0i )
�PT

t=b�T c+1 F̂
�F̂ �0t

�
(K�1��i � �̂

�(2)
i )

+2 e0iF̂
�|{z}

=Op(T 1=2)

(K�1��i � �̂
�
i )| {z }

=Op(s)

�2
�Pb�T c

t=1 eitF̂
�0
t

�
| {z }

=Op(T 1=2)

(K�1��i � �̂
�(1)
i )| {z }

=Op(s)

�2
�PT

t=b�T c+1 eitF̂
�0
t

�
(K�1��i � �̂

�(2)
i )

+2��0i K
0�1(F �K � F̂ �)0F̂ �| {z }

=Op(Tc�2)

(K�1��i � �̂
�
i )| {z }

=Op(s)

�2��0i K 0�1
hPb�T c

t=1 (K
0F �t � F̂ �t )F̂ �0t

i
| {z }

=Op(Tc�2)

(K�1��i � �̂
�(1)
i )| {z }

=Op(s)

�2��0i K 0�1
hPT

t=b�T c+1(K
0F �t � F̂ �t )F̂ �0t

i
(K�1��i � �̂

�(2)
i );

= IV � IV (1)� IV (2) + V � V (1)� V (2) + V I � V I(1)� V I(2):

First, suppose that lim inf T=N = 0. This case gives s = T�1=2 and c =
p
T . Hence,

IV = Op(1); V = Op(1); and V I = Op(T
�1=2) so that SSRr � SSR(�) = Op(1). Second,

suppose that lim inf T=N > 0 and lim inf
p
T=N = 0. This case gives s = T�1=2 and

c =
p
N so that IV = Op(1); V = Op(1); and V I = Op(T

1=2N�1): Since
p
T=N ! 0, IV

and V dominate, and SSRr � SSR(�) = Op(1). Finally, suppose that lim inf
p
T=N > 0.

This case gives s = N�1 and c =
p
N . Hence, IV = Op(TN

�2); V = Op(T
1=2N�1); and

V I = Op(TN
�2) so that SSRr � SSR(�) = Op(TN�2): Hence,

Wald =
SSRr � SSR(�)
SSR(�)=T

=

8<: Op(1) if lim inf
p
T=N = 0

Op(TN
�2) if lim inf

p
T=N > 0

LM =
SSRr � SSR(�)

SSRr=T
=

8<: Op(1) if lim inf
p
T=N = 0

Op(TN
�2) if lim inf

p
T=N > 0

uniformly in �: The relationship Wald > LR > LM in linear models uniformly in � implies
that the same results apply to LR.
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Proof of Theorem 2: Let
P

1 and
P

2 denote
PbT�c

t=1 and
PT

t=bT�c+1, respectively. We

primarily consider the case of m = 1 but extend the proof to the cases of m > 1 if necessary.
The model is

xit = �
0
iFt + 

0
iFt � I(t > bT�0c) + eit: (A.7)

Suppose we identify r� factors that are r� linear combinations of the total r(m + 1) factors
Ft and Ft � I(t > bT�0c) so that Q11Ft + Q12Ft � I(t > bT�0c). Note that Q11 and Q12 are
any r� � r and r� � r matrices with full column ranks speci�ed later.18 Let Q = [Q11 Q12]
be a r� � r(m+ 1) matrix. By doing so, model (A.7) is equivalent to

xit = ��
0
i[Q11Ft +Q12Ft � I(t > bT�0c)] + �0i[Q21Ft +Q22Ft � I(t > bT�0c)] + eit; (A.8)

where Q21 and Q22 are (r(m+ 1)� r�)� r and (r(m+ 1)� r�)�m matrices and ��i and �i
are appropriately de�ned time invariant matrices. The key fact is that using only the factors
Q11Ft + Q12Ft � I(t > bT�0c) but not Q21Ft + Q22Ft � I(t > bT�0c) yields the model (A.8)
equivalent to

xit = �
�0
it [Q11Ft +Q12Ft � I(t > bT�0c)] + eit; (A.9)

with coe�cients with break

��it =

8<: �
�(1)
i for t � bT�0c ;

�
�(2)
i for t � bT�0c+ 1:

The exact forms of the regime-speci�c coe�cients are �
�(1)0
i = (��

0
iQ11+�

0
iQ21)Q

�
11 and �

�(2)0
i =

(��
0
i(Q11+Q12)+�

0
i(Q21+Q22))(Q11+Q12)

�. Note that Q�11 and (Q11+Q12)
� are the Moore-

Penrose inverses of Q11 and Q11 +Q12 that exist as long as r
� � r. Since Q = [Q11 Q12] has

not been speci�ed, we regard it as Q = BK with B = [Ir� 0r��[r(m+1)�r�]] a r
� � r(m + 1)

selector matrix where K is de�ned in the Proof of Theorem 1 (ii) if the �rst r� principal
components are used.19 Therefore, the model (A.9) is simply

xit = ��0itBKF
�
t + eit;

= ��0itBF̂
�
t + �

�0
itB(KF

�
t � F̂ �t ) + eit; (A.10)

where F � is de�ned as in (A.1) and F̂ � are the r(m+1) principal components of XX 0=(NT ).

Note that BF̂ �t are the factor estimates when one assumes that there are only r
� factors.

Based on the model (A.10), the restricted residuals from the regression of xit on BF̂
�
t are

êit = eit + �
�0
itB�t + �

�0
itBF̂

�
t � �̂

�0
i BF̂

�
t ;

18If m > 1, then additional matrices Q13; � � � ; Q1m appear, but the following discussion essentially holds.
19Otherwise, B is changed according to the choice of the factors as regressors.
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where �t = KF
�
t � F̂ �t and

�̂
�
i =

0@B F̂ �0F̂ �| {z }
T�Ir(m+1)

B0

1A�1 hP
BF̂ �t F̂

�0
t B

0��it +
P
BF̂ �t �

0
tB

0��it +
P
BF̂ �t eit

i
;

= (BB0)�1BT�1
P
F̂ �t F̂

�0
t B

0��it| {z }
=I

+ (BB0)�1BT�1
P
F̂ �t �

0
tB

0��it| {z }
=II

+(BB0)�1B T�1
P
F̂ �t eit| {z }

=Op(c�2)+Op(T�1=2)

:

However,

I =
�
T�1

P
F̂ �t F̂

�0
t

�
| {z }

=Ir(m+1)

B0�
�(1)
i +

�
T�1

P
2 F̂

�
t F̂

�0
t

�
| {z }

=Op(1)

B0
�
�
�(2)
i � ��(1)i

�
= Op(�);

II =
�
T�1

P
F̂ �t �

0
t

�
| {z }

=Op(c�2)

B0�
�(1)
i +

�
T�1

P
2 F̂

�
t �

0
t

�
| {z }

=Op(c�2)

B0
�
�
�(2)
i � ��(1)i

�
= Op(c

�2);

so that I dominates, and �̂
�
i = Op(�). Now, the restricted SSR is

SSRr =
P
e2it +

P
��0itB�t�

0
tB

0��it +
P
��0itBF̂

�
t F̂

�0
t B

0��it

+�̂
�0
i B (

P
�t�

0
t)B

0�̂
�
i

+2
P
��0itB�teit + 2

P
��0itBF̂

�
t eit � 2�̂

�0
i

�P
BF̂ �t eit

�
+2
P
��0it�tF̂

�0
t B

0��it � 2
�P

��0it�tF̂
�0
t B

0
�
�̂
�
i � 2

�P
��0itBF̂

�
t F̂

�0
t B

0
�
�̂
�
i ;

= I + II + III + IV + V + V I + V II + V III +XI +X:

Then, I = Op(T ) and the rest of the terms are shown as follows:

II = �
�(1)0
i B(

P
�t�

0
t)| {z }

=Op(Tc�2)

B0�
�(1)
i + 2

�
�
�(2)0
i � ��(1)0i

�
B(
P

2 �t�
0
t)| {z }

=Op(Tc�2)

B0�
�(1)
i

+
�
�
�(2)0
i � ��(1)0i

�
B (
P

2 �t�
0
t)| {z }B0

=Op(Tc�2)

�
�
�(2)
i � ��(1)i

�
;

= Op(Tc
�2�2);

III = �
�(1)0
i B

�P
F̂ �t F̂

�0
t

�
| {z }

=Op(T )

B0�
�(1)
i + 2

�
�
�(2)0
i � ��(1)0i

�
B
�P

2 F̂
�
t F̂

�0
t

�
| {z }

=Op(T )

B0�
�(1)
i

+
�
�
�(2)0
i � ��(1)0i

�
B
�P

2 F̂
�
t F̂

�0
t

�
| {z }

=Op(T )

B0
�
�
�(2)
i � ��(1)i

�
;

= Op(T�
2);
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IV = �̂
�0
i B(

P
�t�

0
t)| {z }

=Op(Tc�2)

B0�̂
�
i = Op(Tc

�2�2);

V = �
�(1)0
i B

P
�teit| {z }

=Op(Tc�2)

+ 2
�
�
�(2)0
i � ��(1)0i

�
B
P

2 �teit| {z }
=Op(Tc�2)

= Op(Tc
�2�);

V I = �
�(1)0
i B

P
F̂ �t eit| {z }

=Op(T 1=2)+Op(Tc�2)

+2
�
�
�(2)0
i � ��(1)0i

�
B

P
2 F̂

�
t eit| {z }

=Op(T 1=2)+Op(Tc�2)

= Op(T
1=2�)+Op(Tc

�2�);

V II = �2�̂�0i B
�P

F̂ �t eit

�
= Op(T

1=2�) +Op(Tc
�2�);

V III = �
�(1)0
i

�P
�tF̂

�0
t

�
| {z }
=Op(Tc�2)

B0�
�(1)
i + 2

�
�
�(2)0
i � ��(1)0i

��P
2 �tF̂

�0
t

�
| {z }
=Op(Tc�2)

B0�
�(1)
i

+
�
�
�(2)0
i � ��(1)0i

��P
2 �tF̂

�0
t

�
| {z }
=Op(Tc�2)

B0
�
�
�(2)
i � ��(1)i

�
= Op(Tc

�2�2);

XI = �
�(1)0
i

�P
�tF̂

�0
t

�
| {z }
=Op(Tc�2)

B0�̂
�
i +

�
�
�(2)0
i � ��(1)0i

��P
2 �tF̂

�0
t

�
| {z }B0

=Op(Tc�2)

�̂
�
i = Op(Tc

�2�2);

X = �
�(1)0
i B

�P
F̂ �t F̂

�0
t

�
| {z }
=T�Ir(m+1)

B0�̂
�
i +

�
�
�(2)0
i � ��(1)0i

�
B
�P

2 F̂
�
t F̂

�0
t

�
| {z }

=Op(T )

B0�̂
�
i = Op(T�

2):

Hence, the terms III and X dominate and SSRr = Op(T�
2).

Consider unrestricted residuals accounting for one break at t = bT�c. Without loss of
generality, we let � > �0.

êit(�) = eit + �
�0
itB�t + �

�0
itBF̂

�
t � �̂

�(1)0
i BF̂ �t � I(t � bT�c)� �̂

�(2)0
i BF̂ �t � I(t � bT�c+ 1);

where

�̂
�(1)
i =

�P
1BF̂

�
t F̂

�0
t B

0
��1 hP

1BF̂
�
t F̂

�0
t B

0��it +
P

1BF̂
�
t �

0
tB

0��it +B
P

1 F̂
�
t ei

i
;

�̂
�(2)
i =

�P
2BF̂

�
t F̂

�0
t B

0
��1 hP

2BF̂
�
t F̂

�0
t B

0��it +
P

2BF̂
�
t �

0
tB

0��it +B
P

2 F̂
�
t ei

i
:

Since
P

1BF̂
�
t F̂

�0
t B

0��it and
P

1BF̂
�
t �

0
tB

0��it include a break, �̂
�(1)
i = Op(�) and �̂

�(2)
i = Op(1).

The result is the opposite when � < �0. It is also shown that if we have multiple breaks m �
2, then �̂

�(1)
i = Op(�) and �̂

�(2)
i = Op(1) when all the breaks are before bT�c ; �̂

�(1)
i = Op(1)
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and �̂
�(2)
i = Op(�) when all the breaks are after bT�c, and �̂

�(1)
i ; �̂

�(2)
i = Op(�) otherwise.

The unrestricted SSR is

SSR(�) =
P
e2it +

P
��0itB�t�

0
tB

0��it +
P
��0itBF̂

�
t F̂

�0
t B

0��it

+�̂
�(1)0
i (

P
1B�t�

0
tB

0) �̂
�(1)
i + �̂

�(2)0
i (

P
2B�t�

0
tB

0) �̂
�(2)
i

+2
P
��0itB�teit + 2

P
��0itBF̂

�
t eit

�2�̂�(1)0i

�P
1BF̂

�
t eit

�
� 2�̂�(2)0i

�P
2BF̂

�
t eit

�
+2
P
��0it�tF̂

�0
t B

0��it

�2
�P

1 �
�0
it�tF̂

�0
t B

0
�
�̂
�(1)
i � 2

�P
2 �

�0
it�tF̂

�0
t B

0
�
�̂
�(2)
i

�2
�P

1 �
�0
itBF̂

�
t F̂

�0
t B

0
�
�̂
�(1)
i � 2

�P
2 �

�0
itBF̂

�
t F̂

�0
t B

0
�
�̂
�(2)
i ;

= I + II + III + IV (1) + IV (2) + V + V I + V II(1) + V II(2)

+V III +XI(1) +XI(2) +X(1) +X(2):

However, I; II; III; V; V I; and V III are the same as the ones in the restricted SSR. We
can also follow a similar discussion as in the restricted SSR to derive

IV (1); IV (2) = Op(Tc
�2�2); Op(Tc

�2);

V II(1); V II(2) = Op(Tc
�2�) +Op(T

1=2�); Op(Tc
�2) +Op(T

1=2);

XI(1); XI(2) = Op(Tc
�2�2); Op(Tc

�2);

X(1); X(2) = Op(T�
2); Op(T );

so that SSR(�) = Op(T�
2) uniformly in � except for the case of � = �0 and m = 1. Finally,

SSRr � SSR(�)

= �̂
�0
i B (

P
�t�

0
t)B

0�̂
�
i � �̂

�(1)0
i B (

P
1 �t�

0
t)B

0�̂
�(1)
i � �̂�(2)0i B (

P
2 �t�

0
t)B

0�̂
�(2)
i

�2�̂�0i B
�P

F̂ �t eit

�
+ 2�̂

�(1)0
i B

�P
1 F̂

�
t eit

�
+ 2�̂

�(2)0
i B

�P
2 F̂

�
t eit

�
�2
�P

��0it�tF̂
�0
t

�
B0�̂

�
i + 2

�P
1 �

�0
it�tF̂

�0
t

�
B0�̂

�(1)
i + 2

�P
2 �

�0
it�tF̂

�0
t

�
B0�̂

�(2)
i

�2
�P

��0itBF̂
�
t F̂

�0
t B

0
�
�̂
�
i + 2

�P
1 �

�0
itBF̂

�
t F̂

�0
t B

0
�
�̂
�(1)
i + 2

�P
2 �

�0
itBF̂

�
t F̂

�0
t B

0
�
�̂
�(2)
i ;

= IV � IV (1)� IV (2) + V II � V II(1)� V II(2)
+XI �XI(1)�XI(2) +X �X(1)�X(2):

However, we know that

IV; IV (1) = Op(Tc
�2�2) and IV (2) = Op(Tc

�2);

V II; V II(1) = Op(Tc
�2�) +Op(T

1=2�) and V II(2) = Op(Tc
�2) +Op(T

1=2);

XI; XI(1) = Op(Tc
�2�2) and XI(2) = Op(Tc

�2);

X; X(1) = Op(T�
2) and X(2) = Op(T );
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so that the term X dominates, and SSRr � SSR(�) = Op(T�2) uniformly in �. Hence,

Wald =
SSRr � SSR(�)
SSR(�)=T

= Op(T );

LM =
SSRr � SSR(�)

SSRr=T
= Op(T );

uniformly in � except for the case of � = �0 and m = 1. The relationshipWald > LR > LM
in linear models uniformly in � implies that the same results apply to LR. When m = 1,
SSR(�0) = Op(T ); with which the following holds:

Wald =
SSRr � SSR(�0)
SSR(�0)=T

= Op(T�
2):

Proof of Theorem 3 (i): Consider the regression of xi on f̂j where f̂j is the jth
principal component estimate for the model

xit = �jifjt + vjit:

The restricted residual is

v̂jit = vjit + �jifjt � �̂jif̂jt
= vjit �

�
�̂ji � �ji

�
fjt � �̂ji

�
f̂jt � fjt

�
;

where �̂ji =
�
T�1

PT
t=1 f̂

2
jt

��1
T�1

PT
t=1 f̂jtxit = T

�1PT
t=1 f̂jtxit.

Then, the restricted SSR is

SSRr =
PT

t=1 v
2
jit + (�̂ji � �ji)2

PT
t=1 f

2
jt

+�̂
2

ji

PT
t=1(f̂jt � fjt)2 � 2�̂ji

PT
t=1(f̂jt � fjt)vjit

�2(�̂ji � �ji)
PT

t=1 fjtvjit + 2�̂ji(�̂ji � �ji)
PT

t=1 fjt(f̂jt � fjt):
Similarly, the unrestricted residual considering a break at t = b�T c is

v̂jit(�) = vjit + �jifjt � �̂
(1)

ji f̂
(1)
jt � �̂

(2)

ji f̂
(2)
jt ;

where �̂
(s)

ji =
�
T�1

P
s f̂

2
jt

��1
T�1

P
s f̂jtxit for s = 1; 2.

The unrestricted SSR is

SSR(�) =
PT

t=1 v
2
jit + (�̂

(1)

ji � �ji)2
P

1 f
2
jt + (�̂

(2)

ji � �ji)2
P

2 f
2
jt

+�̂
(1)2

ji

P
1(f̂jt � fjt)2 + �̂

(2)2

ji

P
2(f̂jt � fjt)2

�2�̂(1)ji
P

1(f̂jt � fjt)vjit � 2�̂
(2)

ji

P
2(f̂jt � fjt)vjit

�2(�̂(1)ji � �ji)
P

1 fjtvjit � 2(�̂
(2)

ji � �ji)
P

2 fjtvjit

+2�̂
(1)

ji (�̂
(1)

ji � �ji)
P

1 fjt(f̂jt � fjt) + 2�̂
(2)

ji (�̂
(2)

ji � �ji)
P

2 fjt(f̂jt � fjt):
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Note that

�̂ji � �ji = T�1
PT

t=1 fjtvjit +Op(c
�2);

�̂
(s)

ji � �ji = m�1
1 T

�1P
s fjtvjit +Op(c

�2);

where ms = T
�1P

s f̂
2
jt for s = 1; 2. Then, we have

SSRr � SSR(�) = (�̂ji � �ji)2
PT

t=1 f
2
jt � 2(�̂ji � �ji)

PT
t=1 fjtvjit

�(�̂(1)ji � �ji)2
P

1 f
2
jt + 2(�̂

(1)

ji � �ji)
P

1 fjtvjit

�(�̂(2)ji � �ji)2
P

2 f
2
jt + 2(�̂

(2)

ji � �ji)
P

2 fjtvjit + op (1)

= A1 � 2A2 �B1 + 2B2 � C1 + 2C2 + op (1) :
Here, we see

A1 =
�
T�1=2

PT
t=1 fjtvjit

�2
T�1

PT
t=1 f

2
jt +Op(T

1=2c�2);

) �2vjiW
2(1);

A2 =
�
T�1=2

PT
t=1 fjtvjit

�2
+Op(T

1=2c�2)

) �2vjiW
2(1);

B1 = m
�2
1

�
T�1=2

P
1 fjtvjit

�2
T�1

P
1 f

2
jt +Op(T

1=2c�2);

) 1

�
�2vjiW

2(�);

B2 = m
�1
1

�
T�1=2

P
1 fjtvjit

�2
+Op(T

1=2c�2);

) 1

�
�2vjiW

2(�);

C1 = m
�2
2

�
T�1=2

P
2 fjtvjit

�2
T�1

P
2 f

2
jt +Op(T

1=2c�2);

) 1

1� ��
2
vji fW (1)�W (�)g

2 ;

C2 = m
�1
2

�
T�1=2

P
2 fjtvjit

�2
+Op(T

1=2c�2);

) 1

1� ��
2
vji fW (1)�W (�)g

2 ;

by Assumption 5c) and the facts that m1
p! � and m2

p! 1� �. It can be deduced that

SSRr � SSR(�)) �2vji

�
�W (1)2 + 1

�
W (�)2 +

1

1� � fW (1)�W (�)g
2

�
;

= �2vji
f�W (1)�W (�)g2

�(1� �) :
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On the other hand, the denominator is

T�1SSR(�) = T�1
PT

t=1 v
2
jit + op(1):

It is straightforward that T�1
PT

t=1 v
2
jit

p! �2vji by Assumption 5b). Therefore,

WT (�; j))
f�W (1)�W (�)g2

�(1� �) :

Second,

E(fjtfltvjitvlit) = E
h
fjtflt(eit +

P
k 6=j �kifkt)(eit +

P
h 6=l �hifht)

i
;

= E
�
fjtflte

2
it

�
+ E

�
fjtflteit(

P
h 6=l �hifht)

�
+E

�
fjtflteit(

P
k 6=j �kifkt)

�
+E

�
fjtflt(

P
h 6=l �hifht)(

P
k 6=j �kifkt)

�
;

= E
�
fjtflt)E(e

2
it

�
+ E

�
fjtflt(

P
h 6=l �hifht)

�
E(eit)

+E
�
fjtflt(

P
k 6=j �kifkt)

�
E(eit)

+E
�
fjtflt(

P
h 6=l �hifht)(

P
k 6=j �kifkt)

�
;

= 0 + 0 + 0 + E(�j)E(�l)E(f
2
jtf

2
lt);

= 0;

for j 6= l. The third and fourth equalities follow Assumption 2 (independency of Ft, �i, and
eit) and the last equality is from Assumption 4 (E(�i) = 0). Hence, WT (�j; j) and WT (�l; l)
are uncorrelated for j 6= l. This implies that the limiting random variables Bj and Bl for
j 6= l are independent as they are Gaussian processes. Therefore, we �nally obtain

MBET ) max
1�j�r

sup
�2�"

f�Wj(1)�Wj(�)g2

�(1� �) :

Proof of Theorem 3 (ii): Without loss of generality, we consider the case of m = 1
but can extend the result for multiple breaks. The model under the alternative hypothesis
is

xit = �
0
itFt + eit;

where �it = �
(1)
i for t � b�0T c and �it = �

(2)
i otherwise. Consider the regression of xit on

the jth principal component. Without loss of generality, choose j such that

j = arg max
1�l�r

����(2)li � �(1)li ��� :
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Under the alternative, we know that there is at least one j that satis�es �
(2)
ji � �

(1)
ji 6= 0.

To derive additional implications, we also denote the break magnitude of �ji by �
� and the

magnitude of the rest of the loadings by �.
Now the model is rewritten as

xit = �jitfjt +
P

l 6=j �litflt + eit:

Let hjit =
P

l 6=j �litflt and �jt = fjt � f̂jt. Then using (A.4) and (A.6)PT
t=1 �jthjit =

P
l 6=j
PT

t=1 �lit�jtf̂lt +
P

l 6=j
PT

t=1 �lit�jt�lt

�
P

l 6=j
PT

t=1 �lit�jtf̂lt +
P

l 6=j

�
�lit
PT

t=1 �
2
jt

�1=2 �
�lit
PT

t=1 �
2
lt

�1=2
= Op(Tc

�2�):

We also have PT
t=1 f̂jthjit =

P
l 6=j
PT

t=1 �litf̂jtflt

=
P

l 6=j
PT

t=1 �litf̂jtf̂lt +
P

l 6=j
PT

t=1 �litf̂jt�lt

= Op(Tc
�2�):

Finally, PT
t=1 eithjit =

P
l 6=j
PT

t=1 �liteitflt = Op(T
1=2�):

When the summation is over a subsample, we can similarly show that
P

s �jthjit = Op(Tc
�2),P

s f̂jthjit = Op(Tc
�2) and

P
s eithjit = Op(T

1=2) for s = 1; 2.

The restricted residual is

êit = eit + �jit�jt + �jitf̂jt � �̂jif̂jt + hjit;

where

�̂ji =
T�1

PT
t=1 f̂jtxit

T�1
PT

t=1 f̂
2
jt

= T�1
PT

t=1 f̂jtxit

= T�1
PT

t=1 f̂jtfjt�jit + T
�1PT

t=1 f̂jthjit + T
�1PT

t=1 f̂jteit

= T�1
PT

t=1 f̂
2
jt�jit| {z }

=Op(�
�)

+ T�1
PT

t=1 f̂jt�jt�jit| {z }
=Op(c�2��)

+ T�1
PT

t=1 f̂jthjit| {z }
=Op(c�2�)

+ T�1
PT

t=1 f̂jteit| {z }
=Op(T�1=2)

= Op(�
�):
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The restricted SSR is

SSRr =
PT

t=1 e
2
it| {z }

=Op(T )

+
PT

t=1 �
2
jit�

2
jt| {z }

=Op(Tc�2��2)

+
PT

t=1 �
2
jitf̂

2
jt| {z }

=Op(T�
�2)

+ �̂
2

ji

PT
t=1 f̂

2
jt| {z }

=Op(T�
�2)

+
PT

t=1 h
2
jit| {z }

=Op(T�
2)

+2
PT

t=1 �jit�jteit| {z }
=Op(Tc�2��)

+ 2
PT

t=1 �jitf̂jteit| {z }
=Op(T 1=2�

�)

� 2�̂ji
PT

t=1 f̂jteit| {z }
=Op(T 1=2�

�)

+2
PT

t=1 eithjit| {z }
=Op(T 1=2�)

+ 2
PT

t=1 �
2
jit�jtf̂jt| {z }

=Op(Tc�2��2)

+ 2
PT

t=1 �jit�jthjit| {z }
=Op(Tc�2��2)

+ 2
PT

t=1 �jitf̂jthjit| {z }
=Op(T�

�2)

�2�̂ji
PT

t=1 �jit�jtf̂jt| {z }
=Op(Tc�2��2)

� 2�̂ji
PT

t=1 �jitf̂
2
jt| {z }

=Op(T�
�2)

� 2�̂ji
PT

t=1 f̂jthjit| {z }
=Op(

p
T�2)

= Op(T�
�2):

To consider the unrestricted residuals, since the convergence results are all uniform in �
as we saw in Proof of Theorem 1(ii), we only consider � = �0.

ê(�0)it = eit + �jit�jt + �jitf̂jt � �̂
(1)

ji f̂
(1)
jt � �̂

(2)

ji f̂
(2)
jt + hjit;

where �̂
(s)

ji =
�
T�1

P
s f̂

2
jt

��1
T�1

P
s f̂jtxit for s = 1; 2. Note that �̂

(1)

ij � �
(1)
ji = Op(T

�1=2)

since

T�1
P

1 f̂jtxit =
�
T�1

P
s f̂

2
jt

�
�
(1)
ji + T

�1�
(1)
ji

P
1 f̂jt�jt| {z }

=Op(c�2)

+ T�1
P

1 f̂jthjit| {z }
=Op(c�2)

+ T�1
P

1 f̂jteit| {z }
=Op(T�1=2)

= Op(1)

and 0 < T�1
P

1 f̂
2
jt < T

�1PT
t=1 f̂

2
jt = 1: Similarly, �̂

(2)

ji � �
(2)
ji = Op(T

�1=2):
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The unrestricted SSR evaluated at �0 is

SSR(�0) =
PT

t=1 e
2
it| {z }

=Op(T )

+
PT

t=1 �
2
jit�

2
jt| {z }

=Op(Tc�2��2)
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(1)
ji � �̂
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2
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Table 1: Critical values of the MBE test
eps=0.05

maxr 1 2 3 4 5 6 7 8 9 10
0.9 8.27 9.82 10.64 11.31 11.77 12.22 12.34 12.83 12.92 13.24

0.95 9.91 11.48 12.27 12.80 13.31 13.75 13.84 14.26 14.45 14.83
0.975 11.57 12.96 13.70 14.36 14.85 15.17 15.36 15.76 16.08 16.25
0.99 13.69 14.97 15.96 16.42 16.83 16.80 17.56 17.66 17.82 18.09

maxr 11 12 13 14 15 16 17 18 19 20
0.9 13.43 13.53 13.77 13.99 14.03 14.22 14.32 14.45 14.48 14.75

0.95 15.01 15.04 15.21 15.48 15.59 15.77 15.71 15.88 16.16 16.32
0.975 16.51 16.56 16.72 17.01 17.10 17.17 17.34 17.50 17.83 17.86
0.99 18.34 18.56 18.65 18.81 19.06 18.97 19.27 19.46 19.91 19.84

eps=0.1
maxr 1 2 3 4 5 6 7 8 9 10

0.9 7.68 9.25 10.11 10.70 11.06 11.57 11.84 12.25 12.36 12.62
0.95 9.24 10.94 11.79 12.34 12.67 13.21 13.30 13.81 13.75 14.20
0.975 10.94 12.51 13.39 13.76 14.35 14.59 14.81 15.17 15.36 15.63
0.99 13.23 14.35 15.41 15.76 16.26 16.48 16.66 17.06 17.35 17.59

maxr 11 12 13 14 15 16 17 18 19 20
0.9 12.85 12.90 13.24 13.46 13.49 13.77 13.84 13.90 13.92 14.17

0.95 14.43 14.47 14.66 15.02 15.02 15.31 15.32 15.44 15.60 15.74
0.975 16.03 15.90 16.15 16.56 16.74 16.65 16.68 16.98 17.40 17.23
0.99 17.81 18.14 18.05 18.50 18.53 18.44 18.78 18.71 19.35 19.24

eps=0.15
maxr 1 2 3 4 5 6 7 8 9 10

0.9 7.28 8.84 9.67 10.25 10.66 11.29 11.46 11.70 11.93 12.25
0.95 8.78 10.44 11.28 11.88 12.11 12.88 12.96 13.23 13.45 13.82
0.975 10.44 12.13 12.74 13.18 13.77 14.38 14.58 14.67 14.87 15.23
0.99 12.81 13.91 15.01 15.23 15.67 16.47 16.74 16.44 16.90 17.11

maxr 11 12 13 14 15 16 17 18 19 20
0.9 12.56 12.60 12.87 12.87 13.10 13.30 13.29 13.45 13.57 13.61

0.95 14.15 14.11 14.28 14.46 14.71 14.87 14.76 15.02 15.16 15.07
0.975 15.70 15.54 15.73 16.04 16.11 16.46 16.21 16.57 16.53 16.71
0.99 17.86 17.31 17.80 17.95 18.07 18.33 18.26 18.33 18.54 18.41
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Table 2: Number of common factors estimated by Bai and Ng's (2002) criteria

under local breaks (mean of simulations)

a) ICp1

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 2.34 2.63 2.94 3.21 3.38 3.67 4.38

200 200 2.08 2.48 2.89 3.10 3.08 3.52 4.09
500 500 2.00 2.09 2.80 3.16 3.00 3.10 4.00
200 100 2.00 2.06 2.29 2.58 3.00 3.07 4.00
500 100 2.00 2.00 2.00 2.00 3.00 3.00 4.00
100 200 2.00 2.07 2.30 2.61 3.00 3.09 4.00
100 500 2.00 2.00 2.00 2.00 3.00 3.00 4.00

b) ICp2

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 2.06 2.24 2.49 2.73 3.07 3.23 4.05

200 200 2.01 2.11 2.49 2.80 3.00 3.12 4.00
500 500 2.00 2.00 2.26 2.87 3.00 3.00 4.00
200 100 2.00 2.01 2.11 2.31 3.00 3.01 4.00
500 100 2.00 2.00 2.00 2.00 3.00 3.00 4.00
100 200 2.00 2.02 2.12 2.33 3.00 3.02 4.00
100 500 2.00 2.00 2.00 2.00 3.00 3.00 4.00

c) ICp3

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 3.84 5.04 5.74 6.26 5.66 7.45 7.49

200 200 3.95 4.43 4.69 5.03 5.85 6.55 7.68
500 500 3.99 4.00 4.01 4.20 5.97 6.00 7.93
200 100 2.51 2.91 3.23 3.55 3.61 4.04 4.71
500 100 2.00 2.00 2.00 2.01 3.00 3.00 4.00
100 200 2.51 2.88 3.22 3.52 3.61 4.03 4.70
100 500 2.00 2.00 2.00 2.02 3.00 3.00 4.00
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Table 3: Number of common factors estimated by Bai and Ng's (2002) criteria

under �xed breaks (mean of simulations)

a) ICp1

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 3.98 6.45 7.89 9.86 5.20 8.80 6.39

200 200 4.64 5.08 7.88 9.88 6.38 7.25 8.04
500 500 4.84 6.00 8.66 10.13 6.95 9.00 8.99
200 100 4.02 5.01 7.82 9.83 5.42 7.02 6.72
500 100 4.16 5.01 7.66 9.66 5.73 7.03 7.25
100 200 4.15 6.50 7.91 9.91 5.52 8.89 6.87
100 500 4.40 6.59 7.94 9.92 5.93 8.99 7.42

b) ICp2

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 3.87 6.39 7.85 9.76 4.98 8.74 6.04

200 200 4.20 5.01 7.86 9.85 5.67 7.03 7.09
500 500 4.81 5.98 8.26 9.87 6.94 8.94 8.98
200 100 3.86 5.00 7.80 9.80 5.11 7.00 6.28
500 100 4.01 5.00 7.64 9.65 5.48 7.01 6.92
100 200 4.01 6.45 7.90 9.88 5.23 8.83 6.44
100 500 4.28 6.56 7.93 9.92 5.77 8.94 7.19

c) ICp3

r 2 3 4
m 1 2 3 4 1 2 1

r(m+1) 4 6 8 10 6 9 8
T=100 N=100 4.96 7.52 8.60 10.53 6.98 10.71 8.97

200 200 4.95 6.00 8.86 10.63 6.99 8.99 9.00
500 500 4.92 6.00 8.93 10.93 6.98 9.00 9.00
200 100 4.82 5.39 8.00 9.92 6.79 7.85 8.65
500 100 4.59 5.13 7.71 9.72 6.53 7.32 8.32
100 200 4.85 6.99 8.09 9.99 6.74 9.81 8.51
100 500 4.73 6.78 7.99 9.95 6.51 9.39 8.18
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Table 4: Rejection frequencies of the BE tests as functions of sample size

(� = 5)

local breaks fixed breaks
SW SLR SLM SW SLR SLM

T=50 N=50 0.298 0.228 0.170 0.175 0.092 0.034
100 100 0.387 0.358 0.319 0.164 0.123 0.077
300 300 0.542 0.530 0.519 0.090 0.076 0.055
500 500 0.556 0.553 0.550 0.096 0.086 0.079
20 500 0.140 0.076 0.018 0.521 0.205 0.004
50 500 0.123 0.082 0.044 0.185 0.095 0.033
100 500 0.180 0.151 0.134 0.126 0.084 0.046
500 20 0.425 0.421 0.417 0.319 0.311 0.304
500 50 0.515 0.512 0.503 0.295 0.291 0.281
500 100 0.537 0.527 0.520 0.214 0.205 0.197

(� = 10)

local breaks fixed breaks
SW SLR SLM SW SLR SLM

T=50 N=50 0.198 0.140 0.076 0.181 0.091 0.032
100 100 0.195 0.158 0.116 0.162 0.123 0.067
300 300 0.177 0.164 0.148 0.083 0.064 0.052
500 500 0.088 0.078 0.071 0.088 0.082 0.071
20 500 0.234 0.119 0.022 0.518 0.191 0.005
50 500 0.260 0.197 0.137 0.181 0.087 0.030
100 500 0.269 0.235 0.203 0.128 0.082 0.037
500 20 0.713 0.711 0.708 0.271 0.263 0.251
500 50 0.739 0.737 0.736 0.283 0.271 0.260
500 100 0.550 0.544 0.540 0.160 0.146 0.139
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Figure 1: Power functions of the BE tests under common breaks

(T = 100 and N = 100)
SupWald SupLM
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Figure 2: Power functions of the BE tests under common breaks

(T = 50 and N = 200)
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Figure 3: Power functions of the BE tests under common breaks

(T = 200 and N = 50)
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0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

m=1 m=2

m=3 m=5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

Figure 4: Power functions of the BE tests under common breaks

using a �xed number of factors (T = 100 and N = 100)
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Figure 5: Power functions of the BE tests under common breaks

using HAC standard errors

(T = 100 and N = 100)
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Figure 6: Power functions of the BE tests

under reduced rank random walk parameters

(T = 100 and N = 100)
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Table 5-1: Size of the MBE test (�ji � i:i:d:N(0; 1))
r r

eps 1 2 3 4 5 6 7 8
0.05 0.038 0.036 0.035 0.043 0.037 0.047 0.035 0.048
0.10 0.047 0.048 0.043 0.051 0.048 0.039 0.050 0.043
0.15 0.030 0.037 0.049 0.042 0.050 0.052 0.052 0.040
0.05 0.037 0.042 0.045 0.053 0.049 0.049 0.047 0.051
0.10 0.048 0.051 0.034 0.058 0.056 0.052 0.046 0.062
0.15 0.040 0.043 0.051 0.053 0.047 0.044 0.051 0.055
0.05 0.038 0.039 0.050 0.045 0.041 0.048 0.040 0.046
0.10 0.051 0.050 0.036 0.048 0.040 0.034 0.047 0.047
0.15 0.042 0.042 0.054 0.040 0.054 0.050 0.051 0.049
0.05 0.107 0.125 0.159 0.163 0.187 0.180 0.210 0.203
0.10 0.084 0.137 0.131 0.195 0.175 0.158 0.159 0.194
0.15 0.080 0.112 0.134 0.135 0.152 0.171 0.159 0.187
0.05 0.105 0.161 0.208 0.243 0.265 0.294 0.306 0.341
0.10 0.123 0.167 0.214 0.231 0.293 0.282 0.287 0.320
0.15 0.120 0.151 0.200 0.228 0.238 0.255 0.268 0.290
0.05 0.071 0.101 0.124 0.130 0.125 0.141 0.131 0.159
0.10 0.068 0.080 0.106 0.124 0.123 0.113 0.106 0.131
0.15 0.064 0.076 0.108 0.107 0.103 0.109 0.097 0.127
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Table 5-2: Size of the MBE test (�ji � i:i:d:U [0; 1])
r

eps 1 2 3 4 5 6 7 8
0.05 0.044 0.042 0.045 0.044 0.037 0.041 0.038 0.037
0.10 0.036 0.04 0.052 0.045 0.049 0.041 0.043 0.043
0.15 0.043 0.044 0.051 0.041 0.05 0.054 0.049 0.049
0.05 0.039 0.049 0.044 0.035 0.037 0.031 0.041 0.038
0.10 0.050 0.056 0.049 0.040 0.053 0.036 0.053 0.045
0.15 0.040 0.045 0.063 0.051 0.046 0.041 0.053 0.047
0.05 0.040 0.049 0.045 0.047 0.034 0.045 0.037 0.036
0.10 0.053 0.055 0.041 0.042 0.042 0.046 0.041 0.039
0.15 0.045 0.039 0.047 0.048 0.053 0.052 0.055 0.047
0.05 0.109 0.118 0.134 0.147 0.170 0.169 0.179 0.176
0.10 0.083 0.113 0.123 0.119 0.154 0.164 0.153 0.160
0.15 0.075 0.087 0.118 0.100 0.132 0.141 0.133 0.158
0.05 0.132 0.189 0.214 0.211 0.233 0.243 0.264 0.259
0.10 0.124 0.173 0.192 0.200 0.210 0.256 0.233 0.246
0.15 0.098 0.151 0.171 0.200 0.191 0.221 0.198 0.232
0.05 0.074 0.085 0.107 0.099 0.129 0.104 0.107 0.113
0.10 0.060 0.082 0.087 0.092 0.110 0.100 0.090 0.107
0.15 0.054 0.078 0.085 0.089 0.106 0.088 0.082 0.088
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Figure 7: Power functions of the MBE test under common breaks
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Figure 8: Power functions of the MBE test

under reduced rank random walk parameters
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Figure 9: U.S. Treasury yields
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Figure 10: Results for the factor loading structural change tests in the U.S. Treasury yield
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(BE test : SupWald)

(BE test : SupLM)

Notes: 1. The vertical and horizontal axes correspond to the maturity and the end of 10year window, respectively.
             2. The maturities in black, dark gray, and light gray show significance at the 1%, 5%, and 10% levels, respectively.
                 The maturities in white show insignificance even at the 10% level.
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