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Abstract

This study proposes constructing a confidence set for the date of a one-time structural
change using a point optimal test. Following Elliott and Müller (2007), we first construct
a test for the break date that maximizes the weighted average of the power function.
The confidence set is then obtained by inverting the test statistic. We carefully choose
the weights and show by Monte Carlo simulations that the confidence set based on our
method has a relatively accurate coverage rate, while the length of our confidence set is
significantly shorter than the lengths proposed in the literature.
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1. Introduction

This study proposes constructing a confidence set for the break date in linear time series

models with a one-time structural change. A frequently used method to construct a confidence

set for some parameter is use of the asymptotic distribution of the estimator of that parameter.

In the case of structural change, it is known that the distribution of the break point estimator

depends on the true process of the error term even asymptotically when the magnitude of

the break is fixed, and hence, it is tedious to construct a confidence set in this case. To

overcome this problem, Bai (1994) assumed that the magnitude of the break shrinks to zero

at a rate slower than T−1/2 and derived the limiting distribution of the break point estimator

in models with a mean shift. Based on the shrinking shift technique, Bai (1997) further

investigated the break point estimator in linear regression models with a one-time break. In

addition, multiple breaks were considered by Bai and Perron (1998) for linear regressions, by

Bai (2000) for vector autoregressions, by Qu and Perron (2007) for general linear multivariate

models, by Boldea Hall and Han (2012) and Perron and Yamamoto (2014) for models with

endogenous regressors, and by Boldea and Hall (2013) for nonlinear regressions.

Although the limiting distributions derived in these studies can be used to construct the

confidence intervals for the break date(s), Elliott and Müller (2007) showed that the coverage

rate based on the break point estimator tends to be too liberal for the small size of the break.

That is, the empirical coverage rate is much smaller than the nominal one. To overcome

this problem, Elliott and Müller (2007) proposed constructing the confidence set by inverting

a test for the break point. For example, we first test the null hypothesis that the break

date is given by, say, T1, and if the null hypothesis is accepted, then T1 is included in the

confidence set; otherwise it is excluded. Elliott and Müller (2007) showed by simulations

that the coverage rate of their confidence set is close to the nominal one for various data

generating processes.

Although the correct coverage rate is a desirable property of their method, the average

length of their confidence set becomes too large in some cases, as pointed out by Chang and

Perron (2013), so that no useful information about the break date is included in the confidence

set. The main reason for the large confidence set is that long-run variance is estimated with
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the break date under the null hypothesis. In this case, the usual kernel-based estimation of

the long-run variance works well if the maintained break date is the same as the true one.

However, if the maintained break date is different from the true one, then the estimation

residuals either before or after the maintained break date include a one-time break. As a

result, the long-run variance estimator tends to be larger than the true one and the test

statistic cannot reject the null hypothesis, so that such a maintained break date tends to

be included in the confidence set. To circumvent this problem, Yamamoto (2014) proposed

modifying the estimator of the long-run variance such that the break date is first estimated

by minimizing the sum of squared residuals and then the long-run variance is calculated using

this estimated break date. Yamamoto (2014) showed that his method leads to an empirical

size close to the nominal size, while the confidence set becomes smaller than that based on

Elliott and Müller (2007).

In this study, we further extend the methods of Elliott and Müller (2007) and Yamamoto

(2014) and construct the confidence set based on an optimal test. Our goal is to construct

a confidence set that is as small as possible with a good coverage rate. We first derive a

test that maximizes the weighted average power as considered by Elliott and Müller (2007),

and then we choose the weighting function carefully. The confidence set can be obtained

by inverting the optimal test. We show that our confidence set has a desirable theoretical

property while in finite samples, it is smaller than those based on the existing literature,

including Bai’s (1997) method.

The rest of this paper is organized as follows. Section 2 introduces our model and as-

sumptions and we derive an optimal test under restricted assumptions. We propose several

versions of an optimal test and investigate their asymptotic properties. In Section 3, we relax

the assumptions and explain how to construct the confidence set in practical analysis. The

size of the confidence set is discussed in Section 4 using the limit function of the optimal test

under the alternative. The finite sample property is investigated in Section 5 while Section 6

concludes the paper.

2. Optimal Test for the Break Date

2.1. Model and assumptions
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We consider the following linear regression model with a one-time structural change:

yt = x′tβ + xλ0′
t δ + z′tγ + ut, (t = 1, 2, · · · , T ) (1)

where xt and zt are k and p dimensional regressors, respectively, xλ0
t ≡ 1(t > [λ0T ])xt with

1(·) being an indicator function, λ0 is a true break fraction, [a] denotes the largest integer less

than a, ut is an error term, and β, δ, and γ are k, k, and p dimensional unknown coefficients,

respectively. We denote the true break date as T0 ≡ [λ0T ]. In this model, the coefficient of

xt changes from β to β + δ at t = T0 + 1 whereas the coefficient associated with zt, γ, is

stable. In vector form, we denote (1) as

y = Xβ +Xλ0δ + Zγ + u. (2)

We construct a confidence set for the break date T0 by inverting a test for the break date.

In this case, we expect that the confidence set based on an efficient test should be smaller

than that based on an inefficient test, and thus, at first, we derive an optimal test following

Elliott and Müller (2007). To derive an optimal test, we make the following assumption:

Assumption 1 (i) {ut} ∼ i.i.d.N(0, σ2).

(ii) The regressors {xt} and {zt} are independent of {ut}.
(iii) The following weak law of large numbers (WLLN) and the functional central limit theorem

(FCLT) hold for qt = [x′t, z′t]′:

1

T

[rT ]∑
t=1

qtq
′
t

p−→ rΣ1 uniformly in 0 ≤ r ≤ λ0, (3)

1

T

[rT ]∑
t=T0+1

qtq
′
t

p−→ (r − λ0)Σ2 uniformly in λ0 < r ≤ 1, (4)

1√
T

[rT ]∑
t=1

xtut ⇒ σΣ
1/2
xx,1B(r) for 0 ≤ r ≤ λ0, (5)

1√
T

[rT ]∑
t=T0+1

xtut ⇒ σΣ
1/2
xx,2 (B(r)−B(λ0)) for λ0 < r ≤ 1, (6)
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where Σ1 and Σ2 are symmetric and positive definite matrices partitioned as Σij,1 and Σij,2

for i, j = x or z conformably with qt, respectively, B(·) is a k dimensional standard Brown-

ian motion, and
p−→ and ⇒ denote convergence in probability and weak convergence of the

associated probability measures, respectively.

(iv) sup
0≤r≤1

1√
T

[rT ]∑
t=1

ztut = Op(1).

(v) 0 < λ ≤ λ0 ≤ λ < 1.

Assumptions 1(i) and (ii) are supposed to derive an optimal test, but are not required

to derive the limiting distribution. Assumptions 1(iii)–(v) are standard in regression models

with a one-time break, except that the variance in (5) and (6) is relatively simple. Note that

a change in variance of the regressors is allowed by (3) and (4). Assumptions 1(i)–(iii) are

restrictive but are made in order to derive an optimal test and its limiting distribution; later,

we relax them for practical analysis.

2.2. General form of the optimal test

Suppose that our interest is whether λ1 is the true break fraction, and consider the following

simple testing problem:

HN : λ0 = λ1 vs. HA : λ0 = λ2. (7)

The corresponding dates are denoted as T1 ≡ [λ1T ] and T2 ≡ [λ2T ], respectively.

Following Elliott and Müller (2007), we consider a class of location invariant tests. First,

we express model (1) as

yt = x′tβ + xλ0′
t δ + z′tγ + ut

= x′tβ + xλ1′
t δ + z′tγ + uλ01

t (8)

= wλ1′
t θ + uλ01

t ,

where uλ01
t = ut + rλ01′

t δ with rλ01
t = xλ0

t − xλ1
t , wλ1

t = [x′t, x
λ1′
t , z′t]′ and θ = [β′, δ′, γ′]′. In

vector form,

y = Xβ +Xλ1δ + Zγ + uλ01 (9)

= W λ1θ + uλ01 , (10)
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where W λ1 = [X,Xλ1 , Z] and uλ01 = u + Rλ01δ with Rλ01 = Xλ0 −Xλ1 . As the regression

model is expressed as (9), we consider the group of transformations given by

y → y +Xb+Xλ1d+ Zg, (β, δ, γ) → (β + b, δ + d, γ + g), (11)

where b, d and g are k, k and p dimensional vectors, respectively. Let Mw1 = IT −
W λ1

(
W λ1′W λ1

)−1
W λ1′. Then, there exists a T × (T − 2k − p) matrix P λ1 such that

P λ1′P λ1 = IT−2k−p, P
λ1P λ1′ = Mw1 and P λ1′W λ1 = 0. Note that, from (10), P λ1′y can

be expressed as

P λ1′y|X,Z = P λ1′u+ P λ1′Rλ01δ|X,Z ∼ N(P λ1′Rλ01δ, σ2IT−2k−p), (12)

and we construct an optimal test based on P λ1′y. The advantage of considering P λ1′y is that

the test statistic becomes invariant to the magnitude of the break given by δ under the null

hypothesis.

Let fT (y|X,Z;HN ) and fT (y|X,Z;HA) be the conditional probability density functions

when HN and HA, respectively, are true and ϕ be a test for (7). Following Andrews and

Ploberger (1994), Andrews, Lee, and Ploberger (1996), and Elliott and Müller (2006, 2007),

we consider maximizing the weighted average of power over δ and λ2 given by∫ ∫
P (ϕ rejects HN |δ, λ2) dQλ2(δ)dJ(λ2) =

∫
ϕ(y)

[∫ ∫
fT (y|X,Z;HA)dQλ2(δ)dJ(λ2)

]
dy,

where Qλ2(δ) and J(λ2) are non-negative measures on R
k and [λ, λ], respectively. As the term

in the square brackets equals fT (y|X,Z;HN ) under the null hypothesis, the testing problem

can be interpreted such that the density under the null hypothesis is given by fT (y|X,Z;HN )

while it is
∫ ∫

fT (y|X,Z;HA)dQλ2(δ)dJ(λ2) under the alternative. Then, according to the

Neyman-Pearson lemma, the most powerful test rejects the null hypothesis when

L̃RT (λ1) ≡
∫ ∫

LRT (λ1, λ2, δ)dQλ2(δ)dJ(λ2) > a

for some value a, where LRT (λ1, λ2, δ) = fT (y|X,Z;HA)/fT (y|X,Z;HN ).

Following the literature, we suppose as the weighting function for δ a normal distribution

given by

Qλ2(δ) ∼ N

(
0,
cσ2

T
Σ−1
xx,j

)
, (13)
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where c is a positive constant and j = 1 for λ2 < λ0 and 2 for λ0 < λ2. Note that the

local-to-zero variance implies that δ = Op(T
−1/2), which corresponds to the local alternative

with non-trivial power.

From (12), noting that P λ1′y|X,Z ∼ N(0, σ2IT−2k−p) under the null hypothesis (λ0 = λ1)

and N(P λ1′Rλ21δ, σ2IT−2K−p) under the alternative (λ0 = λ2), we have LRT (λ1, λ2, δ) =

exp
(

1
σ2 y

′Mw1R
λ21δ − 1

2σ2 δ
′Rλ21′Mw1R

λ21δ
)
. Then, using (13), we can show that∫

LRT (λ1, λ2, δ)dQλ2(δ)

=

∫
(2π)−k/2

∣∣∣∣cσ2T Σ−1
xx,j

∣∣∣∣−1/2

exp

(
1

σ2
y′Mw1R

λ21δ − 1

2σ2
δ′Rλ21′Mw1R

λ21δ − T

2cσ2
δ′Σxx,jδ

)
dδ

=
∣∣∣Ik + c

T
Σ−1
xx,jR

λ21′Mw1R
λ21

∣∣∣−1/2

× exp

[
c

2σ2T
y′Mw1R

λ21

(
Σxx,j +

c

T
Rλ21′Mw1R

λ21

)−1
Rλ21′Mw1y

]
, (14)

where the last equality holds by completing the square in the argument of the exponential

and using the fact that the integral of a normal density equals one.

The following theorem gives the limiting distribution of L̃RT (λ1).

Theorem 1 Suppose Assumption 1 holds. Then, under the null hypothesis HN (λ0 = λ1),

L̃RT (λ1) ⇒ L̃R(λ1) (15)

≡
∫

(1 + cω(λ1, λ2))
−k/2 exp

[
c

2(1 + cω(λ1, λ2))
G(λ1, λ2)

′G(λ1, λ2)
]
dJ(λ2),

where

ω(λ1, λ2) =

{
λ2(λ1−λ2)

λ1
: λ2 < λ1

(λ2−λ1)(1−λ2)
1−λ1

: λ1 < λ2,

G(λ1, λ2) =

{
B(λ1)−B(λ2)− λ1−λ2

λ1
B(λ1) : λ2 < λ1

B(λ1)−B(λ2) +
λ2−λ1
1−λ1

(B(1)−B(λ1)) : λ1 < λ2.

In principle, the confidence set for the break date can be constructed by inverting the

above-mentioned test; we test for the null hypothesis of T0 = T1 using the above-mentioned

optimal test and include T1 in the confidence set if the null hypothesis is accepted; otherwise

it is not included. We perform this procedure for T1 from T ≡ [λT ] to T ≡ [λT ]. However, we

need to deal with the localizing parameter c and the weighting function J(λ2) to obtain the

critical values because the limiting distribution L̃R(λ1) is determined by both c and J(λ2).
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2.3. Specific form of the optimal test

A possible solution for dealing with c is to allow c → 0 or c → ∞, as proposed by Andrews

and Ploberger (1994). In terms of the limiting distribution (15), these techniques lead to the

well-known average-type and exponential-type forms given by

lim
c→0

2

c

(
L̃R(λ1)− 1

)
=

∫
G(λ1, λ2)

′G(λ1, λ2)dJ(λ2), (16)

lim
c→∞ log(1 + c2)k/2L̃R(λ1)

= log

∫
λ2∈Λε

ω(λ1, λ2)
−k/2 exp

[
1

2ω(λ1, λ2)
G(λ1, λ2)

′G(λ1, λ2)
]
dJ(λ2), (17)

where in (17), the integral with respect to J(λ2) is taken except for the neighborhood of λ1,

which is given by Λε ≡ {λ2 : λ ≤ λ2 < λ1 − ε, λ1 + ε < λ2 ≤ λ2}, to avoid the explosive

behavior of ω(λ1, λ2)
−k/2 around λ1 	 λ2. The exclusion of the neighborhood of λ1 is not

expected to have a serious effect on the test as long as ε is small, because λ1 and λ2 would

be indistinguishable in finite samples if they were too close.

If we choose a uniform measure on [λ, λ], (16) and (17) become

avg-LR(λ1) ≡
∫ λ

λ
G(λ1, λ2)

′G(λ1, λ2)dλ2, (18)

exp-LR(λ1) ≡ log

∫
λ2∈Λε

ω(λ1, λ2)
−k/2 exp

[
1

2ω(λ1, λ2)
G(λ1, λ2)

′G(λ1, λ2)
]
dλ2. (19)

The other possibility to make the test independent of c is to focus only on the stochas-

tic part given by G(λ1, λ2)
′G(λ1, λ2). In this case, we may consider the sup-type test, as

considered in Andrews (1993), given by

sup-LR(λ1) ≡ sup
λ≤λ2≤λ

G(λ1, λ2)
′G(λ1, λ2). (20)

For the sup-type test, we can also modify (20) to the weighted version as considered

in Bai and Perron (1998). They pointed out that the marginal p values change depending

on the given alternative and the test may lose power against some alternative. To avoid

this problem, we follow Bai and Perron (1998) and choose the weights for λ2 such that
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the marginal p values become the same for all possible λ2. In our case, it is easy to see that

G(λ1, λ2)
′G(λ1, λ2)/ω(λ1, λ2) ∼ χ2

k for all λ2 and thus we also consider the following weighted

sup-type test:

Wsup-LR(λ1) ≡ sup
λ2∈Λε

1

ω(λ1, λ2)
G(λ1, λ2)

′G(λ1, λ2). (21)

However, our preliminary simulation shows that (21) performs similarly to (20) and there is

no significance difference. Hence, we do not discuss the weighted version of the test in the

rest of the paper.2

Before proposing the test statistics corresponding to the limit expressions, we relax As-

sumption 1 to accommodate more general models.

3. Construction of the Confidence Set

3.1. Test statistics for the break date

In Section 2, we derived several versions of the optimal test in asymptotic form but Assump-

tion 1 is too restrictive for practical analysis. In this section, we no longer assume normality

in {ut}, and serial correlation and heteroskedasticity are allowed in the error term. More

precisely, we discard Assumptions 1(i) and (ii), and the FCLT in (5) and (6) are replaced by

1√
T

[rT ]∑
t=1

xtut ⇒ Ω
1/2
1 B(r) for 0 ≤ r ≤ λ0, (22)

1√
T

[rT ]∑
t=T0+1

xtut ⇒ Ω
1/2
2 (B(r)−B(λ0)) for λ0 < r ≤ 1, (23)

where Ω1 and Ω2 are symmetric and positive definite matrices.

In accordance with the generalization given by (22) and (23), we construct the test statis-

tics corresponding to the limiting expressions (18)–(20). Let

FT2(T1) =

⎧⎨⎩ F1,T2(T1) ≡ 1
T

(∑T1
t=T2+1 xtût

)′
Ω̂−1
1

(∑T1
t=T2+1 xtût

)
: T2 < T1 (λ2 < λ1)

F2,T2(T1) ≡ 1
T

(∑T2
t=T1+1 xtût

)′
Ω̂−1
2

(∑T2
t=T1+1 xtût

)
: T1 < T2 (λ1 < λ2),

(24)

2Similarly, we can consider the weighted versions of the average- and exponential-type tests but again, their
performance is very similar to that of the unweighted versions.
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where ût are the regression residuals of yt on xt, x
λ1
t , and zt, FT2(T1) = 0 for T2 = T1, and

Ω̂1 and Ω̂2 are consistent estimators of Ω1 and Ω2, respectively. The estimation of long-run

variance is explained later. Corresponding to Λε, we define

Γε ≡
{
T2 : T ≤ T2 ≤ T1 − Tε − 1, T1 + Tε + 1 ≤ T2 ≤ T

}
,

where Tε = [εT ]. Note that when T ≤ T1 ≤ T + Tε, the set {T2 : T ≤ T2 ≤ T1 − Tε − 1} is

empty and thus Γε ≡
{
T2 : T1 + Tε + 1 ≤ T2 ≤ T

}
in this case. Similarly, we should carefully

treat the case in which T − Tε ≤ T1 ≤ T . Then, we propose the following test statistics:

avg-LRT (T1) =
1

T ∗

T∑
T2=T

FT2(T1), (25)

exp-LRT (T1) = log

⎡⎣ 1

T ∗∗
∑

T2∈Γε

ω(λ1, λ2)
−k/2 exp

(
1

2ω(λ1, λ2)
FT2(T1)

)⎤⎦ , (26)

sup-LRT (T1) = max
T≤T2≤T

FT2(T1), (27)

where T ∗ = T − T + 1 and T ∗∗ is the number of observations included in Γε.

Theorem 2 Under Assumptions 1 (iii)–(v) with (5) and (6) replaced by (22) and (23), re-

spectively, the avg-LRT (T1), exp-LRT (T1), and sup-LRT (T1) converge to the corresponding

distributions given by (18)–(20), respectively, under the null hypothesis.

Note that the limiting distributions depend not only on k, λ, λ, and the trimming param-

eter ε but also on the maintained break fraction λ1 under the null hypothesis. As a result,

the table for critical values becomes huge and is inconvenient for practical analysis. To avoid

this, we conduct the response surface regressions.

Remark 1 The test statistic proposed by Elliott and Müller (2007) can be expressed as

UT (T1) =
T

T 2
1

T1∑
T2=1

F1,T2(T1) +
T

(T − T1)2

T∑
T2=T1+1

F2,T2(T1)

and then their test can be interpreted as a weighted average-type test with weights given by

T/T 2
1 for t < T1 and T/(T − T1)

2 for t > T1. These weights are convenient for practical
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analysis because the null limiting distribution of UT (T1) does not depend on λ1. However, as

these weights are not chosen by taking the power property into account, the test leads to a

large confidence set as seen in the simulation section.

As the limiting distributions are nonstandard, we approximate the critical values via

Monte Carlo simulations. We choose the trimming parameter ε as 0.05 and set λ = 1− λ =

ε.3 For a given value of λ1, the critical values are obtained from 50,000 replications by

approximating a k dimensional Brownian motion by the partial sums from 1,000 normal

distributions. We obtain these critical values for λ1 ranging from λ to λ step by 0.01. As a

result, we obtain 100(1− 2ε) + 1 critical values for one test statistic with a given number of

regressors k, ε, and the significance level. Next, we derive the response surfaces of the critical

values as a function of λ1, which, after trying various kinds of functions of λ1, are given by

cval(λ1|k, ε = 0.05, significance level) = a0 + a−1 × 1

d+ 1
+ a1 × d+ a2 × d2 + a3 × d3

for the sup-LRT and avg-LRT , where d = |λ1 − 0.5|.
On the other hand, for the exp-LRT , because the possible break fractions λ2 within

|λ1−λ2| ≤ ε are trimmed to construct the test statistic, the distribution for a given λ1 is rather

different depending on whether λ1 is in the middle of possible fractions (λ+ ε < λ1 < λ− ε)

or close to either end point (λ ≤ λ1 ≤ λ + ε or λ − ε ≤ λ1 ≤ λ). More precisely, when

λ ≤ λ1 ≤ λ + ε, all λ2 between λ and λ1 are trimmed and the test statistic is constructed

using FT2(T1) only for T2 > T1 as follows:

exp-LRT (T1) = log

⎡⎣ 1

T − T1 − Tε

T∑
T2=T1+Tε+1

ω(λ1, λ2)
−k/2 exp

(
1

2ω(λ1, λ2)
FT2(T1)

)⎤⎦ .
Similarly, when λ− ε ≤ λ1 ≤ λ,

exp-LRT (T1) = log

⎡⎣ 1

T1 − T − Tε

T1−Tε−1∑
T2=T

ω(λ1, λ2)
−k/2 exp

(
1

2ω(λ1, λ2)
FT2(T1)

)⎤⎦ .

3In addition, we obtained the critical values for ε = 0.1 but do not report them to save space.
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On the other hand, when λ+ ε < λ1 < λ− ε, the exponential-type test becomes

exp-LRT (T1)

= log

⎡⎣ 1

T − T − 2Tε

⎛⎝T1−Tε−1∑
T2=T

+

T∑
T2=T1+Tε+1

⎞⎠ω(λ1, λ2)
−k/2 exp

(
1

2ω(λ1, λ2)
FT2(T1)

)⎤⎦ .
Therefore, the response surface regression is conducted depending on whether λ1 is near the

boundary, as follows:

cval(λ1|k, ε = 0.05, significance level)

= I(d < 0.4)×
(
a0 + a−1 × 1

d+ 1
+ a1 × d+ a2 × d2 + a3 × d3

)
+I(d ≥ 0.4)× (b0 + b1 × d+ b2 × d2 + b3 × d3)

for the exp-LRT .

Note that the coefficients are different depending on the test statistics and they are

summarized in Tables 1a and 1b for 90 and 95 percentiles, respectively. In all cases, the

approximation error relative to the true critical value is less than 0.05.

3.2. Estimation of long-run variance

To construct the test statistics, we need to obtain Ω̂1 and Ω̂2, the consistent estimators of

long-run variance. Although Elliott and Müller (2007) proposed consistent estimators, the

coverage rate of the break date based on their method tends to become very large as pointed

out by Chang and Perron (2013) and Yamamoto (2014). To circumvent this problem, we

follow the method proposed by Yamamoto (2014), which is given as follows:

1. Estimate the break date by minimizing the sum of squared residuals based on model

(8). Denote the break date estimator as T̂b.

T̂b = argmin
T1

T∑
t=1

(
yt − x′tβ − xλ1′

t δ − z′tγ
)2
.

2. Regress yt on xt, x
λ1
t , xλ̂b

t and zt where λ̂b = T̂b/T and denote the regression residuals

as ũt. Note that xλ̂b
t is omitted from the regression when |T1 − T̂b| < k.
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3. Estimate the long-run variance Ω1 using Xtũt for t = 1, · · · , T1. Similarly, estimate Ω2

using Xtũt for t = T1 + 1, · · · , T . Denote the estimators as Ω̃1 and Ω̃2.

Yamamoto (2014) showed that these long-run variance estimators are consistent under

both the null and the fixed alternative.

Proposition 1 The long-run variance estimators, Ω̃1 and Ω̃2 constructed using the above-

mentioned explanation, are consistent estimators of Ω1 and Ω2, respectively, under both the

null and fixed alternative hypotheses.

Using Ω̃1 and Ω̃2, we construct FT2(T1) defined in (24). Finally, the test statistics are

constructed according to expressions (25)–(27) using FT2(T1). Then, the confidence set for

the break date is constructed as follows:

1. For a given possible break date T1, construct the test statistic sup-LRT (T1), avg-LRT (T1),

or exp-LRT (T1).

2. If the null hypothesis of T0 = T1 is accepted at the significance level α, then include T1

in the confidence set; otherwise exclude it.

3. Continue 1–2 for {T1 : T ≤ T1 ≤ T}.

By the above-mentioned procedure, we obtain the confidence set for the break date at

the (1− α) confidence level.

4. Asymptotic Properties under the Alternative

In this section, we investigate the asymptotic property of the confidence set based on the

optimal test proposed in Section 3. Because the confidence set is constructed by inverting

the test statistic, we see that the more powerful the test statistic is, the smaller the confidence

set that can be constructed. That is, the investigation of the power of the test is equivalent

to the assessment of the size of the confidence set.

Note that all the optimal tests are functions of FT2(T1) defined in (24), and thus, we derive

the limiting distribution of FT2(T1) under the alternative. We assume that the regressors are

13



homogeneous through the sample period to simplify the expression. Note that under the

alternative, T0 does not necessarily equal T2 (λ0 �= λ2 in general).

Theorem 3 Suppose that Σ1 = Σ2 = Σ, Ω1 = Ω2 = Ω, Ω̂1
p−→ Ω and Ω̂2

p−→ Ω. Then,

under the alternative hypothesis, λ0 �= λ1, we have

1

T
FT2(T1)

p−→ ψ(λ0, λ1, λ2)× δ′ΣxxΩ
−1Σxxδ, (28)

where for λ0 < λ1,

ψ(λ0, λ1, λ2) =

⎧⎪⎪⎨⎪⎪⎩
λ2
2(λ1−λ0)2

λ2
1

: λ2 ≤ λ0 < λ1
λ2
0(λ1−λ2)2

λ2
1

: λ0 ≤ λ2 < λ1

0 : λ0 < λ1 < λ2

,

and for λ1 < λ0,

ψ(λ0, λ1, λ2) =

⎧⎪⎨⎪⎩
0 : λ2 < λ1 < λ0

(λ2−λ1)2(1−λ0)2

(1−λ1)2
: λ1 < λ2 ≤ λ0

(λ0−λ1)2(1−λ2)2

(1−λ1)2
: λ1 < λ0 < λ2

.

Note that, as proved by Yamamoto (2014), Ω̃1 and Ω̃2 are consistent estimators of Ω (see

Proposition 1).

From Theorem 3, we find the asymptotic properties of the confidence sets based on the

optimal tests. First, all the optimal tests are consistent as T → ∞, and thus, we expect

that the confidence sets obtained by inverting the optimal tests become smaller for the fixed

magnitude of the break as T goes to infinity. In addition, we see that because the test statistics

are asymptotically increasing functions of ‖δ‖, the larger the magnitude of the break is, the

smaller the confidence sets that are obtained. Regarding the location of the break fraction,

if the true break fraction λ0 is smaller than the fraction under the maintained hypothesis λ1,

then FT2(T1) for T2 > T1 does not contribute to the detection of the true break point. This is

a natural result because when the true break point T0 is located to the left of the maintained

hypothetical break point T1, the optimal tests should not detect the break point after T1. A

similar property is observed for the case in which λ1 < λ0.
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Furthermore, using expression (28), we obtain the probability limits of the sup-type and

the average-type tests by direct calculation given by

1

T
sup-LRT (T1)

p−→ sup
λ≤λ2≤λ

ψ(λ0, λ1, λ2) δ
′ΣxxΩ

−1Σxxδ

=

⎧⎨⎩
λ2
0(λ1−λ0)2

λ2
1

δ′ΣxxΩ
−1Σxxδ : λ0 < λ1

(λ0−λ1)2(1−λ0)2

(1−λ1)2
δ′ΣxxΩ

−1Σxxδ : λ1 < λ0
. (29)

and

1

T
avg-LRT (T1)

p−→
∫ λ

λ
ψ(λ0, λ1, λ2)dλ2 δ

′ΣxxΩ
−1Σxxδ

=

⎧⎨⎩
(λ1−λ0)2(λ2

0λ1−λ3)

3λ2
1

δ′ΣxxΩ
−1Σxxδ : λ0 < λ1

(λ0−λ1)2[(1−λ0)2(1−λ1)−(1−λ)3]
3(1−λ1)2

δ′ΣxxΩ
−1Σxxδ : λ1 < λ0

.(30)

For example, these functions are shown in Figure 1 as a function of λ0 when λ1 = 0.3,

λ = 0.05 and λ = 0.95. Note that, for λ0 < λ1, the limiting function (29) is maximized when

the true break fraction is located at λ1/2, the middle point between 0 and λ1. Intuitively,

this is because the information before and after the true break is balanced at this point (the

information after λ1 is not used in this case). On the other hand, for λ1 < λ0, the limit

function is maximized at λ0 = (1 + λ1)/2. A similar result is obtained for the average-type

test.

5. Finite Sample Performance

In this section, we investigate the finite sample properties of the confidence sets proposed in

the study. We consider six data generating processes (DGP) that are the same as in Elliott

and Müller (2007). The first four DGPs are based on

yt = 1 +
d√
T
I(t ≥ T0) + ut,

where d = 4, 8, 12 and 16. The error term {ut} is generated from i.i.d.N(0, 1) in the stan-

dard case (DGP1); a one-time structural change in variance is allowed in DGP2 such that

ut ∼ i.i.d.N(0, 1) for t ≤ T0 and i.i.d.N(0, 4) for t ≥ T0; DGP3 allows for autoregressive dis-

turbance and ut = 0.3ut−1 + εt with εt ∼ i.i.d.N(0, 0.49), while the moving average structure

is supposed in DGP4 as ut = εt − 0.3εt−1 with εt ∼ i.i.d.N(0, 1/0.49).
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In DGPs 5 and 6, a model with a partial structural change is investigated as given by

yt = 1 + xt +
d√
T
xtI(t > T0) + ut, where xt = 0.5xt−1 + ξt

with ξt ∼ i.i.d.N(0, 0.75). DGP5 supposes the spherical distribution as ut ∼ i.i.d.N(0, 1)

while conditional heteroskedasticity is allowed in DGP6 such that ut = |xt|εt where εt ∼
i.i.d.N(0, 0.333). Note that these six DGPs are designed so that the long-run variance Ω1

becomes equal to one.

As we usually do not have prior information about serial correlation and heteroskedasticity

in {ut}, we estimate the long-run variance using the quadratic spectral kernel with bandwidth

selected by the method proposed by Andrews (1991) for all kinds of DGPs. The sample sizes

considered are 100 and 300, the break fraction is set to 0.3, 0.5, and 0.7, and the confidence

level is 0.95 (the significance level for the tests is 0.05). The number of replications is 5,000

and all computations are conducted using the GAUSS matrix language.

Table 2a reports the coverage rates and the average lengths of the confidence sets when

λ0 = 0.5 and T = 100. The column “EM” corresponds to the result based on the method

by Elliott and Müller (2007), while “MEM” implies the modified EM method by Yamamoto

(2014) and “Bai” implies the confidence interval based on the asymptotic distribution of T̂b

by Bai (1997).4 In the standard case (DGP1), the coverage rate of EM is slightly greater

than the nominal level for any magnitude of the break, while Bai’s method results in an

overly liberal coverage rate for small d. On the other hand, the coverage rates of the modified

EM and our three methods are close to the nominal confidence level, although they tend

to be slightly liberal for small d. Regarding the average lengths of the confidence sets, the

MEM method successfully reduces the size of the confidence set compared to the original EM

method but the confidence set of the MEM method remains larger than that based on Bai’s

method. On the other hand, the confidence sets based on our methods are smaller than those

based on EM and MEM. Moreover, in some cases, they are almost the same as or smaller

than the confidence interval based on Bai’s method. For example, when d = 12, the length

of the confidence set based on Bai’s method is 0.168, whereas those based on the sup-type,

4For a fair comparison, we exclude the first and last 5% end points from the possible break points and the
trimmed version of the EM and MEM tests are considered using the simulated critical values.
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the average-type, and the exponential-type tests are 0.169, 0.163, and 0.138, respectively.

That is, even though Bai’s method leads to a liberal coverage rate, the sizes of the confidence

sets based on our methods are almost the same or smaller. This is a great advantage of our

methods over the existing ones because the coverage rates of our methods are close to the

nominal rate, while our confidence sets are at least as small as those based on the existing

methods and, in some cases, are smaller. This implies that the confidence sets based on our

methods are constructed more efficiently than those based on the other methods. For DGP2,

the coverages rates are similar to DGP1 for all methods but the confidence sets are larger

in DGP2 than in DGP1, which is expected because the variance of the error term becomes

larger after the break in DGP2.

In the case in which the error term is serially correlated, the positive serial correlation in

DGP3 makes the coverage rates smaller compared to the i.i.d. case for all methods except

that of Bai (1997), while the negative MA structure in the error term has the opposite effect

on the coverage rates (DGP4).

In the case of a partial structural change (DGPs 5 and 6), the EM method leads to a

conservative coverage rate while liberal coverage rates are obtained for the other methods.

When T = 300, the coverage rates of all the methods move closer to the nominal rate,

as is observed in Table 2b, while there is no large difference in the average lengths of the

confidence sets compared to the case when T = 100.

Tables 3a and 3b report the case when λ0 = 0.3.5 The relative performance is preserved

compared to the case when λ0 = 0.5.

To summarize, no method dominates another in terms of coverage rates; in some cases our

methods perform best but in other cases, the EM and MEM methods work better. However,

it seems that Bai’s method leads to an overly liberal coverage rate for small d, as pointed

out in the literature. On the other hand, our methods can reduce the average size of the

confidence sets compared to the other methods.

6. Conclusion

5The results when λ0 = 0.7 are similar to the case when λ0 = 0.3 and we omit the results.
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In this study, we proposed constructing the confidence set for the break date by inverting the

optimal test. By choosing the weight function carefully, we proposed three optimal tests: the

sup-type, the average-type and the exponential-type tests. By Monte Carlo simulations, we

found that the coverage rates based on the inversion of our optimal tests are comparable to

those based on the methods of Elliott and Müller (2007) and Yamamoto (2014) but are closer

to the nominal confidence level than that based on Bai’s (1997) method. On the other hand,

the confidence sets based on our tests dominate those based on the other methods in terms of

the average lengths, even when the coverage rates of those methods are similar. Considering

these results, our methods could play an important role in investigating statistical inferences

about break dates.

Appendix

Proof of Theorem 1: We first consider the case in which λ2 < λ1. Noting thatMw1 =Mw̃1

where Mw̃1 = W̃ λ1(W̃ λ1′W̃ λ1)−1W̃ λ1′ with W̃ λ1 = [(X − Xλ1), Xλ1 , Z], we have, by the

WLLN,

1

T
Rλ21′Rλ21 =

T1∑
t=T2+1

xtx
′
t

p−→ (λ1 − λ2)Σxx,1, (31)

1

T
Rλ21′W̃ λ1 =

⎡⎣ T1∑
t=T2+1

xtx
′
t, 0,

T1∑
t=T2+1

xtz
′
t

⎤⎦ p−→ (λ1 − λ2) [Σxx,1, 0,Σxz,1] , (32)

1

T
W̃ λ1′W̃ λ1

p−→
⎡⎣ λ1Σxx,1 0 λ1Σxz,1

0 (1− λ1)Σxx,2 (1− λ1)Σxz,2

λ1Σzx,1 (1− λ1)Σzx,2 λ1Σzz,1 + (1− λ1)Σzz,2

⎤⎦ . (33)

Then, using (31)–(33) and the standard matrix algebra, we have

1

T
Rλ21′Mw̃1R

λ21
p−→ λ2(λ1 − λ2)

λ1
Σxx,1, (34)

so that for the determinant in (14), we obtain∣∣∣Ik + c

T
Σ−1
xx,1R

λ21′Mw̃1R
λ21

∣∣∣−1/2 p−→
∣∣∣∣(1 + c

λ2(λ1 − λ2)

λ1

)
Ik

∣∣∣∣−1/2

= (1 + cω(λ1, λ2))
−k/2, (35)

where ω(λ1, λ2) is defined in Theorem (1).
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To derive the limiting distribution in the argument of the exponential term in (14), we

note that P λ1′y = P λ1′u under the null hypothesis of λ0 = λ1 (see also (12)), and thus,

Mw1y =Mw̃1y =Mw̃1u. Then, from (32), (33), and the FCLT, we have

1√
T
Rλ21′Mw1y =

1√
T
Rλ21′u−

(
1

T
Rλ21′W̃ λ1

)(
1

T
W̃ λ1′W̃ λ1

)−1 ( 1√
T
W̃ λ1u

)
⇒ σΣ

1/2
xx,1 (B(λ1)−B(λ2))− λ1 − λ2

λ1
σΣ

1/2
xx,1B(λ1)

= σΣ
1/2
xx,1G(λ1, λ2), (36)

where G(λ1, λ2) is defined in Theorem 1. Then, using (34) and (36), we can see that

c

2σ2T
y′Mw1R

λ21

(
Σxx,1 +

c

T
Rλ21′Mw1R

λ21

)−1
Rλ21′Mw1y

⇒ c

2(1 + cω(λ1, λ2))
G(λ1, λ2)

′G(λ1, λ2). (37)

From (35) and (37), we obtain (15) for λ2 < λ1.

In exactly the same manner, we can prove the case in which λ1 < λ2.�

Proof of Theorem 2: This can be proved in exactly the same manner as the proof of

Theorem 1 using the FCLT supposed in (22) and (23).�

Proof of Theorem 3: Let θ̂ = [β̂′, δ̂′, γ̂′]′ be the least squares estimator of θ = [β′, δ′, γ′]′.

We first derive the probability limit of θ̂ under the fixed alternative.

Lemma 1 Under the assumption of Theorem 3, we have, for λ0 < λ1,

θ̂ − θ
p−→

⎡⎣ λ1−λ0
λ1

δ

−λ1−λ0
λ1

δ

0

⎤⎦ ,
and for λ1 < λ0,

θ̂ − θ
p−→

⎡⎣ 0

−λ1−λ0
1−λ1

δ

0

⎤⎦ .
Proof of Lemma 1: From (10), the least squares estimator can be expressed as

θ̂ = θ +
(
W λ1′W λ1

)−1
W λ1′uλ01

= θ +

(
1

T
W λ1′W λ1

)−1 1

T
W λ1′Rλ01δ +Op

(
1√
T

)
.
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Since

T−1W λ1′W λ1
p−→

⎡⎣ 1
λ1
Σ−1
xx +Σ−1

xxΣxzΣ
−1
zz·xΣzxΣ

−1
xx − 1

λ1
Σ−1
xx −Σ−1

xxΣxzΣ
−1
zz·x

− 1
λ1
Σ−1
xx

1
λ1(1−λ1)

Σ−1
xx 0

−Σ−1
zz·xΣzxΣ

−1
xx 0 Σ−1

zz·x

⎤⎦ ,
where Σzz·x = Σzz − ΣzxΣ

−1
xxΣxz, while for λ0 < λ1,

1

T
W λ1′Rλ01

p−→ [
(λ1 − λ0)Σxx, 0, (λ1 − λ0)Σ

′
zx

]′
,

we obtain the result. Similarly, the lemma is proved for λ1 < λ0 because

1

T
W λ1′Rλ01

p−→ − [
(λ0 − λ1)Σxx, (λ0 − λ1)Σxx, (λ0 − λ1)Σ

′
zx

]′
in this case.�

Consider the case in which λ0 < λ1. When λ2 ≤ λ0 < λ1, we have

1

T
FT2(T1) =

1

T
F1,T2(T1) =

⎛⎝ 1

T

T1∑
t=T2+1

xtût

⎞⎠′

Ω̂−1
1

⎛⎝ 1

T

T1∑
t=T2+1

xtût

⎞⎠ .

Since ût = uλ01
t − wλ1′

t (θ̂ − θ) = ut + rλ01′
t δ − wλ1′

t (θ̂ − θ), we can see using Lemma 1 that

1

T

T1∑
t=T2+1

xtût = =
1

T

T1∑
t=T0+1

xtx
′
tδ −

1

T

T1∑
t=T2+1

xtw
λ1′
t (θ̂ − θ) +Op

(
1√
T

)
p−→ (λ1 − λ0)Σxxδ − (λ1 − λ2)(λ1 − λ0)

λ1
Σxxδ

=
λ2(λ1 − λ0)

λ1
Σxxδ,

because rλ01
t = xt for t = T0 + 1, · · · , T1 and rλ01

t = 0 for other t; in particular, it is zero for

t = T2 + 1, · · · , T0. Similarly, when λ0 < λ2 < λ1,

1

T

T1∑
t=T2+1

xtût = =
1

T

T1∑
t=T2+1

xtr
λ01′
t δ − 1

T

T1∑
t=T2+1

xtw
λ1′
t (θ̂ − θ) +Op

(
1√
T

)
p−→ (λ1 − λ2)Σxxδ − (λ1 − λ2)(λ1 − λ0)

λ1
Σxxδ

=
λ0(λ1 − λ0)

λ1
Σxxδ.

On the other hand, when λ1 < λ2,

1

T
FT2(T1) =

1

T
F2,T2(T1) =

⎛⎝ 1

T

T2∑
t=T1+1

xtût

⎞⎠′

Ω̂−1
2

⎛⎝ 1

T

T2∑
t=T1+1

xtût

⎞⎠ ,
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but because rλ01
t = 0 for t = T1 + 1, · · · , T2, we can see that

1

T

T2∑
t=T1+1

xtût = 0− 1

T

T2∑
t=T1+1

xtw
λ1′
t (θ̂ − θ) +Op

(
1√
T

)
p−→ 0

by using Lemma 1 again. Then, we obtain the result for λ0 < λ1.

The result for the case in which λ1 < λ0 can be obtained in exactly the same manner and

we omit the proof.�
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(i) sup-type test
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Figure 1: Limit Functions of the Test Statistics under the Fixed Alternative (λ1 = 0.3, λ = 0.05, λ = 0.95)


