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Abstract

Microdata in Health Economics

During the past two decades, applied econometric analysis has been widely adopted among

health economists. Its adoption is accelerating, producing ever-richer research as electronic

recording and collection make available more data about individual patients. In addition,

computational power for analyzing large, complex datasets is increasing, facilitating econo-

metric analysis involving latent variables, unobserved heterogeneity, and nonlinear models in

the field now established as “health econometrics.”

Extensive individual-, household-, and establishment-level microdata are available from

cross-sectional and longitudinal sample surveys and the census. Health economics primarily

employs cross-sectional data. That is, observations are independent of each other, and pure

time series applications are excluded. Microdata used in health econometrics have two no-

table features. First, they are often measured on a non-continuous scale: data are not only

continuous and discrete variables but also on a non-continuous scale, such as quantitative and

qualitative (or categorical) variables. This leads inconsistency of linear regression models. For

example, analyzing expenditure data is complicated when samples feature a preponderance of

observations with zero expenditures. The consistency of standard approaches to the problem

relies on the validity of distributional assumptions. To analyze these data, health economet-

rics requires disparate nonlinear models, including binary responses, multinomial responses,

limited dependent variables, integer counts, and measures of duration. Moreover, variables

denoting health or quality of life are often unobservable and perhaps measurable only with

error (through subjective reports, for example). This situation induces latent variables and

selection problems.

Second, health data are observational, i.e., they are neither experimental nor collected from

surveys and administrative records through randomized experiment. Although availability of
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“experimental” data is increasing in the social sciences, their use is restricted, and empirical

works continue to rely on non-experimental data. Accordingly, sample selection bias may

pervade observational data in health econometrics. In analyzing smoking-related illness, for

example, smokers acknowledge their risks and rationally select their behavior. Failing to

consider self-selection distorts the estimated health effects of smoking based on comparisons

between smoking and non-smoking samples.

Microeconometrics in Health Economics

Linear and Nonlinear Regression Models

Applied econometric studies often employ standard linear regression models. These mod-

els assume that the relation between an outcome (dependent variable) yi and explanatory

variables (independent variables, regressors, or covariates) xi; is a linear function of the xi;

variables and of a random error term εi. This relation can be noted in shorthand as

yi = x′
iβ + εi,

where xi = (1, xi1, . . . , xiK−1)
′
is a K × 1 vector and β is a K × 1 parameter vector. For

simplicity, we drop the subscript i and write the model for typical observation as y = x′β+ε.

The random error term ε captures all the variation in y not explained by the x variables.

The classical model makes four assumptions about the error term: (i) its mean is zero; (ii)

its variance σ2 is the same across all observations (homoskedasticity); (iii) its values are

independent across observations (serial independence); (iv) its values are independent of the

values of the x variables (exogeneity).

Investigators often assume the error term has a normal distribution. This implies that,

conditional on each x, each observation of dependent variable y follows a normal distribution

with mean E (y | x) = x′β. This assumption has two implications. First, the ordinary least

squares (OLS) estimator is asymptotically efficient among all possible estimators. Second,

the small sample distribution of the OLS estimator is known, and exact inference can there-

fore be based on t- or F -statistics. This standard linear regression model is easily estimated

and interpreted, and it provides optimal inference if standard regularity assumptions are ful-

filled. Under these Gauss-Markov assumptions, the OLS estimator is the best linear unbiased

estimator.

However, if the dependent variable is neither quantitative nor continuous, the OLS esti-

mator may be inappropriate. First, we consider the case of a binary dependent variable that

takes 0 or 1. In this case, the linear regression is interpreted as a probability model, since
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E (y | x) = 0× P (y = 0 | x) + 1× P (y = 1 | x). Therefore, we obtain

P (y = 1 | x) = x′β.

If we calculate the prediction using this model, it is required that 0 ≤ P (ŷ = 1 | x0) ≤
1. However, the restriction on linearity is violated for certain values x0 of the regressors.

Moreover, this model is not homoskedastic since the variance of a binary variable conditional

on the regressors takes the values of Var (y = 1 | x) = P (ŷ = 1 | x) [1− P (ŷ = 1 | x)], which
is a function of x. A similar discussion applies to multinomial dependent variables. The

computed expected value of a multinomial variable has no meaning using a linear model.

Since the numerical coding of outcomes is qualitative and arbitrary, no ranking affects the

analysis.

Second, consider a count dependent variable that takes the value of non-negative integer.

Count data are quantitative and have well-defined expectations, but the linear regression

model is again inappropriate. The expectation of a count must be non-negative, but this

expectation is not assured by the functional form above. Moreover, variance in count data

analysis generally depends on x, and that dependence violates the assumption of homoskedas-

ticity.

Third, examine the case of limited dependent variables. If the dependent variable is

continuous with support over the real line, there is no argument against using the linear

regression model, and it indeed is the best. However, it is inappropriate and other models are

required if the dependent variable is limited to positive real numbers and zeros are important.

Since the limited dependent variable is censored or truncated and it is undesirable to regard

the observed sample as representative of the population, to estimate the linear regression

model directly takes the biased estimator. The estimator fails because the assumption of

mean independence between the error terms and regressors must fail under sample selection.

Similar considerations apply to duration analysis.

In health econometrics, empirical analysis is complicated because outcomes of individual-

level survey data often are based on qualitative or limited dependent variables and nonlinear

models are necessary. Moreover, the discipline’s theoretical models often involve unobservable

(latent) concepts such as health endowments, physician agency and supplier inducement, or

quality of life. Therefore, health econometrics requires nonlinear regression models such as

binary responses, multinomial responses, limited dependent variables, duration, and count

data.

Methods for modeling such data are interrelated and based on maximum likelihood esti-

mation (MLE). The MLE method differs from the least squares method used to fit a regression

line to data. It assumes a distribution of the data-generating process and the estimate pa-
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rameters based on this distribution. Therefore, distributional assumptions dictate whether

estimated parameters are strongly true, but many applications using maximum likelihood

are parametric. This disadvantage has been discussed, and this dissertation addresses this

problem later.

An Evaluation Problem in Regression Analysis

An evaluation problem is how to identify causal effects from empirical data. Consider an

outcome yit for individual i at time t—for example, the extent to which someone sought

health care during the past year. If we analyze the influence of health maintenance activities,

such as hours of exercise per month, on outcome yit, it is difficult to identify the causal

effect of treatment. The causal effect of interest is the difference between the outcome with

treatment and without treatment. However, this pure treatment effect is not identifiable from

empirical data because the counterfactual can never be observed, i.e., the patient cannot be

two places simultaneously.

To analyze this problem, it is useful to estimate the average treatment effect using sample

data by comparing the average outcome among those receiving treatment with the average

outcome and with those who do not receive treatment. However, if unobserved factors in-

fluence both the selection of treatment and the response to it, this method promotes biased

estimators of the treatment effect. It is best to use a randomized experimental design that

randomly allocates individuals into treatments, and in some circumstances it is better to use

natural experiment data. Because this method is prohibitively expensive, however, many

empirical studies use non-experimental data. In the absence of experimental data, we require

alternative estimation strategies, such as instrumental variables, corrections for selection bias,

and longitudinal data.

Because health econometrics employs quantitative and qualitative (categorical) data, non-

linear models are necessary. Hence, the instrumental variables method based on linear re-

gression is sometimes inappropriate for analyzing non-experimental health econometrics data.

Here we use MLE based on a parametric distribution. We consider this problem later when

introducing semiparametric distribution.

Outline

Part I of this dissertation analyzes a heterogeneity problem in nonlinear health econometrics.

Part II considers an endogeneity problem in nonlinear health econometrics.

Unobserved heterogeneity causes problems in nonlinear regression models such as duration
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models and count data models. Here, heterogeneity means that data differ across observa-

tions. In linear regression models, when the heterogeneity is independent of regressors, the

OLS estimator is not always efficient but consistent because the conditional mean is un-

changed, the unobserved heterogeneity is absorbed into the error term, and omitted variables

bias is absent. In nonlinear regression models, omitting unobserved heterogeneity causes spu-

rious results, i.e., spurious negative (or positive) dependence in duration analysis or a greater

(smaller) variance in count data analysis. Chapter 1 in Part I reviews unobserved hetero-

geneity in nonlinear health econometric models. First, we consider continuous heterogeneity

and introduce gamma distributed heterogeneity, which is often used in duration and count

data analysis. Second, we investigate discrete heterogeneity, which is referred as a finite mix-

ture model and is semiparametric. Moreover, we show the limitations of nonlinear regression

models to introduce heterogeneity and suggest alternatives to avoid these problems.

Chapter 2 suggests generalized and semiparametric log-normal survival analysis using

Hermite polynomials and Box-Cox transformation. It is empirically difficult to separate the

effects of duration dependence from those of unobserved heterogeneity, so many survival

models do not explicitly assume unobserved heterogeneity. However, omitted variables are

inevitable, and controlling population heterogeneity is not always adequate. The model with-

out unobserved heterogeneity overestimates (underestimates) the degree of negative (positive)

duration dependence in the hazard. We propose new semiparametric (semi-nonparametric)

survival models that generalize unobserved heterogeneity, as well as a dependent variable of

the log-normal survival model. First, we generalize the log-transformed dependent variable

using Box-Cox transformation, which contains various function forms. Second, we generalize

the normally distributed unobserved heterogeneity using Hermite polynomials, which include

a normal distribution as a special case. The General Social Survey in 2002 shows that the

proposed model performs well in empirical application.

Chapter 3 proposes and demonstrates the identifiability of a finite mixture cross-sectional

probit model in selected situations, i.e., a probit model with a single linear equation. Although

finite mixture models are semiparametric and flexible, a cross-sectional finite mixture probit

(binomial) model is not estimated for an identification problem. However, it is not enough to

apply only a cross-sectional probit model because we do not know the true data-generating

process of a binary variable. Therefore, this chapter investigates the possibility of estimating

a cross-sectional finite mixture probit model. We show the identifiability of bivariate random

variables using a natural expansion of Teicher’s theorem. Using this result, the chapter then

investigates the identifiability of a finite mixture cross-sectional probit model with one linear

equation. We demonstrate that the class of all finite mixtures of a probit model with one

linear equation is identifiable even if the number of components does not exceed three. That
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is, a finite mixture cross-sectional probit model sometimes can be estimated. Monte Carlo

simulations support our demonstration.

It is known in microeconometrics, especially in health econometrics, that endogenous

regressors may cause inconsistent parameter estimation. Health econometrics faces no endo-

geneity problem if data are randomly assigned or regressors are not the results of incentives,

as in the experimental sciences. However, these conditions are seldom fulfilled in social sci-

ences, and endogeneity bias is inevitable. Therefore, a method to treat it correctly is required.

Focusing on health econometrics, Chapter 4 in Part II reviews the problem of endogeneity and

explains the estimation of regression models with endogenous regressors. First, we analyze

the problem of endogeneity using a simple linear regression model, explain the instrumen-

tal variable method that obtains the consistent estimator even if endogenous variables exist,

and describe the two-stage least squares method (2SLS) often used in applied fields. Al-

though the discussion of instrumental variable estimators is based on continuous endogenous

regressors, we extend this discussion to a binary endogenous variable, referred to as treat-

ment effects. Second, we explain, using examples of probit and count data models, that the

two-stage method is applied in nonlinear models with endogenous continuous regressors. We

demonstrate that, in nonlinear regression with endogenous discrete, censored, or truncated

regressors, the two-stage method is insufficient, and the full information maximum likelihood

method (FIML) is consistent. Third, we provide Monte Carlo simulations of the four cases

and analyze the consistency of proposed models. We show the consistency of linear models

with an endogenous continuous, discrete, censored, or truncated regressor and the inconsis-

tency of probit models with an endogenous binary variable. Finally, we show the limitation of

nonlinear health econometric regressions containing endogenous variables and propose more

desirable analysis.

Chapter 5 proposes a semiparametric (semi-nonparametric) Poisson model with an endoge-

nous binary variable, which generalizes bivariate correlated unobserved heterogeneity using

Hermite polynomials, and compares this model with a parametric model. Health econometrics

encounters occasions in which explanatory variables are simultaneously determined with the

dependent variable. In such cases, Poisson or negative binomial models yield biased estimates

of parameters of interest because they assume perfect explanatory variables are perfectly ex-

ogenous. Therefore, count data models with an endogenous binary variable are required, and

many studies have analyzed this problem. Chapter 5 considers a Poisson model with one

endogenous binary variable and the heterogeneity of both count dependent and binary vari-

ables. We propose a Poisson model that comprises a semiparametric joint distribution using

Hermite polynomials. Our model is semiparametric and includes the natural extension of a

bivariate normal distribution. In an example using 1990 National Health Interview Survey
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data, the semi-parametric model overcomes rival models in terms of the likelihood ratio test.

Absolute values of the endogenous binary regressor coefficients of the semiparametric models

are smaller than those of the parametric model, and those in the semiparametric model are

the smallest among the three. Moreover, estimated densities of the semiparametric models

have fatter tails than the parametric model.

Chapter 6 proposes a robust duration model with an endogenous binary variable. As

with many nonlinear models, endogeneity in duration analysis is a problem because censored

duration data lead to nonlinearity, prompting the two-stage method toward inconsistency.

Studies have addressed endogeneity in duration analysis, but models based on a hazard rate

do not explicitly assume heterogeneity. Chapter 6 proposes an alternative semiparametric

duration model with an endogenous binary variable that generalizes the heterogeneity of

both duration and endogeneity. Heterogeneity is generalized as follows. First, we consider a

simple log-normal duration model with an endogenous binary variable. Second, we assume

heterogeneity that follows a semiparametric bivariate distribution using Hermite polynomials.

Under these setups, we investigate the difference between the endogenous binary variable’s

coefficients of the parametric and semiparametric models using Medical Expenditure Panel

Survey (MEPS) data. When applied to the duration of hospital stays in MEPS data, the esti-

mated results of non-censored and artificially censored semiparametric (semi-nonparametric)

models show good performance. The absolute values of the endogenous binary regressor coef-

ficients of the semiparametric models are larger than in parametric models whether data are

censored or not. This introduces the interpretation of the binary endogenous variable, that

is, the variable denoting insurance coverage. The parametric model underestimates the effect

of a survey respondent’s insurance coverage in our example. The difference of the estimated

endogenous coefficients in the two models is smaller than in parametric models. This means

that the parametric model has a large inconsistency if the data are censored. Moreover,

estimated densities of the semiparametric models have twin peak distributions.
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