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Abstract

Elliott and M�uller (2007) (EM) provides a method to construct a con�dence set
for the structural break date by inverting a locally best test statistic. Previous studies
show that the EM method produces a set with an accurate coverage ratio even for
a small break, however, the set is often overly lengthy. This study proposes a sim-
ple modi�cation to rehabilitate their method. Following the literature, we provide an
asymptotic justi�cation for the modi�ed method under a nonlocal asymptotic frame-
work. A Monte Carlo simulation shows that like the original method, the modi�ed
method exhibits a coverage ratio that is very close to the nominal level. More im-
portantly, it achieves a much shorter con�dence set. Hence, when the break is small,
the modi�ed method serves as a better alternative to Bai's (1997) con�dence set. We
apply these methods to a small level shift in post-1980s Japanese in
ation data.
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1 Introduction

This study provides a simple modi�cation of the con�dence set that was proposed by Elliott

and M�uller (2007) (EM hereafter) for a single structural break date in linear regression

models. EM proposed a method of inverting a test statistic that speci�es the null hypothesis

of the break occurring at a certain date and the alternative hypothesis of it occurring at

another date. The idea is to implement such a test for each possible break date and arrive at

the collection of dates where the test fails to reject the null hypothesis; this collection of dates

is considered a con�dence set. Their method has at least a strong theoretical advantage in the

sense that it is based on the locally best test and is considered asymptotically e�cient under

certain conditions, including the break magnitude shrinking to zero at a fast rate. More

importantly, their simulation study suggests that this method exhibits very good coverage

properties across a wide range of break magnitudes in �nite samples. Especially for small

breaks where the standard structural break test is marginally signi�cant or insigni�cant, the

existing method of Bai (1997) is known to exhibit undercoverage, whereas the EM method

still achieves a coverage ratio that is very close to the nominal level.

However, previous studies show that the EM con�dence set is often much longer than the

one computed by other methods1. For example, in their Table 8 (say, the case of r0 = 0:5

and d = 16), the coverage ratio of Bai (1997) is a few percentage points lower, whereas that

given by the EM method is very close to the nominal level. As a cost of this advantage, the

average length of the EM method is about four times that of Bai's method. More recently,

Chang and Perron (2013) investigated the same problem by extending the comparison to the

set of linear models including lagged dependent variables. They show that EM's con�dence

set indeed has a better coverage ratio than other methods but often becomes so long that

it includes the whole sample period. More interestingly, they discuss a theoretical base for

this phenomenon by using a nonlocal asymptotic framework in which the break does not

shrink to zero as the sample size increases. Perron and Yamamoto (2013) and Yamamoto

and Tanaka (2013) recently showed that the same technique is useful for analyzing the widely

known nonmonotonic power problem in structural break tests. (See also Crainiceanu and

Vogelsang 2007 and Perron 1991, 2006 for details of the nonmonotonic power problem.)

Following this literature, we provide an asymptotic justi�cation of our con�dence set

under the nonlocal asymptotic framework with a �xed break magnitude. The results show

1Eo and Morley (2013) recently proposed a method that inverts the likelihood ratio test statistic. A
comparison with this method is beyond the scope of this paper.
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that under the null hypothesis, the modi�ed and original tests are asymptotically equivalent.

Under the alternative hypothesis, the modi�ed test is an increasing function in the break

magnitude, but the original test is not. If serial correlation in the errors is accounted for by

the standard heteroskedasticity and autocorrelation consistent (HAC) correction, then the

original test may become a decreasing function. This asymptotic property predicts a higher

power of the modi�ed test thus it excludes false time points from the con�dence set more

e�ciently in �nite samples. Our Monte Carlo simulation shows that the modi�ed method

gives a very good coverage ratio, similar to the original method. More importantly, the

average length of the modi�ed method is much smaller than that of the original method over

a wide range of break magnitudes. This improvement is signi�cant whether or not the HAC

correction is conducted. This analysis has a clear practical implication that the modi�ed

con�dence set serves as a good alternative to Bai's method when the break is small. If the

break is not small, Bai's method will achieve good coverage with a shorter length than ours

and that of the original method on average, so is still recommended.

The remainder of this paper is structured as follows. Section 2 introduces the model and

assumptions. Section 3 explains the EM method to construct the con�dence set for a single

structural break date. Section 4 proposes a modi�cation of the EM method and investigates

its asymptotic property using a nonlocal asymptotic framework. Section 5 provides the re-

sults of a Monte Carlo simulation to compare �nite sample properties of the new and existing

methods. Section 6 illustrates the usefulness of our approach by using an empirical example

of post-1980s Japanese in
ation data and section 7 presents a conclusion. Throughout the

paper, the symbols \
p!" and \)" denote convergence in probability and convergence in

distribution.

2 Model and assumptions

Consider the linear regression model

yt = I(t � T 0b )X 0
t�1 + I(t > T

0
b )X

0
t�2 + Z

0
t
 + ut; t = 1; � � � ; T; (1)

where yt is a scalar variable, Xt is a k � 1 vector of regressors with breaking coe�cients �1
and �2 at a date t = T

0
b and Zt is a p� 1 vector of regressors with time-invariant coe�cients


. I(�) is the indicator function. The error term ut has mean zero. The break magnitude

is denoted by � = �2 � �1. Our goal is to compute a con�dence set for the unknown break
date T 0b at a speci�ed con�dence level.

To this end, we introduce the following assumptions.
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Assumption 1 i) T 0b = [�0T ], where 0 < �0 < 1:

ii) T�1=2
P[sT ]

t=1 Xtut ) 

1=2
1 W (s) for 0 � s � �0 and T�1=2

P[sT ]

t=T 0b +1
Xtut ) 


1=2
2 (W (s)�

W (r0)) for �0 � s � 1 where 
1 and 
2 are symmetric and positive de�nite k � k long-run
variance (LRV) matrices and W (�) is a k � 1 standard Wiener process.
iii) LetWt = [Xt; Zt]. The matrices j

�1Pj
t=1WtW

0
t , j

�1PT
t=T�j+1WtW

0
t , j

�1PT 0b
t=T 0b �j+1

WtW
0
t ,

and j�1
PT 0b +j

t=T 0b +1
WtW

0
t have minimum eigenvalues bounded away from zero in probability for

all j � p+ k.
iv) sup0�s�1




T�1=2P[sT ]
t=1 Ztut




 = Op(1):
v)

T�1
P[sT ]

t=1 WtW
0
t

p! sQ1;

uniformly in 0 � s � �0 and

T�1
P[sT ]

t=T 0b +1
WtW

0
t

p! (s� �0)Q2;

uniformly in �0 � s � 1, where Q1 and Q2 are full rank.

Parts i), ii), iv), and v) follow Condition 1 of EM. Part iii) follows Bai (1997) A3 and

enables to estimate the break date by

T̂b = arg min
Tb2[�T;(1��)T ]

SSR(Tb); (2)

where SSR(Tb) is the sum of squared residuals of the regression of yt on fI(t � Tb)Xt, I(t > Tb)Xt, Ztg.
The quantity � in (2) is the small trimming value (� > 0). We know that such estimator

satis�es consistency for the ratio T̂b=T
p! �0 as discussed in Bai (1997) under these assump-

tions. (See also Lemma 1 in the Appendix.) These assumptions also enable us to use the

con�dence set of Bai (1997) in the form of [T̂b � [c(1+�)=2g]� 1; T̂b � [c(1��)=2g] + 1] where c�
is the 100� � percentile of the suggested random variable and g = �̂

0

̂1�̂=(�̂

0
Q̂1�̂)

2.

3 Elliott and M�uller's (2007) con�dence set

Earlier studies show that Bai's con�dence set may exhibit undercoverage when the break

is small. To overcome this problem, EM proposes an alternative method that inverts the

test statistic UT (Tm) specifying the null hypothesis of a break occurring at t = Tm and the

alternative hypothesis of one occurring at t 6= Tm

UT (Tm) = T�2m
PTm

t=1

�Pt
s=1 vs

�0

�11

�Pt
s=1 vs

�
+(T � Tm)�2

PT
t=Tm+1

�Pt
s=Tm+1

vs
�0

�12

�Pt
s=Tm+1

vs
�
;
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where vt = Xtut and its LRVs 
j (j = 1; 2) are replaced by their estimates, respectively, as

in the following steps.

1. For any Tm = p + 2k + 1; : : : ; T � p� 2k � 1, compute the least squares regression of
fytgTt=1 on fI(t � Tm)Xt; I(t > Tm)Xt; ZtgTt=1. Call the residuals ût.

2. Construct fv̂tgTt=1 = fXtûtgTt=1.

3. Compute the LRV estimators 
̂1 and 
̂2 of fv̂tgTmt=1 and fv̂tg
T
t=Tm+1

, respectively2.

4. Compute UT (Tm) with vt replaced by v̂t and 
1 and 
2 by 
̂1 and 
̂2, respectively.

5. Include Tm in the level � con�dence set when UT (Tm) is less than the critical values

provided by EM and exclude it otherwise.

In �nite samples, this method indeed achieves a coverage ratio that is very close to the

nominal level even when the break is small. However, it is also shown that this method

often gives an overly lengthy con�dence set. For example, in Table 8 of EM (say, the case

of �0 = 0:5 and d = 16), the coverage ratio of Bai (1997) is a few percentage points lower

than, whereas the EM method is very close to, the nominal level. However, as a cost of this

advantage, the average length of the EM method is about four times that of Bai's method.

More recently, Chang and Perron (2013) investigated the same problem by extending the

comparison to linear models including lagged dependent variables. They show that EM's

con�dence set indeed has a better coverage ratio than other methods but often becomes so

long that it includes the whole sample period.

4 A modi�ed method

This section proposes a simple modi�cation to overcome the drawback of the EM con�dence

set. The basic idea is to estimate the LRV by using the residuals obtained under the alter-

native hypothesis, that is, the residuals assuming a break at an unknown point t 6= Tm. To
do so, we use the unknown break date estimation of Bai (1997) that minimizes the sum of

squared residuals over possible unknown break dates. If the true break date is consistently

estimated, such residuals are asymptotically free from the presence of a break. These resid-

uals are used to estimate the LRV to construct the test. However, the other part of the test

2An attractive choice is to use the automatic bandwidth estimators of Andrews(1991) or Andrews and
Monahan (1992). If it is known that 
1 = 
2, the it is advisable to rely instead on a single LRV estimator


 based on fvtgTt=1. This footnote also applies to the step 3 of the modi�ed procedure in the next section.
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is constructed as suggested by EM assuming the break at Tm. Hence, under the alternative

hypothesis of Tm 6= T 0b , the true break is present in these residuals, which makes the test

statistic large. The following steps describe the algorithm.

1. Estimate a break date T̂b by minimizing the sum of squares in the regression, that is,

(2).

2. For any Tm = p+ 2k + 1; : : : ; T � p� 2k � 1, do the following:

(a) Compute the least squares regression of fytgTt=1 on fI(t � Tm)Xt; I(t > Tm)Xt; I(t > T̂b)Xt; Zt

oT
t=1
.

Call the residuals eut. Note that for Tm such that ���Tm � T̂b��� < k, omit nI(t > T̂b)Xt

oT
t=1

from the regressors. Construct fevtgTt=1 = fXteutgTt=1.
(b) Compute the least squares regression of fytgTt=1 on fI(t � Tm)Xt; I(t > Tm)Xt; ZtgTt=1.

Call the residuals ût. Construct fv̂tgTt=1 = fXtûtgTt=1.

3. Compute the LRV estimators e
1 and e
2 of fevtgTmt=1 and fevtgTt=Tm+1, respectively.
4. Compute UT (Tm) with vt replaced by v̂t. Replace 
1 and 
2 by e
1 and e
2, respectively.
Call it VT (Tm).

5. Include Tm in the level � con�dence set when VT (Tm) is less than the critical values

provided by EM and exclude it otherwise.

Intuitively, this modi�cation only changes the LRV estimate to another consistent es-

timate, with which the consistency holds under assumption of the break magnitude that

shrinks to zero or not. Therefore, EM's Proposition 3 is still valid and the asymptotic

critical values are invariant under the null hypothesis. The following theorem is obtained.

Theorem 1 Suppose Assumption 1 holds. a) Let vt be independent and identically dis-

tributed (i.i.d.) processes and 
j (j = 1; 2) estimated under the i.i.d. assumption or b) let vt

be strictly stationary processes and 
j (j = 1; 2) estimated using the HAC estimator. Then,

UT (T
0
b ) and VT (T

0
b ) are asymptotically equivalent.

More importantly, we derive the asymptotic behavior of the tests under the alternative

hypothesis. To do so, we follow the literature and use a nonlocal asymptotic framework that

assumes the break magnitude � to be �xed.

5



Theorem 2 Suppose Assumption 1 holds. a) Let vt be i.i.d. processes and 
j (j = 1; 2)

estimated under the i.i.d. assumption. Then, for Tm 6= T 0b ,

T�1UT (Tm) = Op(1);

T�1VT (Tm) = Op(k�k2):

b) Let vt be strictly stationary processes and 
j (j = 1; 2) estimated using the HAC estimator

of Andrews(1991) with the bandwidth chosen by an AR(1) approximation. Then, for Tm 6=
T 0b ,

T 1=��1UT (Tm) = Op(1);

T 1=��1VT (Tm) = Op(k�k2);

where � = 3 when the Bartlett kernel is used and � = 5 when the Quadratic Spectral (or

Parzen or Tukey-Hanning) kernel is used.

Theorem 2 gives clear guidance for predicting the behavior of the tests UT and VT under

the alternative hypothesis. What is important is that the original test UT is a nonincreasing

function in k�k. On the other hand, the modi�ed test VT is increasing in k�k whether or not
the HAC correction is conducted. This result predicts that in �nite samples the modi�ed

test has a higher power and excludes false time points t 6= T 0b from the con�dence set more

e�ciently.

Remark 1 If the regressor is a constant, then Condition A1 in the Appendix is satis�ed.

In this case, the selection of bandwidth for constructing the standard nonparametric HAC

covariance estimate is a�ected by the break magnitude, even asymptotically. Suppose that we

use the popular Andrews' (1991) AR(1) approximation. Then, the AR(1) coe�cient estimate

�̂ approaches one as the break magnitude increases. Given that the rule is m̂ / (�T )1=�, where
� = 4�̂2=(1 � �̂)4 and � = 5 in the case of the Quadratic Spectral kernel, and �̂ is the OLS
estimate for the AR(1) coe�cient of v̂t, the bandwidth is m̂ = Op(k�k4=� T 1=�). This changes
the above results for case b) to

T 1=��1UT (Tm) = Op(k�k�4=�);

so that UT is indeed a decreasing function in k�k. This result closely follows Chang and
Perron's (2013) Theorem 1 and applies to the other kernels proposed in Andrews (1991) .
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5 Monte Carlo simulation

This section investigates the �nite sample property of the proposed con�dence set as a

comparison of the two existing methods. To this end, we replicate EM's simulation design

and consider the following data generating processes:

Model 1:

yt = � + dT
�1=2I(t > [�0T ]) + ut;

where ut � i:i:d:N(0; 1):
Model 2:

yt = � + dT�1=2I(t > [�0T ]) + ut;

ut = (1 + I(t > [�0T ]) "t;

where "t � i:i:d:N(0; 1):
Model 3:

yt = � + dT�1=2I(t > [�0T ]) + ut;

ut = 0:3ut�1 + "t;

where "t � i:i:d:N(0; 1):
Model 4:

yt = � + dT�1=2I(t > [�0T ]) + ut;

ut = "t � 0:3"t�1;

where "t � i:i:d:N(0; 2:04):
Model 5:

yt = 
 + xt� + dT
�1=2xt � I(t > [�0T ]) + ut;

xt = 0:5xt�1 + �t;

where �t � i:i:d:N(0:0:75):
Model 6:

yt = 
 + xt� + dT
�1=2xt � I(t > [�0T ]) + ut;

xt = 0:5xt�1 + �t;

ut = "t jxtj ;
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where �t � i:i:d:N(0:0:75) and "t � i:i:d:N(0; 0:333):
In every model, we consider d = [4; 8; 12; 16] and �0 = [0:5; 0:35; 0:2] and set T = 100.

The following con�dence sets are considered i) EM's method assuming equal LRVs in the

two regimes (denoted by U:eq), ii) EM's method assuming unequal LRVs (U:neq), iii) the

modi�ed method assuming equal LRVs (V:eq), iv) the modi�ed method assuming unequal

LRVs (V:neq), v) Bai's method assuming equal LRVs (Bai:heq), and vi) Bai's method assuming

unequal LRVs (Bai:hneq).

We report the coverage ratio and average length of the con�dence set evaluated by 3,000

replications in Tables 1 through 6 for Models 1 through 6, respectively. These tables exactly

correspond to those reported by EM. Since there is no serial correlation in the errors in Models

1, 2, 5, and 6, White's (1980) heteroskedasticity robust covariance is used. For Models 3

and 4, we use the HAC covariance of Andrews(1991) using Quadratic Spectral kernel with

the bandwidth selected by an AR(1) approximation of a prewhitened series of Andrews and

Monahan (1992) to account for serial correlation in the errors3. We preliminarily point out

that the U and Bai con�dence sets in Tables 1 through 6 almost completely replicate EM's

results. There is a minor di�erence, because the extent to which Bai undercovers the nominal

level in the case of d = 4 is somewhat smaller in our simulation than in EM's simulation.

However, we can con�rm that the EM method gives a very good coverage ratio, whereas Bai

shows undercoverage when the break is small (d = 4 and 8). In addition, the average length

of U is more than Bai in every case as pointed out by earlier studies.

The main �ndings of this simulation are summarized by the following two points. First,

the modi�ed method V gives a very good coverage ratio and is very similar to the original

method U . We see a slight undercoverage only in DGP3 with a very small break (d = 4),

however, the deviation is minor and rare. Furthermore, it quickly achieves the correct

nominal level when the break is as large as d = 8. Second and more importantly, the average

length of V is much smaller than that of U over the range of break magnitudes. However,

as the theory suggests, the advantage of V over U is intensi�ed when the break gets larger

and/or the HAC correction is conducted. For example, the di�erence in average lengths is

not very large in the case of d = 4 in Model 2. However, the average length of V is �ve times

less than that of U in the case of d = 16 in Model 3. This con�rms Theorem 2.

We also �nd that in all cases the average length of V falls between U and Bai. This

3In practice, this information is not available and serial correlation in the errors is to be tested prior to
form a con�dence set. From this point of view, we also implemented the test for which the HAC correction
is applied only when the pre-test rejects. However, the results are very close to what are reported here so is
not separately reported.
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implies that as long as the break is not small, Bai's method gives good coverage as well as the

shortest con�dence set, so it is recommended. When the break is small, Bai's method still

gives a short con�dence set, but at the risk of undercoverage. Hence, the modi�ed con�dence

set proposed in this paper must be an attractive alternative method.

6 Empirical illustration : Level shift in the post-1980s Japanese in
ation rate

After a long recession, Japanese in
ation dynamics have now been attracting much attention.

As is common to most developed countries, Japan experienced high in
ation period in the

1970s, recording two-digit annual in
ation rates in terms of the core consumer price index

(CPI). The in
ationary pressure came down as late as the 1980s and in
ation became fairly

stable since the middle of that decade. Of interest is that Japanese economy experienced

a strong de
ationary pressure in the late 1990s (See De Veirman 2009 and the references

therein). The source of this de
ation is a controversial issue and detailed investigation is

out of the scope of this paper. However, identifying the dates of level shifts should help one

understand the major cause.

We use the quarterly annualized Japanese in
ation rate Yt = 4�(log(Pt)�log(Pt)), where
Pt is the core CPI (seasonally adjusted). We take the sample of a relatively stable in
ation

rate from 1985Q1 through 2013Q4; the series is presented in Figure 1. We are interested in

determining whether there is a break in the mean of Yt, and if so, when it occurred. To see

this, we �rst apply the SupF structural change test for the parameter � in the regression

model Yt = � + ut. We use the HAC covariance of Andrews(1991) using Quadratic Spectral

kernel with the bandwidth chosen by an AR(1) approximation. The SupF test gives a value

of 18.10, suggesting that there is a break at 1% signi�cance level. We then use the sequential

method of Bai and Perron (1998) to see if there is a second signi�cant break. We �nd that

the SupF (2j1) test is 3.96 and is insigni�cant even at the 10% level. We conclude that there
is one break in the mean of in
ation during this period.

We now compute the con�dence intervals by using the EM method (U), the modi�ed

method (V ), and Bai's method (Bai). Figure 2 illustrates the 90% con�dence set in black

and the 95% con�dence set in black and gray. The 90% con�dence set of the original EM

method covers the period from 1993Q2 through 2001Q3, however, the 95% set includes

almost the entire sample period and is thus not very informative. However, Bai gives a

set centered at 1998Q1 and the 90% and 95% sets span from from 1995Q1 through 2001Q2

and 1993Q4 through 2002Q3, respectively. Our method provides a set that covers a time

period somewhat earlier than Bai from 1993Q3 through 2000Q2 for 90% and 1993Q1 through

9



2000Q4 for 95%. The lengths of V and Bai are very similar or V is somewhat shorter in this

example. Given that the break is small and Bai's method may be subject to undercoverage,

we prioritize the result obtained by our modi�ed method, followed by Bai and U in that

order. This example clearly illustrates the usefulness of the proposed method.

7 Conclusion

This paper provides a simple modi�cation of the con�dence set of the single break date in

linear regression models proposed by Elliott and M�uller (2007). The method involves a step

that estimates an unknown break point to obtain the residuals under the alternative hypoth-

esis. These are then used to construct the LRV estimate for the test statistic. Following the

literature, an asymptotic justi�cation of the proposed method is provided using the nonlocal

�xed break asymptotic framework. Our Monte Carlo simulation shows that the modi�ed

method gives an equally correct coverage ratio but a signi�cantly shorter con�dence set than

the original approach. This method is a good alternative to the con�dence set proposed by

Bai (1997) when the break is small, because it is known that the Bai's method may result

in undercoverage in such cases.
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Appendix : Proof of Theorems

Consider the LRV estimators


̂ = R̂(0) + 2
PT�1

l=1 �(l; m̂)R̂(l) (A.1)

and e
 = eR(0) + 2PT�1
l=1 �(l; em) eR(l), (A.2)

where R̂(l) and eR(l) for l = 0; 1; � � � are the sample autocovariance estimates of fv̂tgTt=1 and
fevtgTt=1 of order l, respectively. �(�; �) is a kernel function and m̂ and em are the bandwidths.
We let m̂ and em be selected by the Andrew's (1991) data dependent method with an AR(1)
approximation, however, this particular choice does not a�ect the qualitative results of this
paper. For simplicity, we consider the model with p = 0 since this part does not a�ect the
�nal result.

Lemma 1: Suppose � is a �xed parameter and Assumption 1 holds. Let T̂b be obtained
by (2). Then, T̂b � T 0b = Op(k�k

�2).

Proof of Lemma 1: See Bai (1997), Proposition 1.

Proof of Theorem 1: We consider the case of Tm = T
0
b .

v̂t =

8<: Xtut �XtX
0
t(�̂1 � �1) for t = 1; � � � ; T 0b ;

Xtut �XtX
0
t(�̂2 � �2) for t = T 0b + 1; � � � ; T;

where

�̂1 = [
P

1XtX
0
t]
�1
[
P

1XtYt] ;

= �1 + [
P

1XtX
0
t]
�1
[
P

1Xtut] ;

�̂2 = [
P

2XtX
0
t]
�1
[
P

2XtYt] ;

= �2 + [
P

2XtX
0
t]
�1
[
P

2Xtut] ;

so that �̂1� �1 = op(1) and �̂2� �2 = op(1) under Assumption 1 ii), respectively. Note that
the subscripts 1 and 2 of the summation symbol denote the regimes de�ned by t 2 [1; T 0b ]
and t 2 [T 0b +1; T ] for 1 and 2, respectively. The sample autocovariance of v̂t in the pre- Tm
(= T 0b ) period is

R̂1(l) = (T 0b � l)�1
P

1Xtutut�lX
0
t�l

+(�̂1 � �1)
�
(T 0b � l)�1

P
1X

0
tXtX

0
t�lXt�l

� �
�̂1 � �1

�0
+(�̂1 � �1)

�
(T 0b � l)�1

P
1X

0
tXtut�lX

0
t�l
�

+
�
(T 0b � l)�1

P
1XtutX

0
t�lXt�l

� �
�̂1 � �1

�0
;

= I + II + IIIa+ IIIb:

11



Term I converges in probability to R1(l) under the stationary assumption. II; IIIa and

IIIb are op(1) since �̂1 � �1 = op(1). Hence, R̂1(l)
p! R1(l). Similarly,

R̂2(l) = (T � T 0b � l)�1
P

2Xtutut�lX
0
t�l

+(�̂2 � �2)
�
(T � T 0b � l)�1

P
2X

0
tXtX

0
t�lXt�l

� �
�̂2 � �2

�0
+(�̂2 � �2)

�
(T � T 0b � l)�1

P
2X

0
tXtut�lX

0
t�l
�

+
�
(T � T 0b � l)�1

P
2XtutX

0
t�lXt�l

� �
�̂2 � �2

�0
:

Given that �̂2 � �2 = op(1), R̂2(l)
p! R2(l) for l = 0; 1; 2; � � � .

Next, suppose we use the modi�ed method. Without loss of generality, let T̂b � T 0b .
Then,

evt =
8>>><>>>:
Xtut �XtX

0
t(
e�1 � �1) for t = 1; � � � ; T̂b;

Xtut �XtX
0
t(
e�2 � �1) for t = T̂b + 1; � � � ; T 0b ;

Xtut �XtX
0
t(
e�3 � �2) for t = T 0b + 1; � � � ; T;

where e�1 = [
P

1XtX
0
t]
�1
[
P

1XtYt] ;

= �1 + [
P

1XtX
0
t]
�1
[
P

1Xtut] ;e�2 = [
P

2XtX
0
t]
�1
[
P

2XtYt] ;

= �1 + [
P

2XtX
0
t]
�1
[
P

2Xtut] ;e�3 = [
P

3XtX
0
t]
�1
[
P

3XtYt] ;

= �2 + [
P

3XtX
0
t]
�1
[
P

3Xtut] :

Note that the subscripts 1, 2, and 3 of the summation symbol denote the regimes t 2 [1; T̂b];
t 2 [T̂b+1; T 0b ]; and t 2 [T 0b +1; T ], respectively. It is straightforward to show that e�1��1 =
op(1) and e�3 � �2 = op(1). In addition, to derive the order of e�2 � �1, it is reminded that
the number of terms in

P
2 is Op(k�k

�2) by Lemma 1 so that

e�2 � �1 = [
P

2XtX
0
t]
�1
[
P

2Xtut] ;

= [Op(k�k�2)�Op(1)]�1[Op(k�k�2)� op(1)];
= op(1):

12



The sample autocovariances of evt in the pre- and post- Tm periods areeR1(l) = (T 0b � l)�1
P

1;2Xtutut�lX
0
t�l

+(e�1 � �1) �(T 0b � l)�1P1X
0
tXtX

0
t�lXt�l

� �e�1 � �1�0
+(e�2 � �1) �(T 0b � l)�1P2X

0
tXtX

0
t�lXt�l

� �e�2 � �1�0
+(e�1 � �1) �(T 0b � l)�1P1X

0
tXtut�lX

0
t�l
�

+
�
(T 0b � l)�1

P
1XtutX

0
t�lXt�l

� �e�1 � �1�0
+(e�2 � �1) �(T 0b � l)�1P2X

0
tXtut�lX

0
t�l
�

+
�
(T 0b � l)�1

P
2XtutX

0
t�lXt�l

� �e�2 � �1�0 ;
= I + II + III + IV a+ IV b+ V a+ V b:

We can show that term II = op(1)�Op(1)�op(1) = op(1), IV a and IV b are op(1)�Op(1) =
op(1). Terms III, V a, and V b are Op(T

�1) � op(1) = op(T
�1). Hence, eR1(l) p! R1(l).

Similarly,

eR2(l) = (T � T 0b � l)�1
P

3Xtutut�lX
0
t�l

+(e�3 � �2) �(T � T 0b � l)�1P3X
0
tXtX

0
t�lXt�l

� �e�3 � �2�0
+(e�3 � �2) �(T � T 0b � l)�1P3X

0
tXtut�lX

0
t�l
�

+
�
(T � T 0b � l)�1

P
3XtutX

0
t�lXt�l

�
(e�3 � �2);

so that given e�3 � �2 = op(1) the terms except for the �rst one are op(1). Hence, eR2(l) p!
R2(l). We now consider the covariance matrix. For part i) (the i.i.d. case), 
j = Rj(0)

and the estimators are constructed by 
̂j = R̂j(0) and e
j = eRj(0). The above results show
that 
̂j

p! 
j and e
j p! 
j and Proposition 3 of EM gives the �nal results. For part ii),
the AR(1) coe�cient � to construct m in fv̂tgj and fevtgj is consistently estimated since
Rj(0) and Rj(1) are consistently estimated. This means �̂

p! �� and j��j < 1 by stationary
assumption. Thus, we obtain 
̂j

p! 
j and e
j p! 
j at the same rate. Finally, Proposition
3 of EM gives the �nal results.

We now move on to the proof under the alternative hypothesis. Lemma 2 is a preliminary
result to derive Theorem 2. Let � = limTm=T .

Lemma 2: Suppose that the LRVs 
j (j = 1; 2) are known. Then, for Tm 6= T 0b ,

T�1UT (Tm)
p! �j(�; �0)�

0Qj

�1
j Qj�;

13



with j = 1 if T 0b < Tm and j = 2 if T
0
b > Tm, where

�1(�; �0) =
�20(�0 � �)2

3�3
;

�2(�; �0) =
(1� �0)2(�0 � �)2

3(1� �)3 :

Proof of Lemma 2: The test statistic in this case is

T�1UT (Tm) =

�
T

Tm

�2
T�1

PTm
t=1

�
T�1

Pt
s=1Xsûs

�0

�11

�
T�1

Pt
s=1Xsûs

�| {z }
A

+

�
T

T � Tm

�2
T�1

PT
t=Tm+1

�
T�1

Pt
s=Tm+1

Xsûs
�0

�12

�
T�1

Pt
s=Tm+1

Xsûs
�| {z }

B

:

We �rst consider the case of T 0b < Tm. The residuals are

ûs =

8>>><>>>:
us +Xs�1 �Xs�̂1 for s = 1; � � � ; T 0b ;

us +Xs�2 �Xs�̂1 for s = T 0b + 1; � � � ; Tm;

us +Xs�2 �Xs�̂2 for s = Tm + 1; � � �T;

where

�̂1 =
�PTm

t=1XtX
0
t

��1 �PTm
t=1Xtyt

�
;

=
�PTm

t=1XtX
0
t

��1 �PT 0b
t=1XtX

0
t�1 +

PTm
t=T 0b +1

XtX
0
t�2 +

PTm
t=1Xtut

�
;

! p
�0
�
�1 +

�� �0
�

�2;

by Assumption 1 v). It is straightforward to show �̂2
p! �2 so that B

p! 0. This is
because the residuals are consistent estimates of the true errors in the second regime and
T�1

Pt
s=1Xsûs = op(1). Hence, we consider term A. It can be separated into two terms

before and after T 0b such that

A = T�1
PT 0b

t=1

�
T�1

Pt
s=1Xsûs

�0

�11

�
T�1

Pt
s=1Xsûs

�
+T�1

PTm
t=T 0b +1

�
T�1

Pt
s=1Xsûs

�0

�11

�
T�1

Pt
s=1Xsûs

�
:

For t � T 0b , the component in A has a limit

T�1
Pt

s=1Xsûs = T�1
Pt

s=1Xsus + T
�1Pt

s=1XsX
0
s�1 � T�1

Pt
s=1XsX

0
s�̂1;

! p0 + rQ1�1 � rQ1
�
�0
�
�1 +

�� �0
�

�2

�
;

= r
�0 � �
�

Q1�;

14



and for t > T 0b ;

T�1
Pt

s=1Xsûs = T�1
PT 0b

s=1Xsus + T
�1PT 0b

s=1XsX
0
s�1 � T�1

PT 0b
s=1XsX

0
s�̂1

+T�1
Pt

s=T 0b +1
Xsus + T

�1Pt
s=T 0b +1

XsX
0
s�2 � T�1

Pt
s=T 0b +1

XsX
0
s�̂1;

! p0 + �0Q1�1 + (r � �0)Q1�2 � rQ1
�
�0
�
�1 +

�� �0
�

�2

�
;

=

�
r
�0
�
� �0

�
Q1�;

so that

A ! p
1

�2
R �0
0
r2
(�0 � �)2

�2
�0Q1


�1
1 Q1�dr +

1

�2
R �
�0

�
r
�0
�
� �0

�2
�0Q1


�1
1 Q1�dr;

=
(�0 � �)2�30

3�4
�0Q1


�1
1 Q1� �

�20(�0 � �)3

3�4
�0Q1


�1
1 Q1�;

=
�20(�0 � �)2

3�3
�0Q1


�1
1 Q1�:

For the case of T 0b > Tm, we follow the same process to reach the stated result (however,
term B dominates now, instead of term A). Hence, we have omitted this part of proof to
avoid the repetition.

Condition A1: Let LT be the maximum autoregressive lag order of vt to be used for
bandwidth selection. Then, the following hold:

sup
l2[0;::;LT ]

sup
r2(0;1]




T�1P[rT ]
t=1 XtX

0
tXt�lX

0
t�l � rMl




 = op(1);
with a positive de�nite matrix Ml and

�0M1�

�0M0�
! 1 as k�k ! 1.

Proof of Theorem 2: We consider the case of Tm 6= T 0b . Without loss of generality, let
T 0b < Tm. Then,

v̂t =

8>>><>>>:
Xtut �XtX

0
t(�̂1 � �1) for t = 1; � � � ; T 0b ;

Xtut �XtX
0
t(�̂1 � �2) for t = T 0b + 1; � � � ; Tm;

Xtut �XtX
0
t(�̂2 � �2) for t = Tm + 1; � � � ; T;
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where

�̂1 = [
P

12XtX
0
t]
�1
[
P

12XtYt] ;

= [
P

12XtX
0
t]
�1
[
P

1XtXt�1 +
P

2XtXt�2 +
P

12Xtut] ;

! p
�0
�
�1 +

�� �0
�

�2;

�̂2 = [
P

3XtX
0
t]
�1
[
P

3XtYt] ;

= �2 + [
P

3XtX
0
t]
�1
[
P

3Xtut]
p! �2;

by using Assumption 1 v). Note that the subscripts 1, 2, and 3 of the summation symbol
denote the regimes t 2 [1; T 0b ]; t 2 [T 0b + 1; Tm]; and t 2 [Tm + 1; T ], respectively.The sample
autocovariance of v̂t in the pre- Tm period is

R̂1(l) = (Tm � l)�1
P

12Xtutut�lX
0
t�l

+(�̂1 � �1)
�
(Tm � l)�1

P
1X

0
tXtX

0
t�lXt�l

� �
�̂1 � �1

�0
+(�̂1 � �2)

�
(Tm � l)�1

P
2X

0
tXtX

0
t�lXt�l

� �
�̂1 � �2

�0
+(�̂1 � �1)

�
(Tm � l)�1

P
1X

0
tXtut�lX

0
t�l
�

+
�
(Tm � l)�1

P
1XtutX

0
t�lXt�l

� �
�̂1 � �1

�0
+(�̂1 � �2)

�
(Tm � l)�1

P
2X

0
tXtut�lX

0
t�l
�

+
�
(Tm � l)�1

P
2XtutX

0
t�lXt�l

� �
�̂1 � �2

�0
;

= I + II + III + IV a+ IV b+ V a+ V b: (A.3)

Again, I converges in probability to R1(l). It is shown that II and III are Op(k�k2) since
p lim(�̂1 � �1) = (1 � �0

�
)� and p lim(�̂1 � �2) = ��0

�
�. Similarly, IV and V are Op(k�k).

Hence,
R̂1(l) = R1(l) +Op(k�k2).

The sample autocovariance in the post-Tm period is,

R̂2(l) = (T � Tm � l)�1
P

3Xtutut�lX
0
t�l

+(�̂2 � �2)
�
(T � Tm � l)�1

P
3X

0
tXtX

0
t�lXt�l

� �
�̂2 � �2

�0
+(�̂2 � �2)

�
(T � Tm � l)�1

P
3X

0
tXtut�lX

0
t�l
�

+
�
(T � Tm � l)�1

P
3XtutX

0
t�lXt�l

� �
�̂2 � �2

�0 p! R2(l):

given �̂2
p! �2.
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We now consider the modi�ed method. We also assume T̂b � T 0b without loss of generality.
Then,

evt =
8>>>>>><>>>>>>:

Xtut �XtX
0
t(
e�1 � �1) for t = 1; � � � ; T̂b;

Xtut �XtX
0
t(
e�2 � �1) for t = T̂b + 1; � � � ; T 0b ;

Xtut �XtX
0
t(
e�2 � �2) for t = T 0b + 1; � � � ; Tm;

Xtut �XtX
0
t(
e�3 � �2) for t = Tm + 1; � � � ; T;

wheree�1 = [
P

1XtX
0
t]
�1
[
P

1XtYt] ;

= �1 + [
P

1XtX
0
t]
�1
[
P

1Xtut]
p! �1;e�2 = [

P
23XtX

0
t]
�1
[
P

23XtYt] ;

=

264P2XtX
0
t| {z }

=Op(k�k�2)

+
P

3XtX
0
t

375
�1 264P2XtX

0
t| {z }

=Op(k�k�2)

�1 +
P

3XtX
0
t�2 +

P
23Xtut

375 p! �2;

e�3 = [
P

3XtX
0
t]
�1
[
P

3XtYt] ;

= �2 + [
P

3XtX
0
t]
�1
[
P

3Xtut]
p! �2:

Note that the subscripts 1, 2, 3, and 4 of the summation symbol denote the regimes t 2 [1; T̂b];
t 2 [T̂b + 1; T 0b ]; t 2 [T 0b + 1; Tm], and t 2 [Tm + 1; T ], respectively (�4 appears later). The
sample autocovariance of evt in the pre- Tm period is
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eR1(l) = (Tm � l)�1
P

123Xtutut�lX
0
t�l

+(e�1 � �1)| {z }
=op(1)

�
(Tm � l)�1

P
1X

0
tXtX

0
t�lXt�l

�| {z }
=Op(1)

�e�1 � �1�0
+(e�2 � �1)| {z }

=Op(k�k)

�
(Tm � l)�1

P
2X

0
tXtX

0
t�lXt�l

�| {z }
=Op(T�1k�k�2)

�e�2 � �1�0
+(e�2 � �2)| {z }

=op(1)

�
(Tm � l)�1

P
3X

0
tXtX

0
t�lXt�l

�| {z }
=Op(1)

�e�2 � �2�0
+(e�1 � �1) �(Tm � l)�1P1X

0
tXtut�lX

0
t�l
�

+
�
(Tm � l)�1

P
1XtutX

0
t�lXt�l

� �e�1 � �1�0
+(e�2 � �1) �(Tm � l)�1P2X

0
tXtut�lX

0
t�l
�

+
�
(Tm � l)�1

P
2XtutX

0
t�lXt�l

� �e�2 � �1�0
+(e�2 � �2) �(Tm � l)�1P3X

0
tXtut�lX

0
t�l
�

+
�
(Tm � l)�1

P
3XtutX

0
t�lXt�l

� �e�2 � �2�0 ;
= I + II + III + IV + V a+ V b+ V Ia+ V Ib+ V IIa+ V IIb:

Term I converges in probability to R1(l) and II; IV , V a, V b, V IIa, and V IIb are op(1).

Term III is Op(T
�1). Terms V Ia and V Ib are Op(T

�1 k�k�1). Therefore, eR1(l) p! R1(l).
Further,

eR2(l) = (T � Tm � l)�1
P

4Xtutut�lX
0
t�l

+(e�3 � �2) �(T � Tm � l)�1P4X
0
tXtX

0
t�lXt�l

� �e�3 � �2�0
+(e�3 � �2) �(T � Tm � l)�1P4X

0
tXtut�lX

0
t�l
�

+
�
(T � Tm � l)�1

P
4XtutX

0
t�lXt�l

�
(e�3 � �2)0 p! R2(l);

since e�3 p! �2.
We now consider the LRV. For both methods, the LRV estimate in the �rst regime

dominates that in the second, with respect to the break magnitude. (This is without loss of
generality, because the LRV estimate in the second regime dominates in turn if we assume
Tm < T

0
b .) For part a), the estimators in the �rst regime are 
̂1 = R̂1(0) = R1(0)+Op(k�k

2)

and e
1 = eR1(0) = R1(0)+ op(1). Hence, we can use Lemma 2 by replacing the denominator
to obtain the results of UT and VT , respectively.
We move on to part b). For VT , the AR(1) coe�cients in fevtgj are consistently estimated,

because Rj(0) and Rj(1) are consistently estimated as shown above. Hence, Andrews' (1991)
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method is appropriately applied to obtain e
j p! 
j. We use Lemma 2 by replacing the
denominator and obtain the result. For UT , we invoke the HAC covariance estimator (A.1),
where m̂ is chosen by Andrews' (1991) AR(1) approximation so that m̂ _ (�T )1=� where

� = 4�̂2=(1 � �̂)4 or � = 4�̂2=(1 � �̂2)2 with �̂ = R̂1(1)=R̂1(0). Because the terms that

dominate in R̂1(0) and R̂1(1) are II and III, respectively, in (A.3), �̂
p! �� where j��j < 1 and

m̂ = Op(T
1=�) if Condition A1 is not satis�ed. We combine the fact

PT�1
l=1 �(l;m) = O(m)

and obtain the following:


̂ = 
 +Op(k�k2)�O(m̂);
= 
+Op(k�k2 T 1=�):

Finally, replacing 
2 in Lemma 2 by this quantity gives the result for UT .

We also prove the statement in Remark 1. If Condition A1 is satis�ed, then �̂ = R̂1(1)

R̂1(0)

p! 1

as k�k ! 1. In this case, the bandwidth in
ates as the break magnitude increases. If we
use the Quadratic Spectral kernel, then m̂ = Op(k�k4=� T 1=�). Hence,


̂ = 
 +Op(k�k2)�O(m̂);
= 
+Op(k�k2+4=� T 1=�):

Replacing 
2 in Lemma 2 by this quantity con�rms the statement in Remark 1.
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Table 1: Empirical coverage ratio and average length of con�dence set :

Model 1
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.95 0.95 0.95 0.96 76.45 42.10 22.41 15.39

U.neq 0.96 0.96 0.95 0.96 76.92 42.67 23.23 16.20
V.eq 0.94 0.95 0.94 0.95 73.06 37.69 19.68 13.27
V.neq 0.94 0.95 0.94 0.95 73.17 37.64 19.66 13.25
Bai.het 0.82 0.90 0.94 0.96 67.53 33.00 16.31 9.71
Bai.hneq 0.82 0.89 0.94 0.96 67.86 33.29 16.44 9.80

λ0=0.35 U.eq 0.96 0.95 0.95 0.96 78.19 44.46 22.47 15.19
U.neq 0.96 0.96 0.95 0.96 78.82 45.28 23.33 16.13
V.eq 0.95 0.94 0.94 0.96 75.02 39.91 19.71 13.09
V.neq 0.95 0.94 0.94 0.96 75.10 39.77 19.61 13.07
Bai.het 0.82 0.89 0.94 0.96 67.71 34.05 16.19 9.63
Bai.hneq 0.81 0.89 0.93 0.96 68.03 34.26 16.32 9.72

λ0=0.2 U.eq 0.94 0.95 0.95 0.95 80.38 54.89 27.24 15.60
U.neq 0.95 0.96 0.96 0.96 81.17 56.75 29.16 16.96
V.eq 0.93 0.95 0.94 0.95 77.41 49.56 23.22 13.28
V.neq 0.92 0.94 0.94 0.95 77.18 49.10 22.93 13.15
Bai.het 0.82 0.91 0.94 0.96 66.07 35.22 16.85 9.76
Bai.hneq 0.81 0.90 0.93 0.95 66.20 35.28 16.86 9.81

Table 2: Empirical coverage ratio and average length of con�dence set :

Model 2
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.94 0.94 0.93 0.95 83.09 67.49 46.06 29.92

U.neq 0.96 0.96 0.95 0.96 84.02 67.45 45.47 29.81
V.eq 0.92 0.93 0.92 0.93 80.70 63.29 41.35 26.33
V.neq 0.94 0.95 0.94 0.95 81.26 62.88 40.26 25.46
Bai.het 0.77 0.80 0.85 0.89 75.25 55.93 35.37 22.29
Bai.hneq 0.82 0.85 0.89 0.92 78.56 58.90 36.98 23.04

λ0=0.35 U.eq 0.97 0.96 0.96 0.97 85.71 73.09 52.79 35.04
U.neq 0.96 0.96 0.95 0.96 85.79 71.25 49.14 31.65
V.eq 0.96 0.95 0.95 0.96 83.84 69.45 48.02 31.19
V.neq 0.95 0.94 0.94 0.96 83.44 66.57 43.35 26.83
Bai.het 0.72 0.79 0.86 0.90 80.32 64.64 41.36 26.04
Bai.hneq 0.77 0.81 0.87 0.92 80.99 62.21 38.07 23.35

λ0=0.2 U.eq 0.97 0.98 0.98 0.98 87.28 80.93 67.06 48.93
U.neq 0.95 0.96 0.96 0.96 86.88 79.32 63.99 45.32
V.eq 0.96 0.97 0.97 0.98 85.55 78.16 62.42 43.41
V.neq 0.93 0.95 0.94 0.95 84.42 74.94 56.82 37.13
Bai.het 0.68 0.78 0.85 0.91 82.42 71.16 49.09 31.56
Bai.hneq 0.72 0.79 0.85 0.91 81.05 65.38 41.76 25.59

21



Table 3: Empirical coverage ratio and average length of con�dence set :

Model 3
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.96 0.97 0.96 0.96 81.67 57.45 37.46 29.30

U.neq 0.97 0.97 0.97 0.97 81.38 58.51 42.43 37.86
V.eq 0.91 0.93 0.94 0.95 68.10 34.98 18.43 12.42
V.neq 0.90 0.93 0.94 0.96 66.74 34.43 18.35 12.47
Bai.het 0.81 0.89 0.93 0.96 64.47 31.46 15.61 9.30
Bai.hneq 0.77 0.87 0.92 0.95 65.80 32.99 16.39 9.74

λ0=0.35 U.eq 0.96 0.96 0.96 0.96 81.62 58.99 39.03 29.53
U.neq 0.97 0.97 0.97 0.97 81.77 61.56 46.15 40.50
V.eq 0.92 0.92 0.94 0.95 68.85 36.64 18.92 12.34
V.neq 0.90 0.91 0.94 0.95 66.86 35.70 18.64 12.26
Bai.het 0.80 0.87 0.94 0.96 63.42 32.25 15.77 9.32
Bai.hneq 0.75 0.85 0.92 0.95 64.20 33.41 16.47 9.70

λ0=0.2 U.eq 0.96 0.97 0.97 0.97 84.58 67.57 46.63 34.09
U.neq 0.97 0.98 0.97 0.97 85.36 72.84 59.92 54.62
V.eq 0.91 0.93 0.94 0.95 73.52 45.43 21.47 12.90
V.neq 0.89 0.91 0.92 0.94 70.70 42.84 20.17 12.18
Bai.het 0.82 0.88 0.93 0.96 64.66 34.05 16.30 9.53
Bai.hneq 0.77 0.85 0.90 0.95 64.51 34.32 16.37 9.65

Table 4: Empirical coverage ratio and average length of con�dence set :

Model 4
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.97 0.98 0.98 0.97 81.95 54.92 30.70 20.72

U.neq 0.97 0.98 0.98 0.98 81.70 55.30 32.60 23.16
V.eq 0.96 0.96 0.97 0.97 76.14 44.60 23.32 15.29
V.neq 0.95 0.96 0.97 0.97 75.75 44.41 23.37 15.36
Bai.het 0.82 0.91 0.95 0.96 70.68 38.90 19.45 11.61
Bai.hneq 0.81 0.90 0.94 0.96 71.85 40.12 19.99 11.92

λ0=0.35 U.eq 0.97 0.97 0.97 0.97 82.73 55.97 31.69 20.83
U.neq 0.98 0.97 0.98 0.98 82.65 56.92 34.09 23.72
V.eq 0.95 0.96 0.96 0.97 77.06 45.56 23.76 15.27
V.neq 0.95 0.95 0.96 0.97 76.38 45.19 23.59 15.27
Bai.het 0.82 0.90 0.95 0.96 69.89 38.44 19.68 11.57
Bai.hneq 0.81 0.90 0.94 0.96 71.20 39.56 20.22 11.84

λ0=0.2 U.eq 0.97 0.97 0.97 0.97 85.71 66.08 38.69 22.90
U.neq 0.97 0.97 0.97 0.97 86.05 68.57 44.49 29.34
V.eq 0.95 0.96 0.96 0.96 81.33 55.08 27.28 15.76
V.neq 0.94 0.95 0.95 0.95 80.18 53.76 26.66 15.45
Bai.het 0.83 0.92 0.95 0.96 70.56 38.53 19.40 11.83
Bai.hneq 0.81 0.89 0.94 0.95 71.30 39.49 19.94 12.11
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Table 5: Empirical coverage ratio and average length of con�dence set :

Model 5
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.96 0.96 0.96 0.96 80.20 52.78 31.64 22.34

U.neq 0.96 0.96 0.97 0.97 81.07 53.91 33.51 24.53
V.eq 0.93 0.94 0.95 0.96 72.80 41.67 22.92 16.34
V.neq 0.92 0.93 0.94 0.95 71.65 40.53 22.33 15.89
Bai.het 0.77 0.87 0.89 0.90 62.99 33.21 16.17 9.51
Bai.hneq 0.74 0.86 0.88 0.89 62.84 33.65 16.32 9.62

λ0=0.35 U.eq 0.96 0.95 0.95 0.96 80.75 55.12 32.56 22.37
U.neq 0.97 0.97 0.96 0.96 81.78 56.90 35.00 24.96
V.eq 0.93 0.94 0.94 0.96 73.72 43.11 23.50 16.22
V.neq 0.91 0.93 0.94 0.95 72.57 41.70 22.56 15.65
Bai.het 0.79 0.86 0.89 0.90 63.28 32.65 16.23 9.48
Bai.hneq 0.75 0.84 0.88 0.89 62.95 32.96 16.30 9.52

λ0=0.2 U.eq 0.95 0.95 0.96 0.96 83.10 63.96 41.20 27.74
U.neq 0.96 0.97 0.97 0.97 84.80 67.54 46.20 32.93
V.eq 0.93 0.93 0.95 0.95 77.28 52.52 29.47 18.72
V.neq 0.91 0.92 0.94 0.95 75.94 50.25 27.62 17.27
Bai.het 0.79 0.87 0.90 0.90 64.06 35.13 16.79 9.83
Bai.hneq 0.74 0.84 0.88 0.88 63.00 34.81 16.60 9.69

Table 6: Empirical coverage ratio and average length of con�dence set :

Model 6
coverage ratio average length

4 8 12 16 4 8 12 16
λ0=0.5 U.eq 0.96 0.96 0.96 0.96 79.19 48.53 28.57 20.51

U.neq 0.97 0.97 0.97 0.97 79.98 49.07 29.91 22.51
V.eq 0.91 0.93 0.94 0.96 67.53 36.77 20.65 15.08
V.neq 0.90 0.92 0.94 0.96 65.68 34.67 19.47 14.40
Bai.het 0.81 0.89 0.94 0.97 61.83 29.63 14.41 8.50
Bai.hneq 0.75 0.85 0.92 0.96 62.20 30.04 14.59 8.61

λ0=0.35 U.eq 0.96 0.96 0.96 0.96 79.54 50.55 29.25 20.54
U.neq 0.97 0.97 0.97 0.97 80.62 51.60 30.88 22.42
V.eq 0.91 0.93 0.94 0.95 68.58 37.67 21.16 15.10
V.neq 0.90 0.92 0.93 0.95 66.35 34.98 19.63 14.09
Bai.het 0.82 0.89 0.94 0.97 62.36 29.41 14.33 8.51
Bai.hneq 0.76 0.86 0.92 0.96 62.44 29.65 14.33 8.50

λ0=0.2 U.eq 0.96 0.96 0.96 0.97 82.36 60.61 36.86 24.91
U.neq 0.98 0.98 0.98 0.98 84.01 63.03 40.46 28.34
V.eq 0.91 0.93 0.95 0.96 72.81 47.16 26.19 17.26
V.neq 0.89 0.91 0.93 0.95 70.24 42.51 22.62 14.97
Bai.het 0.81 0.88 0.94 0.97 63.99 31.88 15.05 8.85
Bai.hneq 0.75 0.84 0.91 0.96 63.04 31.07 14.48 8.53
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Figure 1 Japanese in
ation rate (core CPI)
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Figure 2 Con�dence set of a level shift in Japanese in
ation rate
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Note: The 90% confidence sets  are in black.The 95% confidence sets are in black and
gray .
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