
Implementation with Transfers∗

Yi-Chun Chen† Takashi Kunimoto‡ Yifei Sun§

March 6, 2015

Abstract

We say that a social choice rule is implementable with (small) transfers if one can

design a mechanism whose set of equilibrium outcomes coincides with that specified

by the rule but the mechanism allows for (small) ex post transfers among the players.

We then show in private-value environments that any incentive compatible rule is im-

plementable with small transfers. Therefore, our mechanism only needs small ex post

transfers to make our implementation results completely free from the multiple equi-

librium problem. In addition, our mechanism possesses the unique equilibrium that is

robust to higher-order belief perturbations. We also identify a class of interdependent-

value environments to which our results can be extended.
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1 Introduction

The theory of implementation and mechanism design is mainly concerned with the following

question: what is the set of outcomes that can be achieved by institutions (or mechanisms)?

This institutional design problem is particularly relevant when a group of individuals with

conflicting interests has to make a collective decision. The key question then becomes: when
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can individuals, acting in their own self-interest, arrive at the outcomes consistent with a

given welfare criterion (or social choice rule)? To characterize the set of Pareto efficient allo-

cations, for instance, we must know the preferences of those individuals, which is dispersed

among the individuals involved. If Pareto efficiency is guaranteed, we must elicit this infor-

mation from the individuals. In what follows, an individual’s private information relevant

to implementing some welfare criterion is referred to as the individual’s type. Obviously, the

difficulty of eliciting types lies in the fact that individuals need not tell the truth.

For this elicitation, we start our discussion from the notion of partial implementation.

We say that a social choice rule is partially implementable if there exists (i) a mechanism, and

(ii) an equilibrium whose outcome coincides with that specified by the rule. To understand

the class of partially implementable rules, we often appeal to the revelation principle, which

says that whenever partial implementation is possible, one can always duplicate the same

equilibrium outcome by using the truthful equilibrium in the direct revelation mechanism.

Thus, a necessary condition for the implementation of any welfare criterion is its incentive

compatibility, which is simply the property such that the best thing for each individual

to do in the direct revelation mechanism is to report his true type as long as all other

individuals truthfully announce their types. This fundamental insight allows us to transform

any implementation problem into the planner’s problem of maximizing a given social welfare,

subject to incentive compatibility-constraints. This is the standard constrained-optimization

problem. Due to its tractability, this approach turns out to be powerful enough to produce

many applications–in auctions, bargaining, organizational economics, monetary economics,

and many others domains

Although the revelation principle can be adopted in many applications, it is important

to realize that the direct-revelation mechanism may possess other untruthful equilibria whose

outcomes are not consistent with the welfare criterion. This problem of multiple equilibria

is not merely hypothetical; rather, it has been found by researchers in numerous contexts

to be a severe problem, as demonstrated by Bassetto and Phelan (2008) in optimal income

taxation, Demski and Sappington (1984) in incentive contracts, Postlewaite and Schmeidler

(1986) and Palfrey and Srivastava (1987) in Bayesian implementation in exchange economies,

and Repullo (1985) in dominant-strategy equilibrium implementation in social choice envi-

ronments. In order to take seriously the problems resulting from the multiplicity of equilibria,

some researchers have turned to the question of full implementation, and explored the con-

ditions under which the set of equilibrium outcomes coincides with a given welfare criterion.

The literature of full implementation proposes a variety of mechanisms with the additional

property that undesirable outcomes do not arise as equilibria. These proposed mechanisms

originally looked promising as a way to fix the direct revelation mechanism. However, many

of these mechanisms share one serious drawback: undesirable equilibria are eliminated by
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triggering the “integer games” in which each player announces an integer and the player

who announces the highest integer gets to be a dictator. For example, Palfrey and Srivas-

tava (1989) establish a very permissive implementation result in private-value environments:

any incentive compatible social rule can be fully implementable in undominated Bayes Nash

equilibrium. However, their mechanism also employ the integer games. Many researchers

consider the integer game or any variant of it as an unrealistic device, presumably relying on

the argument that the truthful equilibrium is cognitively simple and can be a strong focal

point among the individuals involved; those researchers confine themselves to characteriz-

ing incentive-compatible rules. Thus, there is a clear divide between those who are content

with partial implementation and those who work on full implementation; moreover, there is

unfortunately little interaction between them.

The main objective of this paper is to build a bridge between partial and full imple-

mentation. Before going into the detail of our results, we shall start by articulating the

domain of problems to which our results apply. First, we consider environments in which

monetary transfers among the players are available and all players have quasilinear utilities.

We focus on this class of environments because most of the settings in the applications of

mechanism design are in economies with money. Second, we employ the stochastic mech-

anisms in which lotteries are explicitly used. Therefore, we assume that each player has

von Neumann-Morgenstern expected utility. Third, we focus on private-value environments.

That is, each player’s utility depends only upon his own payoff type (but not the other play-

ers’ payoff types) as well as upon the lottery chosen and his monetary payment (or subsidy).

Fourth, we assume that no players use weakly dominated actions in the game. An action ai

is weakly dominated by another action a′i if, no matter how other players play the game, a′i
cannot be worse than ai and sometimes it can be strictly better. We consider eliminating

weakly dominated actions as a minor qualification on the players’ strategic behavior because

most refinements of Nash equilibrium do not involve weakly dominated actions. Finally, we

adopt an approximate version of full implementation, which aims at achieving the socially

optimal outcome together with some small ex post transfers. We say that a social choice rule

is implementable with arbitrarily small transfers if one can design a mechanism whose set of

equilibrium outcomes coincides with that specified by the rule, which allows for arbitrarily

small ex post transfers among the players.

Given the preparation we have made thus far, we are ready to state our main result: a

social choice rule is implementable with arbitrarily small transfers if and only if it is incentive

compatible (Theorem 2). This is quite consistent with the idea of partial implementation

because if the planner is content with small ex post transfers, the only constraint for full

implementation is incentive compatibility. However, the mechanism we employ here is not

the direct revelation mechanism. Rather, our mechanism is based on the mechanism in Abreu
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and Matsushima (1994), but we extend it to an incomplete-information environment. We

must also stress that our mechanism is finite and uses no devices like integer games. Recall

that Palfrey and Srivastava (1989) use the integer games to show a similar permissive result.

Although our mechanism, unlike Palfrey and Srivastava (1989), exploits the power of ex post

transfers, we can make these transfers arbitrarily small. Since small ex post transfers result

in only an arbitrarily small cost for full implementation, we believe that all individuals would

be willing to accept this small cost as a negligible entry fee to participate in the mechanism.

We will show that all these features of our mechanism are valuable ones, which remove it

from the scope of the criticisms usually made of full implementation.

Oury and Tercieux (2012) recently shed light on the connection between partial and

full implementation. They consider the following situation: The planner wants not only one

equilibrium of his mechanism to yield a desired outcome in his initial model (i.e., partial

implementation) but it to continue to do so in all models “close” to his initial model. This

is what they call continuous (partial) implementation. Oury and Tercieux show that when

sending messages in the mechanism is slightly costly, Bayesian monotonicity, which is a nec-

essary condition for full implementation, becomes necessary for continuous implementation.

Hence, continuous implementation can be a strong argument for full implementation.

Like Oury and Tercieux (2012), we also show that our mechanism achieves continuous

implementation as long as the planner can allow for small ex post transfers (Theorems 5 and

6). Recall that we assume that no players use weakly dominated actions. In fact, this weak

dominance will be highly sensitive to payoff perturbations induced by the cost of sending

messages. It is for this reason that our continuous implementation result does not follow

from Oury and Tercieux (2012).

While the use of small ex post transfers strikes us as being innocuous, it would still be

interesting to know when we can avoid any ex post transfers “on the equilibrium.” If there is

no ex post transfers “on the equilibrium”, a social choice rule is said to be implementable with

no transfers. We propose two classes of environments in which we can achieve implementation

with no transfers. The first class of environments is the case of nonexclusive-information

(NEI) structures (Theorem 3). NEI captures the situation in which any unilateral deception

from the truth-telling in the direct revelation mechanism can be detected. Furthermore, since

complete-information environments can be considered a special case of NEI, our Theorem 3

can be considered an extension of the result of Abreu and Matsushima (1994) to incomplete-

information environments. The second class of environments is the case in which there

are no consumption externalities among the players and each player only cares about his

own consumption (Theorem 4). We can think of exchange economies as an example of this

situation. In this environment, however, we need to strengthen incentive compatibility.

If the planner wants all equilibria of his mechanism yield a desired outcome, and enter-
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tains the possibility that players may have even the slightest uncertainty about payoffs, then

the planner should insist on a solution concept with a closed graph. Chung and Ely (2003)

add this closed-graph property to full implementation in undominated Nash equilibrium (i.e.,

Nash equilibrium where no players use weakly dominated actions) and call the corresponding

concept “UNE-implementation”. They show that Maskin monotonicity, a necessary condi-

tion for Nash implementation, becomes a necessary condition for UNE-implementation. For

their proof, Chung and Ely need to construct a complete information environment nearby, in

which some players have superior information about the preferences of other players. Since

we focus only on private-value environments, their result does not apply to us. Instead,

we show that any incentive-compatible social choice rule is UNE-implementable with no

transfers (Corollary 2).

The rest of the paper is organized as follows: In Section 2, we introduce the prelim-

inary notation and definitions as well as two assumptions (Assumptions 1 and 2) that we

maintain throughout the paper. In Section 3, we construct a mechanism and discuss some

of its basic properties. Section 4 provides our main results. More specifically, we establish

Theorem 1 for implementation with transfers (Section 4.1), Theorem 2 for implementation

with arbitrarily small transfers (Section 4.2), and Theorems 3 and 4 for implementation with

no transfers (Section 4.3). Section 5 discusses three applications of our results: we inves-

tigate the connection to continuous implementation (Section 5.1), to UNE-implementation

(Section 5.2), and to the full surplus extraction (Section 5.3). In Section 6, we provide some

extensions of our results and also discuss the limitations of our results. In particular, we

discuss the role of honesty and rationalizable implementation (Section 6.1); we identify a

class of interdependent-value environments to which our permissive results can be extended

(Section 6.2); we propose a way of achieving budget balance when there are at least three

individuals (Section 6.3); and finally, we compare our results with those of virtual implemen-

tation, a process in which the planner contents himself with implementing the social choice

rule with arbitrarily high probability.

2 Preliminaries

2.1 The Environment

Let I denote a finite set of players and with abuse of notation, we also denote by I the

cardinality of I. The set of pure social alternatives is denoted by A, and ∆ (A) denotes the

set of all probability distributions over A with countable supports. In this context, a ∈ A
denotes a pure social alternative and x ∈ ∆(A) denotes a lottery on A.

The utility index of player i over the set A is denoted by ui : A × Θi → R, where
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Θi is the countable set of payoff types and ui(a, θi) specifies the bounded utility of player

i from the social alternative a under θi ∈ Θi. Denote Θ = Θ1 × · · · × ΘI and Θ−i =

Θ1× · · · ×Θi−1×Θi+1× · · · ×ΘI .
1 We abuse notation to use ui(x, θi) as player i’s expected

utility from a lottery x ∈ ∆ (A) under θi. We also assume that player i’s utility is quasilinear

in transfers, denoted by ui(x, θi) + τi where τi ∈ R.
A model T is a triplet (Ti, θ̂i, πi)i∈I , where T is a countable type space; θ̂i : Ti → Θi;

and πi(ti) ∈ ∆(T−i) denotes the associated belief for each ti ∈ Ti. We assume that each player

of type ti always knows his own type ti. For each type profile t = (ti)i∈I , let θ̂(t) denote the

payoff type profile at t, i.e., θ̂(t) ≡ (θ̂i(ti))i∈I . If Ti is a finite set and supp πi (ti) (i.e., the

support of πi (ti)) is also finite for each ti ∈ Ti, then we say (Ti, θ̂i, πi)i∈I is a finite model.

Let πi (ti) [E] denote the probability that πi (ti) assigns to any measurable set E ⊂ T−i.

Given a model (Ti, θ̂i, πi)i∈I and a type ti ∈ Ti, the first-order belief of ti on Θ is

computed as follows: for any θ ∈ Θ,

h1
i (ti)[θ] = πi (ti) [{t−i ∈ T−i : θ̂(ti, t−i) = θ}].

The second-order belief of ti is his belief about t1−i, set as follows: for any measurable set

F ⊂ Θ×∆ (Θ)I−1,

h2
i (ti)[F ] = πi(ti)

[
{t−i : (θ̂(ti, t−i), h

1
−i(t−i)) ∈ F}

]
.

An entire hierarchy of beliefs can be computed similarly.
(
h1
i (ti), h

2
i (ti), ..., h

`
i(ti), ...

)
is an

infinite hierarchy of beliefs induced by type ti of player i. We denote by T ∗i the set of player

i’s hierarchies of beliefs in this space and write T ∗ =
∏

i∈I T
∗
i . T

∗
i is endowed with the product

topology so that we say a sequence of types {ti [n]}∞n=0 converges to a type ti (denoted as

ti [n]→p ti), if for every ` ∈ N, h`i(ti[n])→ h`i(ti) as n→∞. We write t[n]→p t if ti [n]→p ti

for all i.

Throughout the paper, we consider a fixed environment E which is a triplet
(
A, (ui)i∈I , T̄

)
with a finite model T̄ =

(
T̄i, θ̄i, π̄i

)
i∈I and a planner who aims to implement a social choice

function (henceforth, SCF) f : T̄ → ∆ (A).2

2.2 Mechanisms, Solution Concepts, and Implementation

We assume that the planner can fine or reward a player i ∈ I by side payments. A mechanism

M is a triplet ((Mi), g, (τi))i∈I where Mi is the nonempty countable message space for player

i; g : M → ∆ (A) is an outcome function; and τi (m) : M → R is a transfer rule for player

1Similar notation will be used for other product sets.
2We will consider a countable model when we define and study continuous implementation in Section 5.1.
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i ∈ I. A mechanism M is finite if Mi is finite for every player i ∈ I. We say that a

mechanism M has fines and rewards bounded by τ̄ if |τi (m)| ≤ τ̄ for every i ∈ I and every

m ∈M . We denote such an mechanism by (M, τ̄).

Given a mechanismM, let U(M, T ) denote an incomplete information game associated

with a model T . Fix a game U(M, T ), player i ∈ I and type ti ∈ Ti. We say that

mi ∈ Wi (ti|M, T ) if and only if there does not exist m′i ∈Mi such that∑
t−i,m−i

[
ui(g(m′i,m−i), θ̂i(ti)) + τi (m

′
i,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

≥
∑

t−i,m−i

[
ui(g(mi,m−i), θ̂i(ti)) + τi (mi,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

for all ν : T−i → ∆ (M−i) and a strict inequality holds for some ν : T−i → ∆(M−i). We set

S1
i (ti|M, T ) = Wi (ti|M, T ). For any l ≥ 1, we say that mi ∈ Sl+1

i (ti|M, T ) if and only if

there does not exist m′i ∈Mi such that∑
t−i,m−i

[
ui(g(m′i,m−i), θ̂i(ti)) + τi (m

′
i,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

>
∑

t−i,m−i

[
ui(g(mi,m−i), θ̂i(ti)) + τi (mi,m−i)

]
ν(m−i|t−i)πi(ti)[t−i]

for all ν : T−i → ∆(M−i) and for all t−i and m−i, ν(m−i|t−i)πi(ti)[t−i] > 0 implies that

m−i ∈ Sl−i (t−i|M, T ) =
∏

j 6=i S
l
j (tj|M, T ). Let S∞W denote the set of strategy profiles

which survive one round of removal of weakly dominated strategies followed by iterative

removal of strictly dominated strategies, i.e.,

S∞i Wi (ti|M, T ) =
∞⋂
l=1

Sli (ti|M, T ) ,

S∞W (t|M, T ) =
∏

i∈I
S∞i Wi (ti|M, T ) .

Here we restrict attention to pure strategies, but without loss of generality. In the

mechanism we construct below, we have S∞W as a singleton; this constitutes a unique,

undominated Bayesian Nash equilibrium in pure strategies. Moreover, this undominated

Bayesian Nash equilibrium remains the unique equilibrium in the mechanism even when

mixed strategies are allowed. Several foundations for S∞W in normal-form games are known

in the literature. We refer the reader to Börgers (1994) and Dekel and Fudenberg (1990)

for its foundations in complete information games, and to Frick and Romm (2014) for its

foundation in incomplete information games. The order of elimination of strategies in S∞W

generally matters, as WS∞ (the set of strategy profiles which survive iterative removal of
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strictly dominated strategies followed by one round of removal of weakly dominated strate-

gies) may well be different from S∞W . In the appendix, we show that W∞ generates the

same outcome as S∞W in our mechanism, regardless of the order of removal of strategies,

where W∞ denotes the set of strategies that survive the iterative removal of dominated

strategy profiles. We can also define S∞ as the set of strategy profiles that survive the

iterative removal of strictly dominated strategies. It is already well known that S∞ is order-

independent and equivalent to the set of all rationalizable strategies in finite mechanisms.

In Section 6.1, we will discuss the role of S∞ in our mechanism.

We introduce the following definition:

Definition 1 Fix a model T̄ . We say that a mechanism (M, τ̄) implements an SCF f in

S∞W with transfers if, for any t ∈ T̄ and m ∈ S∞W
(
t|M, T̄

)
, we have g(m) = f(t).

We now formally state the definition of implementation in S∞W. First, we impose no

conditions on the magnitude of transfers and propose the concept of implementation with

transfers.

Definition 2 (Implementation with Transfers) An SCF f is implementable in S∞W

with transfers if there exists a mechanism (M, τ̄) which implements f in S∞W with transfers.

It is often unrealistic to assume that the planner can impose large transfers on the

players. Hence, we only allow for arbitrarily small transfers and propose the following con-

cept.

Definition 3 (Implementation with Arbitrarily Small Transfers) An SCF f is im-

plementable in S∞W with arbitrarily small transfers if, for all τ̄ > 0, there exists a mecha-

nism (M, τ̄) which implements f in S∞W with transfers.

The concept of implementation with arbitrarily small transfers strikes us being rather

innocuous. Still, it is sometimes impossible to assume that the planner can impose any trans-

fers on the players in the equilibrium. Therefore, we propose the concept of implementation

with no transfers.

Definition 4 (Implementation with No Transfers) An SCF f is implementable in S∞W

with no transfers if for all τ̄ > 0, it is implementable in S∞W a mechanism (M, τ̄) and

moreover, for any t ∈ T̄ , and m ∈ S∞W
(
t|M, T̄

)
, we have τi(m) = 0 for each i ∈ I.

Remark 1 The concept of implementation with no transfers does not exclude a possibility

that arbitrarily small transfers are made ex post out of the equilibrium. This concept of

implementation is used by Abreu and Matsushima (1994) under complete information. We

extend this to incomplete-information environments with private values.
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2.3 Assumptions

Throughout the paper we make two assumptions on the environments. First, we follow

Abreu and Matsushima (1992a) and propose the following assumption.

Assumption 1 An environment E = (A, (ui)i∈I , T̄ ) satisfies Assumption 1 if the following

two conditions hold:

1. for each ti ∈ T̄i, ui(·, θ̂i(ti)) is not a constant function on A;

2. for any ti, t
′
i ∈ T̄i with ti 6= t′i, ui(·, θ̂i(ti)) is not a positive affine transformation of

ui(·, θ̂i(t′i)).

Under Assumption 1, Abreu and Matsushima (1992a) show the following important

result. Lemma 1 guarantees the existence of a function that can elicit each player’s type.

Lemma 1 (Abreu and Matsushima (1992a)) Suppose that Assumption 1 holds. For each

i ∈ I, there exists a function xi : T̄i → ∆(A) such that for any ti, t
′
i ∈ T̄i with ti 6= t′i,

ui(xi(ti), θ̂i(ti)) > ui(xi(t
′
i), θ̂i(ti)) (1)

We next introduce the following assumption.

Assumption 2 An environment E satisfies Assumption 2 if, for all i ∈ I and ti, t
′
i ∈ T̄i

with ti 6= t′i, πi(ti) 6= πi(t
′
i).

Remark 2 Since T̄ is finite, Assumption 2 generically holds in the space of the probability

distributions over T̄ . Note, however, that Assumption 2 fails to hold in the case of indepen-

dent probability distributions.

By Assumption 2, we can construct the following scoring rule d0
i : T → R:

Lemma 2 Suppose that an environment E satisfies Assumption 2. For all i ∈ I and

(ti, t−i) ∈ T̄ , define

d0
i (ti, t−i) = 2π̄i (ti) [t−i]− π̄i (ti) · π̄i (ti) ,

where π̄i (ti) · π̄i (ti) denotes its inner (or dot) product. Then, for all i ∈ I and ti, t
′
i ∈ T̄i with

ti 6= t′i, ∑
t−i∈T−i

[
d0
i (ti, t−i)− d0

i (t′i, t−i)
]
π̄i (ti) [t−i] > 0. (2)
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Remark 3 Lemma 2 guarantees the existence of a proper scoring rule in which each player

will tell the truth whenever he believes that every other one tells the truth. Such a constructed

scoring rule is strictly Bayesian incentive compatible. When there are more than two players,

we can achieve budget balance. (See the discussion in Section 6)

Proof. The construction of d0
i (ti, t−i) makes itself a proper scoring rule. By Assumption 2,

the strict inequality of (2) always holds.

3 The Mechanism and its Basic Properties

3.1 The Mechanism

We define the mechanism as follows.

1. The message space:

Each player i makes (K + 3) simultaneous announcements of his own type. We index

each announcement by −2,−1, 0, 1, . . . , K. That is, player i’s message space is

Mi = M−2
i ×M−1

i ×M0
i × · · · ×MK

i = T̄i × · · · × T̄i︸ ︷︷ ︸
K+3 times

,

where K is an integer to be specified later. Denote

mi =
(
m−2
i , ...,mK

i

)
∈Mi, m

k
i ∈Mk

i , k ∈ {−2,−1, 0, ..., K} ,

and

m =
(
m−2, ...,mK

)
∈M, mk =

(
mk
i

)
i∈I ∈M

k = ×i∈IMk
i .

We use mk/m̃i denote the message profile
(
mk

1, ...,m
k
i−1, m̃

k
i ,m

k
i+1, ...,mI

)
.

2. The outcome function:

Let ε ∈ (0, 1) be a small positive number.

Define e : M−1 ×M0 → R by

e(m−1,m0) =

{
ε if m−1

i 6= m0
i for some i ∈ I,

0 otherwise.

The outcome function g : M → ∆ (A) is defined as follows: for each m ∈M ,

g (m) = e(m−1,m0)
1

I

∑
i∈I

xi
(
m−2
i

)
+
{

1− e(m−1,m0)
} 1

K

K∑
k=1

f
(
mk
)
, (3)
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The outcome function contains a “random dictator” component (recall the function xi

defined in (1)) which is triggered in the event that some player’s −1th announcement

does not equal his 0th announcement. When this event does not happen, only the

nondictatorial component is triggered, which consists of K equally weighted lotteries

the kth of which depends only on the I-tuple of kth announcements.

3. The transfer rule:

Let λ, ξ and η be positive numbers. Player i is to pay:

• −λd0
i

(
m−2
−i ,m

−1
i

)
(if d0

i

(
m−2
−i ,m

−1
i

)
is positive, it means player i is paid);

• −λd0
i (m

−1
−i ,m

0
i ) (if d0

i (m
−1
−i ,m

0
i ) is positive, it means player i is paid);3

• ξ if he is the first player whose kth announcement (k ≥ 1) differs from his own

0th announcement (All players who are the first to deviate are fined).

di
(
m0, ...,mK

)
=


ξ if there exists k ∈ {1, ..., K} s.t. mk

i 6= m0
i ,

and mk′
j = m0

j for all k′ ∈ {1, ..., k − 1} for all j;

0 otherwise.

(4)

• η if his kth announcement (k ≥ 1) differs from his own 0th announcement.

dki
(
m0
i ,m

k
i

)
=

{
η if mk

i 6= m0
i ;

0 otherwise.
(5)

In total,

τi (m) = λd0
i

(
m−2
−i ,m

−1
i

)
+ λd0

i (m
−1
−i ,m

0
i ) + di

(
m0, ...,mK

)
+

K∑
k=1

dki
(
m0
i ,m

k
i

)
. (6)

4. Define Θ̄i = {θi ∈ Θi| θ̂i(t̄i) = θi for some t̄i ∈ T̄i}. We provide the summary of

conditions on transfers:

Let

E = max
m−2

i ∈M
−2
i ,mk∈Mk,θ̄i∈Θ̄i,i∈I

∣∣∣∣∣1I∑
j∈I

ui
(
xj(m

−2
j ), θ̄i

)
− ui

(
f
(
mk
)
, θ̄i
)∣∣∣∣∣ ; (7)

D = max
m̄k

i ∈Mk
i ,m

k∈Mk,θ̄i∈Θ̄i,i∈I

{
ui
(
f
(
mk
)
, θ̄i
)
− ui(f(mk

−i, m̄
k
i ), θ̄i)

}
, (8)

3The design of the two scoring rules is needed for establishing the order independence of W∞ in the
Appendix. The results in the main body of the paper still go through with one scoring rule.

11



where E multiplied by ε is the upper bound of the gain for any player i, of triggering

or not triggering the random dictatorial component; D is the maximum gain for player

i from altering the kth announcement, where k ≥ 1.

We choose positive numbers λ, γ, K, ε, η, and ξ such that for every ti, t
′
i ∈ T̄i and

every i ∈ I,

τ̄i > 2λd̄0
i + ξ +Kη; (9)∑

t−i∈T̄−i

[
λd0

i (t−i, t
′
i)− λd0

i (t−i, ti)
]
π̄i (ti) [t−i] > γ; (10)

η > εE; (11)

ξ >
1

K
D; (12)

γ > εE + ξ +Kη, (13)

where d̄0
i denotes an upper bound of d0

i (t) over t ∈ T̄ .4

3.2 Basic Properties of the Mechanism

In this section, we exploit some basic properties of the mechanism constructed in the previous

section. These properties play an important role in the rest of the paper.

Claim 1 In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, and mi ∈Mi, if mi ∈ S1

i

(
t̄i|M, T̄

)
,

then m−2
i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i, and mi ∈ Mi, if m−2
i 6= t̄i, then mi 6∈

S1
i

(
t̄i|M, T̄

)
, i.e., mi is weakly dominated by some m′i. We construct m′i as follows:

m′i =
(
t̄i,m

−1
i , ...,mK

i

)
.

Fix any conjecture ν : T̄−i → ∆(M−i).

4Given any τ̄ > 0, we first choose λ small enough so that λd̄0i <
1
4 τ̄ . Second, by (2), we can choose γ

small enough so that (10) holds. Third, we choose K large enough so that 1
KD < min

{
1
4 τ̄ ,

1
3γ
}
. Fourth,

we choose ε small enough so that KεE < min
{

1
4 τ̄ ,

1
3γ
}
. Therefore, we have τ̄ > 2λd̄0i + 1

KD + KεE and
γ > εE + 1

KD+KεE. From these two inequalities, we can thus choose η and ξ such that (9), (11), (12) and
(13) hold.

12



The difference of the expected values between m′i and mi for player i of type t̄i is shown

as follows: ∑
t−i,m−i

{
ui
(
g (m′i,m−i) , θ̄i

)
+ τi (m

′
i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui
(
g (mi,m−i) , θ̄i

)
+ τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

e (m−1,m0)

I

{
ui
(
xi (t̄i) , θ̄i

)
− ui

(
xi
(
m−2
i

)
, θ̄i
)}
ν(m−i|t−i)πi(t̄i)[t−i] (14)

=
∑

t−i,m−i

e (m−1,m0)

I
ν(m−i|t−i)πi(t̄i)[t−i]

{
ui
(
xi (t̄i) , θ̄i

)
− ui

(
xi
(
m−2
i

)
, θ̄i
)}

≥ 0,

where the first equality follows because the only difference lies in function xi when m′i differs

from mi only in the first announcement, (see the definition of g in (3) and the definition of

τ in (6)); by (1) the last inequality is strict whenever e (m−1,m0) = ε for some m−i.

The next claim says that telling a lie in round −1 is strictly dominated by telling the

truth, given the hypothesis that no players choose weakly dominated messages.

Claim 2 In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, if mi ∈ S2

i

(
t̄i|M, T̄

)
, then

m−1
i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i, and mi ∈ S1
i (t̄i|M, T̄ ), if

m0
i 6= t̄i, then mi /∈ S2

i (t̄i|M, T̄ ). We construct m̄i as follows:

m̄i =
(
m−2
i , t̄i,m

0
i , ...,m

K
i

)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each (t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S1
−i
(
t−i|M, T̄

)
.

The difference of the expected values under m̄i from mi for player i of type t̄i is shown

as follows: ∑
t−i,m−i

{
ui(g(m̄i,m−i), θ̄i) + τi (m̄i,m−i)

}
ν(m−i|t−i)πi(t̄i)(t−i)

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]
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=
∑

t−i,m−i

{
e
(
m−1/m̄i,m

0
)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑

t−i,m−i

{
d0
i

(
m−2
−i , t̄i

)
− d0

i

(
m−2
−i ,m

−1
i

)}
ν(m−i|t−i)πi(t̄i)[t−i]

Observe that when m̄i differs from mi only in the −1th announcement, the difference

in terms of g(·) (see the outcome function in (3)) lies in function e(·) and the difference in

terms of transfer is summarized in functions d0
i (see the transfer rule in (6)).

Note that

(i) In terms of outcomes, the possible expected gain of player i of type t̄i by choosing mi

rather than m̄i is∑
t−i,m−i

{
e
(
m−1/m̄i,m

0
)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

From (7), when playing mi rather than m̄i, this possible gain is bounded above by εE.

(ii) In terms of payments, the expected loss by choosing mi rather than m̄i is∑
t−i,m−i

[
λd0

i

(
m−2
−i , t̄i

)
− λd0

i

(
m−2
−i ,m

−1
i

)]
ν(m−i|t−i)πi(t̄i)[t−i].

By Claim 1, we know that m−i ∈ S1
−i
(
t̄−i|M, T̄

)
implies m−2

−i = t̄−i. Therefore, by

(10), we obtain ∑
t−i,m−i

[
λd0

i

(
m−2
−i , t̄i

)
− λd0

i

(
m−2
−i ,m

−1
i

)]
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t̄−i∈T̄−i

[
λd0

i (t̄−i, t̄i)− λd0
i

(
t̄−i,m

−1
i

)]
π̄i (t̄i) [t̄−i]

> γ,

where γ is chosen such that γ > εE by (13).

Therefore, mi is strictly dominated by m̄i.
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Claim 3 In the game U
(
M, T̄

)
, for every i ∈ I, t̄i ∈ T̄i, if mi ∈ S3

i

(
t̄i|M, T̄

)
, then

m0
i = t̄i.

Proof. We show that for any i ∈ I, t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i, if m0
i 6= t̄i, then mi /∈

S3
i (t̄i|M, T̄ ). We construct m̄i as follows:

m̄i =
(
m−2
i ,m−1

i , t̄i,m
1
i , . . . ,m

K
i

)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each (t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S2
−i
(
t−i|M, T̄

)
.

From Claim 1, we know that for any j ∈ I, if mj ∈ S2
j

(
t̄j|M, T̄

)
, then m−1

j = t̄j.

The difference of the expected values under m̄i from mi for player i of type t̄i is shown

as follows: ∑
t−i,m−i

{
ui(g(m̄i,m−i), θ̄i) + τi (m̄i,m−i)

}
ν(m−i|t−i)πi(t̄i)(t−i)

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

{
e
(
m−1,m0/m̄i

)
− e

(
m−1,m0

)}
×

{
1

I

∑
j∈I

ui(xj(t̄j), θ̄i)−
1

K

K∑
k=1

ui(f(mk), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑
t−i

{
λd0

i (t−i, t̄i)− λd0
i

(
t−i,m

0
i

)}
πi(t̄i)[t−i]

+
∑

t−i,m−i

{
di
(
m0/m̄i,m

1, . . . ,mK
)
− di

(
m0, ...,mK

)}
ν(m−i|t−i)πi(t̄i)[t−i]

+
∑

t−i,m−i

K∑
k=1

{dki
(
m̄0
i ,m

k
i

)
− dki

(
m0
i ,m

k
i

)
}ν(m−i|t−i)πi(t̄i)[t−i]

≥ −εE + γ − ξ −Kη
> 0

Observe that when m̄i differs from mi only in the 0th announcement, the difference

in terms of g(·) (see the outcome function in (3)) lies in function e(·) and the difference in

terms of transfer is summarized in functions d0
i , di, and {dki }k=1,...,K (see the transfer rule in

(6)).

Therefore, mi is strictly dominated by m̄i.
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4 Main Results

There are three subsections here. In Section 4.1, we provide a result of implementation with

transfers where very large transfers are allowed. In Section 4.2, we make the size of transfers

arbitrarily small and establish a characterization of implementation with arbitrarily small

transfers. Here, incentive compatibility is an important condition. Finally, in Section 4.3, we

propose two classes of environments in each of which we need no transfers on the equilibrium

in the mechanism.

4.1 Implementation with Transfers

The following theorem shows that if we impose no conditions on the size of transfers, any

SCF is implementable with transfers. In this case, a very large size of transfers might be

needed even on the equilibrium.

Theorem 1 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

Any SCF is implementable in S∞W with transfers.

We use the following claim to prove Theorem 1.

Claim 4 Let K = 1. In the game U
(
M, T̄

)
for every i ∈ I, t̄i ∈ T̄i, if mi ∈ S4

i

(
t̄i|M, T̄

)
,

then m1
i = t̄i.

Proof. Fix i ∈ N , t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i. We shall show that

m1
i 6= t̄i ⇒ mi 6∈ S4

i

(
t̄i|M, T̄

)
.

That is, we shall show that mi is strictly dominated. Let m̃i be the dominating strategy

defined as follows,

m̃i =
(
m−2
i ,m−1

i ,m0
i , t̄i
)
.

Then, for any conjecture ν : T̄−i → ∆(M−i), we have that, for each (t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ S3
−i
(
t−i|M, T̄

)
.

From Claim 3, we know that for any j ∈ I, if mj ∈ S3
j

(
t̄j|M, T̄

)
, then m0

j = t̄j.

By choosingmi rather than m̃i, in terms of transfer rule, one possible loss from reporting

is ∑
t−i,m−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i] = η + ξ, (15)
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where player i of type t̄i will get punished by η according to rule d1
i (by (5)) and ξ according

to rule di (by (4)).

Note that e (m−1,m0) = 0. In terms of outcome function g(·) (defined in (3)): the

possible gain from playing mi rather than m̃i is∑
t−i,m−i

{
ui(f(m1), θ̄i)− ui(f(t̄i,m

1
−i), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i].

From (8), we also have the following inequality on the expected gain of type ti when

playing mi rather than m̃i:∑
t−i,m−i

{
ui(f(m1), θ̄i)− ui(f(t̄i,m

1
−i), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i] ≤ D. (16)

When K = 1, we know from Section 3.1 that ξ > D (see (12)).5 So, we obtain

η + ξ > D. (17)

To sum up, we have∑
t−i,m−i

{
ui(g(m̃i,m−i), θ̄i) + τi (m̃i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

=
∑

t−i,m−i

{
ui(f(m1

−i, t̄i), θ̄i)− ui(f(m1), θ̄i) + ξ + η
}
ν(m−i|t−i)πi(t̄i)[t−i]

≥
∑

t−i,m−i

{η + ξ −D} ν(m−i|t−i)πi(t̄i)[t−i]

> 0.

The first equality follows from the outcome function (3) and the transfer rule (6); the second

inequality follows from (16); the last inequality follows from (17). Therefore, player i of type

t̄i will report t̄i rather than m1
i .

5When K = 1, we can appropriately choose λ, γ, ε, ξ, and η to satisfy those conditions on transfers and
utilities in Section 3.1. This means that ξ can be a very large number. Since we now impose no restrictions on
the size of transfers, by choosing λ > 0 large enough, we can choose γ arbitrarily large to satisfy γ > εE+ξ+η
(inequality (13)). Hence, ξ can be chosen large enough to satisfy ξ > D (inequality (12)).
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4.2 Implementation with Arbitrarily Small Transfers

We shall show that if an SCF f is incentive compatible, our mechanism can implement f in

S∞W with arbitrarily small transfers. First, we introduce the notation. For every i ∈ I,

every ti, t
′
i ∈ T̄i, let ∑

t−i∈T̄−i

ui(f(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i]

denote the expected utility generated by the direct revelation mechanism
(
T̄ , f

)
for player i

of type ti when he announces t′i and the other players all make truthful announcements.

Definition 5 An SCF f : T̄ → ∆(A) is incentive compatible if, for all i ∈ I and all

ti, t
′
i ∈ T̄i, ∑

t−i∈T̄−i

ui(f(t−i, ti), θ̂i(ti))π̄i(ti)[t−i] ≥
∑

t−i∈T̄−i

ui(f(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i].

We are now ready to state the main result of this section. The theorem below shows

that incentive compatibility is a necessary and sufficient condition for implementation with

arbitrarily small transfers.

Theorem 2 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

An SCF f is implementable in S∞W with arbitrarily small transfers where S∞W
(
t|M, T̄

)
is a singleton if and only if f is incentive compatible.

Remark 4 Palfrey and Srivastava (1989) establish a very similar implementation result in

their Theorem 2: any incentive compatible social choice function is fully implementable in

undominated Bayes Nash equilibrium. We clarify a few differences between our result and

that of Palfrey and Srivastava (1989). Although Palfrey and Srivastava (1989) do not need

ex post small transfers, they use the integer games as part of their mechanism. On the other

hand, although our mechanism does not use any devices such as the integer games, it exploits

the power of ex post small transfers. In addition, our solution concept of S∞W is more robust

(or permissive) than undominated Bayes Nash equilibrium. Although Theorem 2 of Palfrey

and Srivastava (1989) needs at least three players, our result works even for the case of two

players. One common feature these two papers share is the difficulty of extending the results

to interdependent-value environments. The reader is referred to both Section 6.2 of our paper

and Section 4 of Palfrey and Srivastava (1989) for appreciating this difficulty.

We use the following claim to prove the “if” part of Theorem 2.

Claim 5 Suppose that an SCF f is incentive compatible. For each k ≥ 3, i ∈ I, and t̄i ∈ T̄i,
if mi ∈ Ski (t̄i|M, T̄ ), then mk−3

i = t̄i.
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Proof. Consider type t̄i ∈ T̄i with θ̂i(t̄i) = θ̄i. When k = 3, the result follows from Claim 3.

Fix k ≥ 3. The induction hypothesis is that for every i ∈ I, t̄i ∈ T̄i, if mi ∈ Ski
(
t̄i|M, T̄

)
,

then mk′
i = t̄i for all k′ ≤ k − 3.

Then, we show that if mi ∈ Sk+1
i (t̄i|M, T̄ ), then mk′

i = t̄i for all k′ ≤ k − 2. It suffices

to prove mk−2
i = t̄i. Suppose not, let m̃i be the dominating strategy defined as follows,

m̃i ≡
(
m−2
i , ...,mk−3

i , t̄i,m
k−1
i ...,mK

i

)
.

We let M∗
−i =

{
m−i ∈M−i : mk−2

−i = m0
−i
}
. Fix a conjecture ν : T̄−i → ∆(M−i). Note

that, for each (t−i,m−i),

ν(m−i|t−i)πi(t̄i)[t−i] > 0⇒ m−i ∈ Sk−i
(
t−i|M, T̄

)
.

Thus, we obtain e (m−1,m0) = 0.

We will show that∑
t−i,m−i

{
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i]

−
∑

t−i,m−i

{
ui(g(mi,m−i), θ̄i) + τi(mi,m−i)

}
ν(m−i|t−i)πi(t̄i)[t−i] (18)

> 0.

Note the left hand side of inequality is equal to

∑
t−i,m−i 6∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i] (19)

+
∑

t−i,m−i∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i].

Step 1:

∑
t−i,m−i 6∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i] > 0.

From the induction hypothesis, for every i ∈ I and t̄i ∈ T̄i, if mi ∈ Ski (t̄i|M, T̄ ), then

mk′
i = t̄i for all k

′ ≤ k − 3. When m−i 6∈ M∗
−i, there exists some j ∈ I\{i} such that

mk−1
j = m0

j . We compute the expected loss in terms of payments for player i of type t̄i when
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playing mi rather than m̃i:∑
t−i,m−i 6∈M∗−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i]

By choosing m̃i rather than mi, player i will avoid the fine, η according to rule dk−2
i (see (5)

in Section 3.1) and ξ according to rule di (see (4)), that is,

τi (m̃i,m−i)− τi (m) = η + ξ.

In terms of g(·) (see the outcome function in (3)), we have

∑
t−i,m−i 6∈M∗−i

1

K

{
ui(f(mk−1), θ̄i)− ui(f(m̃k−1

i ,mk−1
−i ), θ̄i)

}
ν(m−i|t−i)πi(t̄i)[t−i] ≤

1

K
D. (20)

This means that the possible gain from playing mi rather than m̃i is bounded by D/K.

Since we have that ξ > D/K (see (12) in Section 3.1), we have

η + ξ >
1

K
D. (21)

This completes Step 1.

Step 2:

∑
t−i,m−i∈M∗−i

{ {
ui(g(m̃i,m−i), θ̄i) + τi(m̃i,m−i)

}
−{

ui(g(mi,m−i), θ̄i) + τi(mi,m−i)
} }

ν(m−i|t−i)πi(t̄i)[t−i] > 0

When m−i ∈ M∗
−i, for any j ∈ I\{i}, we have mk−1

j = m0
j . From the induction hypothesis,

for every i ∈ I, t̄i ∈ T̄i, if mi ∈ Ski
(
ti|M, T̄

)
, then mk′

i = t̄i, for all k′ ≤ k − 3. We compute

the expected loss in terms of payments for player i of type t̄i when playing mi rather than

m̃i: ∑
t−i,m−i∈M∗−i

{τi (m̃i,m−i)− τi (m)} ν(m−i|t−i)πi(t̄i)[t−i]

By choosing m̃i rather than mi, player i will avoid the fine, η according to rule dk−2
i (see (5)

in Section 3.1), the expected loss in terms of payments from choosing mi rather than m̃i in

terms of τ(·) (see (6) in Section 3.1) is

τi (m̃i,m−i)− τi (m)

= η + ξ − di
(
m0, ...,mk−1,mk−2/m̃i...,m

K
)

≥ η;
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Therefore, when playing mi rather than m̃i, the expected loss in terms of payments is

bounded below: ∑
t−i

{τi (m̃i,m−i)− τi (m)} πi(t̄i)[t−i] ≥ η.

In terms of g(·) (see the outcome function in (3)), the possible gain for player i to report mi

rather than m̃i is

1

K

∑
m−i

{
ui(f(mk−2), θ̄i)− ui(f(mk−2/m̃i), θ̄i)

}
πi(t̄i)[t−i],

Since m̃i differs from mi only in the (k − 2)th announcement.

That is, when playing mi rather than m̃i, the possible gain for player i of type t̄i is

which is bounded above by 0 from incentive compatibility of f. This completes Step 2.

The “only if” part of Theorem 2 is proved as follows.

Proof. Fix τ̄ > 0 arbitrarily small. Given f : T̄ → ∆ (A) is implementable in S∞W

with arbitrarily small transfers by a mechanism (M, τ̄), then for any t ∈ T̄ and m ∈
S∞W

(
t|M, T̄

)
, we have g(m) = f(t) and τ(m) < τ̄ . Since S∞W

(
t|M, T̄

)
is a singleton,

we know that S∞W is a pure Bayesian Nash Equilibrium in U(M, τ̄ , T̄ ). Then, we have for

all m′i ∈Mi, ∑
t′−i

πi(ti)[t
′
−i]
{
ui(g(mi,m−i(t

′
−i)), θ̂i(ti)) + τi(mi,m−i(t

′
−i))

}
≥

∑
t′−i

πi(ti)[t
′
−i]
{
ui(g(m′i,m−i(t

′
−i)), θ̂i(ti)) + τi(m

′
i,m−i(t

′
−i))

}

Let (T̄ , f) be a direct revelation mechanism. Then truth telling must be a Bayesian

nash equilibrium. That is, for any ti, t
′
i ∈ T̄i,∑

t′−i

πi(ti)[t
′
−i]
{
ui(f(ti, t

′
−i), θ̂i(ti)) + τi(ti, t

′
−i)
}

≥
∑
t′−i

πi(ti)[t
′
−i]
{
ui(f(t′i, t

′
−i), θ̂i(ti)) + τi(t

′
i, t
′
−i)
}

(22)

Note that (22) holds for any τ(σ(t)) < τ̄ . Since τ̄ can be arbitrarily close to 0, we must have∑
t′−i

πi(ti)[t
′
−i]ui(f(ti, t

′
−i), θ̂i(ti)) ≥

∑
t′−i

πi(ti)[t
′
−i]ui(f(t′i, t

′
−i), θ̂i(ti)) (23)

That is, f is incentive compatible.
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4.3 Implementation with No Transfer

In Theorem 2, we use arbitrarily small transfers to achieve implementation of any incentive

compatible SCF. In the mechanism, the ex post payment, although we can make it very

small, is still necessary on the equilibrium. We will show that under some condition, the ex

post payment is not required on the equilibrium.

4.3.1 Non-Exclusive Information (NEI)

Recall the following definition: an SCF f : T̄ → ∆ (A) is implementable in S∞W with no

transfers if it is implementable in S∞W with arbitrarily small transfers by a mechanism

(M, τ̄) such that for any t ∈ T̄ and m ∈ S∞W (t|M, T̄ ), τi(m) = 0 for each i ∈ I. To

discuss the result with no transfers, we need some extra assumptions. We first use non-

exclusive information structure (NEI) for implementation with no transfers. To the best of

our knowledge, NEI is first proposed by Postlewaite and Schmeidler (1986). We provide a

version of its definition as follows:

Definition 6 The environment E satisfies the non-exclusive information structure

(NEI) if, for each t̄ ∈ T̄ , i, j ∈ I, and tj ∈ T̄j,

π̄i(t̄i)[tj, t̄−ij] =

{
1 if tj = t̄j

0 otherwise

where t̄−ij denotes a type profile that is obtained from t̄ after eliminating t̄i and t̄j.

When I = 2, NEI is equivalent to complete information. NEI captures the idea that

each agent is informationally negligible in the sense that any unilateral deception from the

truth-telling in the direct revelation mechanism can be detected. Under NEI, we obtain the

following result:

Theorem 3 Suppose that the environment E satisfies Assumptions 1 and NEI. Assume

I ≥ 2. Any incentive compatible SCF is implementable in S∞W with no transfers.

Proof. The mechanism is identical to the mechanism in Section 3.1 except that we replace

λd0
i

(
m−2
−i ,m

−1
i

)
and λd0

i

(
m−1
−i ,m

0
i

)
with new transfer rules as follows:

d̂0
i (m

−2
−i ,m

−1
i ) =

{
γ if πi(m

−1
i )[m−2

−i ] = 0;

0 otherwise.

d̂0
i (m

−1
−i ,m

0
i ) =

{
γ if πi(m

0
i )[m

−1
−i ] = 0;

0 otherwise.

The proof then follows verbatim the proof of Theorem 2.
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4.3.2 Strict Incentive Compatibility and Separability

Following Sjöström (1994), we introduce the following class of environments. For each SCF

f and type t ∈ T̄ , we denote f(t) = (f1(t), . . . , fI(t)) where fi(t) denotes the marginal

distribution of f(t) on Ai where A = A1 ×A2 × ...×AI . The reader is referred to Sjöström

(1994) to see when this separable environment is valid. For example, we can consider an

exchange economy where each player i has a consumption set Ai and cares only about his

own consumption. We first introduce a stronger version of incentive compatibility.

Definition 7 An SCF f : T̄ → ∆(A) is strictly incentive compatible if, for all i ∈ I
and all ti, t

′
i ∈ T̄i with ti 6= t′i,∑

t−i∈T̄−i

ui(fi(t−i, ti), θ̂i(ti))π̄i(ti)[t−i] >
∑

t−i∈T̄−i

ui(fi(t−i, t
′
i), θ̂i(ti))π̄i(ti)[t−i].

In the theorem below, we can drop Assumption 2 but instead, we need to strengthen

incentive compatibility into strict incentive compatibility.

Theorem 4 Suppose that a separable environment E satisfies Assumptions 1. Assume I ≥
2. Any strictly incentive compatible SCF is implementable in S∞W with no transfers.

The corresponding mechanism is provided as follows. Basically, in a separable envi-

ronment, the strictly incentive compatible SCF replaces the role of scoring rule (d0
i ) in the

previous discussion. We can drop the assumption on information structure, that is, players’

information can be independent.

1. The message space:

Each player i makes 4 simultaneous announcements of his own type. We index each

announcement by −2,−1, 0, 1. That is, player i’s message space is given as

Mi = M−2
i ×M−1

i ×M0
i ×M1

i = T̄i × T̄i × T̄i × T̄i.

Denote

mi =
(
m−2
i ,m−1

i ,m0
i ,m

1
i

)
∈Mi, m

k
i ∈Mk

i , k ∈ {−2,−1, 0, 1} ,

and

m =
(
m−2,m−1,m0,m1

)
∈M, mk =

(
mk
i

)
i∈I ∈M

k = ×i∈IMk
i .

We use mk/m̃i to denote the strategy profile
(
mk

1, ...,m
k
i−1, m̃

k
i ,m

k
i+1, ...,mI

)
.
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2. The outcome function:

Let ε be a small positive number.

Define e : M−1 ×M0 → R by

e(m−1,m0) =

{
ε if m−1

i 6= m0
i for some i ∈ I,

0 otherwise.

The outcome function g : M → ∆(A) is defined as follows: for each m ∈M ,

g (m) = e
(
m−1,m0

) 1

I

∑
i∈I

xi
(
m−2
i

)
+

{
1− e

(
m−1,m0

)}{
λ̃1f̃(m−1,m−2) + λ̃2f̃(m0,m−1) + (1− λ̃1 − λ̃2)f(m1)

}
,

where f̃(mk,mk−1) ≡ ×i∈Ifi
(
mk
i ,m

k−1
−i
)

and fi(m
k
i ,m

k−1
−i ) denotes the marginal distri-

bution of f(mk
i ,m

k−1
−i ) on Ai for k ∈ {−1, 0}.

3. The transfer rule:

Let η be positive numbers. Player i is to pay η if his 1st round announcement differs

from his own 0th round announcement.

τi
(
m0
i ,m

1
i

)
=

{
η if m1

i 6= m0
i ;

0 otherwise.
(24)

The definitions of E and D are the same as in the previous section.

We choose positive numbers λ̃1, λ̃2, ε, η such that for every ti, t
′
i ∈ T̄i and every i ∈ I,

τ̄i > η; (25)

λ̃q
∑

t−i∈T̄−i

[
ui(fi(ti, t−i), θ̂i(ti))− ui(fi(t′i, t−i), θ̂i(ti))

]
π̄i(ti) [t−i] > γ, for q ∈ {1, 2} ;

(26)

η > εE + (1− λ̃1 − λ̃2)D; (27)

and

γ > εE + (1− λ̃1 − λ̃2)D + η. (28)

Since f is strictly incentive compatible, the existence of γ is guaranteed in (26).

Remark 5 In a separable environment, a proper adjustment of the weight between the 0th

round report and the 1st round report can decrease the payment in a way that differs from
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that used in Abreu and Matsushima (1994). Specifically, given τ̄ , we can choose (1− λ̃1− λ̃2)

small enough to make the weight of the 1st round announcement small enough. Therefore,

η can be chosen small enough to prevent the deviation in the 1st round.

Remark 6 We omit the proof of Theorem 4 and rather provide a heuristic argument of

how the proof works. The first round deletion of weakly dominated strategies is the same

as the procedure in the proof of Claim 1. Second, to elicit the true type profile in the −1th

and 0th rounds, the constructed SCF f̃ works in a similar way as the scoring rule (d0
i ) did

in the proofs of Claims 2 and 3. Specifically, the function f̃ is constructed such that each

player i’s payoff from f̃ is affected only by his own −1th (resp. 0th) round report and the

other players’ −2th (resp. −1th) round report. By the strict incentive compatibility, each

player will announce truthfully in the −1th (resp. 0th) round(given the truth telling in the

−2th (resp. −1th) reports for everyone). When all players tell the truth in every round, the

constructed function f̃ coincides with the SCF f. This enables the mechanism to implement

f without any ex post transfers. Finally, the last round of elimination of strictly dominated

strategies works in a way that is parallel to the proof of Claim 4..

5 Applications

We now discuss the applications of our results. First, we connect our results to continuous im-

plementation, a concept proposed by Oury and Tercieux (2012). In Section 5.1, we show that

any incentive-compatible SCF is continuously implementable with arbitrarily small transfers.

Second, we discuss robust undominated Nash implementation, which Chung and Ely (2003)

call UNE-implementation. Chung and Ely show that when UNE-implementation is defined

to be robust to perturbations accommodating interdependent values, Maskin monotonicity

is a necessary condition. In contrast, when we require UNE-implementation to be robust

only to private-value perturbations, we establish a very permissive result. That is, as long

as we allow for a tiny number of transfers out of equilibrium, any incentive-compatible SCF

is shown to be UNE-implementable. Finally, with ex post small transfers, we obtain a full

implementation result of the full surplus extraction in auctions environments.

5.1 Continuous Implementation

The mechanism design literature often deals with environments in which monetary payments

are available, and they are content to limit their analyses to partial implementation. Partial

implementation is a notion that requires the planner to design a game in which only some

equilibrium–but not necessarily all equilibria–yields the desired outcome. Then, appealing to

the revelation principle, its analysis reduces to the characterization of incentive-compatible
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direct revelation mechanisms. This means that the mechanism design literature discounts

the possibility that undesirable equilibria exist in the game. Full–as opposed to partial–

implementation is a notion that requires that all equilibria deliver the desired outcome.

Although it is unfortunate that the literature has thus far largely ignored the need to com-

pare partial and full implementation, Oury and Tercieux (2012) have recently built a bridge

between these two notions. They consider the following situation: The planner wants not

only that the SCF be partially implementable, but also that it continue to be partially im-

plementable in all the models close to his initial model. That is, the SCF is continuously

(partial) implemented. Oury and Tercieux (2012) show that Bayesian monotonicity (See

definition on p. 1617 in Oury and Tercieux (2012)), which is a necessary condition for full

implementation, becomes necessary even for continuous implementation; in light of this re-

sult, they argue that continuous implementation is tightly connected to full implementation.

We shall show that as long as the planner is willing to allow for small ex post transfers,

any incentive-compatible SCF is continuously implementable in private-values environments.

This stands in sharp contrast with Oury and Tercieux (2012) because our continuous im-

plementation result does not need Bayesian monotonicity but only incentive compatibility,

which is a necessary condition for partial implementation. Our result is consistent with

Matsushima (1993), which shows that in Bayesian environments with side payments un-

der strict incentive compatibility, Bayesian monotonicity holds generically. Therefore any

incentive compatible SCF is fully implementable. Note that if one is willing to settle for

allowing small ex post transfers, one can always transform any incentive-compatible SCF

into a strict incentive-compatible one. However, the mechanism which can fully implement

any incentive-compatible SCF employs either large transfers (Matsushima (1991)) or infinite

strategy space (In the Bayesian environments with side payments, the set of allocation rules

is infinite in Jackson (1991)). We show that with arbitrarily small transfers, any incentive-

compatible SCF is fully implementable by a finite mechanism, not only in the benchmark

model but also in the nearby environment.

Given a mechanism (M, τ̄) and a type space T , we write U (M, τ̄ , T ) for the induced

incomplete information game. In the game U (M, τ̄ , T ) , a behavior strategy of a player i

is any measurable function σi : Ti → ∆ (Mi) . We follow Oury and Tercieux (2012) to write

down the following definitions. We define

Vi((mi, σ−i), ti) =
∑
t−i

πi(ti)[t−i]
∑
m−i

σ−i(m−i|t−i) {ui(g(mi,m−i), θi(ti)) + τi(mi,m−i))} .

Definition 8 A profile of strategies σ = (σ1, ..., σI) is a Bayes Nash equilibrium in
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U(M, τ̄ , T ) if, for each i ∈ I and each ti ∈ Ti,

mi ∈ supp (σi (ti))⇒ mi ∈ argmaxm′i∈Mi
Vi ((m

′
i, σ−i) , ti) .

We write σ|T̄ for the strategy σ restricted to T̄ .

For any T = (Ti, θ̂i, πi)i∈I , we will write T ⊃ T̄ if T ⊃ T̄ and for every ti ∈ T̄i, we have

πi (ti) [E] = π̄i (ti)
[
T̄−i ∩ E

]
for any measurable E ⊂ T−i.

Definition 9 Fix a mechanism (M, τ̄) and a model T such that T̄ ⊂ T . We say that a Bayes

Nash equilibrium σ in U (M, τ̄ , T ) (strictly) continuously implements f : T̄ → ∆(A) if

the following two conditions hold: (i) σ|T̄ is a (strict) Bayes Nash equilibrium in U
(
M, τ̄ , T̄

)
;

(ii) for any t̄ ∈ T̄ and any sequence t[n] →p t̄, whenever t[n] ∈ T for each n, we have

(g ◦ σ)(t[n])→ f(t̄).

We introduce two variants of continuous implementation:

Definition 10 An SCF f : T̄ → ∆ (A) is continuously implementable with transfers if

there exists a mechanism (M, τ̄) such that for each model T with T̄ ⊂ T , there is a Bayes

Nash equilibrium σ in U(M, τ̄ , T ) that continuously implements f .

Definition 11 An SCF f : T̄ → ∆ (A) is continuously implementable with arbitrarily

small transfers if for any τ̄ > 0, there exists a mechanism (M, τ̄) such that for each

model T with T̄ ⊂ T , there is a Bayes Nash equilibrium σ in U (M, τ̄ , T ) that continuously

implements f .

First, we establish the following important lemma.

Lemma 3 Fix any model T such that T̄ ⊂ T . There exists a finite mechanism M. For

any t̄ ∈ T̄ and any sequence {t [n]}∞n=0 in T, if t [n]→p t̄, then, for each n large enough, we

have S∞W (t[n]|M, T ) ⊂ S∞W (t̄|M, T ).

LetM be any one of the mechanisms used in Section 4. The proof of Lemma 3 builds

upon the following claims.

Claim 6 Fix any model T such that T̄ ⊂ T . For any t̄ ∈ T̄ and any sequence {t[n]}∞n=0

such that t [n] →p t̄, there exists N1 ∈ N such that for any n ≥ N1, we have if mi ∈
W 1
i (ti [n] |M, T ), then m−2

i = t̄i.

Proof. Fix t̄ ∈ T̄ . Let {t[n]}∞n=0 be such that t [n] →p t̄. There exists a natural number

N1 ∈ N such that for each n > N1, we have θ̂i (ti [n]) = θ̂i(t̄i) = θ̄i for some θ̄i ∈ Θi.
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This is due to the fact that Θi is finite and endowed with the discrete topology. It follows

immediately from Claim 1 that if m−2
i 6= t̄i, then mi 6∈ W 1

i (ti [n] |M, T ) .

Fix a mechanism (M, τ̄) and a type space T̄ . For any t̄ ∈ T̄ , we define a new iteration

process. We say that mi ∈ W̃i

(
t̄i|M, T̄

)
if and only if m−2

i = t̄i. We set S1
i

(
t̄i|M, T̄

)
=

W̃i

(
t̄i|M, T̄

)
. Sl+1

i

(
t̄i|M, T̄

)
is defined in the same way as in Section 2.2 for all l ≥ 1.

S∞i W̃i

(
t̄i|M, T̄

)
=
∞⋂
l=1

Sli
(
t̄i|M, T̄

)
,

S∞W̃
(
t̄i|M, T̄

)
=
∏

i∈I
S∞i W̃i

(
t̄i|M, T̄

)
.

Fix any model T such that T̄ ⊂ T , and a finite mechanism M, for any t̄ ∈ T̄ and

any sequence {t [n]}∞n=0 in T, if t [n] →p t̄, then, for any n > N1, S
∞W (t[n]|M, T ) ⊂

S∞W̃
(
t [n] |M, T̄

)
by Claim 6.

Claim 7 Fix any model T such that T̄ ⊂ T , there exists a finite mechanism M. For any

t̄ ∈ T̄ and any sequence {t [n]}∞n=0 in T, if t [n]→p t̄, then, for each n large enough, we have

S∞W (t[n]|M, T ) ⊂ S∞W (t̄|M, T ).

Proof. From Claim 2, 3, and 5 in Section 3, we know that for any t̄ ∈ T̄ , S∞W̃ (t̄|M, T̄ ) =

{(t̄, ..., t̄)} . Therefore, S∞W (t̄|M, T̄ ) = S∞W̃ (t̄|M, T̄ ). So it suffices to show for each n

large enough, S∞W (t[n]|M, T ) ⊂ S∞W̃ (t [n] |M, T ) .

That is equivalent to show that for each t̄ ∈ T̄ and sequence {t [n]}∞n=0 in T such that

t[n]→p t̄ as n→∞, there exists a natural number Nk ∈ N such that, for any n≥ Nk, we have

Sk (t [n] |M, T ) ⊂ Sk(t̄|M, T ), for all k. We prove this by induction. From Claim 6, we know

that for any large enough n, θ̂i (ti [n]) = θ̂i(t̄i) = θ̄i for some θ̄i ∈ Θi. We fix such large n.

By definition, mi ∈ W̃i (ti [n] |M, T ) then m−2
i = t̄i. Thus, S1 (t [n] |M, T ) ⊂ W̃ 1(t̄|M, T ).

Suppose the claim is true for any k > 1. We then show that it is also valid for k + 1.

Fix mi ∈ Sk+1
i (ti[n]|M, T ). Recall the notation in Section 2.2. Then, for any m′i, there

exists some ν [n] : T−i → ∆(M−i) such that∑
t−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i] (29)

≥
∑

t−i,m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i],

where ν [n](m−i|t−i)πi(ti)[t−i] > 0 implies that m−i ∈ Sk−i(t−i [n] |M, T ). Let

Vi (mi,m−i) ≡
∑

t−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν [n](m−i|t−i)πi(ti[n])[t−i].
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For any mi and m′i, we define βmi,m
′
i : T−i →M−i such that, for any t−i,

βmi,m
′
i (t−i) = arg max

m−i∈Sk
−i(t−i|M,T )

{Vi (mi,m−i)− Vi (m′i,m−i)} .

We can interpret βmi,m
′
i as player i’s belief about the best possible scenario for the choice of

mi against m
′
i where other players use k-times iteratively undominated strategies. Thus, we

have ∑
m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
πi (ti [n])

[
{t−i ∈ T−i : βmi,m

′
i (t−i) = m−i}

]
≥

∑
m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

]
πi (ti [n])

[
{t−i ∈ T−i : βmi,m

′
i (t−i) = m−i}

]
.

Note that this is where the assumption of private values become crucial. Since t [n]→p t̄,

πi (ti [n]) [(t̄−i)
εn ]→ πi (t̄i) [t̄−i]

as n → ∞ where εn > 0 and (t̄−i)
εn denotes an open ball consisting of the set of types t−i

whose (k − 1)-order beliefs are εn-close to those of types t̄−i.
6 It follows that the following

probability is well defined.

For any t̄−i ∈ T̄−i such that πi (t̄i) [t̄−i] > 0, and m−i, we define the following:

β−i (t̄−i) [m−i] ≡ lim
n→∞

πi (ti [n])
[{
t−i ∈ (t̄−i)

εn : βmi,m
′
i (t−i) = m−i

}]
πi (t̄i) [t̄−i]

.

Now we construct a conjecture ν : T̄−i → ∆(M−i) for type t̄i. For any (t̄−i,m−i) , we

set ν(m−i|t̄−i) = β−i (t̄−i) [m−i]. From the inequality above we have∑
m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

] ∑
t̄−i∈T

β−i (t̄−i) [m−i] πi (t̄i) [t̄−i]

≥
∑
m−i

[
ui(g(m′i,m−i), θ̄i) + τi (m

′
i,m−i)

] ∑
t̄−i∈T

β−i (t̄−i) [m−i] πi (t̄i) [t̄−i] .

6This follows from the fact that the Prohorov distance between ti [n] and t̄i converges to 0 due to the
finiteness of T̄−i. See Dudley (2002, pp. 398 and 411).
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Therefore, ∑
t̄−i,m−i

[
ui(g(mi,m−i), θ̄i) + τi (mi,m−i)

]
ν(m−i|t̄−i)πi(t̄i)[t̄−i]

≥
∑

t̄−i,m−i

[
ui(g(m′i,m−i), θ̄i) + τi (mi,m−i)

]
ν(m−i|t̄−i)πi(t̄i)[t̄−i]

By construction, ν(m−i|t̄−i)πi(t̄i)[t̄−i] > 0 implies that m−i ∈ Sk−i(t−i [n] |M, T ). By our in-

duction hypothesis, Sk−i(t−i [n] |M, T ) ⊂ Sk−i(t̄−i|M, T ). Thus, we havem−i ∈ Sk−i(t̄−i|M, T ).

Since the choice of m′i is arbitrary, so this completes the proof.

If we do not impose any conditions on the size of ex post transfers, we obtain the

following very permissive result.

Theorem 5 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

Any SCF f is continuously implementable with transfers.

Proof. We employ the mechanism (M, τ̄) constructed in Section 2.1 and let K = 1. There-

fore, for all t̄ ∈ T̄ , m ∈ S∞W
(
t̄|M, T̄

)
⇒ g (m) = f (t̄) . Note that S∞W

(
t̄|M, T̄

)
=

{(t̄, ..., t̄)} . We write σ∗ such that σ∗i (t̄i) = (t̄i, ..., t̄i) for all t̄i ∈ T̄i. Now pick any T such that

T̄ ⊂ T . It is well known that a trembling hand perfect equilibrium7 is always contained in

S∞W . Therefore, σ∗ is a trembling hand perfect equilibrium in U
(
M, τ̄ , T̄

)
. We show that

there exists an equilibrium that continuously implements f on T̄ . For each player i and each

type t̄i ∈ T̄i, restrict the space of strategies of player i by assuming that σi (t̄i) = σ∗i (t̄i) for

each t̄i ∈ T̄i. BecauseM is finite and T is countable, standard arguments (see footnote 1 of on-

line appendix of Oury and Tercieux (2012)) show that there exists a Bayes Nash equilibrium

in U(M, τ̄ , T ), which is denoted by σ. Thus, σ is a Bayes Nash equilibrium in U(M, τ̄ , T )

and σ|T̄ is a Bayes Nash equilibrium in U
(
M, τ̄ , T̄

)
. Now, pick any sequence {t [n]}∞n=0 such

that t [n]→p t̄. It is clear that, for each n : Supp(σ (t [n])) ⊂ S∞W (t [n] |M, T ) . In addition,

for n large enough, we know by Lemma 3 that S∞W (t [n] |M, T ) ⊂ S∞W
(
t̄|M, T̄

)
and so,

(g ◦ σ)(t[n]) = f(t̄) as claimed.

It is often unrealistic to assume that the mechanism can induce very large transfers

even out of equilibrium. Therefore, we obtain the following characterization of continuous

implementation with arbitrarily small transfers.

7We follow Osborne and Rubinstein (1994) and provide a version in our context. A profile of strategies
σ = (σ1, ..., σI) is a trembling hand perfect equilibrium in U (M, τ̄ , T ) if, for each i ∈ I and each ti ∈
Ti, there exists a sequence

(
σk
)∞
k=0

of completely mixed strategy profiles that converges to σ such that,

mi ∈supp(σi (ti))⇒ mi ∈argmaxm′
i∈Mi

Vi
((
m′i, σ

k
−i
)
, ti
)
, for every k.
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Theorem 6 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

An SCF f is continuously implementable with arbitrarily small transfers if and only if f is

incentive compatible.

Proof. For any τ̄ > 0, we employ the mechanism (M, τ̄) constructed in Section 2.1. The

proof for “if” part is parallel to the proof of 5.

The “only if” part is proved as follows: Given f is continuously implementable with

arbitrarily small transfers. Then, for any τ > 0, there is a Bayes Nash equilibrium σ in

U(M, T̄ ) such that (g ◦ σ)(t̄) = f(t̄) for any t̄ ∈ T̄ and τ(σ(t̄)) < τ̄. By a similar argument

in the proof of the “only if” part of Theorem 2, we conclude that f is incentive compatible.

The next result is one of the main results of Oury and Tercieux (2012).

Proposition 1 (Theorem 2 of Oury and Tercieux (2012)) If an SCF f is strictly

continuously implementable, it satisfies strict Bayesian monotonicity.

Oury and Tercieux show that the condition for full implementation (i.e., Bayesian

monotonicity) is necessary for “strict” continuous partial implementation. To drop this

“strictness,” they assume instead that sending messages in the mechanism is slightly costly.

Recall that our mechanism exploits the weak dominance in round -2 announcement. This

weak dominance will be highly sensitive to payoff perturbations that are induced by the cost

of sending messages. Therefore, Oury and Tercieux’s argument cannot apply here; as a re-

sult the relation between Bayesian monotonicity and continuous implementation disappears.

However, as long as we allow for ex post small transfers and consider private-values environ-

ments, we obtain yet another result that permits continuous implementation and our result is

as permissive as it can be. Oury and Tercieux’s result also holds in any interdependent-value

environments, while our result can be extended to a particular class of interdependent-value

environments (see the discussion in Section 6.2).

5.2 UNE Implementation

Chung and Ely (2003) contemplate the following situation: if a planner wants all equilibria

of his mechanism yield a desired outcome, and if he entertains the possibility that players

may have even the slightest uncertainty about payoffs, then the planner should insist on

a solution concept with a closed graph. Chung and Ely then adopt undominated Nash

equilibrium as a solution concept and call the corresponding implementation concept “UNE

implementation”. In particular, Theorem 1 of Chung and Ely (2003) shows that Maskin

monotonicity is a necessary condition for UNE implementation. For this proof, one needs

to construct a near-complete information structure in which some players have superior
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information about the state, and consequently, about the preferences of other players. In

their Section 6.2, Chung and Ely restrict their attention to private-value perturbations8 in

which each type may be uncertain about the preferences of other players but always knows

his own preferences. Under such perturbations, they show that dominated strategies under

complete information continue to be dominated.

In their footnote 7 Chung and Ely (2003) observe that the continuity of dominated

strategies under private-value perturbations does not necessarily guarantee that UNE im-

plementation suffices for UNE-implementation. In fact, we provide an affirmative answer

to Chung and Ely’s question. That is, our robustness argument can be adapted to prove

that the mechanism provided in Abreu and Matsushima (1994) actually achieves UNE im-

plementation. Thus, if we consider private-value environments and allow for small ex post

transfers, we provide a permissive result for UNE-implementation.

Following Chung and Ely (2003), we now rephrase their definition of UNE-implementation.

Definition 12 Fix a mechanism (M, τ̄) and a complete-information model T̄ . We say that

(M, τ̄) UNE-implements f : T̄ → ∆(A) if the following two conditions hold: (i) there exists

a strategy profile σ such that σ|T̄ is an undominated Nash equilibrium in U
(
M, τ̄ , T̄

)
; (ii)

for any t̄ ∈ T̄ , any sequence t[n] →p t̄, any model T with T̄ ⊂ T , and any sequence of

undominated Bayes Nash equilibria {σn}∞n=0 of the game U(M, τ̄ , T ), whenever t[n] ∈ T for

each n, we have g(σn(t[n]))→ f(t̄).

Note that any complete-information model is a special case of an incomplete-information

model. By Theorem 5, we record the following result:

Corollary 1 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

Any SCF f is UNE-implementable with transfers.

More importantly, we obtain the following permissive result:

Corollary 2 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥ 2.

Any incentive-compatible SCF f is UNE-implementable with no transfers.

Remark 7 Assume that there are at least three players. In this case, under complete infor-

mation, the planner can always detect any unilateral deviation from a truthful announcement.

Therefore, we simply construct a new SCF that is the same as the original SCF, except that

we simply ignore any such unilateral deviation and assign the same lottery as if there were no

deviations. This new SCF is equivalent to the original SCF under the hypothesis of complete

8The perturbation in Chung and Ely (2003) is a special case of the perturbation defined in a universal
type space that we formulate here.
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information so that we can make any SCF be incentive-compatible. So, when I ≥ 3, we can

drop incentive compatibility completely from Corollary 2. In fact, this is the main result of

Abreu and Matsushima (1994). The novel contribution here is to observe that the result of

Abreu and Matsushima (1994) can be adapted to establish UNE-implementation.

Proof. Note that complete-information environments trivially satisfy NEI (non-exclusive

information) assumption. So, we modify the scoring rule d0
i as we did for Theorem 3. The

rest of the proof is completed by Theorem 6.

Our result is consistent with Chung and Ely (2003). Theorem 1 of Chung and Ely

(2003) shows that Maskin monotonicity is a necessary condition for UNE-implementation.

Specifically, for the proof of this theorem, one needs to exploit the interdependent values.

It is also easy to show that Maskin monotonicity is still necessary for UNE-implementation

if players are not very sure about their own payoff type in the case of private values. In

the present paper, we assume private values and it is also possible to extend our contin-

uous implementation result to a particular class of interdependent-value environments. In

Section 6.2 below, we elaborate more on the difficulty of extending our results to general

interdependent-value environments.

5.3 Full Surplus Extraction

In a seminal paper, Crémer and McLean (1988) show that in a single object auction with

generic correlated types, it is possible to design a mechanism (which we call a CM mecha-

nism) in such a way that (i) each bidder earns an expected surplus of zero in a Bayes Nash

equilibrium and (ii) the object is allocated to the agent with the highest valuation. This

outcome is referred to as the full surplus extraction (henceforth, FSE) outcome. Although

this is a surprisingly positive result, an FSE outcome is rarely observed in reality. Many

explanations have been proposed to resolve this discrepancy between theory and reality,

including risk neutrality, unlimited liability, the absence of collusion among agents, a lack

of competition among sellers, and the restrictiveness of a fixed finite type space. Although

these are important issues, we rather follow Brusco (1998) who points out another weakness

of the FSE result. In particular, Brusco provides an example in which every mechanism has

the FSE property as a Bayes Nash equilibrium must have another Bayes Nash equilibrium

which is weakly Pareto superior for the agents. This implies that the multiplicity of equilibria

might be a reason why the FSE outcome is not observed in reality, despite the fact that the

FSE outcome is an equilibrium in dominant strategies. Brusco shows that one can devise a

two-stage sequential mechanism that implements the FSE outcome in all perfect Bayesian

equilibria. Chen and Xiong (2013) show that the FSE outcome is virtually Bayesian fully
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implemented.

We can establish a similar result, by adopting a static mechanism to achieve full im-

plementation, as long as players do not use weakly dominated strategies. First, we include

the range of payment schemes of the CM mechanism as part of A (the set of pure outcomes).

Second, following Crémer and McLean (1988), we observe that the social choice function

that achieves the FSE outcome is Bayesian incentive compatible, i.e., incentive compatible.9

So, by Theorem 2, we obtain the following:

Corollary 3 Suppose that the environment E satisfies Assumption 1 and 2. Assume I ≥ 2.

The FSE outcome is implementable in S∞W with arbitrarily small transfers.

Therefore, we still obtain the FSE property even when we insist on full implementation

with small transfers. Note that we achieve full implementation in a finite mechanism, whereas

the mechanisms in Brusco (1998) and Chen and Xiong (2013) are infinite and involve either

integer games or an “open set trick.” One crucial assumption that we adopt for this result

is that no players use weakly dominated actions.

6 Discussion

Throughout our argument, the dominance is always strict except in round −2. In Section

6.1, we introduce the concept of partial honesty and propose a way of making the dominance

in round −2 “strict.” This allows us to connect our results to rationalizable implementa-

tion. In Section 6.2, we provide a sufficient condition for our results in interdependent-value

environments.

6.1 The Role of Honesty and Rationalizable Implementation

Following Matsushima (2008) and Dutta and Sen (2012), we depart from the assumption

that all players are motivated solely by their self-interest and instead assume that they all

have a small intrinsic preference for honesty. This implies that such players have preferences

not just on outcomes but also directly on the messages that they are required to send to the

planner.

Fix the mechanism Γ = (M, τ̄) that we constructed in Section 3. First, recall that each

player i’s preferences are given by ui : ∆(A) × Θi → R. Following the setup of Dutta and

9Crémer and McLean (1988) show two main results: their Theorem 1 achieves FSE in dominant-strategy
incentive-compatibility when agents’ beliefs satisfy a full-rank condition, whereas their Theorem 2 achieves
FSE in Bayesian incentive-compatibility when agents’ beliefs satisfy a weaker spanning condition. Corollary
3 therefore strengthens only their Theorem 2, while the results in Brusco (1998) and Chen and Xiong (2013)
apply to their Theorem 1 as well.
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Sen (2012), we extend this ui(·) to vi : M ×Θi → R satisfying the following two properties:

for all T̄ = (T̄i, θ̂i, πi)i∈I , i ∈ I, t = (ti, t−i) ∈ T̄ , mi, m̃i,∈Mi, and m−i ∈M−i:

1. If ui(g(mi,m−i), θ̂i(ti)) ≥ ui(g(m̃i,m−i), θ̂i(ti)), m
−1
i = ti, and m̃−1

i 6= ti, then

vi((mi,m−i), θ̂i(ti)) > vi((m̃i,m−i), θ̂i(ti)).

2. In all other cases, vi((mi,m−i), θ̂i(ti)) ≥ vi((m̃i,m−i), θ̂i(ti)) if and only if

ui(g(mi,m−i), θ̂i(ti)) ≥ ui(g(m̃i,m−i), θ̂i(ti)).

The first part of the definition captures an individual’s preference for partial honesty.

That is, he strictly prefers (mi,m−i) to (m̃i,m−i) only if he thinks g(mi,m−i) is at least as

good as g(m̃i,m−i). We consider this to be a very weak assumption, and this weakness makes

the concept of partial honesty particularly compelling. If all players are partially honest in

this sense, we can conclude that any message containing truth-telling in round −2 strictly

dominates any other message containing non-truth telling in round −2. Hence, given partial

honesty, every dominance becomes strict in our mechanism. This means that we can improve

upon our previous results by replacing S∞W with S∞, which is the (interim correlated)

rationalizability correspondence, which maps each type profile to the set of message profiles

that survive the iterated deletion of never best responses.10 By Claim 7, we know that this

rationalizability correspondence is upper hemi-continuous. Hence, we obtain the following

result:

Proposition 2 Suppose that the environment E satisfies Assumptions 1 and 2. Assume I ≥
2. Assume further that all agents are partially honest. Then, any incentive-compatible SCF

is implementable in S∞ with arbitrarily small transfers. Moreover, any incentive-compatible

SCF is “strictly continuously” implementable with arbitrarily small transfers.

Proof. We simply combine all the arguments we made above for Theorems 2 and 5. This

completes the proof.

Oury and Tercieux (2012) show in their Theorem 4 that an SCF f is continuously

implementable by a finite mechanism if and only if it is implementable in rationalizable

strategies by a finite mechanism. Although they do not need ex post payments or partial

honesty, both of these are critical for our rationalizable implementation result. For any SCF

f , we denote by f τ the augmentation of f by ex post transfers τ . We interpret f τ as an

10In finite games, it is well known that an action is strictly dominated if and only if it is a never best
response.
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SCF that is very close to f . We show that when all players are partially honest and an

SCF f is incentive compatible, then f τ is implementable in rationalizable strategies by a

finite mechanism. Kunimoto and Serrano (2014) show that if an SCF is implementable in

rationalizable strategies by a finite mechanism, it satisfies interim rationalizable monotonic-

ity. Combining these results, we conclude that when all agents are partially honest, for any

incentive compatible SCF f , one can find a nearby SCF f τ such that f τ is implementable in

rationalizable strategies by a finite mechanism if and only if it satisfies interim rationalizable

monotonicity.

Since interim rationalizable monotonicity implies Bayesian monotonicity (see Kunimoto

and Serrano (2014)), as long as all agents are partially honest and the planner can allow a

tiny number of ex post transfers in designing the mechanism, Bayesian monotonicity or any

version of monotonicity condition can be fully dispensed with for continuous implementation.

However, this argument applies only to private-value environments. In the next subsection,

we discuss to which extend we can extend our results to interdependent-value environments.

Matsushima (2008) imposes more stringent structures on the players’ cost function of

sending messages than our partial honesty so that he can take care of fully interdependent

values. We believe that one of the strongest assumptions he made was that the cost of

sending messages depends on the proportion of a player’s dishonest announcements. This

assumption is very specific to the construction of our mechanism and that in Matsushima

(2008) (and thus, to basically any mechanism that resembles the Abreu-Matsushima type of

construction) in the sense that each player is required to make a number of announcements of

his type in the mechanism. In other words, Matsushima’s assumption no longer makes sense

once we adopt a different construction of the mechanism, according to which all players

are not necessarily required to report their types many times. Nevertheless, the concept

of partial honesty can still be valid as long as the messages in the mechanism contain the

players’ types. The lesson we draw here is that there seems to be a clear trade-off between the

permissiveness of implementation results and more structures in regard to the cost function

of sending messages.

6.2 Private Values vs. Interdependent Values

We now deal with the case of interdependent-value environments in which each player i’s

utility function is defined as ui : A × Θ → R. This section is organized as follows: we

first provide a class of interdependent-value environments to which all our results in private-

value environments can be extended. Such an environment is said to satisfy Condition (S).

Second, we elaborate on the implications of Condition (S). Finally, we show by example that

our mechanism fails to work when Condition (S) is violated. We thus conclude that we need

a completely different mechanism if we want to deal with more general interdependent-value
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environments.

Condition (S) We say that an environment E satisfies Condition (S) if, for each i ∈ I,

there exist a function xi : T̄i → ∆(A) and ζ > 0 such that for all ti, t
′
i ∈ T̄i with ti 6= t′i

and t−i ∈ T̄−i,

ui(xi(ti), (θ̂i(ti), θ̂−i(t−i)))− ui(xi(t′i), (θ̂i(ti), θ̂−i(t−i))) > ζ. (30)

Although we can extend all our results to interdependent-value environments satisfying

Condition (S), we restrict our discussion here to the extension of Theorem 2.11

Proposition 3 Suppose that the environment E satisfies Condition (S) and Assumption 2.

Assume I ≥ 2. An SCF f is implementable in S∞W with arbitrarily small transfers where

S∞W (t|M, T̄ ) is a singleton for each t ∈ T̄ if and only if it is incentive compatible.

Proof. We only focus on the if-part of Theorem 2. From the proof of the Theorem 2, we

observe that the proof of Claim 1 exploits the private-value assumption, while Claim 2, 3,

and 5 hold even in interdependent-value environments. Therefore, it suffices to show that

Claim 1 still holds here.

In this class of interdependent-value environments,
{
ui(xi(t̄i), θ̄i)− ui(xi(m−2

i ), θ̄i)
}

in

(14) is replaced by

ui(xi(ti), (θ̂i(ti), θ̂−i(t−i)))− ui(xi(t′i), (θ̂i(ti), θ̂−i(t−i))).

By inequality (30), the last inequality in (14) is strict whenever e(m−1,m0) = ε for some

m−i. This completes the proof.

To illustrate the strength of Condition (S), we use the concept of type diversity, which

is introduced by Serrano and Vohra (2005). Type diversity is a natural counterpart of

Assumption 1 in interdependent-value environments.

To define type diversity, I need to introduce some notation. Let A be a finite set of

alternatives. For each a ∈ A and i ∈ I, define uai (ti) to be the interim utility of player i of

type ti ∈ T̄i for a constant lottery which assigns a in each state, i.e.,

uai (ti) =
∑
θ

ui(a, θ)h
1
i (ti)[θ].

Let uAi (ti) = (uai (ti))a∈A

11This restriction is justified because one can easily see that all other results of our paper crucially rely
on the validity of Theorem 2. Note also that Theorem 1 can be seen as a special case of Theorem 2.
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Assumption 3 The environment E satisfies type diversity if the following two properties

hold12:

1. there does not exist i ∈ I, and ti, t
′
i ∈ T̄i with ti 6= t′i such that

uAi (ti) = αuAi (t′i) + β

for some α > 0 and β ∈ R.

2. for every i ∈ I and ti ∈ T̄i, there exist a, a′ ∈ A such that

uai (ti) 6= ua
′

i (ti).

Serrano and Vohra (2005) establish the following lemma, which can be considered an

extension of Lemma 1 of the current paper.

Lemma 4 (Serrano and Vohra (2005)) Suppose that the environment E satisfies Assumption

3. Then, for each i ∈ I, there exists a function xi : T̄i → ∆(A) such that for all ti, t
′
i ∈ T̄i

with ti 6= t′i, ∑
θ

ui(xi(ti), θ)h
1
i (ti)[θ] >

∑
θ

ui(xi(t
′
i), θ)h

1
i (ti)[θ], (31)

where h1
i (ti) ∈ ∆(Θ) denotes the first-order belief of type ti.

Remark 8 It is easy to see that Condition (S) implies type diversity.

In Example 1 below, we will construct an interdependent-value environment satisfying

type diversity but violating Condition (S) in which there exists a message profile in S∞W

but it induces an outcome different from the one specified by the social choice function. The

main difficulty lies in eliciting each player’s true type in round -2 announcement.

Example 1 A = {a1, a2}; I = {1, 2, 3}; T̄i = {t1i , t2i } for all i ∈ I. Define a1 ≡ (1, 0); a2 ≡
(0, 1); t1i ≡ (1, 0); and t2i ≡ (0, 1). Let 3 + 1 ≡ 1. Let πi : T̄i → ∆

(
T̄−i
)

be player i’s interim

belief map from T̄i → ∆(T̄−i) :

πi(ti)[t−i] =

{
2/3 if ti+1 = ti+2 = ti;

1/3 if ti+1 = ti+2 6= ti.

That is, in player i’s view, player (i+1)’s type and player (i+2)’s type are perfectly correlated

but they are only partially correlated with player i’s type.

12To be precise, the second property of our type diversity was not included in its original definition of
Serrano and Vohra (2005). Thus, our version of type diversity is slightly stronger than theirs.
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Each player i has the following preferences: for any a ∈ A and t ∈ T̄ ,

ui(a, t) = (1− δ)× a · ti + δ × a · ti+1,

where δ ∈ [0, 1] and a · ti denotes the dot (or, inner) product of the two vectors a and ti. That

is, player i’s preferences depend on his own type and player (i+ 1)’s type, but not depend on

player (i+ 2)’s type.

Consider the following incentive-compatible social choice function f ∗ : T̄ → ∆(A): for

any t ∈ T̄ , f ∗(t) = a if and only if there exists a ∈ A such that #{i ∈ I : ti = a} ≥ 2. We

can interpret this f ∗ as the majority rule.

We parameterize the class of environments by the value of δ ∈ [0, 1]: when δ = 0, the

environment corresponds to a private-value one and also satisfies Assumptions 1 and 2 so that

our mechanism can implement f ∗; When δ ∈ (0, 1/2), it corresponds to an interdependent-

value environment which satisfies Condition (S) and Assumption 2 so that our mechanism

can implement f ∗; and when δ ∈ [1/2, 1], it corresponds to an interdependent-value environ-

ment which satisfies Assumptions 2 and 3, but violates Condition (S).

Consider Example 1 with δ = 1. By Lemma 4, we can find a set of lotteries {xi(ti)}ti∈T̄i,i∈I
satisfying inequality (31). Therefore, for any τ̄ > 0, we can adopt the corresponding mech-

anism (M, τ̄) defined in Section 3.1 with this set of lotteries. We claim that in the case

of δ = 1, the mechanism generates a strategy profile which survives S∞W but induces an

outcome which is “not” consistent with the one specified by the SCF f ∗. This shows some

difficulty of extending our results to general interdependent-value environments. We formally

state this claim as follows:

Claim 8 Consider Example 1 with δ = 1. Fix any set of lotteries {xi(ti)}ti∈T̄i,i∈I satisfying

inequality (31) and the corresponding mechanism (M, τ̄) defined in Section 3.1. For any

i ∈ I and any ti ∈ T̄i, we have that (t′i, . . . , t
′
i) ∈ S∞i Wi(ti|M, T̄ ) where t′i 6= ti.

Proof. See Appendix A.2.

In their Theorem 4 Oury and Tercieux (2012) show that a social choice function f

is continuously implementable by a finite mechanism if and only if it is implementable in

rationalizable strategies by a finite mechanism. They do not need any ex post payment, but

assume that sending messages in the mechanism is (slightly) costly. We assume that sending

messages is costless, but allow for small transfers. We show that all of our results can be

extended to the class of interdependent-value environments which satisfy Condition (S).

Bergemann and Morris (2009) show that their robust measurability, which is a nec-

essary condition for robust virtual implementation, is closely connected to the degree of
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interdependence of preferences. They also show that robust measurability is equivalent to

requiring that the notion of measurability originally suggested by Abreu and Matsushima

(1992b)–henceforth, AM measurability–holds on the union of all type spaces. Following this

idea, in our paper, AM measurability must be a necessary condition.

This example satisfies type diversity. Under type diversity, we know that every social

choice function satisfies AM measurability (see Serrano and Vohra (2005)). This means that

the difficulty we encounter here has nothing to do with the measurability condition. In other

words, we must seek another explanation if we consider (full) exact implementation, not

virtual one.13

6.3 Budget Balance

Assume I ≥ 3. By constructing d0
i under a stronger (and yet still generic) version of As-

sumption 2, following d’Aspremont et al. (2003), we can achieve budget balance for d0
i . By

allocating all the other transfers only across agents, we can achieve budget balance every-

where (both on and off the solution outcome).

6.4 Implementation with Arbitrarily Small Transfers vs. Virtual

Implementation

Virtual implementation means that the planner contents himself with implementing the so-

cial choice rule with arbitrarily high probability. For example, under complete information,

Abreu and Sen (1991), Abreu and Matsushima (1992a), and Matsushima (1988) all show

that essentially any SCF is virtually implementable. While virtual implementation provides

for an impressive conclusion, it comes at the expense of some assumptions. In virtual imple-

mentation, the planner is willing to settle for implementing something that is ε-close to the

SCF. This implies that the planner is considered capable of committing to any mechanism,

which might assign a very bad outcome with probability ε. In order for this argument to

work, players must take these small probabilities seriously and base decisions on them, with

the rational expectation that these outcomes will be enforced if they happen to be selected

by the mechanism. If we interpret a mechanism as a contract between the two parties, it is

natural to worry about the possibility of renegotiation and seek to design renegotiation-proof

mechanisms. This argument leads us to the conclusion that virtual implementation will not

be renegotiation-proof, which potentially upsets its very permissive results. When we are

13For example, Artemov et al. (2013) show that robust measurability almost always becomes a vacuous
constraint for robust virtual implementation. This seems to be consistent with our finding in this example:
AM measurability has nothing to do with the problem of interdependent preferences, while Condition (S)
indeed does.
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satisfied with virtual implementation, we might simply overlook a big cost of designing a

credible mechanism.

We propose the concept of implementation with arbitrarily small transfers; this is an-

other concept of approximate implementation, very much like virtual implementation. The

key feature of our mechanism, however, is that undesirable outcomes never occur with posi-

tive probability. Indeed, we need ex post transfers but we can make them arbitrarily small.

This makes our mechanism less susceptible to renegotiation and therefore more credible.

A Appendix

There are two subsections in the appendix. In Section A.1, we show that our mechanism

also works under iterative deletion of weakly dominated strategies, i.e., W∞ and moreover,

the order of removal of strategies in W∞ is irrelevant in our mechanism. In Section A.2, we

prove the claim we have made in the argument in Example 1 of Section 6.2.

A.1 Order Independence

We now define the process of iterative removal of weakly dominated strategies. We seek to

define mechanisms for which the order of removal of weakly dominated strategies is irrelevant,

that is, given an arbitrary type profile, any message profile in the set of iteratively weakly

undominated strategies can implement the socially desired outcome at that type profile.

Given a mechanism M, let U(M, T̄ ) denote an incomplete information game associated

with a model T̄ . Fix a game U(M, T̄ ), player i ∈ I and type t̄i ∈ T̄i. Let H be a profile

of correspondences (Hi)i∈I where Hi is a mapping from T̄i to a subset of Mi. A message

mi ∈ Hi (t̄i) is weakly dominated with respect to H for player i of type t̄i ∈ T̄i if there exists

m′i ∈Mi such that∑
t−i

[
ui(g(m′i, σ−i (t−i)), θ̂i(ti)) + τi (m

′
i, σ−i (t−i))

]
πi (ti) [t−i]

≥
∑
t−i

[
ui(g(mi, σ−i (t−i)), θ̂i(ti)) + τi (mi, σ−i (t−i))

]
πi (ti) [t−i]

for all σ−i : T̄−i →M−i such that σ−i (t−i) ∈ H−i (t−i) and a strict inequality holds for some

σ−i.
14

Let
{
W k
}∞
k=0

be a sequence of profiles of correspondences such that (i) W 0
i

(
t̄i|M, T̄

)
=

Mi; (ii) any mi ∈ W k+1
i

(
t̄i|M, T̄

)
\W k

i

(
t̄i|M, T̄

)
is weakly dominated with respect to W k

14We consider player i’s belief over other players’ pure strategies. However, this formulation is equivalent
to taking player i’s belief as a conjecture over other players’ (correlated) mixed strategies, i.e., σ−i : T̄−i →
∆ (M−i) such that σ−i (t−i) [H−i (t−i)] = 1.
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for player i of type t̄i; (iii) any mi ∈ W∞
i

(
t̄i|M, T̄

)
is weakly undominated with respect to

W∞ for player i of type t̄i where W∞
i (t̄i|M, T̄ ) ≡

⋂∞
l=1W

l
i (t̄i|M, T̄ ).

Let W∞ (t̄|M, T̄
)

=
∏

i∈IW
∞
i

(
t̄|M, T̄

)
for any t̄ ∈ T̄ . Since M is finite, W k

i

(
t̄i|M, T̄

)
is nonempty for any k. Thus, W∞ is nonempty-valued. Note that W∞ (t̄|M, T̄

)
depends on

the sequence
{
W k
}∞
k=0

. However, we will show that for any t ∈ T̄ and m ∈ W∞ (t|M, T̄
)
,

we have g(m) = f(t). That is, the socially desired outcome achieved in W∞ is obtained by

any elimination order.

We first establish the following claim.

Claim 9 Assume that the environment E satisfies Assumption 2. For γ′ > 0, there exist

λ > 0 and a proper scoring rule d0
i such that for any t′i, t

′′
i ∈ T̄i with t′i 6= t′′i and any

σ̂−2
−i : T̄−i → T̄−i, we have that

λ

∣∣∣∣∣∣
∑

t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i]

∣∣∣∣∣∣ > γ′. (32)

Proof. Fix any i. Let

D0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i (t−i, ti)− d0

i (t−i, t
′
i)
]
π̄i (ti) [t−i] > 0,∀ti 6= t′i

 .

D0
i is the set of proper scoring rules in RT̄ . By Lemma 2, D0

i is a nonempty open set. Let

I0
i =

d0
i ∈ RT̄ :

∑
t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
π̄i (ti) [t−i] 6= 0,∀ti 6= t′i,∀σ̂−2

−i

 .

Since T̄ is finite, the complement of I0
i has measure zero in RT̄ .

Therefore,
⋃
i∈I (D0

i ∩ I0
i ) has a positive measure in RT̄ . Thus we can find a proper

scoring rule d0
i such that for any σ̂−2

−i : T̄−i → T̄−i and t′i, t
′′
i ∈ T̄i with t′i 6= t′′i ,∑

t−i∈T̄−i

[
d0
i

(
σ̂−2
−i (t−i) , t

′
i

)
− d0

i

(
σ̂−2
−i (t−i) , t

′′
i

)]
πi (ti) [t−i] 6= 0.

Finally, since T̄ is finite, for any γ′ > 0, we can find some λ > 0 such that for any

σ̂−2
−i : T̄−i → T̄−i and t′i, t

′′
i ∈ T̄i with t′i 6= t′′i , inequality (32) holds.

Proposition 4 Suppose that the environment E satisfies Assumptions 1 and 2. Assume

I ≥ 2. Given any incentive compatible SCF f, for all τ̄ > 0, there exists a mechanism

(M, τ̄) such that for any t ∈ T̄ and m ∈ W∞ (t|M, T̄
)
, we have g(m) = f(t).
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Fix τ̄ > 0. Choose the mechanism (M, τ̄) defined in Section 3.1, with the proper scoring

rule d0
i given in Claim 8, and λ under γ′ = γ (which is defined in Section 3.1). To prove

Proposition 4, it suffices to show that for any i ∈ I and t̄i ∈ T̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

m−1
i = t̄i. This is because from here we can fill the gap of the argument by adapting the

proof of Theorem 2. The rest of the proof builds upon the following three claims.

Claim 10 Fix any player i of type t̄i. If mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈

W∞
i

(
t̄i|M, T̄

)
.

Proof. Let σi be defined such that σi (t̄i) = (t̄i, ..., t̄i) for player i of type t̄i. Note that we

use this notation throughout Section A.1. We prove this claim in two steps.

Step 1: σi(t̄i) ∈ W∞
i (t̄i|M, T̄ ) for any i, and t̄i.

Fix t̄ ∈ T̄ . Note first that we trivially have σ(t̄) ∈ W 0(t̄|M, T̄ ). For any k ≥ 0,

assume that σ(t̄) ∈ W k(t̄|M, T̄ ). Then, we shall show that σ(t̄) ∈ W k+1(t̄|M, T̄ ). This is

equivalent to showing the following: for any m̃i ∈Mi, either σi(t̄i) is always at least as good

as m̃i or σi(t̄i) is a strictly better reply to some strategies of the other players than m̃i. We

verify this by considering the following two cases of m̃i: (i) m̃−2
i 6= σ−2

i (t̄i) and m̃k
i = σki (t̄i)

for all k ≥ −1; (ii) m̃k
i 6= σki (t̄i) for some k ≥ −1. In Case (i), due to the construction

of the mechanism, σi(t̄i) is at least as good as m̃i for any σ̂−i : T̄−i → M−i by inequality

(14). In Case (ii), against the conjecture σ−i, σi(t̄i) is a strictly better message than m̃i by

the argument in Claims 2, 3 and 5. Therefore, no m̃i can weakly dominate σi(t̄i). Thus,

σ(t̄) ∈ W k+1(t̄|M, T̄ ). This completes the proof of Step 1.

Step 2: For any i ∈ I of type t̄i, if mi ∈ W∞
i

(
t̄i|M, T̄

)
, then

(
m−2
i , t̄i, ..., t̄i

)
∈ W∞

i

(
t̄i|M, T̄

)
.

By Step 1, it suffices to show (m−2
i , t̄i, ..., t̄i) ∈ W∞

i

(
t̄i|M, T̄

)
even when m−2

i 6= t̄i. We

shall show that no m̃i can weakly dominate (m−2
i , t̄i, ..., t̄i) by considering the following two

cases of m̃i: (i) m̃−2
i 6= σ−2

i (t̄i) and m̃k
i = σki (t̄i) for all k ≥ −1; (ii) m̃k

i 6= σki (t̄i) for some

k ≥ −1. In Case (i), due to the construction of the mechanism, (m−2
i , t̄i, . . . , t̄i) is at least

as good as m̃i for any σ̂−i : T̄−i → M−i by inequality (14). In Case (ii),
(
m−2
i , t̄i, ..., t̄i

)
is a

strictly better message than m̃i against conjecture σ−i by the argument in Case (ii) of Step

1. Thus, no m̃i can weakly dominate (m−2
i , t̄i, ..., t̄i). This completes the proof.

Claim 11 Fix any player i and type t̄i. If mi ∈ W∞
i (t̄i|M, T̄ ), then (t̄i,m

−1
i , t̄i, ..., t̄i) ∈

W∞
i (t̄i|M, T̄ ).

Proof. By Step 1 in the proof of Claim 10, it suffices to consider the case that m−1
i 6= t̄i.

By considering the following two cases, we shall show that no m̃i can weakly dominate

(t̄i,m
−1
i , t̄i, ..., t̄i): (i) m̃−1

i 6= m−1
i and m̃k

i = t̄i for all k 6= −1; (ii) m̃k
i 6= t̄i for some k 6= −1.

In Case (i), we proceed in two steps.
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Step 1: We show that for any m̃i , if m̃−1
i 6= m−1

i and m̃k
i = mk

i for all k 6= −1, mi is

strictly better than m̃i against some conjecture σ̂−i such that σ̂−i (t̄−i) ∈ W∞
−i
(
t̄−i|M, T̄

)
for

all t̄−i ∈ T̄−i.
Since mi ∈ W∞

i (t̄i|M, T̄ ), one of the following two cases must hold: (1) player i of

type t̄i is indifferent between m̃i and mi against any conjecture σ′−i such that σ′−i(t̄−i) ∈
W∞
−i(t̄−i|M, T̄ ) for all t̄−i; and (2) mi is strictly better than m̃i for player i of type t̄i against

some conjecture σ̂−i such that σ̂−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i ∈ T̄−i.

By Claim 9, Case (1) is impossible. Thus, we must have Case (2). Since mi and m̃i

only differ in round −1, the utility gain for player i of type t̄i by using mi rather than m̃i

is concentrated in the payment rule λd0
i , which is larger than γ by inequality (32). Next,

the utility loss comes from the random dictator component of the outcome function, which

is bounded above from εE. By inequality (13), we know γ − εE > 0. Thus, mi is strictly

better than m̃i.

Step 2: We show that for any m̃i , if m̃−1
i 6= m−1

i and m̃k
i = t̄i for all k 6= −1, (t̄i,m

−1
i , t̄i, ..., t̄i)

is strictly better than m̃i against some conjecture σ̃−i such that σ̃−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ )

for all t̄−i ∈ T̄−i.
Since m−1

i 6= t̄i and mi ∈ W∞
i (t̄i|M, T̄ ), by Claim 9, there exist a nonempty set of

players J ⊂ I\{i} and a collection of strategies {σ̂j}j∈J such that σ̂j(t̄j) ∈ W∞
j (t̄j|M, T̄ )

and σ̂−2
j (t̄j) 6= t̄j for all j ∈ J and t̄j ∈ T̄j. From Claim 10, we know that (σ̂−2

j (t̄j), t̄j, ..., t̄j) ∈
W∞
j (t̄j|M, T̄ ) for all j ∈ J. Let σ̃−i be defined such that σ̃−2

−i (t̄−i) = σ̂−2
−i (t̄−i) and σ̃k−i(t̄−i) =

σ−i(t̄−i) for all t̄−i ∈ T̄−i and k ≥ −1. Thus, σ̃−i(t̄−i) ∈ W∞
−i(t̄−i|M, T̄ ) for all t̄−i ∈ T̄−i.

Fix such conjecture σ̃−i. Since (t̄i,m
−1
i , t̄i, ..., t̄i) and m̃i only differ in round −1, the

utility gain for player i of type t̄i by using (t̄i,m
−1
i , t̄i, ..., t̄i) rather than m̃i is concentrated

in the payment rule λd0
i , which is larger than γ. Next, the utility loss through the random

dictator component of the outcome function, which is bounded above from εE. Since we

know that γ − εE > 0 from the proof of Step 1, (t̄i,m
−1
i , t̄i, ..., t̄i) is strictly better than m̃i

against conjecture σ̃−i.

In Case (ii), (t̄i,m
−1
i , t̄i, ..., t̄i) is strictly better than m̃i against some conjecture, as we

can make an argument parallel to Step 2 in the proof of Claim 10.

Thus, no m̃i can weakly dominate (t̄i,m
−1
i , t̄i, ..., t̄i). This completes the proof.

Claim 12 Fix any i ∈ I and t̄i ∈ T̄i. If mi ∈ W∞
i (t̄i|M, T̄ ), then m−1

i = t̄i.

Proof. Suppose not, that is, there exists some mi ∈ W∞
i (t̄i|M, T̄ ) with m−1

i 6= t̄i. Then by

Claim 11, (t̄i,m
−1
i , t̄i, ..., t̄i) ∈ W∞

i (t̄i|M, T̄ ). Since the indicator function e(·) has a positive

weight in this case, by inequality (14), we conclude that for any j ∈ I\{i} and t̄j ∈ T̄j,

if mj ∈ W∞
j (t̄j|M, T̄ ), then m−2

j = t̄j. Since mi ∈ W∞
i (t̄i|M, T̄ ), by Claim 2, whenever

m−1
i 6= t̄i, mi is weakly dominated by (m−2

i , t̄i,m
0
i , . . . ,m

K
i ). This is a contradiction.
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A.2 Proof of Claim 8

Recall that T̄i = {t1i , t2i } = {(1, 0), (0, 1)} for each i ∈ I and A = {(1, 0), (0, 1)}. Recall also

that we set δ = 1 in Claim 8. So, player i’s preferences only depend on player i+1’s type. To

simplify the notation, we write player i’s preferences as follows: ui(a, t) ≡ ui(a, t−i) = a ·ti+1,

for any a ∈ A and t ∈ T̄ .

Let σ′ be a strategy profile such that for each i ∈ I and ti ∈ T̄i, σ
′
i(ti) = (t′i, ..., t

′
i)

where t′i ∈ T̄i\{ti}. Then we show that σ′i(ti) ∈ S∞i Wi(ti|M, T̄ ) by the following lemmas.

For each i ∈ I, we define αi : T̄i → T̄i such that αi(ti) 6= ti for all ti ∈ T̄i.
First, we show that a non-truthful announcement by all players constitutes a Bayes

Nash equilibrium in the direct-revelation mechanism (T̄ , f ∗) in Lemma 5.

Lemma 5 For any player i of type ti,∑
t−i∈T̄−i

ui(f
∗(t′i, α−i(t−i)), t−i)πi(ti)[t−i] ≥

∑
t−i∈T̄−i

ui(f
∗(ti, α−i(t−i)), t−i)πi(ti)[t−i]. (33)

Proof. In player i’s view, other players’ types are perfectly correlated. Besides, f ∗ is a

majority rule. Therefore, in player i’s view, player i cannot change the outcome by his

unilateral deviation when the other players are making a consistent (false) announcement.

Thus, we complete the proof.

Lemma 6 For any player i of type ti, ui(xi(t
′
i), t

′
i+1)− ui(xi(ti), t′i+1) > 0 if ti 6= t′i = t′i+1.

Proof. Fix any outcome a ∈ A. Player i of type ti’s interim utility is given as follows:∑
t−i∈T̄−i

ui(a, t−i)πi(ti)[t−i] =
2

3
a · ti +

1

3
a · t′i,

where ti 6= t′i. Therefore, player i of type ti strictly prefers a to the other outcome if and

only if a = ti. Since {xi(ti)}i∈I,ti∈T̄i satisfies inequality (31) and there are only two outcomes

contained in A, it must be that xi(ti)[a] > 1/2 if and only if ti = a. Since ui (a, t−i) = a · ti+1,

ui(xi(t
′
i), t

′
i+1)− ui(xi(ti), t′i+1) > 0 if ti 6= t′i = t′i+1.

Lemma 7 For every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S∞i Wi(ti|M, T̄ ).

Proof. We prove Lemma 7 in the following three steps.

Step 1: For every i ∈ I and ti ∈ T̄i, against conjecture σ′−i, σ
′
i (ti) is a strictly better message

than m̃i if m̃k
i = t′i for any k ≥ −1.

Fix any m̃i. First, consider the case that m̃k
i 6= t′i for some k ∈ {−1, 0}.
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The utility gain in payment rule λd0
i from using σ′i(ti) rather than m̃i is

λ
∑

t−i∈T̄−i

[
d0
i (σ
′−1
−i (t−i), t

′
i)− d0

i (σ
′−1
−i (t−i), ti)

]
πi(ti)[t−i]

= λ
∑

t′−i∈T̄−i

[
d0
i

(
t′−i, t

′
i

)
− d0

i

(
t′−i, ti

)]
πi (t

′
i)
[
t′−i
]

> γ,

where ti+1 = ti+2 = ti 6= t′i = t′i+1 = t′i+2 and the first equality follows from that πi(ti)[t−i] =

πi(t
′
i)[t
′
−i] in this example; the last inequality follows from inequality (10). All the possible

loss (from using σ′i(ti) rather than m̃i) consists of (i) the utility loss in the random dictatorial

component of the outcome function weighted by e(·) function, which is bounded above from

εE; (ii) the utility loss in di, which is bounded above from ξ; (iii) the utility loss in dki for all

k ≥ 1. The total loss is bounded above from εE + ξ +Kη.

For any outcome that depends on kth message profile, if m̃k
i 6= t′i, σ

′
i(ti) is at least as

good as m̃i by inequality (33).

By inequality (13), we know γ > εE + ξ + Kη. Therefore, σ′i(ti) is a strictly better

reply to σ′−i than any such m̃i.

Finally, consider the case that m̃−1
i = m̃0

i = t′i and m̃k
i 6= t′i for some k ≥ 1. For any

k ≥ 1, in terms of the outcome that depends on the kth message profile, if m̃k
i 6= t′i, σ

′
i(ti) is

at least as good as m̃i by inequality (33). In terms of payments, since σ′i(ti) = (t′i, ..., t
′
i) is a

consistent message, the utility gain (from using σ′i(ti) rather than m̃i) in the payment rules

di and dki for all k ≥ 1 is bounded below by ξ + η. Therefore, σ′i(ti) is a strictly better reply

to σ′−i than any such m̃i. This completes the proof of Step 1.

Step 2: For every i ∈ I and ti ∈ T̄i, σ′i(ti) ∈ W 1
i (ti|M, T̄ ).

Fix any player i of type ti and m̃i 6= σ′i(ti). Then, it suffices to show that no m̃i can

weakly dominate σ′i(ti). More specifically, Taking the previous step into account, we can

decompose our argument into the following two cases of m̃i:

Case (i) m̃−2
i 6= t′i and m̃k

i = t′i for all k ≥ −1.

Let m̄−i ∈ M−i be defined such that m̄−1
j = m̄0

j for all j 6= i. Therefore, we have

e((m−1
i , m̄−1

−i ), (m
0
i , m̄

0
−i)) = 0 when m−1

i = m0
i . Let m̃−i ∈ M−i be defined such that

m̃−1
j 6= m̃0

j for some j 6= i. Then, we have e((m−1
i , m̃−1

−i ), (m
0
i , m̃

0
−i)) = ε for all mi. Let ν be

a conjecture of type ti such that ν(m̄−i|t−i) = 1 and ν(m̃−i|t′−i) = 1 where ti+1 = ti+2 = ti 6=
t′i = t′i+1 = t′i+2. Then, the utility net gain for player i of type ti from choosing σ′i(ti) rather
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than m̃i is given: {
0× ui(xi(t′i), t−i)πi(ti)[t−i] + ε× ui(xi(t′i), t′−i)πi(ti)[t′−i]

}
−

{
0× ui(xi(ti), t−i)πi(ti)[t−i] + ε× ui(xi(ti), t′−i)πi(ti)[t′−i]

}
= ε

{
ui(xi(t

′
i), t

′
−i)− ui(xi(ti), t′−i)

}
πi(ti)[t

′
−i]

> 0,

where the last inequality follows from Lemma 6. Therefore, σ′i(ti) is a strictly better reply

to ν than any such m̃i.

Case (ii) m̃k
i 6= t′i for some k ≥ −1.

By Step 1, we conclude that σ′i(ti) is a strictly better message to conjecture σ′−i than

any such m̃i. Thus, no m̃i can weakly dominate σ′i(ti) so that σ′i(ti) ∈ W 1
i (ti|M, T̄ ). This

completes the proof of Step 2.

Step 3: For every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S∞i Wi(ti|M, T̄ ).

Fix conjecture σ′−i and any m̃i. We first show that for each player i of type ti, σ
′
i(ti)

is a best response to σ′−i by considering the following two cases: (i) m̃−2
i 6= t′i and m̃k

i = t′i
for all k ≥ −1; (ii) m̃k

i 6= t′i for some k ≥ −1. In Case (i), player i of type ti is indifferent

between m̃i and σ′i(ti) since the indicator function e(·) has a value of 0. In Case (ii), it follows

immediately from Step 1. Thus, for every i ∈ I and ti ∈ T̄i, we have σ′i(ti) ∈ S2
i (ti|M, T̄ ).

Fix i ∈ I and ti ∈ T̄i. For each k ≥ 2, we assume by our inductive hypothesis that

σ′i(ti) ∈ Ski (ti|M, T̄ ). Then, we can conclude that σ′i(ti) ∈ Sk+1
i (ti|M, T̄ ), since we can

always fix σ′−i as a conjecture of player i of type ti. This completes the proof of Step 3.
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