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1 Introduction

Testing for structural breaks has been a longstanding problem and various tests have been

proposed in the econometric and statistical literature. One of the frequently used tests for

parameter constancy against the general alternative is the CUSUM test based on recursive

residuals proposed by Brown, Durbin, and Evans (1975), and this test was further developed

based on OLS residuals by Ploberger and Krämer (1992). By specifying a random walk

as the alternative, optimal tests for parameter constancy were investigated by Nyblom and

Mäkeläinen (1983), Nyblom (1986, 1989), and Nabeya and Tanaka (1988), among others,

while the point optimal test for general regression models was studied by Elliott and Müller

(2006). On the other hand, it is often the case that a one-time structural change with

an unknown change point is considered as the alternative and the sup-type test by Andrews

(1993) and the mean- and exponential-type tests developed by Andrews and Ploberger (1994)

and Andrews, Lee, and Ploberger (1996) are widely used in practical analyses. For a general

discussion on structural changes, see, for example, Csörgő and Horváth (1997), Perron (2006),

and Aue and Horváth (2013).

In practice, when we test for structural breaks in time-series models, we need to take serial

correlation into account, and thus we have to estimate the long-run variance of the errors.

If we estimate the long-run variance under the null hypothesis of no structural breaks, then

it is known that the above tests suffer from the so-called non-monotonic power problem,

that is, the power initially rises under the alternative, but as the magnitude of the break

increases, the power eventually falls and tends to zero. This problem was investigated by

Vogelsang (1999), Crainiceanu and Vogelsang (2007), Deng and Perron (2008), and Perron

and Yamamoto (2014). The reason for this problem is that the long-run variance estimator

takes significantly large values as the magnitude of the break increases.

On the other hand, if we estimate the long-run variance under the alternative, then the

tests suffer from size distortion; they tend to over-reject the null hypothesis. This is because

the long-run variance is under-estimated, so that the test statistics tend to take large values

under the null hypothesis of no break.

In order to cope with the problem associated with the estimation of the long-run variance,

several methods have been proposed. Kejriwal (2009) proposed to estimate the long-run
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variance using the residuals under both the null and alternative hypotheses. By using this

hybrid estimator, we can reduce size distortion, but the power becomes extremely low when

the error is strongly serially correlated. Juhl and Xiao (2009) proposed to estimate the

long-run variance using the residuals of the nonparametric regression to mitigate the non-

monotonic power problem. However, the finite sample performance of this test crucially

depends on the choice of the bandwidth in the nonparametric regression. While these papers

tried to improve the accuracy of the long-run variance estimator, there are several methods

with which we do not have to consistently estimate the long-run variance. Sayginsoy and

Vogelsang (2011) and Yang and Vogelsang (2011) proposed fixed-b sup-Wald and fixed-b sup-

LM tests, respectively, which are robust to I(0)/I(1) errors. The fixed-b framework is based on

Kiefer and Vogelsang (2005), which used an inconsistent long-run variance estimator where

the bandwidth is proportional to the sample size. The fixed-b sup-Wald and sup-LM tests

have relatively good sizes under the null hypothesis, but there is a loss of power due to

the inconsistent estimation of the long-run variance. On the other hand, Shao and Zhang

(2010) proposed a self-normalized test based on the CUSUM test. The basic idea of self-

normalization is similar to the fixed-b approach. Although the finite sample performance of

these tests are improved, compared to the frequently used tests, such as the original CUSUM

and sup-type tests, the existing methods do not seem to be satisfactory in terms of both size

and power.

In this paper, we develop an accurate long-run variance estimator and propose to use it

to improve the finite sample property of the structural change tests. This estimator can be

obtained by correcting the bias up to O(T−1), where T is the sample size. The key feature

of our method is that bias correction is achieved by taking a structural break into account.

The advantage of our method is that tests with our long-run variance estimator can control

the empirical size well, while maintaining high power. The simulation results show that the

proposed tests have a higher power than other tests, such as the fixed-b test. Moreover, the

power difference between our bias-corrected tests and the original (bias-uncorrected) tests is

very minor, and it becomes negligible as the sample size increases. This result is in contrast

to some other tests, which suffer from asymptotic power loss.

The remainder of this paper is organized as follows. In Section 2, we introduce the model

and the test statistic. The derivation of the bias term is discussed in Section 3, and the
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bias correction method is explained in Section 4. The case with general error processes is

discussed in Section 5. Simulation results are given in Section 6, and Section 7 concludes the

paper. All mathematical proofs are delegated to the appendix.

2 Model and Test Statistic

Let us consider the following mean-shift model:

yt = µ+ δ ·DUt(T
0
b ) + ut, t = 1, · · · , T, (1)

where DUt(T
0
b ) = 1{t > T 0

b }, and 1{·} is the indicator function. We assume that ut is a

zero-mean stationary process and that the break date T 0
b is unknown.

The testing problem is

H0 : δ = 0 vs. H1 : δ ̸= 0. (2)

Under H0, there is no shift in mean, whereas under H1, there is a one-time break.

In order to test for a shift in mean, we need to estimate the long-run variance of ut defined

by ω =
∑∞

ℓ=−∞E(utut−ℓ) for the scale adjustment, which can be consistently estimated by

the kernel method. As it is known that tests with ω estimated under the null hypothesis suffer

from the non-monotonic power problem, as pointed out by Vogelsang (1999), we exclude the

case where the long-run variance is estimated under the null hypothesis, and focus on the

case where it is estimated under the alternative of a one-time break. That is, we consider the

following kernel estimator of ω as a benchmark:

ω̂(Tb) = γ̂0 + 2
T−1∑
j=1

k

(
j

m

)
γ̂j , (3)

where k(·) is the kernel function, m is the bandwidth, γ̂j is the estimator of the jth auto-

covariance of ut defined by γ̂j = T−1
∑T

t=j+1 ûtût−j , the residuals ût are obtained under the

alternative with the supposed break date Tb, and

ût =

yt − ȳ1 for t = 1, · · · , Tb,

yt − ȳ2 for t = Tb + 1, · · · , T,
(4)
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where ȳ1 = T−1
b

∑Tb
t=1 yt and ȳ2 = (T − Tb)

−1
∑T

t=Tb+1 yt. Note that Tb is specified by a

researcher and it is not necessarily consistent with T 0
b . We suppress the dependency of γ̂j

and ût on Tb for notational simplicity.

When the parametric structure is framed for ut, we may use, instead of the kernel esti-

mator, the autoregressive spectral density estimator of ω based on the AR(p) model given

by

ω̂AR(Tb) =
σ̂2ε(

1−
∑p

j=1 ϕ̂j

)2 , (5)

where ût =
∑p

j=1 ϕ̂j ût−j + ε̂t with ϕ̂j (j = 1, · · · , p) being the OLS estimator, and σ̂2ε =

(T − p)−1
∑T

t=p+1 ε̂
2
t .

In this paper, we mainly consider the following two structural change tests, which have

been commonly used in many practical analyses, with ω̂∗(Tb) denoting either ω̂(Tb) in (3) or

ω̂AR(Tb) in (5), as the estimator of ω.

Sup-Wald test

Following Andrews (1993), the sup-Wald statistic for testing problem (2) is given by

sup-W = max
Tb∈[εT,(1−ε)T ]

W (Tb), where W (Tb) =
SSR0 − SSR(Tb)

ω̂∗(Tb)
, (6)

where SSR0 is the sum of squared residuals under H0, SSR(Tb) is the sum of squared

residuals under the alternative of a one-time break with the break date Tb, and ε is the

trimming parameter.

CUSUM test

The CUSUM test statistic proposed by Ploberger and Krämer (1992) is originally defined as

CUSUM = max
Tb∈[1,T−1]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̃

∣∣∣∣∣ ,
where ũt is the residual under H0, and the long-run variance estimator ω̃ is estimated under

the null hypothesis. As explained in Crainiceanu and Vogelsang (2007) and Deng and Perron

(2008), this test suffers from the non-monotonic power problem because the long-run variance

is estimated under the null hypothesis of no break. In order to avoid this problem, we again
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consider estimating the long-run variance under the alternative of a one-time break. Then,

the test statistic should be modified as

CUSUMH1 = max
Tb∈[1,T−1]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̂∗(Tb)

∣∣∣∣∣ . (7)

3 Derivation of the Bias

In this section, we derive the bias of the reciprocal of the long-run variance estimator up to

O(T−1), ignoring the op(T
−1) terms under the assumption that the correct specification for

ut is the AR(p) model. The case with general error processes will be discussed later. Note

that since our purpose is to control the size of the tests by precisely estimating the long-run

variance, the bias is derived under the null hypothesis of no break, whereas ût is obtained

assuming a one-time break at Tb, which is given by

ût =

ut − ū1 for t = 1, · · · , Tb,

ut − ū2 for t = Tb + 1, · · · , T.
(8)

To derive the bias term, we make the following assumptions when p ≥ 1:

Assumption 1 {ut} follows a zero-mean stationary AR(p) process: ut =
∑p

j=1 ϕjut−j + εt,

where 1 −
∑p

j=1 ϕjz
j ̸= 0 for |z| ≤ 1, and {εt} is a martingale difference sequence with a

finite 4th moment, which satisfies E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.

Assumption 2 Tb/T → λ ∈ (0, 1) as T → ∞.

When p = 0, we use the following Assumption 1’, instead of Assumption 1.

Assumption 1’ ut = εt for all t, where {εt} is a martingale difference sequence with a finite

4th moment, which satisfies E(ε2t |Ft−1) = σ2ε .

Assumptions 1 and 1’ exclude the case where {ut} is a unit root process. Assumption 2

is standard for structural break models.
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3.1 Bias of the OLS estimator of the autoregressive coefficients

First, we derive the bias of the OLS estimator of ϕj (j = 1, · · · , p) for p ≥ 1, which is given

by

ϕ̂ =


ϕ̂1

ϕ̂2
...

ϕ̂p

 =


r̂11 r̂12 · · · r̂1p

r̂21 r̂22
. . .

...
...

. . .
. . . r̂p−1,p

r̂p1 · · · r̂p,p−1 r̂pp



−1 
r̂10

r̂20
...

r̂p0

 ,

where r̂ij = (T − p)−1
∑T

t=p+1 ût−iût−j .

In order to derive the bias of ϕ̂, we define the following three (p+ 1)× (p+ 1) matrices,

based on Stine and Shaman (1989) and Patterson (2000):

B1p = diag{0, 1, · · · , p},

B2p =


[
−e0,−e1, · · · ,−e p

2
−1, 0(p+1)×1, e p

2
−1, · · · , e1, e0

]
when p is even,[

−d1,−d2, · · · ,−d p−1
2
, 0(p+1)×1, d p−1

2
, · · · , d1, d0

]
when p is odd,

(B3p)ij =


−1 for j < i ≤ p− j + 2,

1 for p− j + 2 < i ≤ j,

0 otherwise,

where 0(p+1)×1 is a (p + 1) × 1 vector of zeros, ej is a (p + 1) × 1 vector with ones in rows

j+3, j+5, · · · , p+1− j and zeros elsewhere, and dj is a (p+1)× 1 vector with ones in rows

j+2, j+4, · · · , p+1−j and zeros elsewhere. For example, d0 = [0, 1, 0, 1]′ and d1 = [0, 0, 1, 0]′

for p = 3, while e0 = [0, 0, 1, 0, 1]′ and e1 = [0, 0, 0, 1, 0]′ for p = 4.

Let Dp = B1p +B2p + 2B3p, and we divide Dp into four blocks as follows:

Dp =

 01×1 01×p

−Kp Bp

 . (9)

where Kp and Bp are p×1 and p×p, respectively, that is, Kp is (−1) times the p×1 lower-left

block element of Dp, and Bp is the p× p lower-right block element of Dp. The values of Kp

and Bp for p = 1, · · · , 5 are given in Table 1.

The following theorem gives the bias of the OLS estimator ϕ̂.
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Theorem 1 Under Assumptions 1 and 2, the expectation of the OLS estimator ϕ̂ up to

O(T−1) is given by

E(ϕ̂) = ϕ− 1

T − p
(Kp +Bpϕ) + o(T−1), (10)

where ϕ = [ϕ1, · · · , ϕp]′.

Remark 1 The first-order bias of the OLS estimator does not depend on the maintained

break fraction λ = limT→∞ Tb/T .

Remark 2 When p = 1, by Theorem 1, the expectation of the OLS estimator with a one-time

structural break in mean reduces to

E(ϕ̂1) = ϕ1 −
1

T − 1
(2 + 4ϕ1) + o(T−1),

whereas the well-known bias formula without a structural break is

E(ϕ̂1) = ϕ1 −
1

T − 1
(1 + 3ϕ1) + o(T−1).

Hence, when ϕ1 > 0, we can see that the OLS estimator with a break has a larger downward

bias than the one without a break, which also leads to a downward bias in (5).

Remark 3 This result can be easily extended to the case with multiple structural breaks. In

this case, we obtain the residuals assuming structural breaks at t = T1, · · · , Tm, where m is

the number of structural breaks, such that limT→∞ Ti/T = λi and 0 < λ1 < · · · < λm < 1,

and the residual is given by

ût = ut − ūi for t = Ti−1 + 1, · · · , Ti (i = 1, · · · ,m+ 1), (11)

where ūi = (Ti − Ti−1)
−1
∑Ti

t=Ti−1+1 ut, T0 = 0, and Tm+1 = T . Then, the expectation of ϕ̂

up to O(T−1) is given by

E(ϕ̂) = ϕ− 1

T − p

(
K(m)

p +B(m)
p ϕ

)
+ o(T−1),

where D
(m)
p = B1p + B2p + (m + 1)B3p, and K

(m)
p and B

(m)
p are defined in the same way

as in (9). We do not give the proof of the above result in detail because we consider only a

one-time break in this paper.
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3.2 Bias of the reciprocal of the long-run variance estimator

Next, we derive the bias of the reciprocal of ω̂AR, which is given by

1

ω̂AR
=


(
1−

∑p
j=1 ϕ̂j

)2
σ̂2ε

for p ≥ 1,

1

σ̂2ε
for p = 0.

(12)

Here, we consider the bias of the reciprocal of ω̂AR because the long-run variance estimator

is placed in the denominator of the test statistics.

In general, when random variables X and Y satisfy X−E(X) = Op(T
−1/2), Y −E(Y ) =

Op(T
−1/2), E(X) ̸= 0, and E(Y ) ̸= 0, the following relation holds:

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(T−1), (13)

which can be obtained by the Taylor expansion of f(x, y) = x/y around (x, y) = (E(X), E(Y )),

and by taking expectations, ignoring the op(T
−1) terms. See Mood, Graybill, and Boes (1974,

p.181).

Therefore, in order to derive the bias of (12) up to O(T−1), we need to obtain E[(1 −∑p
j=1 ϕ̂j)

2], E[σ̂2ε ], V ar[σ̂
2
ε ], and Cov[σ̂2ε , (1 −

∑p
j=1 ϕ̂j)

2] for p ≥ 1. When p = 0, we only

need E[σ̂2ε ] and V ar[σ̂
2
ε ].

The following lemma gives the results for p ≥ 1:

Lemma 1 Under Assumptions 1 and 2, the following relations hold:

(a) E

[(
1−

∑p
j=1 ϕ̂j

)2]
= (1− ι′ϕ)2 +

1

T − p

{
2(1− ι′ϕ)ι′(Kp +Bpϕ) + σ2ε ι

′R−1ι
}
+ o(T−1),

(b) E
[
σ̂2ε
]
= σ2ε −

p+ 2

T − p
σ2ε + o(T−1),

(c) V ar
[
σ̂2ε
]
=

1

T − p

{
E(ε4t )− σ4ε

}
+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑p
j=1 ϕ̂j

)2]
= o(T−1),

where R is a p × p matrix whose (i, j) element is given by γ|i−j| = E(utut−|i−j|), and ι is a

p× 1 vector of ones.
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By (13) and Lemma 1, we obtain the first-order bias of the reciprocal of the long-run

variance estimator for p ≥ 1:

Theorem 2 Under Assumptions 1 and 2, the expectation of 1/ω̂AR up to O(T−1) is given

by

E

[
1

ω̂AR

]
=

(1− ι′ϕ)2

σ2ε
+

1

T − p

[
1

σ2ε

{
2(1− ι′ϕ)ι′(Kp +Bpϕ) + σ2ε ι

′R−1ι+ (p+ 2)(1− ι′ϕ)2
}

+
(1− ι′ϕ)2

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Remark 4 When p = 1, the expectation of 1/ω̂AR is given by

E

[
1

ω̂AR

]
=

(1− ϕ1)
2

σ2ε
+

1

T − 1
· 1

σ2ε

[
(1− ϕ1)(8 + 6ϕ1) + (1− ϕ1)

2

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1),

if the long-run variance is estimated using the residuals under the alternative.

On the other hand, if we use the residuals under the null hypothesis of no structural break

to estimate the long-run variance, the expectation can be shown to be given by

E

[
1

ω̂AR

]
=

(1− ϕ1)
2

σ2ε
+

1

T − 1
· 1

σ2ε

[
(1− ϕ1)(5 + 5ϕ1) + (1− ϕ1)

2

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Therefore, we can see that the first-order bias of 1/ω̂AR with the residuals under the alternative

hypothesis is larger than the one with the residuals under the null hypothesis.

Similarly, when p = 0, we obtain the following lemma and theorem:

Lemma 1’ Under Assumptions 1’ and 2, the following relations hold:

(a) E
[
σ̂2ε
]
= σ2ε −

2

T
σ2ε + o(T−1),

(b) V ar
[
σ̂2ε
]
=

1

T

{
E(ε4t )− σ4ε

}
+ o(T−1).

Theorem 2’ Under Assumptions 1’ and 2, the expectation of 1/ω̂AR up to O(T−1) is given

by

E

[
1

ω̂AR

]
=

1

σ2ε
+

1

T

[
2

σ2ε
+

1

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Remark 5 The first-order bias of 1/ω̂AR does not depend on the maintained break fraction

λ.
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4 Bias-Corrected Test

In this section, we propose the correction of the bias of (12) using Theorems 2 and 2’, and

explain how to use our bias-corrected estimator in order to test for a shift in mean.

4.1 Bias correction of the reciprocal of the long-run variance estimator

In this subsection, we obtain the bias-corrected estimator of the reciprocal of the long-run

variance.

Since the first-order bias of (12) is given by Theorems 2 and 2’, the bias-corrected estimator

of 1/ωAR is

(
1

ω̂AR

)
BC

=
1

ω̂AR
− b̂, (14)

where

b̂ =



1

T − p

[
1

σ̂2ε

{
2(1− ι′ϕ̂)ι′(Kp +Bpϕ̂) + σ̂2ε ι

′R̂−1ι

+(p+ 2)(1− ι′ϕ̂)2
}
+

(1− ι′ϕ̂)2

σ̂2ε

{
Ê(ε4t )

σ̂4ε
− 1

}]
for p ≥ 1,

1

T

[
2

σ̂2ε
+

1

σ̂2ε

{
Ê(ε4t )

σ̂4ε
− 1

}]
for p = 0,

and ϕ̂, σ̂2ε = (T − p)−1
∑T

t=p+1 ε̂
2
t , Ê(ε4t ) = (T − p)−1

∑T
t=p+1 ε̂

4
t , and γ̂ij for the (i, j) element

of R̂ are the least squares estimators of ϕ, σ2ε , E(ε4t ), and γij , respectively.
1

For example, when p = 1, the correcting term is given by

b̂ =
1

T − 1
· 1

σ̂2ε

[
(1− ϕ̂)(8 + 6ϕ̂) + (1− ϕ̂)2

{
Ê(ε4t )

σ̂4ε
− 1

}]
.

4.2 Tests based on the bias-corrected long-run variance estimator

The bias-corrected test statistic can be obtained by using the bias-corrected estimator (14).

For example, the bias-corrected sup-Wald test statistic is given by

sup-WBC = max
Tb∈[εT,(1−ε)T ]

WBC(Tb), (15)

1Other consistent estimators can also be plugged in.
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where

WBC(Tb) =

(
1

ω̂AR

)
BC

· (SSR0 − SSR(Tb)) .

Similarly, the bias-corrected CUSUM test statistic2 is given by

CUSUMH1,BC = max
Tb∈[εT,(1−ε)T ]

∣∣∣∣∣
√(

1

ω̂AR

)
BC

· T−1/2
Tb∑
t=1

ũt

∣∣∣∣∣ . (16)

Since the correcting terms are Op(T
−1), the asymptotic distribution of the test statistic

under the null hypothesis is exactly the same as that of the original test, and thus we do not

have to modify critical values in order to apply the bias-corrected test. Moreover, even under

the alternative, it can be shown that the first-order bias is asymptotically negligible, so that

there is no asymptotic power loss.

5 Extension to the Model with General Error Processes

In this section, we consider the case where the error term ut is generated by a stationary

AR(∞) process. In this case, we make the following assumption:

Assumption 1” ut =
∑∞

j=1 ϕjut−j + εt, where 1−
∑∞

j=1 ϕjz
j ̸= 0 for |z| ≤ 1,

∑∞
j=1 |ϕj | <

∞, and {εt} is a martingale difference sequence with a finite 4th moment, which satisfies

E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.

Although only the absolute summability of {ϕj} is assumed in Assumption 1”, we may require

the higher order summability of {ϕj}, as explained below.

Since the error term is an infinite order AR process, we need to truncate the lag order

at some point pT and consider estimating the AR(pT ) model. The following assumption is

concerned with the lag truncation point pT .

Assumption L

(a) pT → ∞ and
p4T
T → 0 as T → ∞. (17)

(b)
∑∞

j=pT+1 |ϕj | = o(pT /T ) as T → ∞.

2We use a trimming for the CUSUM test so that Assumption 2 is satisfied.
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Assumption L(a) gives the upper bound of the divergence rate of pT . This rate guarantees

the consistency of the autoregressive spectral density estimator as proved by Berk (1974) and

den Haan and Levin (1998), although condition (17) is stronger than theirs. Assumption L(b)

not only imposes the lower bound of pT but is also related with the higher order summability

of {ϕj}. For example, when
∑∞

j=0 j
3+α|ϕj | < ∞ holds and pT is greater than O(T 1/(4+α))

for some α > 0, Assumption L(b) is satisfied. Note that this assumption is satisfied if ut

is generated by a finite-order ARMA process and pT = O(T δ) for some δ > 0, because |ϕj |

declines geometrically to zero.

The next theorem gives the bias of the reciprocal of the autoregressive spectral density

estimator up to O(pT /T ):

Theorem 2” Under Assumptions 1”, 2, and L, the expectation of 1/ω̂AR up to O(pT /T ) is

given by

E

[
1

ω̂AR

]
=

(1− ι′ϕ)2

σ2ε
+

1

T − pT

[
1

σ2ε

{
2(1− ι′ϕ)ι′(KpT +BpT ϕ) + σ2ε ι

′R−1ι+ (pT + 2)(1− ι′ϕ)2
}

+
(1− ι′ϕ)2

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o

(pT
T

)
,

where

ϕ =


ϕpT ,1

ϕpT ,2

...

ϕpT ,pT

 =


γ0 γ1 · · · γpT−1

γ1 γ0
. . .

...
...

. . .
. . . γ1

γpT−1 · · · γ1 γ0



−1 
γ1

γ2
...

γpT

 . (18)

This first-order bias is exactly the same as the one in Theorem 2. Therefore, we can

implement the bias correction as explained in Section 4.

6 Simulation Results

In this section, we investigate the finite sample performance of the tests through a Monte

Carlo experiment. The data generating process is as follows:

yt = µ+ δ ·DUt(T
0
b ) + ut, µ = 0, δ =

c√
T
, T 0

b = 0.5T.
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We consider the following three processes of ut:
AR(1) : ut = ϕut−1 + εt, εt ∼ i.i.d. N

(
0, 1− ϕ2

)
,

AR(2) : ut = ϕ1ut−1 + ϕ2ut−2 + εt, εt ∼ i.i.d. N
(
0,

(1+ϕ2){(1−ϕ2)2−ϕ2
1}

1−ϕ2

)
,

MA(1) : ut = εt + θεt−1, εt ∼ i.i.d. N
(
0, 1

1+θ2

)
,

where the variance of εt is selected so that V ar(ut) = 1.

In subsections 6.1 and 6.2, we compare the sizes and powers of the following tests:

(sup-Wald test)

(i): sup-W : the sup-Wald test (6) with the long-run variance estimator given by (3).

(ii): sup-WAR: the sup-Wald test (6) with the long-run variance estimator given by (5).

(iii): sup-WBC : the bias-corrected sup-Wald test (15).

(iv): sup-Wkej : the sup-Wald test (6) with the hybrid long-run variance estimator by Kejriwal

(2009).

(v): fixed-b sup-W : the fixed-b sup-Wald test based on Sayginsoy and Vogelsang (2011),

where we use the J statistic as a scaling factor. We use the Daniell kernel with the

feasible integrated power optimal data-dependent bandwidth as described in Sayginsoy

and Vogelsang (2011), and a 10% trimming for this test.

(CUSUM test)

(i): CUSUMH1 : the CUSUM test with a 15% trimming, which is given by

CUSUMH1 = max
Tb∈[0.15T,0.85T ]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̂∗(Tb)

∣∣∣∣∣ . (19)

We use the long-run variance estimator given by (3).

(ii): CUSUMH1,AR: the CUSUM test (19) with the long-run variance estimator given by

(5).

(iii): CUSUMH1,BC : the bias-corrected CUSUM test (16).

(iv): SN: the self-normalizing method by Shao and Zhang (2010).
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For the kernel estimator (3), we use the quadratic spectral kernel with the bandwidth

parameter selected by Andrews’ (1991) rule to estimate the long-run variance, except for the

fixed-b sup-Wald test. When we implement the AR(p) regression to obtain the autoregressive

spectral density estimator, we select the lag length p by the Bayesian Information Criterion

(BIC), where the maximum lag length is 5. For the sup-Wald and CUSUM tests, we use a

15% trimming, except for the fixed-b sup-Wald test. The number of replications is 2,000, and

the nominal size is 0.05.

6.1 Empirical sizes of the tests

Tables 2-5 show the empirical sizes of the tests. When the error follows an AR(1) process, we

can see from Table 2 that the original sup-Wald test tends to over-reject the null hypothesis

as ϕ gets larger. By using the autoregressive spectral density estimator, we can mitigate the

over-rejection problem, except the case where ϕ = 0.2, but the test still has size distortion.

We need to note that, when ϕ = 0.2, the sup-WAR test has a larger size distortion than the

original sup-Wald test because the lag length selected by the BIC is sometimes too short

in finite samples. The bias-corrected sup-Wald test performs much better than the bias-

uncorrected tests, in particular when ut is strongly serially correlated. The empirical sizes of

the sup-Wald test based on Kejriwal (2009) and the fixed-b sup-Wald test are relatively close

to the nominal one, although the fixed-b test is rather conservative. We observe similar results

for the CUSUM test. The bias-corrected CUSUM test (CUSUMH1,BC) has much less size

distortion than the bias-uncorrected CUSUM tests (CUSUMH1 and CUSUMH1,AR), unless

ϕ = 0.2. Moreover, the CUSUMH1,BC test performs better than the self-normalization based

test when ϕ is large. As the sample size increases, the sizes of all tests get closer to the nominal

one.

Tables 3 and 4 show the empirical sizes with AR(2) errors. We can see that the relative

performance holds when ϕ2 = −0.3, compared to the case with AR(1), whereas when ϕ2 = 0.3

and T = 100, all the tests tend to over-reject the null hypothesis, including the bias-corrected

tests. In this case, only the fixed-b sup-Wald test has relatively good size. However, as the

sample size increases, the performance of the bias-corrected tests greatly improves, and it is

superior to that of the other tests. When the error follows an MA(1) process, we can see

from Table 5 that the bias-corrected tests have good finite sample properties.
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6.2 Size-adjusted power of the tests

In this subsection, we compare the size-adjusted power of the tests.34 Figure 1 shows the

size-adjusted powers with AR(1) errors and T = 100. We can see from Figure 1 that, when

ϕ = 0.6, the bias-corrected sup-Wald test is more powerful than the sup-Wkej and fixed-b

sup-Wald tests, while for the CUSUM test, the bias-corrected test performs much better than

the self-normalization based test. We can see that the power difference between the bias-

corrected and bias-uncorrected tests is relatively small. Similar results are obtained when

ϕ = 0.8. Although the power loss due to bias correction is slightly larger than that of the

case with ϕ = 0.6, the bias-corrected test has higher power than the other tests.

As in Figure 2, when T = 200, the power difference between the bias-corrected and bias-

uncorrected tests is much smaller than the case when T = 100. In this case, the bias-corrected

test still outperforms the other tests.

6.3 Comparison of the finite sample performance of bias-corrected tests

In this subsection, we focus on only the bias-corrected versions of the tests commonly used

in the literature and compare their sizes and powers. We consider the sup-Wald test (sup-

WBC) by Andrews (1993), the mean-Wald test (mean-WBC) and the exponential-Wald test

(exp-WBC) by Andrews, Lee, and Ploberger (1996), the locally best invariant test against

the random walk alternative by Nabeya and Tanaka (1988) (which we denote as LMH1,BC),

the asymptotically point optimal test against the random walk alternative by Elliott and

Müller (2006) (which we denote as qLLH1,BC), and the CUSUMH1,BC test given by (19).

Since the original LM, qLL, and CUSUM tests use the long-run variance estimator under

the null hypothesis and they have non-monotonic power, we consider estimating the long-run

variance under the alternative of a one-time break. For the LM and qLL tests, we use the

residuals under the alternative with break date T̂b = argminTb∈[0.15T,0.85T ] SSR(Tb). For the

CUSUM test, we use the bias-corrected test statistic (16).

The empirical sizes with AR(1) errors are given in Table 6 (we omit the other cases to

3Because the critical value of the fixed-b sup-Wald test is data-dependent, we adjust the size of the other

tests to the empirical size of the fixed-b sup-Wald test with nominal one 0.05.
4Since the size-adjusted powers of the sup-WAR and CUSUMH1,AR tests are almost the same as those of

the sup-W and CUSUMH1 tests, respectively, we omit the results of sup-WAR and CUSUMH1,AR tests.
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save space). We observe that the bias-corrected mean-Wald test has relatively good size,

while the other tests are slightly over-sized.

The size-adjusted powers of the tests are given in Figure 3. We observe that the bias-

corrected CUSUM test performs best, while the mean-Wald, LM, and qLL tests suffer from

power loss, in particular when the errors are strongly serially correlated, or when the sample

size is small.

Overall, we can see that the bias-corrected CUSUM test with the long-run variance esti-

mated under the alternative has the best finite sample properties, against the alternative of a

one-time break. However, it is not clear whether this bias-corrected CUSUM test outperforms

other tests against various kinds of the alternative, such as multiple breaks or time-varying

parameter models. This is our further work.

7 Conclusion

We have proposed a bias correction to the long-run variance estimator, which is estimated

under the alternative hypothesis of a one-time break. We have derived the first-order bias

of the reciprocal of the long-run variance estimator, taking a structural break into account.

By Monte Carlo simulations, we have found that our bias-corrected tests have better finite

sample properties than the existing tests.

So far, we have considered tests for a mean shift, but it is also in our interest to con-

sider bias correction to test for structural change in general regression models. We wish to

investigate such topics in future studies.

Appendix A: Proofs of Theorem 1 and Some Related Lemmas

Lemma 2 Under Assumptions 1 and 2,

E(ϕ̂) = ϕ+R−1E
[
r̂ − r − (R̂−R)ϕ

]
−R−1E

[
(R̂−R)R−1

{
r̂ − r − (R̂−R)ϕ

}]
+ o(T−1),

(20)

where R̂ and R are p × p matrices such that (R̂)ij = r̂ij, (R)ij = rij, r̂ = [r̂01, · · · , r̂0p]′,

r = [r01, · · · , r0p]′, r̂ij = (T − p)−1
∑T

t=p+1 ût−iût−j, and rij = E(ut−iut−j).
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Proof of Lemma 2

Since R̂−1 can be expressed as

R̂−1 = R−1 −R−1(R̂−R)R̂−1, (21)

we obtain

R̂−1 = R−1 −R−1(R̂−R)R−1 +R−1(R̂−R)R−1(R̂−R)R−1

−R−1(R̂−R)R−1(R̂−R)R−1(R̂−R)R̂−1, (22)

by recursively using relation (21). Therefore, since ϕ = R−1r, r̂ − r = Op(T
−1/2), and

R̂−R = Op(T
−1/2), we have

ϕ̂ = R̂−1r̂

= R−1r +R−1(r̂ − r)−R−1(R̂−R)R−1r −R−1(R̂−R)R−1(r̂ − r)

+R−1(R̂−R)R−1(R̂−R)R−1r + op(T
−1)

= ϕ+R−1
{
r̂ − r − (R̂−R)ϕ

}
= −R−1(R̂−R)R−1

{
r̂ − r − (R̂−R)ϕ

}
+ op(T

−1). (23)

By ignoring the op(T
−1) term and taking expectation of the rest of (23), we obtain (20).

�

Lemma 3 Under Assumptions 1 and 2,

E(r̂ij − rij) = − 2

T − p
ω + o(T−1),

where ω = σ2ε/(1−
∑p

j=1 ϕj)
2.

18



Proof of Lemma 3

Without loss of generality, we assume i ≤ j. From (8), we have

r̂ij =
1

T − p

T∑
t=p+1

ût−iût−j

=
Tb − p+ i

T − p

 1

Tb − p+ i

Tb+i∑
t=p+1

(ut−i − ū1)(ut−j − ū1)


+

1

T − p

Tb+j∑
t=Tb+i+1

(ut−i − ū2)(ut−j − ū1)

+
T − Tb − j

T − p

 1

T − Tb − j

T∑
t=Tb+j+1

(ut−i − ū2)(ut−j − ū2)

 .

Note that the second term in the last equation does not appear when i = j. Therefore,

E(r̂ij) =
Tb − p+ i

T − p

{
rij −

1

λ(T − p)
ω + o(T−1)

}
+

{
j − i

T − p
rij + o(T−1)

}
+
T − Tb − j

T − p

{
rij −

1

(1− λ)(T − p)
ω + o(T−1)

}
= rij − λ · ω

λ(T − p)
− (1− λ) · ω

(1− λ)(T − p)
+ o(T−1)

= rij −
2

T − p
ω + o(T−1).�

Lemma 4 Under Assumptions 1 and 2,

Cov(r̂ij , r̂kℓ) = Cov(r̃ij , r̃kℓ) +O(T−3/2),

where r̃ij = (T − p)−1
∑T

t=p+1 ut−iut−j.
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Proof of Lemma 4

Without loss of generality, we assume i ≤ j and k ≤ ℓ. We can see that r̂ij can be expressed

as

r̂ij =
1

T − p


Tb+i∑
t=p+1

(ut−i − ū1)(ut−j − ū1) +

Tb+j∑
t=Tb+i+1

(ut−i − ū2)(ut−j − ū1)

+

T∑
t=Tb+j+1

(ut−i − ū2)(ut−j − ū2)


=

1

T − p


Tb+i∑
t=p+1

ut−iut−j − ū1

 Tb+i∑
t=p+1

ut−i

− ū1

 Tb+i∑
t=p+1

ut−j

+ (Tb − p+ i) ū21

+

Tb+j∑
t=Tb+i+1

ut−iut−j − ū1

 Tb+j∑
t=Tb+i+1

ut−i

− ū2

 Tb+j∑
t=Tb+i+1

ut−j

+ (j − i) ū1ū2

+
T∑

t=Tb+j+1

ut−iut−j − ū2

 T∑
t=Tb+j+1

ut−i

− ū2

 T∑
t=Tb+j+1

ut−j

+ (T − Tb − j) ū22


= (r̃ij,1 − cij,1 − cij,2 + cij,3) + (r̃ij,2 − cij,4 − cij,5 + cij,6) + (r̃ij,3 − cij,7 − cij,8 + cij,9), say,

= r̃ij + cij ,

where cij =
∑9

n=1 cij,n. Note that r̃ij,2, cij,4, cij,5, and cij,6 do not appear when i = j.

Therefore,

Cov(r̂ij , r̂kℓ) = Cov(r̃ij , r̃kℓ) + Cov(cij , r̃kℓ) + Cov(r̃ij , ckℓ) + Cov(cij , ckℓ)

= Cov(r̃ij , r̃kℓ) + d1 + d2 + d3, say.

First, let us consider d1, which can be expressed as d1 = Cov(cij , r̃kℓ) =
∑9

n=1Cov(cij,n, r̃kℓ).

For n = 1, by Cauchy-Schwarz inequality,

|Cov(cij,1, r̃kℓ)| ≤

V ar
 1

T − p

Tb+i∑
t=p+1

ut−i

 ū1

V ar
 1

T − p

T∑
t=p+1

ut−kut−ℓ

1/2

= d
1/2
11 d

1/2
12 , say.
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Since

d11 = V ar

[
Tb

T − p

(
ū1 −

1

Tb

p−i∑
t=1

ut

)
ū1

]

≤ 2

[
V ar

(
Tb

T − p
ū21

)
+ V ar

((
1

T − p

p−i∑
t=1

ut

)
ū1

)]
= O(T−2)

and d12 = O(T−1), we obtain Cov(cij,1, r̃kℓ) = O(T−3/2). Similarly, for n = 2, · · · , 9,

Cov(cij,n, r̃kℓ) can be shown to be O(T−3/2). Therefore, we have d1 = O(T−3/2). In the

same way, d2 = O(T−3/2) can be proved.

Then, consider the term d3. Since d3 = Cov(cij , ckℓ) =
∑9

n1=1

∑9
n2=1Cov(cij,n1 , ckℓ,n2)

and

|Cov(cij,n1 , ck,ℓ,n2)| ≤ (V ar(cij,n1)V ar(ckℓ,n2))
1/2

=
(
O(T−2)O(T−2)

)1/2
= O(T−2),

d3 is of order T−2. Therefore, we conclude that Cov(r̂ij , r̂kℓ) = Cov(r̃ij , r̃kℓ) +O(T−3/2). �

Proof of Theorem 1

By Lemma 2,

E(ϕ̂) = ϕ+R−1E
[
r̂ − r − (R̂−R)ϕ

]
−R−1E

[
(R̂−R)R−1

{
r̂ − r − (R̂−R)ϕ

}]
+ o(T−1)

= ϕ+ (A)− (B) + o(T−1), say.

Since E(r̂− r) = −(T − p)−1 · 2ωι+ o(T−1) and E(R̂−R) = −(T − p)−1 · 2ωιι′ + o(T−1)

by Lemma 3, where ι is a p× 1 vector of ones, we obtain

(A) = R−1E
[
r̂ − r − (R̂−R)ϕ

]
(24)

= R−1

[
− 2

T − p
ωι+

2

T − p
ωιι′ϕ+ o(T−1)

]

= R−1

− 2

T − p
· σ2ε(

1−
∑p

j=1 ϕj

)2 · ι

1−
p∑

j=1

ϕj

+ o(T−1)


= − 2

T − p
· σ2ε
1−

∑p
j=1 ϕj

R−1ι+ o(T−1). (25)
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Note that the first-order bias of (A) is equal to (−2) times equation (3.6) in Shaman and

Stine (1988).5 Therefore, from (5.4) in Shaman and Stine (1988), the j-th element of (A) is

given by (T − p)−1 · 2
∑j−1

ℓ=0(ϕℓ − ϕp−ℓ), where ϕ0 = −1, so that

(A) = − 1

T − p
Fp · (2B3p)ϕ

∗ + o(T−1), (26)

where Fp = [0p×1, Ip], ϕ
∗ = [−1, ϕ′]′ and B3p is defined in Section 3 and Patterson (2000).

For (B), we can see from Lemma 4 that

(B) = R−1E
[
(R̃−R)R−1

{
r̃ − r − (R̃−R)ϕ

}]
+ o(T−1), (27)

where (R̃)ij = r̃ij and r̃ = [r̃01, · · · , r̃0p]′. Hence, the first-order bias (B) is the same as the

one in Shaman and Stine (1988), which is given by the sum of (5.1) and (5.3) in Shaman and

Stine (1988). Therefore, we have

(B) =
1

T − p
Fp(B1p +B2p)ϕ

∗ + o(T−1), (28)

where B1p and B2p are defined in Section 3 and Patterson (2000).

From (26) and (28), we obtain

E(ϕ̂) = ϕ+ (A)− (B) + o(T−1)

= ϕ− 1

T − p
Fp(B1p +B2p + 2B3p)ϕ

∗ + o(T−1)

= ϕ− 1

T − p
(Kp +Bpϕ) + o(T−1).�

Appendix B: Proofs of Theorem 2” and Some Related Lemmas

Because the AR(p) model is a special case of the AR(∞) model, we only prove the results for

AR(∞) errors. Lemmas 1 and 1’, and Theorems 2 and 2’ can be proved similarly. Note that

pT becomes a fixed number for the finite order AR model and thus, for example, the order

given by o(pT /T ) in the following lemmas becomes o(1/T ) in the AR(p) case.

In this appendix, we use the vector norm ∥x∥∞ = max1≤i≤n |xi| for an n × 1 vector

x = [x1, · · · , xn]′, and a matrix norm ∥A∥∞ = max1≤i≤n

(∑n
j=1 |aij |

)
for an n × n matrix

5Note that the notation in our paper is different from that in Shaman and Stine (1988). For example, ϕj

(j = 1, · · · , p) corresponds to −αj (j = 1, · · · , p) in Shaman and Stine (1988).
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A = (aij). This matrix norm is sub-multiplicative, that is, ∥AB∥∞ ≤ ∥A∥∞ · ∥B∥∞ holds

for n × n matrices A and B (cf. Hannan and Deistler, 1988, p.266). Moreover, |x′Ay| ≤

n · ∥x∥∞ · ∥A∥∞ · ∥y∥∞ holds for n× 1 vectors x, y, and an n× n matrix A.

Lemma 1” Under Assumptions 1”, 2, and L, the following relations hold:

(a) E
[
ι′ϕ̂
]
= ι′ϕ− 1

T − pT
ι′(KpT +BpT ϕ) + o

(pT
T

)
,

(b) E
[
ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

]
=

1

T − pT
σ2ε ι

′R−1ι+ o
(pT
T

)
,

where ϕ is defined by (18), ι is a pT × 1 vector of ones and

ϕ̂ =


ϕ̂pT ,1

ϕ̂pT ,2

...

ϕ̂pT ,pT

 =


r̂11 r̂12 · · · r̂1,pT

r̂21 r̂22
. . .

...
...

. . .
. . . r̂pT−1,pT

r̂pT ,1 · · · r̂pT ,pT−1 r̂pT ,pT



−1 
r̂10

r̂20
...

r̂pT ,0

 .

Proof of Lemma 1”

Proof of (a). Using (22) and the relation ϕ = R−1r, we have,

ι′ϕ̂ = ι′R̂−1r̂

= ι′ϕ+ ι′R−1(r̂ − r)− ι′R−1(R̂−R)ϕ− ι′R−1(R̂−R)R−1(r̂ − r)

+ι′R−1(R̂−R)R−1(R̂−R)ϕ+ ι′R−1(R̂−R)R−1(R̂−R)R−1(r̂ − r)

−ι′R−1(R̂−R)R−1(R̂−R)R−1(R̂−R)R̂−1r̂

= ι′ϕ+ (a)− (b)− (c) + (d) + (e)− (f), say.

First, let us consider (a). Since Lemma 3 holds uniformly in 0 ≤ i ≤ pT and 0 ≤ j ≤ pT ,

we have

E(r̂ij) = rij −
2

T − pT
ω + ξij , (29)

where ξij = o(T−1) uniformly in 0 ≤ i ≤ pT and 0 ≤ j ≤ pT . Therefore,

E[(a)] = ι′R−1E(r̂ − r)

= −ι′R−1 · 2

T − pT
ωι+ ι′R−1ξ

= (a1) + (a2), say,
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where ξ = [ξ10, · · · , ξpT ,0]
′. Since ∥R−1∥∞ = O(1) (cf. den Haan and Levin, 1998), we obtain

|(a2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥ξ∥∞

= pT ·O(1) ·O(1) · o(T−1) = o(pT /T ).

For (b), we have

E[(b)] = ι′R−1E(R̂−R)ϕ

= ι′R−1 · 2

T − pT
ωιι′ϕ+ ι′R−1Ξϕ

= (b1) + (b2), say,

where Ξ is a pT×pT matrix whose (i, j) element is ξij . Since Ξϕ =
[∑pT

k=1 ξ1kϕpT ,k, · · · ,
∑pT

k=1 ξpT ,kϕpT ,k

]′
,

we have

∥Ξϕ∥∞ = max
1≤j≤pT

∣∣∣∣∣
pT∑
k=1

ξjkϕpT ,k

∣∣∣∣∣
≤

(
pT∑
k=1

|ϕpT ,k|

)
· max
1≤j,k≤pT

|ξjk|

= O(1) · o(T−1) = o(T−1).

Therefore,

|(b2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥Ξϕ∥∞

= pT ·O(1) ·O(1) · o(T−1) = o(pT /T ).

Combining these results, we have

E[(a)− (b)] = (a1)− (b1) + o(pT /T ), (30)

where (a1) − (b1) corresponds to the first order bias of (A) given in (25) in the proof of

Theorem 1.

We next consider (c). Since the result of Lemma 4 holds uniformly in 0 ≤ i ≤ pT ,

0 ≤ j ≤ pT , 0 ≤ k ≤ pT , and 0 ≤ ℓ ≤ pT , we have

E [(r̂ij − rij)(r̂kℓ − rkℓ)] =
1

T − pT
bij,kℓ + ξij,kℓ, (31)
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where bij,kℓ is the first-order bias of (r̂ij − rij)(r̂kℓ − rkℓ), and ξij,kℓ = O(T−3/2) uniformly in

0 ≤ i ≤ pT , 0 ≤ j ≤ pT , 0 ≤ k ≤ pT , and 0 ≤ ℓ ≤ pT . Now, we have

(R̂−R)R−1(r̂ − r) =


∑pT

ℓ=1

∑pT
k=1 r

kℓ(r̂1k − r1k)(r̂ℓ0 − rℓ0)
...∑pT

ℓ=1

∑pT
k=1 r

kℓ(r̂pT ,k − rpT ,k)(r̂ℓ0 − rℓ0)

 ,
so that

E[(R̂−R)R−1(r̂ − r)] =


∑pT

ℓ=1

∑pT
k=1 r

kℓ · 1
T−pT

b1k,ℓ0 +
∑pT

ℓ=1

∑pT
k=1 r

kℓξ1k,ℓ0
...∑pT

ℓ=1

∑pT
k=1 r

kℓ · 1
T−pT

bpT k,ℓ0 +
∑pT

ℓ=1

∑pT
k=1 r

kℓξpT k,ℓ0


= B1 + ξ̃, say,

where rij is the (i, j) element of R−1. By (31), we obtain

∥ξ̃∥∞ = max
1≤j≤pT

∣∣∣∣∣
pT∑
ℓ=1

pT∑
k=1

rkℓξjk,ℓ0

∣∣∣∣∣
≤

(
pT∑
ℓ=1

pT∑
k=1

|rkℓ|

)
· max
1≤j,k,ℓ≤pT

|ξjk,ℓ0|

= O(pT ) ·O(T−3/2) = O(pT /T
3/2),

where
∑pT

ℓ=1

∑pT
k=1 |r

kℓ| = O(pT ) holds because ∥R−1∥∞ = O(1). Therefore,

E[(c)] = ι′R−1E[(R̂−R)R−1(r̂ − r)]

= ι′R−1B1 + ι′R−1ξ̃

= (c1) + (c2), say

Note that

|(c2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥ξ̃∥∞

= pT ·O(1) ·O(1) ·O(pT /T
3/2) = O(p2T /T

3/2).

For (d), because the (i, j) element of (R̂−R)R−1(R̂−R) is given by
∑pT

ℓ=1

∑pT
k=1 r

kℓ(r̂ik−
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rik)(r̂ℓj − rℓj), we have

E[(R̂−R)R−1(R̂−R)]

=


∑pT

ℓ=1

∑pT
k=1 r

kℓ
(

1
T−pT

b1k,ℓ1 + ξ1k,ℓ1

)
· · ·

∑pT
ℓ=1

∑pT
k=1 r

kℓ
(

1
T−pT

b1k,ℓpT + ξ1k,ℓpT

)
...

. . .
...∑pT

ℓ=1

∑pT
k=1 r

kℓ
(

1
T−pT

bpT k,ℓ1 + ξpT k,ℓ1

)
· · ·

∑pT
ℓ=1

∑pT
k=1 r

kℓ
(

1
T−pT

bpT k,ℓpT + ξpT k,ℓpT

)


= B2 + Ξ̃, say,

and each element of Ξ̃ is uniformly O(pT /T
3/2). Therefore, we have

E[(d)] = ι′R−1E[(R̂−R)R−1(R̂−R)]ϕ

= ι′R−1B2ϕ+ ι′R−1Ξ̃ϕ

= (d1) + (d2), say.

Note that

|(d2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥Ξ̃∥∞ · ∥ϕ∥∞

= pT ·O(1) ·O(1) ·O(p2T /T
3/2) ·O(1) = O(p3T /T

3/2).

Combining the above results, we have

E[−(c) + (d)] = −(c1) + (d1) + o(pT /T ), (32)

where −(c1) + (d2) corresponds to the first order bias of (B) given in (27) in the proof of

Theorem 1.

For (e), because ∥R̂−R∥∞ = Op(pT /
√
T ) and ∥r̂− r∥∞ = Op(T

−1/2) (cf. den Haan and

Levin, 1998), we have

|(e)| ≤ pT · ∥ι∥∞
{
∥R−1∥∞ · ∥R̂−R∥∞

}2
∥R−1∥∞ · ∥r̂ − r∥∞

= pT ·O(1) ·
{
O(1) ·Op(pT /

√
T )
}2

·O(1) ·Op(T
−1/2)

= Op(p
3
T /T

3/2).

Finally, let us consider (f), which can be expressed as (f) = ι′R−1(R̂ − R)R−1(R̂ −

R)R−1(R̂−R)
{
ϕ+ (ϕ̂− ϕ)

}
. Since (R̂−R)ϕ =

[∑pT
ℓ=1(r̂1ℓ − r1ℓ)ϕpT ,ℓ, · · · ,

∑pT
ℓ=1(r̂pT ,ℓ − rpT ,ℓ)ϕpT ,ℓ

]′
,
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we have

∥(R̂−R)ϕ∥∞ = max
1≤j≤pT

∣∣∣∣∣
pT∑
ℓ=1

(r̂jℓ − rjℓ)ϕpT ,ℓ

∣∣∣∣∣
≤ max

1≤j,ℓ≤pT
|r̂jℓ − rjℓ| ·

(
pT∑
ℓ=1

|ϕpT ,ℓ|

)
= Op(T

−1/2) ·O(1)

= Op(T
−1/2).

Hence,

|(f)| ≤ pT · ∥ι∥∞
{
∥R−1∥∞ · ∥R̂−R∥∞

}2
∥R−1∥∞

{
∥(R̂−R)ϕ∥∞ + ∥R̂−R∥∞ · ∥ϕ̂− ϕ∥∞

}
= pT ·O(1) ·

{
O(1) ·Op(pT /

√
T )
}2

·O(1) ·
{
Op(T

−1/2) +Op(pT /
√
T ) ·Op(T

−1/2)
}

= Op(p
3
T /T

3/2).

Therefore, we have E(ι′ϕ̂) = ι′ϕ+ (a1)− (b1)− (c1) + (d1) + o(pT /T ) because p
4
T /T → 0.

Since the first-order bias of ι′ϕ̂ given by (a1)− (b1)− (c1) + (d1) is exactly equal to the one

derived in Appendix A, we obtain the desired result. �

Proof of (b). By defining ηpT ,t =
∑pT

j=1(ϕj − ϕpT ,j)ut−j +
∑∞

j=pT+1 ϕjut−j , we can see that

ut =

pT∑
j=1

ϕpT ,jut−j + ηpT ,t + εt. (33)

Therefore, we have

ū1 =
1

Tb

Tb∑
t=1

ut

=

pT∑
j=1

ϕpT ,j

(
1

Tb

Tb∑
t=1

ut−j

)
+

1

Tb

Tb∑
t=1

ηpT ,t +
1

Tb

Tb∑
t=1

εt

=

pT∑
j=1

ϕpT ,j ū1 + η̄1 + ε̄1 +

pT∑
j=1

ϕpT ,j

{
1

Tb

j∑
ℓ=1

(u1−ℓ − uTb+1−ℓ)

}
, (34)

where η̄1 = T−1
b

∑Tb
t=1 ηpT ,t and ε̄1 = T−1

b

∑Tb
t=1 εt. From (33) and (34), we have, for t =

pT + 1, · · · , Tb,

ût = ut − ū1

=

pT∑
j=1

ϕpT ,j ût−j + (ηpT ,t − η̄1) + (εt − ε̄1) + h1, (35)
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where h1 = −
∑pT

j=1 ϕpT ,j

{
T−1
b

∑j
ℓ=1(u1−ℓ − uTb+1−ℓ)

}
.

Similarly, for t = Tb + 1, · · · , Tb + pT , we have

ût = ut − ū1 · 1{t ≤ Tb} − ū2 · 1{t > Tb}

=

pT∑
j=1

ϕpT ,jut−j + ηpT ,t + εt − ū1 · 1{t ≤ Tb} − ū2 · 1{t > Tb}

=

pT∑
j=1

ϕpT ,j [ût−j + ū1 · 1{t− j ≤ Tb}+ ū2 · 1{t− j > Tb}] + ηpT ,t + εt

−ū1 · 1{t ≤ Tb} − ū2 · 1{t > Tb}

=

pT∑
j=1

ϕpT ,j ût−j + ηpT ,t + εt + h̃t, (36)

where h̃t =
∑pT

j=1 ϕpT ,j [ū1 · 1{t− j ≤ Tb}+ ū2 · 1{t− j > Tb}]−ū1 ·1{t ≤ Tb}−ū2 ·1{t > Tb}.

For t = Tb + pT + 1, · · · , T , we have

ût =

pT∑
j=1

ϕpT ,j ût−j + (ηpT ,t − η̄2) + (εt − ε̄2) + h2, (37)

where h2 = −
∑pT

j=1 ϕpT ,j

{
(T − Tb)

−1
∑j

ℓ=1(uTb+1−ℓ − uT+1−ℓ)
}
, ε̄2 = (T−Tb)−1

∑T
t=Tb+1 εt,

and η̄2 = (T − Tb)
−1
∑T

t=Tb+1 ηpT ,t.

From (35)–(37), we obtain

ût =


û′t−1ϕ+ (ηpT ,t − η̄1) + (εt − ε̄1) + h1 for t = pT + 1, · · · , Tb,

û′t−1ϕ+ ηpT ,t + εt + h̃t for t = Tb + 1, · · · , Tb + pT ,

û′t−1ϕ+ (ηpT ,t − η̄2) + (εt − ε̄2) + h2 for t = Tb + pT + 1, · · · , T,

(38)

where ût = [ût, · · · , ût−pT+1]
′.
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Since ϕ̂ =
(∑T

t=pT+1 ût−1û
′
t−1

)−1 (∑T
t=pT+1 ût−1ût

)
, we obtain, using (38),√

T − pT (ϕ̂− ϕ)

=

 1

T − pT

T∑
t=pT+1

ût−1û
′
t−1

−1

×

 1√
T − pT


Tb∑

t=pT+1

ût−1(ηpT ,t − η̄1) +

Tb+pT∑
t=Tb+1

ût−1ηpT ,t +
T∑

t=Tb+pT+1

ût−1(ηpT ,t − η̄2)


+

1√
T − pT


Tb∑

t=pT+1

ût−1(εt − ε̄1) +

Tb+pT∑
t=Tb+1

ût−1εt +

T∑
t=Tb+pT+1

ût−1(εt − ε̄2)


+

1√
T − pT


Tb∑

t=pT+1

ût−1h1 +

Tb+pT∑
t=Tb+1

ût−1h̃t +

T∑
t=Tb+pT+1

ût−1h2




= R̂−1[(A) + (B) + (C)], say.

First, let us consider (A), which can be expressed as

(A) =
1√

T − pT

 T∑
t=pT+1

ut−1ηpT ,t −
Tb∑

t=pT+1

ut−1η̄1 − ū1ι

Tb∑
t=pT+1

ηpT ,t + (Tb − pT )ū1ιη̄1

+

Tb+pT∑
t=Tb+1

(ût−1 − ut−1)ηpT ,t −
T∑

t=Tb+pT+1

ut−1η̄2 − ū2ι
T∑

t=Tb+pT+1

ηpT ,t + (T − Tb − pT )ū2ιη̄2


= (A1)− (A2)− (A3) + (A4) + (A5)− (A6)− (A7) + (A8), say,

where ut = [ut, · · · , ut−pT+1]
′.

By den Haan and Levin (1998), Assumption L(b) implies

pT∑
j=1

|ϕj − ϕpT ,j | = o
(pT
T

)
. (39)
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Therefore, from Assumption L(b) and (39), we obtain

E

∣∣∣∣∣∣ 1√
T − pT

T∑
t=pT+1

ut−ℓηpT ,t

∣∣∣∣∣∣
= E

∣∣∣∣∣∣
pT∑
j=1

(ϕj − ϕpT ,j)

 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

+

∞∑
j=pT+1

ϕj

 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

∣∣∣∣∣∣
≤

 pT∑
j=1

|ϕj − ϕpT ,j |+
∞∑

j=pT+1

|ϕj |

 · sup
j≥1

E

∣∣∣∣∣∣ 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

∣∣∣∣∣∣
= o(pT /T ) ·O(

√
T )

= o(pT /
√
T )

uniformly in 1 ≤ ℓ ≤ pT , so that ∥(A1)∥∞ = op(pT /
√
T ).

Similarly, since E
∣∣∣(T − pT )

−1
∑T

t=pT+1 ηpT ,t

∣∣∣ = o(pT /T ), we have ∥(A2)∥∞ = op(pT /T ).

In the same way, we obtain ∥(A3)∥∞ = op(pT /T ), ∥(A4)∥∞ = op(pT /T ), ∥(A5)∥∞ = Op(pT /
√
T ),

∥(A6)∥∞ = op(pT /T ), ∥(A7)∥∞ = op(pT /T ), and ∥(A8)∥∞ = op(pT /T ). Therefore, ∥(A)∥∞ =

Op(pT /
√
T ).

For (B), since (T − pT )
−1/2

∑T
t=pT+1 ut−ℓ = Op(1) uniformly in 1 ≤ ℓ ≤ pT , ε̄1 =

Op(T
−1/2) and ε̄2 = Op(T

−1/2), we have∥∥∥∥∥∥(B)− 1√
T − pT

T∑
t=pT+1

ut−1εt

∥∥∥∥∥∥
∞

= Op(T
−1/2).

Now let us consider (C). Since

|h1| ≤

 pT∑
j=1

|ϕpT ,j |

 · 1

Tb

pT∑
ℓ=1

(|ut−ℓ|+ |uTb+1−ℓ|)

= O(1) ·Op(pT /T )

= Op(pT /T )
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and similarly |h2| = Op(pT /T ), we have

∥(C)∥∞ ≤

∥∥∥∥∥∥ 1√
T − pT

Tb∑
t=pT+1

ût−1

∥∥∥∥∥∥
∞

· |h1|+

∥∥∥∥∥∥ 1√
T − pT

Tb+pT∑
t=Tb+1

ût−1h̃t

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1√
T − pT

T∑
t=Tb+pT+1

ût−1

∥∥∥∥∥∥
∞

· |h2|

= Op(1) ·Op(pT /T ) +Op(pT /
√
T ) +Op(1) ·Op(pT /T )

= Op(pT /
√
T ).

Therefore, we obtain

√
T − pT (ϕ̂− ϕ) = R̂−1

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT

 , (40)

where ∥ζT ∥∞ = Op(pT /
√
T ).

Then we evaluate the expectation of ι′(ϕ̂ − ϕ)(ϕ̂ − ϕ)′ι up to O(pT /T ). Using (40), this

can be expressed as

ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

=
1

T − pT
ι′
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


×

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}
ι

=
1

T − pT
ι′R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1ι

+op(pT /T ), (41)

because ∥R−1∥∞ = O(1), ∥R̂−1 −R−1∥∞ = Op(pT /
√
T ), ∥(T − pT )

−1/2
∑T

t=pT+1 ut−1εt∥∞ =

Op(1), and ∥ζT ∥∞ = Op(pT /
√
T ).

Since E(εt|Ft−1) = 0 and E(ε2t |Ft−1) = σ2ε , we have

E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

u′t−1εt

 = E

 1

T − pT

T∑
t=pT+1

ut−1u
′
t−1ε

2
t


= σ2εR. (42)
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Therefore, from (41) and (42), we obtain

E
[
ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

]
=

1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ). �

Lemma 2” Under Assumptions 1”, 2, and L, the following relations hold:

(a) E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= (1− ι′ϕ)2 +

1

T − pT

{
2(1− ι′ϕ)ι′(KpT +BpT ϕ) + σ2ε ι

′R−1ι
}
+ o

(pT
T

)
,

(b) E
[
σ̂2ε
]
= σ2ε −

pT + 2

T − pT
σ2ε + o

(pT
T

)
,

(c) V ar
[
σ̂2ε
]
=

1

T − pT

{
E(ε4t )− σ4ε

}
+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= o

(pT
T

)
.

Proof of Lemma 2”

Proof of (a). Here we define ψ = −ϕ̂+ ϕ− (T − pT )
−1(KpT + BpT ϕ). Then, from Lemma

1”, we obtain

E(ι′ψ) = o(pT /T ), (43)

V ar(ι′ψ) =
1

T − p
σ2ε ι

′R−1ι+ o(pT /T ). (44)

Since 1−
∑pT

j=1 ϕ̂pT ,j = 1− ι′ϕ̂ = 1− ι′ϕ+ (T − pT )
−1ι′(KpT +BpT ϕ) + ι′ψ, we have

E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= E

[{
1− ι′ϕ+

1

T − pT
ι′(KpT +BpT ϕ) + ι′ψ

}2
]

=

{
1− ι′ϕ+

1

T − pT
ι′(KpT +BpT ϕ)

}2

+2

{
1− ι′ϕ+

1

T − pT
ι′(KpT +BpT ϕ)

}
E
[
ι′ψ
]
+ E

[(
ι′ψ
)2]

= (a) + 2 · (b) + (c), say. (45)

By (43) and (44), we have

(a) = (1− ι′ϕ)2 +
2

T − pT
(1− ι′ϕ)ι′(KpT +BpT ϕ) + o(pT /T ),

(b) = o(pT /T ),

(c) =
1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ).
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Therefore, the expectation up to O(pT /T ) is given by

E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= (1− ι′ϕ)2 +

2

T − pT
(1− ι′ϕ)ι′(KpT +BpT ϕ)

+
1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ).�

Proof of (b). For t = pT + 1, · · · , Tb, ε̂t can be expressed as

ε̂t = (ut − ū1)−
pT∑
j=1

ϕ̂pT ,j(ut−j − ū1)

= (ut − ū1)−
pT∑
j=1

ϕpT ,j(ut−j − ū1)−
pT∑
j=1

(ϕ̂pT ,j − ϕpT ,j)(ut−j − ū1)

= (εt − ε̄1)− (ϕ̂− ϕ)′ût−1 + (ηpT ,t − η̄1) + h1, (46)

where the last equality holds because εt = ut −
∑pT

j=1 ϕpT ,jut−j − ηpT ,t and ε̄1 = ū1 −∑pT
j=1 ϕpT ,j ū1 − η̄1 + h1.

For t = Tb + 1, · · · , Tb + pT , we have

ε̂t = ût −
pT∑
j=1

ϕpT ,j ût−j −
pT∑
j=1

(ϕ̂pT ,j − ϕpT ,j)ût−j

= εt + ηpT ,t +Op(pT /
√
T ). (47)

Similarly, for t = Tb + pT + 1, · · · , T , we obtain

ε̂t = (εt − ε̄2)− (ϕ̂− ϕ)′ût−1 + (ηpT ,t − η̄2) + h2. (48)
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Using (46)-(48) and noting that |h1| = |h2| = Op(pT /T ), we have

σ̂2ε =
1

T − pT


Tb∑

t=pT+1

(εt − ε̄1)
2 +

Tb+pT∑
t=Tb+1

ε2t +

T∑
t=Tb+pT+1

(εt − ε̄2)
2


−2


Tb∑

t=pT+1

(ϕ̂− ϕ)′ût−1(εt − ε̄1) +

T∑
t=Tb+pT+1

(ϕ̂− ϕ)′ût−1(εt − ε̄2)


+


Tb∑

t=pT+1

(
(ϕ̂− ϕ)′ût−1

)2
+

T∑
t=Tb+pT+1

(
(ϕ̂− ϕ)′ût−1

)2
+

2

Tb∑
t=pT+1

(ηpT ,t − η̄1)
(
(εt − ε̄1)− (ϕ̂− ϕ)′ût−1

)
+ 2

Tb+pT∑
t=Tb+1

ηpT ,tεt

+2
T∑

t=Tb+pT+1

(ηpT ,t − η̄2)
(
(εt − ε̄2)− (ϕ̂− ϕ)′ût−1

)

+

Tb∑
t=pT+1

(ηpT ,t − η̄1)
2 +

Tb+pT∑
t=Tb+1

η2pT ,t +

T∑
t=Tb+pT+1

(ηpT ,t − η̄2)
2


+ op

(pT
T

)
= (A)− 2 · (B) + (C) + (D) + op

(pT
T

)
, say.

First, consider the term (A). Since

(A) =
Tb − pT
T − pT

 1

Tb − pT

Tb∑
t=pT+1

(εt − ε̄1)
2

+
1

T − pT

Tb+pT∑
t=Tb+1

ε2t

+
T − Tb − pT
T − pT

 1

T − Tb − pT

T∑
t=Tb+pT+1

(εt − ε̄2)
2

 ,

we have

E[(A)] = σ2ε −
{
λ · 1

λ(T − pT )
σ2ε + (1− λ) · 1

(1− λ)(T − pT )
σ2ε

}
+ o(T−1)

= σ2ε −
2

T − pT
σ2ε + o(T−1).

Next, let us consider (B). Since

1√
T − pT


Tb∑

t=pT+1

ût−1(εt − ε̄1) +

T∑
t=Tb+pT+1

ût−1(εt − ε̄2)

 =
1√

T − pT

T∑
t=pT+1

ut−1εt + ζ̃T ,
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where ∥ζ̃T ∥∞ = Op(
√
pT /T ), we have

(B) =
1

T − pT
·
√
T − pT (ϕ̂− ϕ)′

 1√
T − pT


Tb∑

t=pT+1

ût−1(εt − ε̄1) +

T∑
t=Tb+pT+1

ût−1(εt − ε̄2)




=
1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}

×

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζ̃T


=

1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

+ op

(pT
T

)
,

because ∥ζT ∥∞ = Op(pT /
√
T ).

From (42), we obtain

E

 1

T − pT

 T∑
t=pT+1

u′t−1εt

R−1

 T∑
t=pT+1

ut−1εt


= tr

R−1E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

u′t−1εt


= tr

[
R−1 · σ2εR

]
= pTσ

2
ε , (49)

so that E[(B)] = (T − pT )
−1 · pTσ2ε + o(pT /T ).

Next, let us consider (C):

(C) = (ϕ̂− ϕ)′

 1

T − pT


Tb∑

t=pT+1

ût−1û
′
t−1 +

T∑
t=Tb+pT+1

ût−1û
′
t−1


 (ϕ̂− ϕ)

= (ϕ̂− ϕ)′
ˆ̂
R(ϕ̂− ϕ),

where
ˆ̂
R = (T − pT )

−1
{∑Tb

t=pT+1 ût−1û
′
t−1 +

∑T
t=Tb+pT+1 ût−1û

′
t−1

}
.
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Since ∥ ˆ̂R−R∥∞ = Op(pT /
√
T ), we have

(C) =
1

T − pT

{√
T − pT (ϕ̂− ϕ)′

}
ˆ̂
R
{√

T − pT (ϕ̂− ϕ)
}

=
1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}{

R+ (
ˆ̂
R−R)

}

×
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


=

1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

+ op

(pT
T

)
,

so that we obtain E[(C)] = (T − pT )
−1 · pTσ2ε + o(pT /T ), using (49).

Finally, let us consider (D), which can be expressed as

(D) =
1

T − pT

2


Tb∑
t=pT+1

(ηpT ,t − η̄1)(εt − ε̄1) +

Tb+pT∑
t=Tb+1

ηpT ,tεt +

T∑
t=Tb+pT+1

(ηpT ,t − η̄2)(εt − ε̄2)


−2(ϕ̂− ϕ)′


Tb∑

t=pT+1

ût−1(ηpT ,t − η̄1) +

T∑
t=Tb+pT+1

ût−1(ηpT ,t − η̄2)


+


Tb∑

t=pT+1

(ηpT ,t − η̄1)
2 +

Tb+pT∑
t=Tb+1

η2pT ,t +

T∑
t=Tb+pT+1

(ηpT ,t − η̄2)
2




= 2 · (D1)− 2 · (D2) + (D3), say.

First, consider the term (D1). By Assumption L(b) and (39), we have

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

ηpT ,tεt

∣∣∣∣∣∣ ≤

 pT∑
j=1

|ϕj − ϕpT ,j |+
∞∑

j=pT+1

|ϕj |

 · sup
j≥1

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

ut−jεt

∣∣∣∣∣∣
= o(pT /T ) ·O(1)

= o(pT /T ),

and thus (D1) = op(pT /T ).

Then, let us consider (D2). Here we define

P =
1

T − pT


Tb∑

t=pT+1

ût−1(ηpT ,t − η̄1) +

T∑
t=Tb+pT+1

ût−1(ηpT ,t − η̄2)

 .
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Then, ∥P∥∞ = op(pT /T ) because (T − pT )
−1
∑T

t=pT+1 ut−ℓηpT ,t = op(pT /T ) uniformly in

1 ≤ ℓ ≤ pT .

Since (D2) = (T − pT )
−1/2 ·

{√
T − pT (ϕ̂− ϕ)

}
P , we have

∥(D2)∥∞ ≤ 1√
T − pT

· pT ·

∥∥∥∥∥∥ 1√
T − pT

T∑
t=pT+1

ut−1εt

∥∥∥∥∥∥
∞

+ ∥ζT ∥∞

 · ∥R̂−1∥∞ · ∥P∥∞

= O(T−1/2) · pT ·
{
Op(1) +Op(pT /

√
T )
}
·Op(1) · op(pT /T )

= op(p
2
T /T

3/2).

Then, let us consider (D3). First, we have

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

η2pT ,t

∣∣∣∣∣∣ = E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j +

∞∑
j=pT+1

ϕjut−j


2∣∣∣∣∣∣

≤ E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j


2∣∣∣∣∣∣

+2E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j




∞∑
j=pT+1

ϕjut−j


∣∣∣∣∣∣

+E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


∞∑

j=pT+1

ϕjut−j


2∣∣∣∣∣∣

= (D3 − 1) + 2 · (D3 − 2) + (D3 − 3), say.

Since

(D3 − 1) ≤

 pT∑
j=1

|ϕj − ϕpT ,j |

2

· sup
s,t

E|usut|

= o(p2T /T
2) ·O(1)

= o(p2T /T
2),

and similarly (D3−2) = o(p2T /T
2) and (D3−3) = o(p2T /T

2), we have E
∣∣∣(T − pT )

−1
∑T

t=pT+1 η
2
pT ,t

∣∣∣ =
o(p2T /T

2), so that (D3) = op(p
2
T /T

2). Thus we have (D) = op(pT /T ).

Using the above results, we obtain

E(σ̂2ε) = σ2ε −
pT + 2

T − pT
σ2ε + o(pT /T ).�
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Proof of (c).

Since σ̂2ε = (T − pT )
−1
∑T

t=pT+1 ε
2
t +Op(pT /T ), we obtain

√
T − pT

(
σ̂2ε − σ2ε

)
=

1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε) +Op(pT /
√
T )

d−→ N
(
0, E(ε4t )− σ4ε

)
,

so that V ar(σ̂2ε) = (T − pT )
−1
{
E(ε4t )− σ4ε

}
+ o(T−1). �

Proof of (d). We only need to obtain E
[
(1−

∑pT
j=1 ϕ̂pT ,j)

2σ̂2ε

]
to prove (d).

From (45), we have

(
1−

∑pT
j=1 ϕ̂pT ,j

)2
σ̂2ε =

{
1− ι′ϕ+

1

T − pT
ι′(KpT +BpT ϕ)

}2

σ̂2ε

+2

{
1− ι′ϕ+

1

T − pT
ι′(KpT +BpT ϕ)

}
(ι′ψ)σ̂2ε + (ι′ψ)2σ̂2ε

= (a) + 2 · (b) + (c), say.

For (a), we obtain

E[(a)] = (1− ι′ϕ)2σ2ε −
pT + 2

T − pT
(1− ι′ϕ)2σ2ε +

2

T − pT
σ2ε(1− ι′ϕ)ι′(KpT +BpT ϕ) + o(pT /T ),

using the result of Lemma 2” (b).

For (b), we need to calculate E[(ι′ψ)σ̂2ε ] up to O(pT /T ). Since

√
T − pT ι

′ψ = ι′R̂−1

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT

+ op(1),

√
T − pT (σ̂2ε − σ2ε) =

1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε) + op(1),
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we have

ι′ψ(σ̂2ε − σ2ε)

=
1

T − pT
ι′
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


×

 1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε)

+ op(pT /T )

=
1

T − pT
ι′R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

 1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε)

+ op(pT /T ).

Here we have

E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

(ε2t − σ2ε)

 = 0

because εt is a martingale difference sequence with a finite 4th moment and satisfies E(ε2t |Ft−1) =

σ2ε and E(ε3t |Ft−1) = κ3. Therefore, we have E[ι′ψ(σ̂2ε −σ2ε)] = o(pT /T ), and thus E[ι′ψσ̂2ε ] =

E[ι′ψ(σ̂2ε − σ2ε)] + E[ι′ψ]σ2ε = o(pT /T ), and E[(b)] = o(pT /T ).

For (c), since

(ι′ψ)2σ̂2ε = (ι′ψ)2
{
σ2ε +Op(T

−1/2)
}

= (ι′ψ)2σ2ε +Op(pT /T
3/2)

and E[(ι′ψ)2] = (T − pT )
−1σ2ε ι

′R−1ι + o(pT /T ), we have E[(c)] = (T − pT )
−1σ2ε ι

′R−1ι +

o(pT /T ).

Using the results above and Lemma 2” (a) and (b), we obtain the desired result. �

Proof of Theorem 2”

Here we slightly modify the relation (13). When X − E(X) = Op(pT /
√
T ), Y − E(Y ) =

Op(T
−1/2), E(X) ̸= 0, and E(Y ) ̸= 0, we have

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(pT /T ),

because p4T /T → 0. Therefore, using the results of Lemma 2”, we obtain the desired result.

�
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Table 1: Values of Kp and Bp for p = 1, · · · , 5

p Kp Bp

1 2 4

2

[
2

3

] [
1 2

0 5

]

3

23
2


 1 0 3

−2 5 2

0 0 6



4


2

3

2

3




1 0 0 2

−2 2 2 3

−3 0 6 2

0 0 0 7



5


2

3

2

3

2




1 0 0 0 3

−2 2 0 3 2

−3 −2 6 2 3

−2 0 0 7 2

0 0 0 0 8





Table 2: Empirical size of the tests with AR(1) errors: ut = ϕut−1 + εt

T = 100 T = 200

ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8

sup-W 0.075 0.107 0.145 0.207 0.335 0.065 0.088 0.111 0.143 0.227

sup-WAR 0.072 0.140 0.128 0.132 0.214 0.064 0.105 0.079 0.085 0.125

sup-WBC 0.061 0.126 0.101 0.078 0.102 0.058 0.096 0.066 0.062 0.069

sup-Wkej 0.064 0.077 0.069 0.060 0.045 0.060 0.069 0.064 0.058 0.043

fixed-b sup-W 0.014 0.019 0.026 0.027 0.036 0.032 0.029 0.028 0.031 0.037

CUSUMH1
0.067 0.092 0.132 0.188 0.312 0.055 0.077 0.093 0.123 0.195

CUSUMH1,AR 0.064 0.127 0.115 0.123 0.192 0.054 0.087 0.064 0.074 0.112

CUSUMH1,BC 0.057 0.114 0.086 0.073 0.094 0.048 0.083 0.053 0.053 0.063

SN 0.057 0.065 0.072 0.090 0.141 0.050 0.055 0.060 0.067 0.088

Table 3: Empirical size of the tests with AR(2) errors: ut = ϕ1ut−1 + ϕ2ut−2 + εt, ϕ2 = −0.3

T = 100 T = 200

ϕ1 = 0.3 ϕ1 = 0.5 ϕ1 = 0.7 ϕ1 = 0.9 ϕ1 = 1.1 ϕ1 = 0.3 ϕ1 = 0.5 ϕ1 = 0.7 ϕ1 = 0.9 ϕ1 = 1.1

sup-W 0.032 0.077 0.118 0.200 0.346 0.034 0.071 0.094 0.136 0.224

sup-WAR 0.114 0.118 0.127 0.147 0.206 0.086 0.087 0.086 0.096 0.124

sup-WBC 0.089 0.085 0.080 0.085 0.098 0.067 0.065 0.064 0.066 0.068

sup-Wkej 0.011 0.027 0.029 0.025 0.012 0.018 0.036 0.037 0.032 0.015

fixed-b sup-W 0.001 0.003 0.009 0.012 0.017 0.015 0.010 0.008 0.009 0.016

CUSUMH1 0.028 0.067 0.111 0.171 0.319 0.031 0.059 0.079 0.121 0.195

CUSUMH1,AR 0.104 0.104 0.109 0.129 0.181 0.073 0.073 0.076 0.081 0.107

CUSUMH1,BC 0.076 0.075 0.070 0.073 0.095 0.059 0.060 0.059 0.060 0.060

SN 0.041 0.052 0.059 0.070 0.103 0.043 0.045 0.052 0.059 0.072



Table 4: Empirical size of the tests with AR(2) errors: ut = ϕ1ut−1 + ϕ2ut−2 + εt, ϕ2 = 0.3

T = 100 T = 200

ϕ1 = −0.3 ϕ1 = −0.1 ϕ1 = 0.1 ϕ1 = 0.3 ϕ1 = 0.5 ϕ1 = −0.3 ϕ1 = −0.1 ϕ1 = 0.1 ϕ1 = 0.3 ϕ1 = 0.5

sup-W 0.161 0.221 0.308 0.328 0.403 0.139 0.205 0.277 0.245 0.292

sup-WAR 0.182 0.176 0.267 0.276 0.335 0.106 0.108 0.139 0.124 0.174

sup-WBC 0.155 0.148 0.246 0.212 0.204 0.085 0.085 0.111 0.082 0.097

sup-Wkej 0.117 0.177 0.272 0.202 0.163 0.106 0.180 0.251 0.162 0.125

fixed-b sup-W 0.064 0.070 0.078 0.078 0.064 0.058 0.057 0.059 0.065 0.074

CUSUMH1 0.148 0.195 0.282 0.293 0.374 0.119 0.180 0.248 0.221 0.261

CUSUMH1,AR 0.161 0.161 0.248 0.252 0.309 0.088 0.092 0.119 0.113 0.163

CUSUMH1,BC 0.135 0.134 0.227 0.192 0.192 0.071 0.069 0.102 0.075 0.089

SN 0.059 0.073 0.088 0.114 0.172 0.052 0.060 0.064 0.079 0.103

Table 5: Empirical size of the tests with MA(1) errors: ut = εt + θεt−1

T = 100 T = 200

θ = −0.8 θ = −0.4 θ = 0 θ = 0.4 θ = 0.8 θ = −0.8 θ = −0.4 θ = 0 θ = 0.4 θ = 0.8

sup-W 0.000 0.025 0.075 0.106 0.129 0.000 0.024 0.065 0.086 0.099

sup-WAR 0.059 0.076 0.072 0.126 0.212 0.035 0.055 0.064 0.091 0.139

sup-WBC 0.043 0.064 0.061 0.093 0.140 0.024 0.046 0.058 0.068 0.098

sup-Wkej 0.000 0.014 0.064 0.056 0.045 0.000 0.016 0.060 0.055 0.045

fixed-b sup-W 0.000 0.002 0.014 0.012 0.014 0.001 0.027 0.032 0.017 0.015

CUSUMH1 0.000 0.023 0.067 0.093 0.119 0.000 0.020 0.055 0.075 0.084

CUSUMH1,AR 0.044 0.067 0.064 0.108 0.190 0.021 0.047 0.054 0.079 0.120

CUSUMH1,BC 0.028 0.057 0.057 0.083 0.127 0.016 0.041 0.048 0.060 0.081

SN 0.000 0.026 0.057 0.065 0.067 0.000 0.033 0.050 0.055 0.057



Table 6: Empirical size of the bias-corrected tests with AR(1) errors: ut = ϕut−1 + εt

T = 100 T = 200

ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8

sup-WBC 0.061 0.126 0.101 0.078 0.102 0.058 0.096 0.066 0.062 0.069

mean-WBC 0.066 0.101 0.074 0.065 0.068 0.050 0.070 0.051 0.053 0.055

exp-WBC 0.068 0.125 0.098 0.085 0.098 0.051 0.081 0.059 0.059 0.071

LMH1,BC 0.071 0.124 0.107 0.100 0.123 0.053 0.082 0.065 0.067 0.087

qLLH1,BC 0.067 0.167 0.099 0.070 0.088 0.054 0.102 0.058 0.054 0.064

CUSUMH1,BC 0.057 0.114 0.086 0.073 0.094 0.048 0.083 0.053 0.053 0.063
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Figure 1: Size-adjusted power of the tests with AR(1) errors and T = 100
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Figure 2: Size-adjusted power of the tests with AR(1) errors and T = 200
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Figure 3: Size-adjusted power of the bias-corrected tests with AR(1) errors


