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Abstract

This study proposes constructing a confidence set for the date of a one-time structural
change using a point optimal test. Following Elliott and Miiller (2007), we first construct
a test for the break date that maximizes the weighted average of the power function.
The confidence set is then obtained by inverting the test statistic. We carefully choose
the weights and show by Monte Carlo simulations that the confidence set based on our
method has a relatively accurate coverage rate, while the length of our confidence set is
significantly shorter than the lengths proposed in the literature.
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1. Introduction

This study proposes constructing a confidence set for the break date in linear time series
models with a one-time structural change. A frequently used method to construct a confidence
set for some parameter is use of the asymptotic distribution of the estimator of that parameter.
In the case of structural change, it is known that the distribution of the break point estimator
depends on the true process of the error term even asymptotically when the magnitude of
the break is fixed, and hence, it is tedious to construct a confidence set in this case. To
overcome this problem, Bai (1994) assumed that the magnitude of the break shrinks to zero

at a rate slower than T—1/2

and derived the limiting distribution of the break point estimator
in models with a mean shift. Based on the shrinking shift technique, Bai (1997) further
investigated the break point estimator in linear regression models with a one-time break. In
addition, multiple breaks were considered by Bai and Perron (1998) for linear regressions, by
Bai (2000) for vector autoregressions, by Qu and Perron (2007) for general linear multivariate

models, by Boldea Hall and Han (2012) and Perron and Yamamoto (2014) for models with

endogenous regressors, and by Boldea and Hall (2013) for nonlinear regressions.

Although the limiting distributions derived in these studies can be used to construct the
confidence intervals for the break date(s), Elliott and Miiller (2007) showed that the coverage
rate based on the break point estimator tends to be too liberal for the small size of the break.
That is, the empirical coverage rate is much smaller than the nominal one. To overcome
this problem, Elliott and Miiller (2007) proposed constructing the confidence set by inverting
a test for the break point. For example, we first test the null hypothesis that the break
date is given by, say, 711, and if the null hypothesis is accepted, then T} is included in the
confidence set; otherwise it is excluded. Elliott and Miiller (2007) showed by simulations
that the coverage rate of their confidence set is close to the nominal one for various data

generating processes.

Although the correct coverage rate is a desirable property of their method, the average
length of their confidence set becomes too large in some cases, as pointed out by Chang and
Perron (2013), so that no useful information about the break date is included in the confidence

set. The main reason for the large confidence set is that long-run variance is estimated with



the break date under the null hypothesis. In this case, the usual kernel-based estimation of
the long-run variance works well if the maintained break date is the same as the true one.
However, if the maintained break date is different from the true one, then the estimation
residuals either before or after the maintained break date include a one-time break. As a
result, the long-run variance estimator tends to be larger than the true one and the test
statistic cannot reject the null hypothesis, so that such a maintained break date tends to
be included in the confidence set. To circumvent this problem, Yamamoto (2014) proposed
modifying the estimator of the long-run variance such that the break date is first estimated
by minimizing the sum of squared residuals and then the long-run variance is calculated using
this estimated break date. Yamamoto (2014) showed that his method leads to an empirical
size close to the nominal size, while the confidence set becomes smaller than that based on

Elliott and Miiller (2007).

In this study, we further extend the methods of Elliott and Miiller (2007) and Yamamoto
(2014) and construct the confidence set based on an optimal test. Our goal is to construct
a confidence set that is as small as possible with a good coverage rate. We first derive a
test that maximizes the weighted average power as considered by Elliott and Miiller (2007),
and then we choose the weighting function carefully. The confidence set can be obtained
by inverting the optimal test. We show that our confidence set has a desirable theoretical
property while in finite samples, it is smaller than those based on the existing literature,

including Bai’s (1997) method.

The rest of this paper is organized as follows. Section 2 introduces our model and as-
sumptions and we derive an optimal test under restricted assumptions. We propose several
versions of an optimal test and investigate their asymptotic properties. In Section 3, we relax
the assumptions and explain how to construct the confidence set in practical analysis. The
size of the confidence set is discussed in Section 4 using the limit function of the optimal test
under the alternative. The finite sample property is investigated in Section 5 while Section 6

concludes the paper.
2. Optimal Test for the Break Date

2.1. Model and assumptions



We consider the following linear regression model with a one-time structural change:
yt:xéﬁ+x,§\°/5+z£7+ut, (t=1,2,---,7T) (1)

where x; and z; are k and p dimensional regressors, respectively, xi‘o = 1(t > [AoT))z; with
1(-) being an indicator function, \g is a true break fraction, [a] denotes the largest integer less
than a, u; is an error term, and 3, §, and v are k, k, and p dimensional unknown coefficients,
respectively. We denote the true break date as Ty = [M\oT]. In this model, the coefficient of
x; changes from 8 to §+ 0 at t = Ty + 1 whereas the coefficient associated with z;, ~, is

stable. In vector form, we denote (1) as
y=XB+ X6+ Zv+u. (2)

We construct a confidence set for the break date Ty by inverting a test for the break date.
In this case, we expect that the confidence set based on an efficient test should be smaller
than that based on an inefficient test, and thus, at first, we derive an optimal test following

Elliott and Miiller (2007). To derive an optimal test, we make the following assumption:

Assumption 1 (i) {us} ~ i.i.d.N(0,0?).
(ii) The regressors {x1} and {z} are independent of {u:}.
(iii) The following weak law of large numbers (WLLN) and the functional central limit theorem
(FCLT) hold for ¢ = [z}, z]':
[rT]

1
T thqg Ly r21 wniformly in 0 < r < Ao, (3)
t=1

[rT]

1 . )
T Z @, = (r—Xo)Xa  uniformly in Ao <1 < 1, (4)
t=TpH+1

1
Nie thut = UE;{C?IB(T) for 0<r <M\, (5)

— Z Tiup = 02%52 (B(r) — B(Xo)) for Xo<r<1, (6)



where 31 and X9 are symmetric and positive definite matrices partitioned as ;51 and ;2
fori,j = x or z conformably with q;, respectively, B(-) is a k dimensional standard Brown-
ian motion, and L5 and = denote convergence in probability and weak convergence of the

associated probability measures, respectively.
[rT]

1
(iv) sup —= Y zur = Oy(1).
o<r<1 VI 7

W) 0< A< A <A<,

Assumptions 1(i) and (ii) are supposed to derive an optimal test, but are not required
to derive the limiting distribution. Assumptions 1(iii)—(v) are standard in regression models
with a one-time break, except that the variance in (5) and (6) is relatively simple. Note that
a change in variance of the regressors is allowed by (3) and (4). Assumptions 1(i)—(iii) are
restrictive but are made in order to derive an optimal test and its limiting distribution; later,

we relax them for practical analysis.
2.2. General form of the optimal test

Suppose that our interest is whether \; is the true break fraction, and consider the following
simple testing problem:

HN: )\0:/\1 VS. HA: )\0:)\2. (7)
The corresponding dates are denoted as T} = [\ 7] and T = [\oT7], respectively.

Following Elliott and Miiller (2007), we consider a class of location invariant tests. First,
we express model (1) as
yr = B+ '8 + 2y + g
Aot

= xB+ :1:;\1'5 + 21y + u; (8)

A1/ A
= w0+ up,

where u) = uy + 0§ with )0 = 200 — M wM = [z}, 2}, 2] and 0 = [3',6,4]. In
vector form,

y = XB+XN6+ Zy+ut (9)

= W)‘IH + qul, (10)



where WM = [X, X, 7] and vt = u + RM1§ with RM1 = X* — XM As the regression

model is expressed as (9), we consider the group of transformations given by
y = y+Xb+ XMd+Zg, (8,6,7) = (B+b,0+dv+g), (11)

where b, d and g are k, k and p dimensional vectors, respectively. Let M, = Ir —
W (VV)‘”VV>‘1)_1 WA’ Then, there exists a T x (T — 2k — p) matrix PM such that
PMWPN = [p o, PMPM = M, and PY'WM = 0. Note that, from (10), P’y can

be expressed as
PMy|X, Z = PMu+ PYRM'G|IX, Z ~ N(PYRM 02 Ip o ), (12)

and we construct an optimal test based on P*'y. The advantage of considering Py is that
the test statistic becomes invariant to the magnitude of the break given by J under the null
hypothesis.

Let fr(y|X,Z; Hy) and fr(y|X, Z; Ha) be the conditional probability density functions
when Hy and Hy, respectively, are true and ¢ be a test for (7). Following Andrews and
Ploberger (1994), Andrews, Lee, and Ploberger (1996), and Elliott and Miiller (2006, 2007),

we consider maximizing the weighted average of power over § and Ay given by

[ [ 7 reieets f1y16.0) d@n (10700 = [ elo) { [ [ 1% 2: )dQu 90T 0) |

where @, (6) and J(\2) are non-negative measures on R* and [\, \], respectively. As the term
in the square brackets equals fr(y|X, Z; Hy) under the null hypothesis, the testing problem
can be interpreted such that the density under the null hypothesis is given by fr(y| X, Z; Hy)
while it is [ [ fr(y|X, Z; Ha)dQx,(6)dJ(A2) under the alternative. Then, according to the

Neyman-Pearson lemma, the most powerful test rejects the null hypothesis when

LRr(\) z//LRT()\l,/\2,5)dQA2(6)dJ()\2) >a

for some value a, where LR (A1, A2,9) = fr(y|X,Z; Ha)/ fr(y| X, Z; Hy).

Following the literature, we suppose as the weighting function for § a normal distribution

given by
co®
Qx,(6) ~ N |0, a Yoeilo (13)
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where ¢ is a positive constant and 7 = 1 for Ao < Ag and 2 for A\g < Ao. Note that the
local-to-zero variance implies that 6 = O, (T ~1/2) which corresponds to the local alternative
with non-trivial power.

From (12), noting that P*y| X, Z ~ N (0,027 _j_,) under the null hypothesis (A\g = A1)
and N(PM R 15,0217 o)) under the alternative (\g = M2), we have LRr (A1, A2, d) =
exp (5 y My, R0 — 5156’ R*V M, R*1§). Then, using (13), we can show that

/LRT()\1,>\2,5)dQ>\2(5)

—k/2 co? -1 V2 L A21 L o A21 T
= (27T) ? zz,j exp gyMwlR 5—ﬁ(5R MwlR o — 00_25 me’](s dé
~1/2
_ ‘Ik+ Iyl RV, R
—1
X exp [20621#(1/1\41,“}#21 (S + %RM’MMRM) R’\Ql’Mwly] , (14)

where the last equality holds by completing the square in the argument of the exponential

and using the fact that the integral of a normal density equals one.

The following theorem gives the limiting distribution of LRz (Ay).

Theorem 1 Suppose Assumption 1 holds. Then, under the null hypothesis Hy (Ao = A1),
LRr(M) = LR(\) (15)
= /(1 + cw()\l,)\g))fk/2 exp [

C

AT () S AL A2 GO )| AT (o),

where
)\2 < )\1

o { Ry I,
B(A ) ()\2) ( (1) = B(A1)) = A1 <A
In principle, the confidence set for the break date can be constructed by inverting the
above-mentioned test; we test for the null hypothesis of Ty = 77 using the above-mentioned
optimal test and include T in the confidence set if the null hypothesis is accepted; otherwise
it is not included. We perform this procedure for T} from T' = [AT] to T = [A\T]. However, we
need to deal with the localizing parameter ¢ and the weighting function J(A2) to obtain the

critical values because the limiting distribution LR();) is determined by both ¢ and J(s).



2.3. Specific form of the optimal test

A possible solution for dealing with ¢ is to allow ¢ — 0 or ¢ — oo, as proposed by Andrews
and Ploberger (1994). In terms of the limiting distribution (15), these techniques lead to the
well-known average-type and exponential-type forms given by

lim 2 (fE(Al) - 1) - /G()\l, Ao) G(A1, Ao)d T (Na), (16)

c—0 ¢

lim log(1 + ¢®)*/2LR(\;)

c— 00

1
= 1 )\ ,)\ _k?/Q |:G )\ ’)\ /G )\ ’)\ dJ )\ : 17
ogAQGAEw( 1,A2) /" exp 200, ) (A, A2)' G(A1, A2) | dT(A2) (17)

where in (17), the integral with respect to J(A2) is taken except for the neighborhood of Aj,
which is given by Ac = {d2: A< A <A\ —¢g, M +e< A < Xg}, to avoid the explosive
behavior of w(Ag, )\2)_k/ 2 around A\; ~ Xy. The exclusion of the neighborhood of A; is not
expected to have a serious effect on the test as long as ¢ is small, because A1 and As would

be indistinguishable in finite samples if they were too close.

If we choose a uniform measure on [\, A], (16) and (17) become
>)
ave-LR(\|) = / GO, M) GO, Ao)d o, (18)
A
exp-LR(\) = log/ w(A1, Ag) M2 exp ¥G(>\17A2)/G()\1,/\2) dra. (19
A2€A. 2w(A1, A2)

The other possibility to make the test independent of ¢ is to focus only on the stochas-
tic part given by G(A1, A\2)'G(A1,A2). In this case, we may consider the sup-type test, as
considered in Andrews (1993), given by

sup-LR(A1) = sup  G(Ai, A2)'G(A1, Ag). (20)
A< <N

For the sup-type test, we can also modify (20) to the weighted version as considered

in Bai and Perron (1998). They pointed out that the marginal p values change depending

on the given alternative and the test may lose power against some alternative. To avoid

this problem, we follow Bai and Perron (1998) and choose the weights for Ay such that



the marginal p values become the same for all possible A\s. In our case, it is easy to see that
G(M1,A2) G (A1, A2) Jw(A1, A2) ~ X2 for all Ay and thus we also consider the following weighted
sup-type test:

Wsup-LR(A1) = su
p ( 1) )\QGRE w()\la)\Q)

G(A1,A2)'G(A1, Na). (21)
However, our preliminary simulation shows that (21) performs similarly to (20) and there is
no significance difference. Hence, we do not discuss the weighted version of the test in the

rest of the paper.?

Before proposing the test statistics corresponding to the limit expressions, we relax As-

sumption 1 to accommodate more general models.
3. Construction of the Confidence Set
3.1. Test statistics for the break date

In Section 2, we derived several versions of the optimal test in asymptotic form but Assump-
tion 1 is too restrictive for practical analysis. In this section, we no longer assume normality
in {u:}, and serial correlation and heteroskedasticity are allowed in the error term. More

precisely, we discard Assumptions 1(i) and (ii), and the FCLT in (5) and (6) are replaced by

[rT]
1 1/2
— ruy = Q°B(r) for 0<r <A, (22)
1 [rT]
7T Z Tup = Qé/Q(B('r)—B()\O)) for Ao <r <1, (23)
t=To+1

where Q1 and (2 are symmetric and positive definite matrices.

In accordance with the generalization given by (22) and (23), we construct the test statis-

tics corresponding to the limiting expressions (18)—(20). Let

’
(ZtT;Tzﬂ xt%) e <ZtTéT2+1 Sﬂtﬂt) s <Ty (A< A1)

[N
(EZZT1+1 ﬂj‘tfbt) Q;l (ZZZTlJrl -ftﬂt) : T1 < T2 ()\1 < )\2),
(24)

Fi,(Th) =

FTz (Tl) =
For,(Th) =

M= N=

2Similarly, we can consider the weighted versions of the average- and exponential-type tests but again, their
performance is very similar to that of the unweighted versions.



where u; are the regression residuals of y; on x, :1:?‘1, and z, Frp,(T1) = 0 for Ty, = Ty, and
Q1 and € are consistent estimators of €1 and s, respectively. The estimation of long-run

variance is explained later. Corresponding to A., we define
Le={L: T<Th<T1-T.-1, 1 +T. +1 < T, <T},

where T, = [¢T]. Note that when T’ < Ty < T + T, theset {To: T <Tp <T} —T. — 1} is
empty and thus I'; = {TQ 4T +1<T, < T} in this case. Similarly, we should carefully

treat the case in which T — T, < Ty < T. Then, we propose the following test statistics:

T
avg-LRp(Ty) Z (T, (25)
1 1
) _ —k/2 bt
oL (1) =log | 7 3 wOnd) e (s rm) | o
T2€FE
sup-LRp(Th) = max_Fr,(Ty), (27)
T<T,<T

where T* =T — T 4 1 and T** is the number of observations included in I'..

Theorem 2 Under Assumptions 1 (iii)—(v) with (5) and (6) replaced by (22) and (23), re-
spectively, the avg-LRp(Ty), exp-LRr(T1), and sup-LRp(T1) converge to the corresponding
distributions given by (18)—(20), respectively, under the null hypothesis.

Note that the limiting distributions depend not only on k, A, A, and the trimming param-
eter € but also on the maintained break fraction A\; under the null hypothesis. As a result,
the table for critical values becomes huge and is inconvenient for practical analysis. To avoid

this, we conduct the response surface regressions.

Remark 1 The test statistic proposed by Elliott and Mdller (2007) can be expressed as

T
T
E F T E F: T
1 1 T2 1 T T1) 2,T2( 1)
Tr=1 To=T1+1

and then their test can be interpreted as a weighted average-type test with weights given by

T/T? fort < Ty and T/(T — T1)? for t > Ty. These weights are convenient for practical

10



analysis because the null limiting distribution of Ur(11) does not depend on A1. However, as
these weights are not chosen by taking the power property into account, the test leads to a

large confidence set as seen in the simulation section.

As the limiting distributions are nonstandard, we approximate the critical values via
Monte Carlo simulations. We choose the trimming parameter € as 0.05 and set A =1 — X =
e.3 For a given value of )\, the critical values are obtained from 50,000 replications by
approximating a k dimensional Brownian motion by the partial sums from 1,000 normal
distributions. We obtain these critical values for A\; ranging from )\ to X step by 0.01. As a
result, we obtain 100(1 — 2¢) + 1 critical values for one test statistic with a given number of
regressors k, €, and the significance level. Next, we derive the response surfaces of the critical

values as a function of A1, which, after trying various kinds of functions of Ay, are given by

+a; xd+as x &+ as x d&°

1
cval(Ai|k, e = 0.05, significance level) = ag + a_1 % PR

for the sup-LRr and avg-LRr, where d = |\ — 0.5].

On the other hand, for the exp-LRp, because the possible break fractions A within
|A1—A2| < € are trimmed to construct the test statistic, the distribution for a given A; is rather
different depending on whether A; is in the middle of possible fractions (A+e < A\; < - €)
or close to either end point (A < A\ < A+¢cor A —e < A1 < A). More precisely, when
A< A < A+eg, all Ay between A\ and A\ are trimmed and the test statistic is constructed

using Fp, (T1) only for Th > T} as follows:

T

1
exp-LRp(Th) =log | =——— Z w(A1, A2) /% exp <
T=N-Tep, i3

1
Rl

Similarly, when A —e < A\ < ),

T —=T:—1
1 1 €

eXp—LRT (Tl) = log ﬁ
= 3

1
—k/2 -
w(A1, A2) exp (20.:()\1, )\Q)FTz (Tl))

To=T

3In addition, we obtained the critical values for ¢ = 0.1 but do not report them to save space.
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On the other hand, when A + ¢ < A\ < X — ¢, the exponential-type test becomes

eXp—LRT (Tl)
T —Te—1 T

1 1
= log |[=——— Z + Z w(A1, A2) % exp (FT2 (Tl))
T=T-2:\ =1 pe=fiinm 2w(A1, As)

Therefore, the response surface regression is conducted depending on whether Ay is near the

boundary, as follows:

cval(A1|k,e = 0.05, significance level)

= I(d<0.4)><<a0—|—a1>< +a1><d—|—a2><d2—|—a3xd3>

d+1
+1(d > 0.4) x (bg + by x d+ by x d* + b3 x d°)

for the exp-LRyp.

Note that the coefficients are different depending on the test statistics and they are
summarized in Tables la and 1b for 90 and 95 percentiles, respectively. In all cases, the

approximation error relative to the true critical value is less than 0.05.
3.2. Estimation of long-run variance

To construct the test statistics, we need to obtain Q) and Q27 the consistent estimators of
long-run variance. Although Elliott and Miiller (2007) proposed consistent estimators, the
coverage rate of the break date based on their method tends to become very large as pointed
out by Chang and Perron (2013) and Yamamoto (2014). To circumvent this problem, we
follow the method proposed by Yamamoto (2014), which is given as follows:

1. Estimate the break date by minimizing the sum of squared residuals based on model

(8). Denote the break date estimator as Tj.
T 2
. . N
T, = arg min ;1 <yt A zh) .

2. Regress y; on xy, xg\l, :c;\ > and z; where Ay, = T},/T and denote the regression residuals

as @i;. Note that z;? is omitted from the regression when |Ty — T| < k.

12



3. Estimate the long-run variance ; using X, for t = 1,--- ,T1. Similarly, estimate €2y

using X;uy for t =T7 + 1,--- ,T. Denote the estimators as Ql and QQ.

Yamamoto (2014) showed that these long-run variance estimators are consistent under

both the null and the fixed alternative.

Proposition 1 The long-run variance estimators, Q0 and Qs constructed using the above-
mentioned explanation, are consistent estimators of 21 and Qs, respectively, under both the

null and fized alternative hypotheses.

Using Q1 and Qy, we construct Fr,(T}) defined in (24). Finally, the test statistics are
constructed according to expressions (25)—(27) using Frp,(71). Then, the confidence set for

the break date is constructed as follows:

1. For a given possible break date T7, construct the test statistic sup-LRy(T}), avg-LRp(T1),
or exp-LRr(Ty).

2. If the null hypothesis of Ty = T3 is accepted at the significance level «, then include T}

in the confidence set; otherwise exclude it.

3. Continue 1-2 for {T1: T < Ty <T}.

By the above-mentioned procedure, we obtain the confidence set for the break date at

the (1 — «) confidence level.
4. Asymptotic Properties under the Alternative

In this section, we investigate the asymptotic property of the confidence set based on the
optimal test proposed in Section 3. Because the confidence set is constructed by inverting
the test statistic, we see that the more powerful the test statistic is, the smaller the confidence
set that can be constructed. That is, the investigation of the power of the test is equivalent

to the assessment of the size of the confidence set.

Note that all the optimal tests are functions of Fr, (71) defined in (24), and thus, we derive

the limiting distribution of Fr, (7T) under the alternative. We assume that the regressors are

13



homogeneous through the sample period to simplify the expression. Note that under the

alternative, Ty does not necessarily equal Ty (A9 # A2 in general).

Theorem 3 Suppose that X1 = Yo = X, Q1 = Qy = Q, Ql 250 and Qg 2y 0. Then,

under the alternative hypothesis, Ao # A1, we have

1
7 (Th) L Moy ALy A2) X '8 28,0, (28)
where for A\g < A1,
7/\3(/\1\;\0)2 A2 < Ao < A
1
Yo Ay Ag) = 4 MRy <y
1
0 : )\0 < )\1 < /\2
and for A1 < Ao,
(2) , DA< A< N
¢()\07 )‘17 )\2) = (/\Q_éIZA(Il);/\O) : )\1 < >\2 S >\0
N N2(1 v o\2
(%0 ()\11_)>\(11)2 Az) )\1 < )\0 < )\2

Note that, as proved by Yamamoto (2014), Q0 and Q, are consistent estimators of Q) (see
Proposition 1).

From Theorem 3, we find the asymptotic properties of the confidence sets based on the
optimal tests. First, all the optimal tests are consistent as T — oo, and thus, we expect
that the confidence sets obtained by inverting the optimal tests become smaller for the fixed
magnitude of the break as T" goes to infinity. In addition, we see that because the test statistics
are asymptotically increasing functions of ||d]|, the larger the magnitude of the break is, the
smaller the confidence sets that are obtained. Regarding the location of the break fraction,
if the true break fraction \g is smaller than the fraction under the maintained hypothesis A1,
then Fr,(11) for To > T} does not contribute to the detection of the true break point. This is
a natural result because when the true break point Ty is located to the left of the maintained
hypothetical break point 77, the optimal tests should not detect the break point after 77. A

similar property is observed for the case in which \; < Ag.

14



Furthermore, using expression (28), we obtain the probability limits of the sup-type and

the average-type tests by direct calculation given by

1
Tsup—LRT(Tl) BN sup (Ao, A1, A2) 8, Q71,0

A<A<X
MO2E gy 071,80 A < A
= IRV TEVRY: (29)
QoA 0007 313, 018006 ¢ 1 < Ag
and
1 b , ;
Tavg—LRT(Tl) — /1/)()\0,)\1,)\2)(1)\2(523“9 Y0
A
=20l ON=ND) sy 01y, A<M
_ 3)\1 7$CC T . (30)
_ 2 _ 201_ _(1_\3 .
oM P10 FLMUN 5, 0718508 Ax < Ao

For example, these functions are shown in Figure 1 as a function of A\g when Ay = 0.3,
A =0.05 and X = 0.95. Note that, for \g < A1, the limiting function (29) is maximized when
the true break fraction is located at A1/2, the middle point between 0 and A;. Intuitively,
this is because the information before and after the true break is balanced at this point (the
information after A\; is not used in this case). On the other hand, for \; < Ag, the limit
function is maximized at A\g = (1 + A1)/2. A similar result is obtained for the average-type

test.
5. Finite Sample Performance

In this section, we investigate the finite sample properties of the confidence sets proposed in
the study. We consider six data generating processes (DGP) that are the same as in Elliott

and Miiller (2007). The first four DGPs are based on

d
yt=1+ﬁ1(tZTo)+ut,

where d = 4, 8, 12 and 16. The error term {u:} is generated from .:.d.N(0,1) in the stan-
dard case (DGP1); a one-time structural change in variance is allowed in DGP2 such that
ug ~ i.1.d.N(0,1) for t < Ty and i.i.d.N(0,4) for t > Typ; DGP3 allows for autoregressive dis-
turbance and u; = 0.3u;—1 + € with ¢ ~ i.2.d.N(0,0.49), while the moving average structure

is supposed in DGP4 as u; = ¢, — 0.3¢;—1 with ¢ ~ 4.i.d.N(0,1/0.49).
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In DGPs 5 and 6, a model with a partial structural change is investigated as given by

d
Yy =142+ 71}[@ > To) + uy, where xy =0.5z;1 + &

VT
with & ~ 4.i.d.N(0,0.75). DGP5 supposes the spherical distribution as u; ~ i.i.d.N(0, 1)
while conditional heteroskedasticity is allowed in DGP6 such that w; = |z¢|e; where ¢ ~
i.1.d.N(0,0.333). Note that these six DGPs are designed so that the long-run variance

becomes equal to one.

As we usually do not have prior information about serial correlation and heteroskedasticity
in {u;}, we estimate the long-run variance using the quadratic spectral kernel with bandwidth
selected by the method proposed by Andrews (1991) for all kinds of DGPs. The sample sizes
considered are 100 and 300, the break fraction is set to 0.3, 0.5, and 0.7, and the confidence
level is 0.95 (the significance level for the tests is 0.05). The number of replications is 5,000

and all computations are conducted using the GAUSS matrix language.

Table 2a reports the coverage rates and the average lengths of the confidence sets when
Ao = 0.5 and T = 100. The column “EM” corresponds to the result based on the method
by Elliott and Miiller (2007), while “MEM” implies the modified EM method by Yamamoto
(2014) and “Bai” implies the confidence interval based on the asymptotic distribution of Ty
by Bai (1997).* In the standard case (DGP1), the coverage rate of EM is slightly greater
than the nominal level for any magnitude of the break, while Bai’s method results in an
overly liberal coverage rate for small d. On the other hand, the coverage rates of the modified
EM and our three methods are close to the nominal confidence level, although they tend
to be slightly liberal for small d. Regarding the average lengths of the confidence sets, the
MEM method successfully reduces the size of the confidence set compared to the original EM
method but the confidence set of the MEM method remains larger than that based on Bai’s
method. On the other hand, the confidence sets based on our methods are smaller than those
based on EM and MEM. Moreover, in some cases, they are almost the same as or smaller
than the confidence interval based on Bai’s method. For example, when d = 12, the length

of the confidence set based on Bai’s method is 0.168, whereas those based on the sup-type,

4For a fair comparison, we exclude the first and last 5% end points from the possible break points and the
trimmed version of the EM and MEM tests are considered using the simulated critical values.
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the average-type, and the exponential-type tests are 0.169, 0.163, and 0.138, respectively.
That is, even though Bai’s method leads to a liberal coverage rate, the sizes of the confidence
sets based on our methods are almost the same or smaller. This is a great advantage of our
methods over the existing ones because the coverage rates of our methods are close to the
nominal rate, while our confidence sets are at least as small as those based on the existing
methods and, in some cases, are smaller. This implies that the confidence sets based on our
methods are constructed more efficiently than those based on the other methods. For DGP2,
the coverages rates are similar to DGP1 for all methods but the confidence sets are larger
in DGP2 than in DGP1, which is expected because the variance of the error term becomes

larger after the break in DGP2.

In the case in which the error term is serially correlated, the positive serial correlation in
DGP3 makes the coverage rates smaller compared to the i.i.d. case for all methods except
that of Bai (1997), while the negative MA structure in the error term has the opposite effect
on the coverage rates (DGP4).

In the case of a partial structural change (DGPs 5 and 6), the EM method leads to a
conservative coverage rate while liberal coverage rates are obtained for the other methods.

When T = 300, the coverage rates of all the methods move closer to the nominal rate,
as is observed in Table 2b, while there is no large difference in the average lengths of the
confidence sets compared to the case when T = 100.

Tables 3a and 3b report the case when Ao = 0.3.> The relative performance is preserved
compared to the case when \g = 0.5.

To summarize, no method dominates another in terms of coverage rates; in some cases our
methods perform best but in other cases, the EM and MEM methods work better. However,
it seems that Bai’s method leads to an overly liberal coverage rate for small d, as pointed
out in the literature. On the other hand, our methods can reduce the average size of the

confidence sets compared to the other methods.

6. Conclusion

5The results when \g = 0.7 are similar to the case when \g = 0.3 and we omit the results.
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In this study, we proposed constructing the confidence set for the break date by inverting the
optimal test. By choosing the weight function carefully, we proposed three optimal tests: the
sup-type, the average-type and the exponential-type tests. By Monte Carlo simulations, we
found that the coverage rates based on the inversion of our optimal tests are comparable to
those based on the methods of Elliott and Miiller (2007) and Yamamoto (2014) but are closer
to the nominal confidence level than that based on Bai’s (1997) method. On the other hand,
the confidence sets based on our tests dominate those based on the other methods in terms of
the average lengths, even when the coverage rates of those methods are similar. Considering
these results, our methods could play an important role in investigating statistical inferences

about break dates.
Appendix

Proof of Theorem 1: We first consider the case in which Ay < A;. Noting that M,,, = Mg,
where Mg, = W (WAWAM)~IWTA with WA = [(X — XM), XM, Z], we have, by the
WLLN,

T
1
LRVRN =3 iy 2o (= 2a) S, (31)
t=Tr+1
1 _ T T
FREWN = 1Y T w00 0wz < (0= A2) [Bae1,0,80za] . (32)
t=T>+1 t=T>+1

1. ~ )\1211,1 0 /\121'2’1
TW/\IIW)\I BN 0 (1 - )\l)zx:v,Q (1 - Al)zxz,Z . (33)

Alzz:v,l (1 - Al)zzx,Z Alzzz,l + (1 - Al)zzz,2
Then, using (31)—(33) and the standard matrix algebra, we have

1 Aa(A1 — A
TR)\zllel R>\21 i) 2(1)\12)2me1, (34)

so that for the determinant in (14), we obtain

—1/2 -~ ~1/2
I+ =55k R My, R 2y (g Q2N )N
T ’ )\1
= (14w, M) M2 (35)

where w(A1, A2) is defined in Theorem (1).
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To derive the limiting distribution in the argument of the exponential term in (14), we
note that P*'y = P>y under the null hypothesis of \g = A1 (see also (12)), and thus,
My, y = Mg,y = Mg, u. Then, from (32), (33), and the FCLT, we have

1 1 1 . 1oy, \N /1 -
7R)‘21,Mw _ —R’\Qllu _ <R)\21/W)\1> <W/\1/W)‘1> (Whu>
VT YT UT T T VT

A=A
= 0N (B(w) ~ BOw) ~ T o B
= Uziz/ﬁlG()‘h)‘?)v (36)

where G(A1, A\2) is defined in Theorem 1. Then, using (34) and (36), we can see that

-1
20-C2Ty/]\/[w1 RA2t (23535,1 + %R)\M/Mwl R)le) R)\QI/Mwly
= . G()‘la AQ)/G(Al, )\2) (37)

2(1 + cw()\l, )\2))
From (35) and (37), we obtain (15) for A2 < A1.
In exactly the same manner, we can prove the case in which A\; < Ao.H

Proof of Theorem 2: This can be proved in exactly the same manner as the proof of

Theorem 1 using the FCLT supposed in (22) and (23).1

Proof of Theorem 3: Let § = [3,0’,4]" be the least squares estimator of 6 = [3',8’,~']".
We first derive the probability limit of 6 under the fixed alternative.

Lemma 1 Under the assumption of Theorem 3, we have, for \g < A1,

- Ali)\oé -
R Al
f—0 L | —2hg

M )
L 0
and for A\1 < Ao,

- 0 -
A P A=A
0—0— | -390

L 0

Proof of Lemma 1: From (10), the least squares estimator can be expressed as
0 = 0 + (W)\llw/\l)_l W)\llu)\m

_ l A/ _ll A1/ pAo1 i
= 9—|—(TW w TW R 5+Op ﬁ .
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Since

1 yv—1 -1 -1 -1 1 5-1 -1 -1
)leasx + me Eivzzzzxzzzzmc _xzms _Exx E$22zz~x

—1 A1/ A1 p _i —1 1 —1

Tlwhih Py 1Alzm 1 T o o1 ,

where ¥, = 3., — 2., 2.13,., while for \g < A1,
%WM’RM s [ = 20) e, 0, (A1 — 20)2,]
we obtain the result. Similarly, the lemma is proved for A\; < A\g because
%wme 5~ (M0 = M) s (Ao — A)Zaa, (Mo — AL,

in this case.l

Consider the case in which A\g < A\;. When Ao < Ay < A1, we have

/
T

1 1 1 R A 1 N
TFT2 (Tl) = TFLT2(T1) = T Z Ut Ql 1 T Z Ut
t=To+1 t=To+1
Since @ = u;™ — w' (0 — 0) = uy + 7705 — w}' (0 — 0), we can see using Lemma 1 that
1 & 1 & 1 & 1
LY min = =k Y w5 Y awd0-6)+0, (ﬁ>
t=T>+1 t=To+1 t=Th+1
A —A2) (A1 — A
L (= o) - D=
Aa(A1 — A
= 2( 1)\1 0) Exz’éu
because 7“;\01 =axpsfort=Tp+1,---,11 and 7”2\01 = 0 for other ¢; in particular, it is zero for
t="T5+1,--- ,Tp. Similarly, when A\g < Ao < Ay,
1 & 1 & 1 & 1
LS wi = = a2 Y am- LY awdi-0)+0, <ﬁ)
t=Th+1 t=T>+1 t=T>+1
A —A2) (A1 — A
L (= ) - =g
Ao(A1 — A
= oz ;1 05,6

On the other hand, when A\ < Ao,

1 1 1 & / 1 &

P () = 2hn (M) = {5 Y wi | B |5 Y wi |

t=T1+1 t=T1+1



but because 7,2\01 =0fort=Ty+1,---,T5, we can see that

1 & 1 & A 1
f Z IZ‘t’LALt = O_f Z $tw5\1/(0—9)+0p <\/T>

t=T1+1 t=T1+1

L0

by using Lemma 1 again. Then, we obtain the result for A\g < Ap.

The result for the case in which A\; < Ay can be obtained in exactly the same manner and

we omit the proof.Hl
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Table 1a: Coefficients of the Response Surface Regressions (90 percentiles)
k

1 2 3 4 5 6 7 8 9
sup-LRr
ag 0.674  —30.640 —54.062 —85.748 —117.243 —124.059 —132.381 —149.405 —154.744
a_q 0.209 31.850 55.540 87.467 119.183 126.214 134.739 151.961 157.491
ai 0.061 31.527 55.135 87.069 118.676 125.835 134.462 151.888 157.638
az 4920 —-20.676 —39.811 —67.321 —93.940 —99.061 —105.622 —120.808 —125.261
as —5.025 7.028 15.879 30.168 43.305 45.159 48.031 56.150 58.330
avg-LRr
ao 1.543 —0.955 0.694 0.888 —3.583 —8.504 —2.659 —6.329 —11.900
a_1 —1.376 1.245 —0.290 —0.373 4.206 9.234 3.492 7.265 12.941
ay —1.405 1.202 —0.300 —0.364 4.193 9.172 3.497 7.254 12.881
as 2.524 1.042 2.969 3.612 0.136 —3.697 1.850 —1.026 —5.545
as —1.354 —0.519 —1.333 —1.517 0.481 2.647 —0.101 1.645 4.307
exp-LRr
ag 49.562 112.723 211.010 361.636 522.817 668.605 764.361 824.621 961.868
a_; —46.806 —107.625 —203.673 —352.114 —511.146 —654.784 —748.385  —806.502  —941.597
ay —46.656 —107.328 —203.159 —350.727 —509.000 —651.751 —744.948 —802.756  —936.899
az 42.886 100.339 191.442 328.004 475.894 607.590 694.296 748.323 870.439
as —28.593  —67.563 —127.173 —209.419 —299.126 —375.810 —425.702 —456.143  —523.122
bo 10.670 44.425 29.559 23.697  —24.928 16.270 51.952 —49.026 —64.895
b1 —57.856 —285.167 —168.789 —113.392 243.104  —33.761 —260.345 456.068 588.899
bo 137.294 681.472 415.857 287.101 —548.063 104.479 611.721 —1046.975 —1373.591
bs  —109.402 —543.617 —342.838 —243.880 407.329 —105.401 —482.692 796.157 1062.856




Table 1b: Coefficients of the Response Surface Regressions (95 percentiles)

k

1 2 3 4 5 6 7 8 9
sup-LRr
ag —20.905 —63.920 —83.800 —137.578 —129.430 —145.183 —144.461 —150.787  —160.708
a_q 21.967 65.326 85.485 139.524 131.600 147.581 147.063 153.594 163.723
ax 21.664 64.896 85.187 138.957 131.409 147.509 147.335 154.230 164.406
az —12.647 —48.889  —65.838 —112.373 —104.312 —-117.634 —116.824 —122.841  —130.591
as 3.152 20.890 29.513 53.739 48.405 54.928 54.306 57.755 60.991
avg-LRr
ap 1.110 —-8.903  —10.709 —-9.273  —16.557  —10.028 —6.826 —9.501 —10.939
a_1 —0.904 9.242 11.168 9.848 17.245 10.825 7.731 10.514 12.058
ay —0.945 9.162 11.105 9.825 17.162 10.816 7.741 10.534 12.078
as 2.871  —5.393 —6.502 —4.700 —10.524 —4.275 —0.873 —2.988 —3.845
as —1.948 2.737 3.596 2.760 5.929 2.722 0.933 2.448 3.130
exp-LRr
ag 61.014 86.903 166.740 387.611 571.898 730.617 859.267  1000.949 1060.976
a_1 —b7.764 —81.201 —158.722 —377.371 —559.456 —715.967 —842.436 —981.932 —1039.758
ai —57.690 —80.910 —158.522 —375.523 —556.871 —712.410 —838.187 —976.609 —1033.971
az 53.541 75.498 150.786 349.621 519.651 662.240 778.851 904.607 956.344
as —34.743 —52.308 —103.460 —220.661 —324.528 —406.022 —473.472 —542.723  —568.376
bo 52.623 3.953 76.318 —7.857 31.925 51.379 68.956 6.763 —48.162
by —351.866 6.559 —486.740 121.603 —153.426 —264.089 —374.432 81.533 467.209
ba 831.743  —8.168 1146.652 —281.839 387.094 619.160 881.009 —195.727 —1061.980
bs  —655.202 —0.630 —901.924 214.845 —327.476 —487.175 —694.128 152.407 798.697




Table 2a: Coverage rates and lengths of the confidence sets (T' = 100, Ay = 0.5)

Coverage rates Lengths of the confidence sets
d EM MEM  Bai sup avg exp EM MEM  Bai sup avg exp

DGP1

4 0961 0918 0.714 0.933 0.917 0.910 0.784 0.695 0.552 0.661 0.642 0.651
8§ 0961 0934 0.866 0.953 0.932 0.935 0.492 0.362 0.323 0.316 0.304 0.302
12 0961 0.946 0.936 0.969 0.944 0.953 0.305 0.187 0.168 0.169 0.163 0.138
16 0961 0.953 0.951 0.976 0.952 0.962 0.252 0.126 0.104 0.117 0.114 0.088

DGP2

4 0961 0921 0.658 0.936 0.919 0.914 0.842 0.778 0.570 0.757 0.751 0.731
8§ 0961 0928 0.769 0.944 0.926 0.926 0.715 0.602 0.476 0.551 0.534 0.544
12 0961 0.936 0.863 0.956 0.933 0.938 0.520 0.383 0.341 0.335 0.322 0.327
16 0.961 0.942 0.908 0.962 0.939 0.948 0.371  0.239 0.225 0.212 0.203 0.191

DGP3

4 0940 0.852 0.677 0.882 0.851 0.840 0.776  0.598 0.486 0.578 0.557 0.548
8§ 0940 0.884 0.839 0921 0.882 0.889 0.562 0.287 0.272 0.262 0.248 0.236
12 0.940 0.907 0.914 0.952 0.905 0.925 0.475 0.152 0.143 0.145 0.136 0.114
16 0.940 0.919 0.946 0970 0.917 0.946 0.546 0.105 0.090 0.102 0.096 0.076

DGP4

4 0991 0971 0.755 0.970 0.970 0.962 0.857 0.795 0.646 0.749 0.735 0.757
8§ 0991 0977 0.902 0980 0.976 0.974 0.623 0.488 0.428 0.408 0.400 0.418
120991 0.982 0.954 0.986 0.982 0.981 0.369 0.258 0.228 0.217 0.215 0.194
16 0.991 0.986 0.966 0.990 0.985 0.986 0.253 0.168 0.139 0.147 0.147 0.116

DGP5

4 0970 0.901 0.650 0.912 0.900 0.869 0.817 0.682 0.498 0.657 0.637 0.622
8§ 0970 0.925 0.815 0.941 0.924 0.908 0.610 0.386 0.317 0.346 0.329 0.322
12 0970 0.941 0.858 0.961 0.941 0.931 0.449 0.219 0.170 0.199 0.191 0.173
16 0970 0.956 0.877 0.978 0.955 0.954 0.378 0.153 0.106 0.144 0.138 0.121

DGP6

4 0981 0.876 0.663 0.877 0.874 0.822 0.807 0.614 0.468 0.589 0.568 0.539
§ 0981 0916 0.834 0.929 0.915 0.883 0.564 0.325 0.265 0.295 0.279 0.268
12 0981 0.946 0.912 0.960 0.945 0.924 0.409 0.189 0.141 0.178 0.167 0.152
16 0.981 0.963 0.955 0.979 0.962 0.952 0.354 0.137 0.089 0.132 0.124 0.109




Table 2b: Coverage rates and lengths of the confidence sets (7' = 300, A\g = 0.5)

Coverage rates Lengths of the confidence sets
d EM MEM  Bai sup avg exp EM MEM  Bai sup avg exp

DGP1

4 0955 0943 0.713 0.952 0.942 0.936 0.763 0.734 0.558 0.684 0.673 0.696
8§ 0955 0947 0.872 0.959 0.946 0.946 0.435 0.394 0.320 0.326 0.323 0.329
12 0.955 0.950 0.926 0.961 0.949 0.949 0.229 0.199 0.158 0.172 0.172 0.146
16 0.955 0.951 0.940 0.964 0.950 0.952 0.158 0.132 0.092 0.118 0.118 0.091

DGP2

4 0955 0.945 0.674 0.953 0.944 0.941 0.827 0.807 0.585 0.773 0.775 0.765
8§ 0955 0948 0.780 0.957 0.947 0.943 0.683 0.646 0.486 0.574 0.569 0.587
12 0.955 0.949 0.859 0.960 0.948 0.948 0.462 0.418 0.341 0.347 0.345 0.357
16 0.955 0.951 0.907 0.962 0.949 0.950 0.293 0.256 0.218 0.216 0.215 0.203

DGP3

4 0940 0.903 0.679 0.919 0.902 0.897 0.746 0.674 0.511 0.633 0.621 0.629
8§ 0940 0916 0.851 0.934 0914 0.915 0.435 0.338 0.286 0.289 0.284 0.277
120940 0.923 0.903 0.945 0.922 0.927 0.244 0.173 0.141 0.155 0.152 0.126
16 0.940 0.928 0.926 0.952 0.928 0.934 0.180 0.116 0.083 0.107 0.105 0.082

DGP4

4 0984 0976 0.762 0978 0.976 0.974 0.829 0.801 0.636 0.746 0.738 0.770
8§ 0984 0978 0.906 0982 0978 0.978 0.546 0.488 0.398 0.391 0.393 0.418
12 0.984 0.980 0.947 0.984 0.979 0.981 0.294 0.250 0.200 0.205 0.209 0.187
16 0.984 0.981 0.957 0.985 0.980 0.982 0.197 0.163 0.117 0.140 0.143 0.112

DGP5

4 0959 0.934 0.683 0.940 0.933 0.921 0.779 0.724 0.532 0.681 0.666 0.676
8§ 0959 0942 0.848 0.948 0.941 0.935 0.481 0.397 0.317 0.337 0.331 0.332
12 0.959 0.948 0.898 0.961 0.947 0.946 0.273 0.210 0.160 0.183 0.182 0.161
16 0.959 0.951 0.899 0.964 0.951 0.952 0.194 0.142 0.093 0.129 0.127 0.105

DGP6

4 0966 0.914 0.693 0.920 0.913 0.885 0.774 0.688 0.523 0.650 0.629 0.629
8§ 0966 0930 0.848 0.945 0.929 0.912 0.457 0.363 0.294 0.316 0.304 0.300
12 0966 0.943 0.910 0.963 0.942 0.933 0.258 0.195 0.148 0.176 0.170 0.149
16 0.966 0.952 0.935 0.971 0.951 0.945 0.185 0.133 0.087 0.124 0.120 0.099




Table 3a: Coverage rates and lengths of the confidence sets (T' = 100, Ao = 0.3)

Coverage rates Lengths of the confidence sets
d EM MEM  Bai sup avg exp EM MEM  Bai sup avg exp

DGP1

4 0966 0919 0.708 0.937 0.927 0.909 0.801 0.711 0.520 0.694 0.674 0.670
8 0966 0.929 0.859 0.950 0.939 0.928 0.544 0.390 0.313 0.362 0.352 0.326
12 0966 0.939 0.921 0.961 0.947 0.944 0.342 0.193 0.166 0.194 0.194 0.143
16 0.966 0.952 0.948 0.966 0.951 0.957 0.284 0.125 0.103 0.133 0.136 0.091

DGP2

4 0966 0931 0.613 0.930 0.920 0.920 0.856 0.798 0.570 0.791 0.786 0.772
8§ 0966 0934 0.742 0.939 0.927 0.929 0.760 0.654 0.456 0.626 0.610 0.617
12 0966 0.939 0.855 0.945 0.934 0.940 0.599 0.446 0.335 0.408 0.397 0.389
16 0.966 0.946 0.906 0.951 0.940 0.948 0.445 0.274 0.232 0.255 0.253 0.216

DGP3

4 0951 0.855 0.669 0.897 0.879 0.841 0.793 0.613 0.458 0.610 0.588 0.566
8 0951 0.887 0.828 0.927 0.904 0.889 0.616 0.306 0.263 0.299 0.287 0.250
120951 0.911 0.901 0.949 0.922 0.922 0.545 0.155 0.140 0.164 0.161 0.116
16 0.951 0.928 0.940 0.962 0.930 0.944 0.608 0.104 0.089 0.115 0.115 0.077

DGP4

4 0990 0970 0.752 0971 0.968 0.954 0.866 0.806 0.609 0.777 0.766 0.774
8§ 0990 0974 0.893 0979 0.975 0.965 0.676 0.527 0.413 0.466 0.460 0.459
12 0990 0.979 0.946 0.984 0.980 0.974 0.410 0.271 0.228 0.251 0.256 0.208
16 0.990 0.982 0.966 0.987 0.982 0.980 0.266 0.169 0.139 0.170 0.177 0.121

DGP5

4 0967 0.890 0.635 0.920 0.914 0.867 0.828 0.694 0.465 0.686 0.667 0.637
8§ 0967 0914 0.797 0.945 0.933 0.901 0.653 0.411 0.301 0.390 0.375 0.346
120967 0.932 0.848 0.961 0.943 0.929 0.499 0.226 0.170 0.224 0.221 0.181
16 0.967 0.946 0.870 0.968 0.950 0.947 0.421 0.154 0.106 0.160 0.159 0.122

DGP6

4 0973 0.868 0.649 0.886 0.891 0.819 0.819 0.629 0.437 0.618 0.602 0.555
§ 0973 0903 0.818 0.930 0.921 0.880 0.607 0.340 0.252 0.330 0.313 0.280
12 0973 0.934 0.908 0.959 0.943 0.922 0.451 0.191 0.138 0.195 0.188 0.152
16 0973 0.952 0.947 0.973 0.953 0.945 0.392 0.135 0.087 0.143 0.140 0.108




Table 3b: Coverage rates and lengths of the confidence sets (7' = 300, A\g = 0.3)

Coverage rates Lengths of the confidence sets
d EM MEM  Bai sup avg exp EM MEM  Bai sup avg exp

DGP1

4 0953 0937 0.712 0.950 0.943 0.931 0.774 0.743 0.520 0.710 0.700 0.710
8§ 0953 0941 0.859 0.953 0.946 0.937 0.473 0.425 0.310 0.376 0.377 0.359
12 0.953 0.944 0.915 0.956 0.947 0.942 0.241 0.206 0.157 0.199 0.206 0.153
16 0.953 0.947 0.935 0.957 0.949 0.946 0.160 0.132 0.092 0.136 0.144 0.093

DGP2

4 0953 0.941 0.625 0.947 0.941 0.935 0.839 0.820 0.587 0.800 0.804 0.798
8§ 0953 0942 0.744 0.950 0.944 0.937 0.726  0.689 0.463 0.642 0.641 0.655
12 0.953 0.944 0.846 0.952 0.945 0.941 0.529 0.478 0.335 0.419 0.423 0.418
16 0.953 0.946 0.901 0.953 0.946 0.944 0.340 0.293 0.224 0.261 0.269 0.229

DGP3

4 0939 0.896 0.683 0.924 0.918 0.887 0.757 0.684 0.476 0.661 0.649 0.641
8§ 0939 0910 0.832 0.937 0.928 0.907 0.474 0.364 0.277 0.333 0.332 0.301
120939 0.918 0.894 0.945 0.933 0.920 0.262 0.178 0.140 0.178 0.182 0.131
16 0.939 0.926 0.921 0.947 0.936 0.930 0.186 0.116 0.082 0.123 0.128 0.083

DGP4

4 0983 0972 0.762 0.972 0.968 0.971 0.837 0.810 0.598 0.768 0.763 0.784
8§ 0983 0975 0.895 0976 0.969 0.975 0.590 0.526 0.383 0.448 0.453 0.458
120983 0.977 0.939 0978 0.970 0.978 0.317 0.265 0.200 0.239 0.250 0.201
16 0.983 0.979 0.955 0.979 0.971 0.982 0.201 0.165 0.117 0.162 0.173 0.116

DGP5

4 0957 0930 0.680 0.946 0.937 0.916 0.792 0.736 0.501 0.713 0.697 0.694
8§ 0957 0936 0.835 0.951 0.942 0.925 0.523 0.426 0.305 0.385 0.380 0.357
12 0.957 0.944 0.885 0.958 0.947 0.937 0.297 0.218 0.158 0.210 0.214 0.167
16 0.957 0.949 0.896 0.962 0.951 0.944 0.204 0.143 0.093 0.146 0.152 0.106

DGP6

4 0965 0913 0.690 0.936 0.922 0.885 0.788 0.699 0.492 0.680 0.659 0.643
8§ 0965 0928 0.837 0951 0.935 0911 0.496 0.385 0.282 0.357 0.347 0.318
12 0965 0.939 0.899 0.962 0.943 0.927 0.279 0.200 0.145 0.198 0.198 0.152
16 0.965 0.948 0.929 0.966 0.948 0.939 0.194 0.134 0.085 0.140 0.142 0.099
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(ii) average-type test

Figure 1: Limit Functions of the Test Statistics under the Fixed Alternative (A; = 0.3, A = 0.05, A= 0.95)



