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Abstract

This paper considers the conditional sum of squares estimator (CSSE) for the moderate deviation MA(1) process

that has the parameter of the MA(1) with the distance between the parameter and unity being larger than O(T−1).

We show that the asymptotic distribution of the CSSE is normal, even though the process belongs to the local-to-

unity class. The convergence rate continuously changes from an invertible order to a noninvertible one. In this sense,

the moderate deviation process in MA(1) has a continuous bridge property like the AR process.

Keywords. Moving average; Noninvertible moving average; Unit root; local to unity; Moderate Deviations; Conditional

sum of squares estimation;

1 Introduction

A moderate deviation process is the local-to-unity process that has a larger distance from unity than the near unit root

one. An asymptotic property of the moderate deviation in the AR(1) process has been variously explored to investigate

the asymptotic properties in the local-to-unity class. In a stationary region, Giraitis and Phillips (2006) and Phillips and

Magdalinos (2007) showed that an ordinary least squares estimator uniformly has an asymptotically normal distribution.

Moreover, its convergence rate continuously changes from a stationary process to a unit root one. These studies showed

that the moderate deviation process and the stationary one share some similar asymptotic properties.

A (near) unit root MA process that belongs to the local-to-unity-class is deeply connected with the test of the null

hypothesis of stationarity and has been studied several researchers. See Kwiatkowski et al. (1992), Saikkonen and
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Luukkonen (1993b) and Saikkonen and Luukkonen (1993a) for the typical studies of the null hypothesis stationarity

test. In this paper, we consider the moderate deviation MA(1) process that appears in empirical studies. It is well

known that the ARIMA-based model for macroeconomic data often has the largest MA root close to one, so that the

usual asymptotic theory does not work well in finite samples. The MA process with the root close to one has been

studied by modeling the MA coefficient as a moderate deviation. For example, Pantula (1991) and Nabeya and Perron

(1994) have theoretically shown that the unit root AR process with the moderate deviation MA(1) error term does

not follow the conventional unit root asymptotic theory. Ng and Perron (2001) has proposed the AR unit root test by

correcting information criteria for the special case of moderate deviation.

There are a lot of studies of estimation theory for a noninvertible process. However, derivation of the asymptotic

distribution of the maximum likelihood estimator (MLE) has been unsolved. This difficulty comes from the asymptotic

properties of the MLE. The MLE of the unit root MA(1) process asymptotically has the probability mass at unity with

positive probability and a so-called pile-up effect. Because of the pile-up effect that was found by Sargan and Bhargava

(1983) and Anderson and Takemura (1986), the usual limit theory such as the central limit theorem is inapplicable,

which was also observed by Davis and Dunsmuir (1996) in a near unit root process. There has never been a study

that has succeeded in deriving the asymptotic distribution of the MLE in the local-to-unity class. However, the result

of Yabe (2012) has conjectured that an estimator such as the MLE in a moderate deviation process is asymptotically

normal like an invertible one. This study gives the asymptotic distribution of the CSSE for the moderate deviation

MA(1) process.

The CSSE is known to coincide with the MLE in the case where the initial value of the disturbance is zero. See Harvey

(1993) for the details of the CSSE in an MA(1) process. We concentrate on the zero initial value case, because the

asymptotic properties are different for the nonzero initial value one. We show that the CSSE satisfies consistency and

its convergence order continuously changes from an invertible process to a noninvertible one like the AR(1) moderate

deviation process. The asymptotic distribution of the CSSE is normal even though the process belongs to the local-to-

unity class and is the same as the one in the invertible process.

The rest of this paper is organized as follows: In Section 2, we introduce the model and assumptions. In Section 3, we

give the definition of the CSSE and derive its asymptotic distribution. Section 4 provides some concluding remarks. All

proofs of the theoretical results are presented in the Appendix.

Throughout this chapter, we use the following notations: →p and ⇒ to denote convergence in probability and weak

convergence, respectively, as the sample size T goes to infinity.
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2 Model, Assumptions and CSSE

We assume that the MA(1) data generating process {yt} is given by

yt = ϵt − ρT ϵt−1, (t = 1, . . . , T ). (1)

We impose the following regularity conditions on {ϵt}.

Assumption 1. {ϵt} is a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and

variance σ2. We also assume that ϵ0 = 0 and yt = 0 almos sure (a.s.) for t ≤ 0.

Although we adopt the i.i.d. assumption for simplicity, the assumption can be extended to the martingale difference.

The initial value condition for ϵt is crucial, because the nonzero initial value causes different asymptotic properties in

the (near) unit root MA(1) model. See Tanaka (1996) for the details of the effect of the initial-value assumption on the

MLE and the test statistic. Moreover, as noted by Harvey (1993), the CSSE does not coincide with the MLE in the

nonzero-initial-value case. Though the analysis of different initial-value assumptions is interesting, further study in this

direction is beyond the scope of our work.

The moderate deviation MA root can be written as ρT = 1−c/kT , where kT is a deterministic sequence to go to infinity

and c > 0, and is assumed to satisfy the following condition.

Assumption 2. The coefficient ρT depending on T satisfies ρT → 1, T (1− ρT ) = cT/kT → ∞ and ρT ∈ (−1, 1).

From the definition of the coefficient, note that {yt} is invertible in a finite sample and belongs to the local-to-unity

class. Though {yt} is a triangular array {yt,T }, we omit the index T to simplify the notation.

We introduce the CSSE that is defined as the solution of the following minimization problem:

ρ̂ = arg min
ρ∈[−1,1]

QT (ρ), (2)

where

QT (ρ) =
1

T

T∑
t=1

(
t−1∑
l=0

ρlyt−l

)2

.

QT (ρ) is equivalent to the sum of squares of the disturbance terms at ρ = ρT . The solution of this minimizing problem

is restricted in the region [−1, 1] to satisfy identification. Note that in the zero initial value case, the objective function

QT (ρ) is a monotonic transformation of the concentrated likelihood function, and so the CSSE coincides with the MLE
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even in finite samples. However, in the nonzero-initial-value case, the CSSE is not equal to the MLE. See Harvey (1993)

and Box et al. (2013) for the details about properties of CSSE in an invertible process.

3 Main Result

In this section we derive the asymptotic distribution of the CSSE. First, we show consistency of the CSSE in the following

theorem.

Theorem 1. Under Assumptions 1 and 2, the CSSE ρ̂ is a consistent estimator.

This theorem shows that the CSSE satisfies consistency for invertible and noninvertible processes. Since ρT converges

to unity, the CSSE converges to 1 in probability. The minimizer defined in (2) satisfies the following first-order condi-

tion:

0 =
∂QT (ρ̂)

∂ρ
. (3)

Applying the mean value theorem to (3) yields

ρ̂− ρT =

(
d2

dρ2T
QT (ρ

+)

)−1(
d

dρT
QT (ρT )

)
, (4)

where ρ+ exists between ρT and ρ̂,

d

dρ
QT (ρ) =

2

T

T∑
t=1

(
t−1∑
l=0

ρlyt−l

)(
t−1∑
l=0

lρl−1yt−l

)
(5)

and

d2

dρ2
QT (ρ) =

2

T

T∑
t=1

(t−1∑
l=0

lρl−1yt−l

)2

+

(
t−1∑
l=0

ρlyt−l

)(
t−1∑
l=0

l(l − 1)ρl−2yt−l

) . (6)

Note that ρ̂ is consistent, so that ρ+ also converges to ρT in probability. The following lemmas give the asymptotic

results of the first and second derivatives of the objective functions given in (5) and (6), respectively.

Lemma 1. Under Assumptions 1 and 2, the asymptotic distribution of the normalized first derivative of the objective

function QT (ρ) given in (5) at the true value ρT is given by:

√
T (1− ρ2T )

d

dρT
QT (ρ)

∣∣∣∣
ρ=ρT

⇒ N(0, 4σ4).
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Lemma 2. Under Assumptions 1 and 2, the normalized second derivative of the objective function QT (ρ) given in (6)

at the true value ρT converges to a constant in probability. That is,

(1− ρ2T )
d2

dρ2T
QT (ρ)

∣∣∣∣
ρ=ρT

→p 2σ2.

The following corollary is immediately given by Lemma 2 and the continuous mapping theorem.

Corollary 1. Lemma 2 holds even if the second derivative of QT (ρ) is evaluated at ρ+, where ρ+ is a convex combination

of ρ̂ and ρT .

Theorem 2. Under Assumptions 1 and 2, the normalized CSSE by
√
T/(1− ρ2T ) converges in distribution to a standard

normal random variable. That is, √
T

1− ρ2T
(ρ̂− ρT ) ⇒ N(0, 1).

This theorem shows that the convergence order of the distance between the CSSE and the true value under moderate

deviation, ρ̂−ρT = Op((TkT )
−1/2), continuously changes from the order of the invertible process, Op(T

−1/2), to that of

the (near) noninvertible one, Op(T
−1). We can clarify that the moderate deviation process in MA(1) is the continuous

bridge between invertible and noninvertible processes. Since Theorem 2 also holds in the invertible process, we can

conclude that the moderate deviation and invertible processes share some asymptotic properties.

4 Concluding Remarks

In this paper, we give the asymptotic distribution of the CSSE in the MA(1) model under moderate deviation. The

fact that the convergence rate continuously changes from the invertible process to the unit root one means that the

continuous bridge property of moderate deviation can be observed in the MA(1) process like the AR process.

Our work is useful for developing an AR unit root test for the ARIMA model when the largest root of MA is close to

unity. Although Ng and Perron (2001) has dealt with the special case where kT =
√
T , our results should be applicable

for more general cases by using a generalized least squares (GLS) technique. Such an analysis will be presented in future

work.
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Appendix

For derivation of the asymptotic properties, we prove the following preliminary Lemma 1 on the asymptotic order of

the coefficient power series.

Lemma A 1. The following relations hold under Assumption 2 as T → ∞.

(a) For all a > 0, b > 0,

T aρbTT = o(1).

(b)

1

Tk3T

T∑
t=1

t−1∑
l=0

2l(2l − 1)ρ2l−2
T =

1

c3
+ o(1).

Proof of Lemma A1

(a) Taking logarithms and usingy the Taylor expansion for sufficiently large T , we can show that:

a log T + bT log ρT = a log T + bT log(1− c/kT ) = a log T − bcT/kT + o(Tk−1
T ) → −∞.■

(b)
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1

Tk3T

T∑
t=1

t−1∑
l=0

2l(2l − 1)ρ2l−2
T =

1

Tk3T

d2

dρ2T

T∑
t=1

t−1∑
l=0

ρ2lT

=
1

Tk3T

(
2T

(1− ρ2T )
2
+

8Tρ2T
(1− ρ2T )

3
− 2

(1− ρ2T )
2
− 8ρ2T

(1− ρ2T )
3
− 12ρ2T

(1− ρ2T )
3
− 24ρ4T

(1− ρ2T )
4

)
+ o(1)

= 1/c3 + o(1),

where the second last equality holds by (a) of Lemma A1. ■.

Proof of Theorem 1

The definition of the CSSE in equation (2) implies the following inequality:

P (QT (ρ̂) ≤ QT (ρT )) = 1.

The left-hand side is also bounded above by:

P (QT (ρ̂) ≤ QT (ρT ) and ρ̂ ∈ ΘT ) + P (QT (ρ̂) ≤ QT (ρT ) and ρ̂ /∈ ΘT ) ≤ P (ρ̂ ∈ ΘT ) + P (QT (ρ̂) ≤ QT (ρT ) and ρ̂ /∈ ΘT )

for all open interval ΘT in [−1, 1]. Without loss of generality, we assume that ΘT = {ρ||ρ− ρT | < c∗, c∗ > 0} ∩ [−1, 1],

where c∗ is an arbitrary positive constant. Consistency of ρ̂ is implied by proving P (QT (ρ̂) ≤ QT (ρT ) and ρ̂ /∈ ΘT ) → 0.

Since the weak law of large numbers implies that:

QT (ρT ) =
1

T

T∑
t=1

(
t−1∑
l=0

ρlT yt−l

)2

=
1

T

T∑
t=1

ϵ2t →p σ2,

it is sufficient to show that

P

(
min
ρ/∈ΘT

1

σ2
QT (ρ) > 1

)
→ 1. (A.7)

Without loss of generality, we assume that σ2 = 1. For all ρ /∈ ΘT , we can obtain

t−1∑
l=0

ρlyt−l = ϵt +
t−2∑
l=0

ρl(ρ− ρT )
l+1ϵt−1−l.

Consider the case where ρ < 0. Since (ρ − ρT ) < −1 for sufficiently large T , QT (ρ) diverges with a exponential order.
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This shows (A.7). We consider the case where ρ ≥ 0. Then, the objective function Q(ρ) can be written as:

QT (ρ) = 1 +
2

T

T∑
t=2

ϵt

t−2∑
l=0

ρl(ρ− ρT )
l+1ϵt−1−l +

1

T

T∑
t=2

(
t−2∑
l=0

ρl(ρ− ρT )
l+1ϵt−1−l

)2

+ op(1). (A.8)

Now, we show that the second term is asymptotically negligible and the third term is bounded below by a positive

constant in probability. First, we consider the second term. By applying Chebyshev’s inequality, if we show that the

expectation of the squared second term converges to 0, the second term converges in probability to 0. The expectation

of the squared second term is given by:

1

T 2

T∑
s=2

T∑
t=2

s−2∑
j=0

t−2∑
l=0

ρl+j(ρ− ρT )
l+j+2E (ϵsϵtϵt−1−lϵs−1−j) =

(ρ− ρT )
2

T 2

T∑
t=2

t−2∑
l=0

ρ2l(ρ− ρT )
2l

=
(ρ− ρT )

2

T 2

T∑
t=2

1− ρ2(t−1)(ρ− ρT )
2(t−1)

1− ρ2(ρ− ρT )2

<
1

T

1

1− ρ2(ρ− ρT )2
<

1

T

1

1− ρ2
≤ 1

T

1

1− c∗2
= O(T−1).

Thus, the second term asymptotically converges in probability to 0. We can also show that the third term is bounded

below by c∗2 in the limit such that:

1

T

T∑
t=2

(
t−2∑
l=0

ρl(ρ− ρT )
l+1ϵt−1−l

)2

=
1

T

T∑
t=2

(
(ρ− ρT )

2ϵ2t−1 + 2(ρ− ρT )ϵt−1

t−2∑
l=1

ρl(ρ− ρT )
l+1ϵt−1−l

+

(
t−2∑
l=1

ρl(ρ− ρT )
l+1ϵt−1−l

)2)

≥ 1

T

T∑
t=2

(
(ρ− ρT )

2ϵ2t−1 + 2(ρ− ρT )ϵt−1

t−2∑
l=1

ρl(ρ− ρT )
l+1ϵt−1−l

)

≥ c∗2

T

T∑
t=2

ϵ2t−1 + op(1) →p c∗2 > 0.

Therefore, we obtain the required result. ■

Proof of Lemma 1
∑t−1

l=0 ρ
l
T yt−l and

∑t−1
l=0 lρ

l−1
T yt−l can be written such as:

t−1∑
l=0

ρlT yt−l = (ϵt − ρT ϵt−1) + (ρT ϵt−1 − ρ2T ϵt−2) + · · ·+ ρt−1
T ϵ1 = ϵt (A.9)
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and

t−1∑
l=0

lρl−1
T yt−l = yt−1 + 2ρT yt−2 + · · ·+ (t− 1)ρt−2

T y1

= (ϵt−1 − ρT ϵt−2) + 2ρT (ϵt−2 − ρT ϵt−3) + · · ·+ (t− 1)ρt−2
T ϵ1

= ϵt−1 + ρT ϵt−2 + · · ·+ ρt−2
T ϵ1

= xt−1 = ρTxt−2 + ϵt−1. (A.10)

From (A.10), note that {xt} follows the moderate deviation AR(1) process. By substituting (A.9) and (A.10) into (5),

the first derivative of the CSS objective function can be represented as

∂QT (ρT )

∂ρT
= 2

T∑
t=1

ϵtxt−1. (A.11)

By applying (b) in Phillips and Magdalinos (2007) or Lemma 1 in Giraitis and Phillips (2006) to (A.11), we obtain the

required result. ■

Proof of Lemma 2 The first term of (1− ρ2T )d
2/dρ2QT (ρ) can be expressed as

(1− ρ2T )
2

T

T∑
t=2

x2
t−1, (A.12)

Applying Lemma 2 of Giraitis and Phillips (2006) yields that the right-hand side of (A.12) converges in probability to

2σ2 . Thus, it is enough to show that the second term of (1−ρ2T )d
2/dρ2QT (ρ) is asymptotically negligible. Since

t−1∑
l=0

l(l − 1)ρl−2
T yt−l = 2yt−2 + 6ρT yt−3 + 12ρ2T yt−4 + · · ·+ (t− 1)(t− 2)ρt−3

T y1

= 2 [ϵt−2 + 2ρT ϵt−3 + · · ·+ (t− 2)ϵ1]

= 2
l=t−1∑
l=2

(l − 1)ρl−2
T ϵt−l,

the second term is expressed by the following equation:

2(1− ρ2T )

T

T∑
t=1

(
t−1∑
l=0

ρlT yt−l

)(
t−1∑
l=0

l(l − 1)ρl−2yt−l

)
=

4(1− ρ2T )

T

T∑
t=1

ϵt

t−1∑
l=2

(l − 1)ρl−2
T ϵt−l. (A.13)
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To prove this Lemma, it is sufficient to show that the variance of (A.13) converges to 0 like the proof of Theorem 1 by

Chebyshev’s inequality. The expectation of the squares of the second term is given by:

16(1− ρ2T )
2

T 2

T∑
t=1

T∑
s=1

t−1∑
l=2

t−1∑
k=2

(l − 1)(k − 1)ρl+k−4
T E (ϵtϵsϵt−lϵs−k) =

16(1− ρ2T )
2σ4

T 2

T∑
t=1

t−1∑
l=2

(l − 1)2ρ
2(l−2)
T .

Thus, the required result can be obtained by applying Lemma A1 (b) to the above equation. ■

Proof of Theorem 2

Applying Lemmas 1 and 2, corollary 1 and the continuous mapping theorem to (4) immediately yields Theorem 2.

■
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