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Abstract

Factor inputs often generate joint products (by-product) that impair production.

In some cases, called strong input-generated production externalities in this paper,

these negative effects can be so strong that full use of factors becomes inefficient, and

therefore factor use along the production possibility frontier (PPF) is endogenously

determined. This paper examines monotonicity, continuity, convexity and other

properties of the PPF in such situation. I show that the PPF is strictly decreasing

and continuous, but may jump at the corner. The PPF is convex if the by-product

generation function is quasi-concave. Moreover, the PPF is either entirely strictly

convex or linear if the by-product generation function is linear.
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1 Introduction

Everyone has 24 hours a day. But it is unwise for anyone to work for 24 hours without rest

to recover from fatigue. This inefficiency of fully using resources in production, hereafter

called strong input-generated production externalities, may arise through two channels.

First, there are intermediate processes, such as rest, that are essential to production and

require factor inputs as well. Second, factor inputs generate joint products (by-product)

that hamper production, such as congestion, resource depletion, and pollution. When the

amount of factor is too large or these negative effects are strong enough, full use of factors

becomes inefficient. Traffic jams is the example.

In the presence of strong input-generated production externalities, factor use along

the production possibility frontier (PPF) is endogenously determined. The purpose of

this study is to examine how such externalities affect the properties of the PPF, includ-

ing monotonicity, continuity, convexity and others. I focus on the single-factor case to

neutralize the effect of factor substitution that drives the PPF concave. I show that the

PPF is strictly decreasing and continuous when all goods are produced, but may jump

when a good stops to be produced. I also show that the PPF is (strictly) convex to the

origin if the by-product generation function is (strictly) quasi-concave. I then analyze the

model by assuming differentiability to obtain further insights. Among those, I derive the

sufficient conditions for the set of factor use on the PPF to be convex-valued and, even

stronger, single-valued. Moreover, I show that the PPF is either entirely strictly convex

or linear given a linear by-production generation function.

In the literature, the analysis of the PPF under production externalities usually focuses

on output-generated externalities (e.g., Herberg and Kemp, 1969; Herberg et al., 1982;

Dalal, 2006). However, full employment holds on the PPF in the presence of output-

generated production externalities, thus leaving no space for the focus of this study: how

the trade-off between factor use and productivity, not rare phenomena in reality as the two

examples above have suggested, affects the PPF. Another closely related literature is on

public intermediate goods (e.g., Manning and McMillan, 1979; Tawada and Abe, 1984).1

1There are two types of public intermediate goods often referred to. The semi-public type, correspond-

ing with Meade’s (1952) “unpaid factors of production”, enters the production function like a factor of
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This study embraces the “constant returns to scale” case in Manning and McMillan (1979)

as a special case, and extends their work by deriving similar results with less restrictive

assumptions and by exploring new results about the PPF.2 Our results also suggest that

the PPF in their model is either entirely strictly convex or linear, thus not able to have

mixed intervals as they implicitly suggest. The model in this study is static. But one can

see it as the steady-state version of a dynamic model, so the results derived here remain

valid for the steady-state PPF in corresponding dynamic models.

The rest of the paper is organized as follows. Section 2 presents the model and basic

assumptions. Section 3 examines three basic properties of the PPF without using calculus.

Section 4 characterizes calculus-based properties. Section 5 applies these results to several

special cases. The last section concludes.

2 The Model

There is a single factor of production (v), two final goods (x and y), and a by-product

(z). The technology satisfies

x = Gx (z) vx, (1a)

y = Gy (z) vy, (1b)

z = R (vx, vy) , (1c)

where vi ≥ 0 (i = x, y) denotes the use of factor in good i, R (vx, vy) ≥ 0 is the generation

function of by-product, Gi (z) ≥ 0 is the productivity function representing the product-

specific relationship between the productivity and the amount of by-product.

The technology above formulates various scenarios in reality. For example, z can

be regarded as the extraction of fishery resource, whose increase reduces fishery stock

production. The pure public type, corresponding with Meade’s “creation of atmosphere”, affects the

total factor productivity.
2Tawada and Abe (1984) analyze a two-factor model of pure public intermediate goods and focus

on the special case that industries have identical sensitivity to by-product. They find that the PPF

is necessarily concave. Abe et al. (1986) obtain the same result while allowing non-separability of the

production function and any number of factors. This study has very different focus from theirs and

attempts to highlight the effect on the PPF of the difference in the sensitivity to by-product.
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and thus makes fishing more difficult. Similarly, z can be the emission of pollution,

which harms agriculture, tourism and many other industries sensitive to the environment.

We can also interpret z as the use of factor in final production other than intermediate

processes. So greater z implies less intermediates and consequently lower productivities.

In this sense, Manning and McMillan’s (1979) “constant returns to scale” (or pure public

intermediate good) falls into a special case here.3

The PPF is defined by the maximum value function4

y = T (x) ≡ max
C(x)

Gy (z) vy, (2)

where C (x) denotes the constraint set

C (x) ≡ {(z, vx, vy) ;Gx (z) vx ≥ x, z = R (vx, vy) , vx + vy ≤ E} . (3)

The inequality Gx (z) vx ≥ x means that free disposal is available, E is the factor endow-

ment. Let S (x) denote the solution set

S (x) = arg max
C(x)

Gy (z) vy. (4)

To exclude trivial cases, assume that the feasible maximum outputs of x and y, denoted

by x̄ and ȳ, are positive. By the definition of T (x), we have T (0) = ȳ and T (x̄) = 0.

The analysis proceeds by assuming that

(A1) R (vx, vy) and Gi (z) are continuous in all augments;

(A2) R (vx, vy) is strictly increasing in all arguments;

(A3) vx + vy ≤ E is slack on the PPF.

3To see this, introduce a constant L, two variables Lr and r, and two functions fr (Lr) and Ai (r).

Let Lr = L − z, r = fr (Lr), Ai (fr (L− z)) = Gi (z), then Gi (z) = Ai (fr (Lr)) = Ai (r). Moreover,

let R (vx, vy) = vx + vy, then Lr = L − z = L − vx − vy. So, (1) can be rewritten into x = Ax (r) vx,

y = Ay (r) vy, r = fr (Lr) and L = vx + vy + Lr, which is exactly the “constant returns to scale” case in

Manning and McMillan (1979).
4Defining the PPF as in (2) has a limitation. That is, if there is non-bijective mapping between x and

y on the frontier, (2) describes only the upper locus of the PPF. But this limitation will not present a

big problem here since Proposition 2 shows that (2) is strictly decreasing over its domain. This means

that, at most, some vertical lines are degenerated to discontinuous jump points.
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Assumption (A2) implies that given a level of z, there is a bijective mapping between vx

and vy. Assumption (A1) and (A2) together imply

Lemma 1. Given (A1) and (A2), the constraint Gx (z) vx ≥ x binds on the PPF.

Assumption (A3) is imposed so as to focus on strong input-generated production exter-

nalities. A simple example satisfying (A3) is that x = (1− vx − vy) vx, y = (1− vx − vy) vy,

and the factor endowment E = 1. If (A3) fails to hold, the shape of the PPF depends

on specific forms of R (vx, vy) and Gi (z).5 Note that although (A3) excludes those by-

products with only nonnegative effects (dGi (z) /dz ≥ 0 for all z ≥ 0) such as knowledge

spillover, it does not exclude positive externalities in certain ranges.

3 Monotonicity, Continuity and Convexity of the PPF

In this section, I establish monotonicity, continuity and convexity of the PPF. Define

x̃ ≡ inf {x;T (x) = 0} . (5)

Thus, x̃ ∈ [0, x̄]. We can show that

Proposition 2 (Monotonicity). Given (A1) and (A2), the PPF, T (x), is strictly de-

creasing over [0, x̃], and satisfies T (x) = 0 over (x̃, x̄].

Does T (x̃) = 0 hold? This depends on the continuity of T (x) at x = x̃, which is

established as follows. For convenience, let Z (x) denote the set of by-product outputs at

(x, T (x)) on the PPF.

Proposition 3 (Continuity). Given (A1) and (A2), the PPF, T (x), is continuous over

(0, x̄]. Moreover, T (x) is continuous at x = 0 if and only if

∀σ > 0,∃z0 ∈ Z (0) and z′ ∈
(
z0 − σ, z0 + σ

)
so that Gx (z′) > 0. (6)

5The following example clearly illustrates this point. Let x = (3−R (vx, vy)) vx, y =

(3−R (vx, vy)) vy, and the factor endowment E = 1. It is easy to check that if R (vx, vy) = v2x + v2y, then

full employment holds on the PPF and the PPF is concave. If R (vx, vy) = v
1/2
x + v

1/2
y , full employment

also holds on the PPF and the PPF is convex. If R (vx, vy) = v
1/2
x + v2y, full employment still holds on

the PPF and now the PPF is concave when close to x axis and convex when close to y axis.
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Figure 1: Jump discontinuity on the PPF

As well known, the PPF is discontinuous at the corner if there exists fixed cost.

Proposition 3 indicates another channel through which the discontinuity may arise. As

illustrated in the left diagram in Figure 1, y reaches the maximum ȳ at z = z0, but z′ < z0

and Gx (z) = 0 for z ≥ z′. The PPF is therefore discontinuous at x = 0 according to

Proposition 3, as shown in the right diagram. Note that Gx (z0) = 0 for all z0 ∈ Z (0)

does not necessarily mean that T (x) is discontinuous at x = 0. As long as there exists

z0 ∈ Z (0) so that Gx (z) > 0 in an arbitrarily small neighborhood of z0, for example

Gx (z0) = 0 but Gx (z) > 0 for z < z0, then T (x) is continuous at x = 0.

The following proposition is about the convexity of the PPF. For detailed character-

ization of concavity and quasi-concavity, and pseudo-concavity that will arise later on,

see, e.g., Diewert et al. (1981).

Proposition 4 (Convexity). Given (A1), (A2) and (A3), if R (vx, vy) is quasi-concave,

the PPF, T (x), is convex over (0, x̄]. If R (vx, vy) is strictly quasi-concave, T (x) is strictly

convex over (0, x̃).

Since quasi-concavity covers many functions used in economics such as the CES func-

tion, Proposition 4 suggests that the PPF tends to be convex in the presence of strong

input-generated production externalities when there is only a single factor of production.

The intuition of the proof is straightforward. If we fix z at certain level, feasible output

bundles will lie on a locus convex to the origin due to the quasi-concavity of R (vx, vy).
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Figure 2: The PPF as the upper envelope

Fix z at another level, we can obtain another convex curve. Repeating this yields a family

of loci convex to the origin. As shown in Figure 2, in which a linear R (vx, vy) is assumed,

five line segments are generated by changing z from z1 to z5. The PPF is the upper

envelope of these convex loci and thus is also convex. Note that some values of z may

generate loci not contributing to the PPF, such as z4 and z5 in the figure.

4 Calculus-based Properties

To derive richer results by exploiting calculus, replace assumption (A1) with

(A1′) R (·, ·) and Gi (·) are of class C2.

It is convenient to define the sensitivity to by-product as the elasticity of productivity

with respect to the level of by-product:

εi ≡ −
d lnGi (z)

d ln z
, i = x, y.

To save notations, hereafter let Gi, Gi′ and Gi′′ denote respectively Gi (z), dGi (z) /dz

and d2Gi (z) /dz2 whenever no confusion arises. In what follows, we shall focus on the
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interval (0, x̃) for two reasons. First, T (x) = 0 over [x̃, x̄], which is of no special interest.

Second, x ∈ (0, x̃) ensures positive outputs, which simplifies the first-order condition from

the Kuhn–Tucker type to a system of equations.

Using Lemma 1 and (A3), rewrite the original problem (2) into

T (x) ≡ max
vx,vy

Gy (R (vx, vy)) vy,

subject to Gx (R (vx, vy)) vx = x. The Lagrangian can be written as

L = Gy (R (vx, vy)) vy + p (Gx (R (vx, vy)) vx − x) ,

where p is the Lagrange multiplier representing the shadow price of x measured by y. For

any x ∈ (0, x̃), the first-order condition yields

p =
GyRx

GxRy

, (7a)

1 = εx
Rxvx
z

+ εy
Ryvy
z

, (7b)

where Rx and Ry denote respectively ∂R (vx, vy) /∂vx and ∂R (vx, vy) /∂vy. We can also

define

w ≡ pGx/Rx, (8)

which measures the marginal return associated with an increase in the by-product. To

see this, consider a unit of increase in the by-product, which implies an increase in the

use of factor in good x by 1/Rx units if factor use in good y is fixed. This yields a return

of pGx/Rx if the productivity remains unchanged. On the other hand, it follows from the

definition of w and the first-order condition that

w = − (pGx′vx +Gy′vy) =
Gy

Ry

. (9)

Note that (pGx′vx +Gy′vy) measures the marginal loss due to declines in the productivity

caused by an increase in the by-product. So the first equality in (9) means that the

marginal return and loss must be equalized in optimum. Also note that Gy/Ry measures

the marginal return associated with an increase in the by-product but through producing

more good y, so the second equality in (9) indicates that the marginal return through

producing more of either good must be equalized in optimum, too. Therefore, w is the

8



Pigouvian tax which can be imposed to producers to make a market-based economy

operate on the PPF.6

Let H ≡ ∂2L/∂ (p, vx, vy)
2 denote the Hessian matrix of L, then the second-order

necessary condition requires that |H| ≥ 0. However, if |H| = 0, there is a kink on T (x)

and thus T ′′ (x) is not well-defined. To avoid such difficulty, in what follows we focus on

the case of |H| > 0.

The following proposition provides a precise version of Proposition 4.

Proposition 5. Given (A1′), (A2) and (A3), then

T ′′ (x) =
wRx

(Gx)2︸ ︷︷ ︸
>0

Q+
(wRxRy)

2

z2 |H|︸ ︷︷ ︸
>0

D2, x ∈ (0, x̃) (10)

where

Q ≡ 2
Rxy

RxRy

− Rxx

R2
x

− Ryy

R2
y

= q1 + q2,

D ≡ εy (1−Ryvyq2)− εx (1−Rxvxq1) ,

q1 ≡
Rxy

RxRy

− Rxx

R2
x

, q2 ≡
Rxy

RxRy

− Ryy

R2
y

.

The implication of Proposition 5 comes by noting that Q has the same sign with the

bordered Hessian matrix of R (vx, vy):

Q =
1

(RxRy)
2

∣∣∣∣∣∣∣∣∣
0 Rx Ry

Rx Rxx Rxy

Ry Rxy Ryy

∣∣∣∣∣∣∣∣∣ .
Hence, if R (vx, vy) is quasi-concave, then Q ≥ 0 and, according to (10), T ′′ (x) ≥ 0. So

T (x) is convex. If R (vx, vy) is strictly quasi-concave, then Q > 0 and thus T (x) is strictly

convex. On the other hand, if R (vx, vy) is quasi-convex, Q ≤ 0 and the sign of T ′′ (x)

becomes indeterminate. The curvature at each point on the PPF then depends on the

relative magnitude of two terms in (10) valued at that point.

6To verify this, we can write the Lagrangian as L = Gy (z) vy + p (Gx (z) vx − x)− w (R (vx, vy)− z)

and obtain (8) and (9) from the first-order condition. We do not write in this way only for simpler

calculation.
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Proposition 6. Given assumption (A1′), (A2) and (A3), then along the PPF

dz

dx
=
GxGyRxRy

z |H|︸ ︷︷ ︸
>0

D, x ∈ (0, x̃) (11)

where D is defined as in Proposition 5.

The sign of dz/dx depends on that of D, and thus is ambiguous without further

information on the specific forms of R (vx, vy), G
i (z), and the value of x.

In what follows, we show under what condition the solution set S (x) defined in (4) is

convex-valued. For this purpose, assume that

(A4) Gi (z) (i = x, y) is quasi-concave and 1/Gi (z) is convex.

Assumption (A4) is useful as shown subsequently. First, the quasi-concavity of Gi (z)

ensures the convexity of the domain of relevant functions. That is,

Lemma 7. If Gi (z) (i = x, y) is quasi-concave, then {z;Gi (z) > 0} and {(z, vi) ;Gi (z) vi > 0}

are open convex sets.

On the other hand, the convexity of 1/Gi (z) implies that

Lemma 8. Given (A1′), if 1/Gi (z) is (strictly) convex, then Gi (z) vi is (strictly) pseudo-

concave with respect to (z, vi).

Note that the convexity of 1/Gi (z) is not as strong as it seems. For example, the

(strict) concavity of Gi (z) is sufficient for the (strict) convexity of 1/Gi (z). Finally, the

following lemma is also useful.

Lemma 9. If Gi (z) vi (i = x, y) is (strictly) pseudo-concave with respect to (z, vi) and

if R (vx, vy) is convex, then Gi (R (vx, vy)) vi is (strictly) pseudo-concave with respect to

(vx, vy).

Using these lemmas, it can be shown that

Proposition 10. Given (A1′), (A2), (A3) and (A4), if R (vx, vy) is convex, then the

solution set S (x) is convex-valued for any x ∈ (0, x̃). Moreover, if either 1/Gx (z) or

1/Gy (z) is strictly convex, then S (x) is single-valued and can be represented by a C1

vector function.
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5 Applications

In this section, I apply the results above to several special cases of R (vx, vy). First,

consider a special form of R (vx, vy) as follows.

R (vx, vy) = I (r1vx + r2vy) , (12)

where r1, r2 > 0 are constants and I ′ (·) > 0 is a strictly increasing function. We can apply

Proposition 5 and 6 to this special form of R (vx, vy). It follows that Q = q1 = q2 = 0 and

D = εy − εx. Substitute into (10) and obtain

T ′′ (x) =
(wr1r2)

2 I ′4

z2 |H|︸ ︷︷ ︸
>0

(εy − εx)2 , (13)

which implies directly the following corollary:

Corollary 11. Given (A1′), (A2), (A3) and (12), the PPF, T (x), is strictly convex for

any x ∈ (0, x̃) if and only if εx 6= εy there.

The corollary highlights how the difference in the sensitivity between two goods renders

the PPF convex. To see how the output of by-product changes along the PPF, substitute

(12) into (11) and obtain

dz

dx
=
GxGyr1r2I

′2

z |H|︸ ︷︷ ︸
>0

(εy − εx) , (14)

which yields directly the following corollary:

Corollary 12. Given (A1′), (A2), (A3) and (12), the sign of dz/dx on the PPF for any

x ∈ (0, x̃) is determined by the sign of (εy − εx) there.

Corollary 11 and 12 are similar with Manning and McMillan’s (1979) Proposition 5 and

6. In their model, the by-product generation function takes the form of R (vx, vy) = vx+vy,

which is a special case of (12). In this sense, Corollary 11 and 12 are more general than

their Proposition 5 and 6.

Second, consider another case of R (vx, vy).

R (vx, vy) is linearly homogeneous and quasi-convex. (15)

Then we can obtain the following proposition by applying Proposition 10.
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Figure 3: A possible path of (εx, εy)

Proposition 13. Given (A1′), (A2), (A3), (A4) and (15), the sign of (εx − εy) remains

unchanged when moving along the PPF over (0, x̃).

In Figure 3, the points in region I satisfy εy > 1 > εx; the points in region II satisfy

εy < 1 < εx; point (1, 1) corresponds with εx = εy = 1. The first-order condition together

with the linearly homogeneity of R (vx, vy) implies that, for any point on the PPF over

(0, x̃), (εx, εy) lies in region I, or region II, or at point (1, 1). Proposition 13 moves one

step forward by saying that, when moving along the PPF, (εx, εy) must either remain in

region I, or remain in region II, or stay at point (1, 1), given certain condition. Figure 3

draws a possible path of (εx, εy), which is labeled Ψ and located in region I.

Third, consider a specific form of R (vx, vy) as follows.

R (vx, vy) = r1vx + r2vy. (16)

Note that (16) satisfies both (12) and (15). It then follows directly from Proposition 13

that

Corollary 14. Given (A1′), (A2), (A3), (A4) and (16), the PPF, T (x), is either entirely

strictly convex or entirely linear.
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Manning and McMillan’s (1979) Proposition 6 implies that the strictly convex and

linear intervals could coexist on the PPF in their model. Corollary 14 excludes this

possibility.

Finally, consider a special case of (16) as follows.

R (vx, vy) = vx + vy. (17)

So far, we do not consider how the total factor use v ≡ vx + vy changes along the PPF

since it depends on the specific forms of functions. But given (17), z = v and it follows

directly from (14) that

dv

dx
=
dz

dx
=
GxGy

v |H|︸ ︷︷ ︸
>0

(εy − εx) .

According to Proposition 13, we have

Corollary 15. Given (A1′), (A2), (A3), (A4) and (17), the total factor use v (also z)

either increases uniformly, or decrease uniformly, or remains unchanged when moving

along the PPF over (0, x̃).

6 Conclusion

The properties of the PPF is an important issue in economic theory. For example, if

the PPF of two ex-ante identical economies is convex, both economies can achieve higher

efficiencies by specializing and trading with each other. This provides an explanation to

the origin of comparative advantages. This study shows that, in the presence of strong

input-generated production externalities, the PPF tends to be convex. Note that the

assumption of a single factor of production is crucial. If there are more than one factors,

the difference in factor intensities between goods works in driving the PPF concave, and

the curvature at each point on the PPF depends on which force dominates there.7 On

the other hand, although the model has only two goods, Proposition 2, Proposition 3 and

Proposition 4 remain valid even if there are more goods.

7Appendix A.12 gives a special case in which the factor intensity is identical among two goods. In

such case, the PPF still tends to be convex.
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A Appendix

A.1 Proof of Lemma 1

Let (x′, T (x′)) denote a point on the PPF and
(
z′, v′x, v

′
y

)
denote the corresponding factor

use and by-product output. Assume to the contrary that Gx (z′) v′x > x′. Then it is

possible to find an input bundle
(
v′′x, v

′′
y

)
satisfying v′′x < v′x, v

′′
y > v′y, R

(
v′′x, v

′′
y

)
= z′

and Gx (z′) v′′x ≥ x′. Hence (x′, y′′) is feasible, where y′′ = Gy (z′) v′′y . Note that y′′ >

Gy (z′) v′y = T (x′), which leads to a contradiction to the definition of T (x′).

A.2 Proof of Proposition 2

Note that the envelope theorem is not applicable because we do not assume the differen-

tiability of Gi (z) and R (vx, vy). First, prove that T (x) is strictly decreasing over [0, x̃].

There are two possible cases: x̃ = 0 and x̃ > 0. The case of x̃ = 0 is trivial. Thus we

can deal with only the case of x̃ > 0. Assume to the contrary that there exist two values

of x ∈ [0, x̃], say x′ and x′′, so that x′ > x′′ and T (x′) ≥ T (x′′). Note that x′ > 0 since

x′ > x′′ ≥ 0, and that x̃ > x′′ since x̃ ≥ x′ > x′′. Then we have T (x′′) > 0 by the

definition of x̃, and have T (x′) > 0 since T (x′) ≥ T (x′′). Let
(
v′x, v

′
y

)
denote the opti-

mal factor input vector corresponding to x′, then x′ = Gx (z′) v′x and T (x′) = Gy (z′) v′y

where z′ = R
(
v′x, v

′
y

)
. It follows x′ > 0 and T (x′) > 0 that Gi (z′) > 0 (i = x, y).

Let
(
v′′x, v

′′
y

)
denote the factor input vector so that x′′ = Gx (z′) v′′x and z′ = R

(
v′′x, v

′′
y

)
.

Since x′ > x′′, we have v′′x < v′x and thus, by assumption (A2), v′′y > v′y. This means

y′′ ≡ Gy (z′) v′′y > Gy (z′) v′y = T (x′). Since (x′′, y′′) is a feasible production bundle, we

have T (x′′) ≥ y′′ by the definition of T (x). This implies T (x′′) > T (x′) and leads to a

contradiction.

Second, prove that T (x) = 0 over (x̃, x̄]. There are two cases: x̃ = x̄ and x̃ < x̄.

The case of x̃ = x̄ is trivial since then (x̃, x̄] = ∅. Thus focus only on the case of x̃ < x̄.

Assume to the contrary there exists a value of x, say x′, so that x′ ∈ (x̃, x̄] and T (x′) > 0.

By similar procedures, we can show that T (x) > T (x′) > 0 for any x < x′. This leads to

a contradiction to the definition of x̃.
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A.3 Proof of Proposition 3

The proof proceeds by first examining continuity over (0, x̄] and then moving on to the

condition for continuity at x = 0.

Continuity over (0, x̄] According to Berge’s theorem of the maximum, if the constraint

set C (x) defined by (3) is continuous over (0, x̄], then T (x) is also continuous. To prove

that C (x) is continuous, we shall check both the upper semi-continuity and the lower

semi-continuity of C (x).

As for upper semi-continuity, take a sequence {xn} → x′ ∈ (0, x̄] so that xn ∈ (0, x̄],

and take a sequence
{(
vnx , v

n
y

)}
→
(
vsx, v

s
y

)
so that

(
zn, vnx , v

n
y

)
∈ C (xn) for all n. By the

sequential characterization, if
(
zs, vsx, v

s
y

)
∈ C (x′), then C (x) is upper semi-continuous.

We first consider the case that
{(
zn, vnx , v

n
y

)}
or its subsequence (for simplicity, we use

the same notation here) satisfies Gx (zn) vnx > xn, then it is obvious that

∃N so that ∀n > N,Gx
(
zN
)
vNx > x′,

which actually implies that
(
zs, vsx, v

s
y

)
∈ C (x′).

Second, we consider the case that
{(
zn, vnx , v

n
y

)}
or its subsequence satisfiesGx (zn) vnx =

xn. Real analysis suggests that one of the following cases necessarily holds: (i) {xn}

contains an increasing subsequence {xnk}; (ii) {xn} contains a decreasing subsequence

{xnk}; (iii) {xn} contains both types of subsequences. In case (i), for any nk and cor-

responding
(
znk , vnk

x , v
nk
y

)
∈ C (xnk), there are further two situations: vnk

y > 0 and

vnk
y = 0. We first discuss the situation of vnk

y > 0. Since {xnk} → x′ and vnk
y > 0,

there exist a number N1 and
(
znk , vN1

x , vN1
y

)
∈ C (x′) satisfying Gx (znk) vN1

x = x′, so

that
∥∥(znk , vN1

x , vN1
y

)
,
(
znk , vnk

x , v
nk
y

)∥∥ ≤ c1 (x′ − xnk) for all nk > N1. It is obvious that

vN1
x > vnk

x and vN1
y < vnk

y for x′ > xnk . Assumption (A1) ensures the existence of such

constant c1 > 0. The distance from
(
znk , vnk

x , v
nk
y

)
to C (x′) can be defined as follows.

d
((
znk , vnk

x , v
nk
y

)
, C (x′)

)
≡ inf

(z′,v′x,v′y)∈C(X′)

∥∥(znk , vnk
x , v

nk
y

)
,
(
z′, v′x, v

′
y

)∥∥ .
Then we have, for any nk > N1,

d
((
znkvnk

x , v
nk
y

)
, C (x′)

)
≤
∥∥(znk , vN1

x , vN1
y

)
,
(
znk , vnk

x , v
nk
y

)∥∥ ≤ c1 (x′ − xnk) . (18)
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Now we discuss the situation of vnk
y = 0 in case (i). In this situation, it is impossible to find

an element in C (x′), as we did previously, by replacing vnk
x with a larger value without

changing znk . However, there exists a number N2 and
(
znk , vN2

x , 0
)
∈ C (x′) satisfying

x′ = Gx (znk) vN2
x , so that

∥∥(znk , vN2
x , 0

)
, (znk , vnk

x , 0)
∥∥ ≤ c1 (x′ − xnk) for all nk > N2.

Again, (A1) ensures the existence of such constant c2 > 0. The distance from (znk , vnk
x , 0)

to C (x′) satisfies, for all nk > N2,

d ((znk , vnk
x , 0) , C (x′)) ≤

∥∥(znk , vN2
x , 0

)
, (znk , vnk

x , 0)
∥∥ ≤ c1 (x′ − xnk) . (19)

Equations (18) and (19) together implies that d
((
znk , vnk

x , v
nk
y

)
, C (x′)

)
→ 0 when xnk →

x′. Hence,
{(
znk , vnk

x , v
nk
y

)}
→
(
zs, vsx, v

s
y

)
∈ C (x′).

The similar method can be applied to case (ii), which is rather simpler since now it is

always possible, for sufficiently large nk, to find an element in C (x′) by replacing vnk
x by

a smaller value without changing znk . Because we have proved the upper semi-continuity

in both case (i) and case (ii), case (iii) becomes trivial and requires no further discussion.

As for lower semi-continuity, take a sequence of {xn} → x′ ∈ (0, x̄] and a point(
z′, v′x, v

′
y

)
∈ C (x′). By the sequential characterization, if there exists a sequence

{(
zn, vnx , v

n
y

)}
so that

(
zn, vnx , v

n
y

)
∈ C (xn) and

{(
zn, vnx , v

n
y

)}
→
(
z′, v′x, v

′
y

)
, then C (x) is lower semi-

continuous. To show this, we construct a sequence
{(
vnx , v

n
y

)}
by letting vnx = a (n) + v′x

and vny = b (n) + v′y. Then we choose a number N large enough, so that there exist a (n)

and b (n) for all n > N satisfying that xn = Gx (z′) vnx and R
(
vnx , v

n
y

)
= z′ = R

(
v′x, v

′
y

)
.

Hence
(
z′, vnx , v

n
y

)
∈ C (xn) for all n > N .

Note that xn = Gx (z′) vnx = Gx (z′) (a (n) + v′x) = x′ + Gx (z′) a (n) for all n > N .

Thus we obtain a (n) = (xn − x′) /Gx (z′) since Gx (z′) > 0 due to x′ > 0. This implies

that a (n) → 0 when xn → x′. Furthermore, by assumption (A2) and R
(
vnx , v

n
y

)
= z′ =

R
(
v′x, v

′
y

)
, b (n)→ 0 when a (n)→ 0. Therefore,

(
z′, vnx , v

n
y

)
→
(
z′, v′x, v

′
y

)
when xn → x′.

Continuity at x = 0 First note that when x = 0, the optimal factor input in good x,

v0x = 0. Otherwise it is possible, according to (A2), to raise the output of y by reducing

vx and increasing vy in such a way that z remains unchanged.
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As for sufficiency of (6), it follows from (A1) that

∀ε > 0 and ∀z0 ∈ Z (0) ,∃σ > 0 so that ∀z ∈
(
z0 − σ, z0 + σ

)
, |T (0)−Gy (z) vy| <

ε

2
,

(20)

where vy satisfies z = R (0, vy). The sufficient condition implies that there exists z0′ ∈

Z (0) satisfying that

∀σ > 0,∃z′ ∈
(
z0′ − σ, z0′ + σ

)
so that Gx (z′) > 0. (21)

Together with (20), we have

∀ε > 0,∃σ > 0 so that ∀z′ ∈
(
z0′ − σ, z0′ + σ

)
,
∣∣T (0)−Gy (z′) v′y

∣∣ < ε

2
,

where v′y satisfies R
(
0, v′y

)
= z′. Provided a small enough value of x, say x1 > 0, there

exist
(
v1x, v

1
y

)
so that Gx (z′) v1x = x1 and R

(
v1x, v

1
y

)
= z′. It follows from the continuity of

R (·, ·) that

∀ε > 0,∃δ > 0 so that ∀x′ < δ,
∣∣Gy (z′) v′y −Gy (z′) v1y

∣∣ < ε

2
. (22)

By the definition of T (x), we have T (x′) ≥ Gy (z′) v1y. On the other hand, by Proposition

2, we have T (0) ≥ T (x′). Therefore,

|T (0)− T (x′)| ≤
∣∣T (0)−Gy (z′) v1y

∣∣ .
By assumption (A2), v1y < v′y since v1x > 0, which means Gy (z′) v′y > Gy (z′) v1y and thus∣∣T (0)−Gy (z′) v1y

∣∣ =
∣∣T (0)−Gy (z′) v′y

∣∣+
∣∣Gy (z′) v′y −Gy (z′) v1y

∣∣ .
The two expressions imply

|T (0)− T (x′)| ≤
∣∣T (0)−Gy (z′) v′y

∣∣+
∣∣Gy (z′) v′y −Gy (z′) v1y

∣∣ . (23)

Together with (21) and (22) we obtain

∀ε > 0,∃δ > 0 s.t. ∀x < δ, |T (0)− T (x)| < ε.

This establishes the continuity of T (x) at x = 0.

As for necessity of (6), it is easier to prove the contrapositive: T (x) is discontinuous

at x = 0 if

∃σ > 0 so that ∀z0 ∈ Z (0) and ∀z ∈
(
z0 − σ, z0 + σ

)
, Gx (z) = 0.
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For this purpose, define m = infz
(
T (0)−Gy (z) v0y

)
where z and v0y satisfy that z /∈

(z0 − σ, z0 + σ) for any z0 ∈ Z (0) and R
(
0, v0y

)
= z. It is evident that m > 0, otherwise

z ∈ Z (0) and thus z ∈ (z0 − σ, z0 + σ). For any δ > 0, we can pick a number x′ ∈ (0, δ).

Let z′ ∈ Z (x′), then Gx (z′) > 0 for x′ > 0, implying z′ /∈ (z0 − σ, z0 + σ). Let v1y satisfy

that R
(
0, v1y

)
= z′, then ∣∣T (0)−Gy (z′) v1y

∣∣ ≥ m.

On the other hand, if we let
(
v′x, v

′
y

)
be the corresponding optimal factor inputs, then

Gy (z′) v1y > Gy
(
zx

′)
v′y = T (x′) since v′y < v1y due to v′x > 0. Therefore,

|T (0)− T (x′)| >
∣∣T (0)−Gy (z′) v1y

∣∣ ≥ m.

This implies that

∀δ > 0 and ∀x ∈ (0, δ) ,∃m > 0 so that |T (0)− T (x′)| > m,

which establishes the discontinuity of T (x) at x = 0.

A.4 Proof of Proposition 4

According to Lemma 1, the PPF can be equivalently defined by, instead of (2),

y = T (x) ≡ max
z
Y (z, x) ,

where Y (z, x) is the output of good y given z and x, that is, Y (z, x) = Gy (z) vy, x =

Gx (z) vx. There are two cases: Gy (z) > 0 and Gy (z) = 0. If Gy (z) > 0, we have

z = R (x/Gx (z) , Y (z, x) /Gy (z)). Given any z, changing x in (x/Gx (z) , Y (z, x) /Gy (z))

gives a locus convex to the origin according to (A2) and the quasi-concavity of R (vx, vy).

This means that Y (z, x) is a convex function of x. If Gy (z) = 0, Y (z, x) = 0. In both

cases, Y (z, x) is a convex function of x. Since T (x) is the upper envelope of Y (z, x)

by changing z and since assumption (A3) ensures that all output bundles on this upper

envelope are feasible, T (x) is necessarily convex over (0, x̄].

If R (vx, vy) is strictly quasi-concave, following similar arguments we show that Y (z, x)

is a strictly convex function of x for any z satisfying Gy (z) > 0. Let Ω denote the set

of z’s such that Y (z, x) contributes to the upper envelope. According to Proposition 2,
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T (x) > 0 for any x ∈ (0, x̃), which implies Gy (z) > 0 for any z ∈ Ω. Since the upper

envelope of Y (z, x) by changing z within Ω gives T (x), it is necessarily strictly convex

over (0, x̃).

A.5 Proof of Proposition 5

By the envelope theorem, on the PPF

T ′ (x) =
∂L
∂x

= −p = −G
y

Gx
.

The local convexity of the PPF is then characterized by

T ′′ (x) = −dp
dx
.

Taking the total differentiation of first-order conditions and constraints yields

H (dp, dvx, dvy)
′ = (1, 0, 0)′ dx. (24)

H ≡ ∂2L/∂ (p, vx, vy)
2 is the Hessian matrix of L

H =


0 Gx′Rxvx +Gx Gx′Ryvx

Gx′Rxvx +Gx R2
x

(
B1 + Rxx

R2
x
B2 +B3 +B4

)
RxRy

(
B1 + Rxy

RxRy
B2 +B3

)
Gx′Ryvx RxRy

(
B1 + Rxy

RxRy
B2 +B3

)
R2
y

(
B1 + Ryy

R2
y
B2 +B3 −B4

)


where

B1 ≡ pGx′′vx +Gy′′vy,

B2 ≡ pGx′vx +Gy′vy = −w,

B3 ≡
pGx′

Rx

+
Gy′

Ry

,

B4 ≡
pGx′

Rx

− Gy′

Ry

.

Since |H| > 0, by Cramer’s rule,

dp

dx
=
|H1|
|H|

,

19



where Hi is the matrix formed from H by replacing its i-th column by (1, 0, 0)′. It follows

the definition of εi and the first-order condition that

Gx′Rxvx +Gx = −G
y′Ryvy
Gy

Gx =

(
εy
Ryvy
z

)
Gx,

Gx′Ryvx =
Gx′Rxvx
Gx

GxRy

Rx

= −
(
εx
Rxvx
z

)
GxRy

Rx

.

Let λx ≡ εxRxvx/z, λy ≡ εyRyvy/z and Hij denote the entry in the i-th row and j-th

column of H. Then

H =


0 λyG

x −λxG
xRy

Rx

λyG
x H22 H23

−λxG
xRy

Rx
H23 H33

 .
Do matrix transformation of H while keeping |H| unchanged as follows.

|H|
(row 1× 1

GxRy
, col 1× 1

GxRy
)

= (GxRy)
2

∣∣∣∣∣∣∣∣∣
0 λy

Ry
− λx
Rx

λy
Ry

H22 H23

− λx
Rx

H23 H33

∣∣∣∣∣∣∣∣∣
(row 2×Ry, col 2×Ry)

= (Gx)2

∣∣∣∣∣∣∣∣∣
0 λy − λx

Rx

λy R2
yH22 RyH23

− λx
Rx

RyH23 H33

∣∣∣∣∣∣∣∣∣
(row 3×Rx, col 3×Rx)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 λy −λx

λy R2
yH22 RxRyH23

−λx RxRyH23 R2
xH33

∣∣∣∣∣∣∣∣∣ .
According to (7b), λx + λy = 1 on the PPF. Therefore,

|H|
(row 2−row 3)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 λy −λx

1 R2
yH22 −RxRyH23 RxRyH23 −R2

xH33

−λx RxRyH23 R2
xH33

∣∣∣∣∣∣∣∣∣
(col 2−col 3)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 1 −λx

1 R2
yH22 +R2

xH33 − 2RxRyH23 RxRyH23 −R2
xH33

−λx RxRyH23 −R2
xH33 R2

xH33

∣∣∣∣∣∣∣∣∣ .
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For the sake of notation, let h22 ≡ RyH22 +RxH33− 2RxRyH23, h23 ≡ RxRyH23−RxH33

and h33 ≡ RxH33, then

|H| =
(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 1 −λx

1 h22 h23

−λx h23 h33

∣∣∣∣∣∣∣∣∣
(col 3+col 2×λx)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 1 0

1 h22 h23 + λxh22

−λx h23 h33 + λxh23

∣∣∣∣∣∣∣∣∣
(row 3+row 2×λx)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣∣
0 1 0

1 h22 h23 + λxh22

0 h23 + λxh22 h33 + 2λxh23 + λ2xh22

∣∣∣∣∣∣∣∣∣
= −

(
Gx

Rx

)2 (
h33 + 2λxh23 + λ2xh22

)
.

On the other hand, recalling the steps of matrix transformation, we have

|H1| =

∣∣∣∣∣∣H22 H23

H23 H33

∣∣∣∣∣∣ =
1

(RxRy)
2

∣∣∣∣∣∣ h22 h23 + λxh22

h23 + λxh22 h33 + 2λxh23 + λ2xh22

∣∣∣∣∣∣ .
Therefore,

|H1|
|H|

= − h22

(GxRy)
2 −

(h23 + λxh22)
2

(RxRy)
2 |H|

.

Routine calculation gives that

h22 = (RxRy)
2wQ,

h23 + λxh22 =
[
λxR

2
yH22 − λyR2

xH33 + (λy − λx)RxRyH23

]
=

(RxRy)
2w

z
[εy (1−Ryvyq2)− εx (1−Rxvxq1)] .

Substituting into the expression of |H1| / |H| yields (10).

A.6 Proof of Proposition 6

On the PPF, we have

dz

dx
= Rx

dvx
dx

+Ry
dvy
dx

= Rx
|H2|
|H|

+Ry
|H3|
|H|

.
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First calculate |H2|,

|H2| =

∣∣∣∣∣∣∣∣∣
0 1 −λxG

xRy

Rx

λyG
x 0 H23

−λxG
xRy

Rx
0 H33

∣∣∣∣∣∣∣∣∣
(col 1× 1

GxRy
)

= GxRy

∣∣∣∣∣∣∣∣∣
0 1 H13

λy
Ry

0 H23

− λx
Rx

0 H33

∣∣∣∣∣∣∣∣∣
(row 2×Ry)

= Gx

∣∣∣∣∣∣∣∣∣
0 1 H13

λy 0 RyH23

− λx
Rx

0 H33

∣∣∣∣∣∣∣∣∣
(row 3×Rx)

=
Gx

Rx

∣∣∣∣∣∣∣∣∣
0 1 H13

λy 0 RyH23

−λx 0 RxH33

∣∣∣∣∣∣∣∣∣ .
Since λx + λy = 1,

|H2| =
Gx

R2
x

∣∣∣∣∣∣∣∣∣
0 1 RxH13

λy 0 RxRyH23

−λx 0 R2
xH33

∣∣∣∣∣∣∣∣∣
(row 2−row 3)

=
Gx

R2
x

∣∣∣∣∣∣∣∣∣
0 1 RxH13

1 0 RxRyH23 −R2
xH33

−λx 0 R2
xH33

∣∣∣∣∣∣∣∣∣
(row 3+row 2×λx)

=
Gx

R2
x

∣∣∣∣∣∣∣∣∣
0 1 RxH13

1 0 RxRyH23 +R2
xH33

0 0 λxRxRyH23 + λyR
2
xH33

∣∣∣∣∣∣∣∣∣ = −G
x

R2
x

(
λxRxRyH23 + λyR

2
xH33

)
.

|H3| can be calculated in a similar way,

|H3| =
Gx

Rx

∣∣∣∣∣∣∣∣∣
0 H12 1

λy RyH22 0

−λx RxH23 0

∣∣∣∣∣∣∣∣∣
(col 2×Ry)

=
Gx

RxRy

∣∣∣∣∣∣∣∣∣
0 RyH12 1

λy R2
yH22 0

−λx RxRyH23 0

∣∣∣∣∣∣∣∣∣
(row 2−row 3)

=
Gx

RxRy

∣∣∣∣∣∣∣∣∣
0 RyH12 1

1 R2
yH22 −RxRyH23 0

−λx RxRyH23 0

∣∣∣∣∣∣∣∣∣
(row 3+row 2×λx)

=
Gx

RxRy

∣∣∣∣∣∣∣∣∣
0 RyH12 1

1 R2
yH22 −R2

xH23 0

0 λxR
2
yH22 + λyRxRyH23 0

∣∣∣∣∣∣∣∣∣ =
Gx

RxRy

(
λxR

2
yH22 + λyRxRyH23

)
.

Therefore,

dz

dx
=

Gx

Rx |H|
[
λxR

2
yH22 − λyR2

xH33 + (λy − λx)RxRyH23

]
=
GxRxR

2
yw

z |H|
[εy (1−Ryvyq2)− εx (1−Rxvxq1)] .

Substituting w = Gy/Ry for w yields the result.
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A.7 Proof of Lemma 7

The quasi-concavity Gi (z) means that {z;Gi (z) > 0} is an open connected interval, which

is convex. As for Gi (z) vi, note that Gi (z) vi > 0 is equivalent to Gi (z) > 0 and vi > 0

since Gi (z) ≥ 0, i.e., {(z, vi) ;Gi (z) vi > 0} = {(z, vi) ;Gi (z) > 0} ∩ {(z, vi) ; vi > 0},

which is clearly an open convex set, too.

A.8 Proof of Lemma 8

The convexity of 1/Gi (z) is defined by, for any z′, z′′ ∈ {z;Gi (z) > 0},

(z′ − z′′) d

dz

(
1

Gi (z′′)

)
≤ 1

Gi (z′)
− 1

Gi (z′′)
,

which can be rewritten into

(z′ − z′′)Gi′ (z′′) +Gi (z′′)

(
Gi (z′′)

Gi (z′)
− 1

)
≥ 0. (25)

The pseudo-concavity ofGi (z) vi is defined by, for any (z′, v′i) , (z
′′, v′′i ) ∈ {(z, vi) ;Gi (z) vi > 0},

Gi (z′) v′i > Gi (z′′) v′′i ⇒ [(z′, v′i)− (z′′, v′′i )]∇
(
Gi (z′′) v′′i

)
> 0,

which can be simplified into

Gi (z′) v′i > Gi (z′′) v′′i ⇒ (z′ − z′′)Gi′ (z′′) +Gi (z′′)

(
v′i
v′′i
− 1

)
> 0. (26)

Note that

Gi (z′) v′i > Gi (z′′) v′′i ⇔ Gi (z′′)

(
v′i
v′′i
− 1

)
> Gi (z′′)

(
Gi (z′′)

Gi (z′)
− 1

)
. (27)

Because (25) and (27) together imply (26), the convexity of 1/Gi (z) implies that Gi (z) vi

is pseudo-concave.

Similarly, the strict convexity of 1/Gi (z) is defined by, provided z′ 6= z′′,

(z′ − z′′) d

dz

(
1

Gi (z′′)

)
<

1

Gi (z′)
− 1

Gi (z′′)
,

which can be rewritten into

(z′ − z′′)Gi′ (z′′) +Gi (z′′)

(
Gi (z′′)

Gi (z′)
− 1

)
> 0. (28)
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The strict pseudo-concavity of Gi (z) vi is defined by, provided (z′, v′i) 6= (z′′, v′′i ),

Gi (z′) v′i ≥ Gi (z′′) v′′i ⇒ [(z′, v′i)− (z′′, v′′i )]∇
(
Gi (z′′) v′′i

)
> 0,

which can be simplified into

Gi (z′) v′i ≥ Gi (z′′) v′′i ⇒ (z′ − z′′)Gi′ (z′′) +Gi (z′′)

(
v′i
v′′i
− 1

)
> 0. (29)

There are two cases. If z′ 6= z′′, then (29) follows from (28). If z′ = z′′, it follows from

Gi (z′) v′i ≥ Gi (z′′) v′′i that v′i ≥ v′′i . Moreover, z′ = z′′ and (z′, v′i) 6= (z′′, v′′i ) together imply

v′i 6= v′′i . Hence we have v′i > v′′i , which again means that (29) holds. This completes the

proof.

A.9 Proof of Lemma 9

For concreteness, we prove the case of i = x. The case of i = y can be proved similarly.

Routine calculation gives that[(
v′x, v

′
y

)
−
(
v′′x, v

′′
y

)]
∇
(
Gx
(
R
(
v′′x, v

′′
y

))
v′′x
)

= Av′′x +Gx′ (z′′) v′′xB,

where

z′ ≡ R
(
v′x, v

′
y

)
, z′′ ≡ R

(
v′′x, v

′′
y

)
,

A ≡ (z′ − z′′)Gx′ (z′′) +Gx (z′′)

(
v′x
v′′x
− 1

)
,

B ≡ (v′x − v′′x)Rx

(
v′′x, v

′′
y

)
+
(
v′y − v′′y

)
Ry

(
v′′x, v

′′
y

)
− (z′ − z′′) .

Note that B ≤ 0 since R (vx, vy) is convex, while Gx′ (z′′) could be either negative or

non-negative. The pseudo-concavity of Gx (z) vx means that

Gx (z′) v′x > Gx (z′′) v′′x ⇒ A > 0.

If Gx′ (z′′) is negative, then Gx′ (z′′) v′′xB ≥ 0. This simply implies that

Gx
(
R
(
v′x, v

′
y

))
v′x > Gx

(
R
(
v′′x, v

′′
y

))
v′′x ⇒ Av′′x +Gx′ (z′′) v′′xB > 0,

which says that Gx (R (vx, vy)) vx is pseudo-concave with respect to (vx, vy). If Gx′ (z′′)

is non-negative, then Gx′ (z′′) v′′xB ≤ 0. The alternative definition of pseudo-concavity

requires

Gx (z′) v′x < Gx (z′′) v′′x ⇒ A < 0,
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which implies

Gx
(
R
(
v′x, v

′
y

))
v′x < Gx

(
R
(
v′′x, v

′′
y

))
v′′x ⇒ Av′′x +Gx′ (z′′) v′′xB < 0.

This is equivalent to saying that Gx (R (vx, vy)) vx is pseudo-concave.

Now consider a strictly pseudo-concaveGx (z) vx. The strict pseudo-concavity requires,

provided that (z′, v′x) 6= (z′′, v′′x),

Gx (z′) v′x ≥ Gx (z′′) v′′x ⇒ A > 0.

The properties of R (vx, vy), characterized by (A1) and (A2), ensure

(z′, v′x) 6= (z′′, v′′x)⇔
(
v′x, v

′
y

)
6=
(
v′′x, v

′′
y

)
.

Hence, provided that
(
v′x, v

′
y

)
6=
(
v′′x, v

′′
y

)
, if Gx′ (z′′) is negative, then

Gx
(
R
(
v′x, v

′
y

))
v′x ≥ Gx

(
R
(
v′′x, v

′′
y

))
v′′x ⇒ Av′′x +Gx′ (z′′) v′′xB > 0,

which says that Gx (R (vx, vy)) vx is strictly pseudo-concave with respect to (vx, vy). If

Gx′ (z′′) is non-negative, then we can obtain the same conclusion by using the alternative

definition of strict pseudo-concavity.

A.10 Proof of Proposition 10

Define

C ′ (x) ≡ {(z, vx, vy) ;Gx (z) vx − x ≥ 0, z −R (vx, vy) ≥ 0} . (30)

The constraint C (x) of problem (2) can be replaced by C ′ (x) without changing the

solution set. This is because z − R (vx, vy) ≥ 0 is binding in optimum and vx + vy ≤ E

is not. Since 1/Gx (z) is convex, by Lemma 8, Gx (z) vx is pseudo-concave (thus quasi-

concave) with respect to (z, vx), and thus with respect to (z, vx, vy) as well. Since R (vx, vy)

is convex, z − R (vx, vy) is concave. On the other hand, since 1/Gy (z) is convex, the

objective function Gy (z) vy is pseudo-concave (thus quasi-concave) with respect to (z, vy),

and thus with respect to (z, vx, vy) as well. According to quasi-convex programming, the

solution set S (x) is convex.

On the other hand, the maximization problem (2) can be rewritten into

T (x) ≡ max
(vx,vy)∈C′′(x)

Gy (R (vx, vy)) vy,
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where

C ′′ (x) ≡ {(vx, vy) ;Gx (R (vx, vy)) vx − x ≥ 0} .

Given that 1/Gi (z) (i = x, y) and R (vx, vy) are convex, and that either 1/Gx (z) or

1/Gy (z) is strictly convex, according to Lemma 8 and 9, Gi (R (vx, vy)) vi (i = x, y) is

pseudo-concave and either one of them is strictly pseudo-concave. According to the results

from quasi-convex programming, there is a unique optimal (vx, vy), denoted by
(
v∗x, v

∗
y

)
,

and the corresponding level of by-product is z∗ = R
(
v∗x, v

∗
y

)
. Thus S (x)=

{(
z∗, v∗x, v

∗
y

)}
=

(z (x) , vx (x) , vy (x)). It follows the implicit-function theorem that S (x) is continuously

differentiable.

A.11 Proof of Proposition 13

Define the set of good i’s sensitivity at x on the PPF as

εi (x) ≡ {εi; z ∈ Z (x)} ,

and the set of the sensitivity bundles (εx, εy) on the PPF over (0, x̃) as

Ψ ≡ {(εx, εy) ; εx ∈ εx (x) , εy ∈ εy (x) , x ∈ (0, x̃)} .

Because R (vx, vy) is linearly homogeneous and quasi-convex, it is also convex. According

to Proposition 10, the solution set S (x) is convex over (0, x̃). Thus εi (x) is a connected

set for any x ∈ (0, x̃). On the other hand, the constraint set C (x) is continuous over

(0, x̃) as shown in Appendix A.3. According to the theorem of the maximum, the solution

set S (x) is upper semi-continuous over (0, x̃), and so is εi (x). Therefore, Ψ is also a

connected set on the (εx, εy) plane.

As given in (7b), εxθx + εyθy = 1, where θi ≡ Rivi/z satisfies θx + θy = 1 because

of the linear homogeneity of R (vx, vy). So at any point on the PPF either εx > 1 > εy,

εx = εy = 1, or εx < 1 < εy holds. Since Ψ is a connected set, if the sign of (εx − εy)

changes when moving along the PPF, then εx > 1 > εy, or εx = εy = 1, and εx < 1 < εy

must coexist on the PPF. This is impossible. To see this, let z′ denote the value of z so

that εx = εy = 1. Using this z′, we can obtain a relationship between x and y as follows.

Gx (z′) z′ = R

(
x,
Gx (z′)

Gy (z′)
y

)
, (31)
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where the linear homogeneity ofR (vx, vy) is used. Let y = Y (x, z′) denote the relationship

(31). Clearly (x, Y (x, z′)) is feasible for any x ∈ (0, x̃). In the following, we shall show

that y = Y (x, z′) is exactly the expression for the PPF, i.e. T (x) = Y (x, z′).

Assume to the contrary that there exists a feasible output bundle (x′′, y′′) lying outward

to y = Y (x, z′). Let z′′ denote the value of z corresponding with (x′′, y′′), then we have

Gx (z′′) z′′ = R

(
x′′,

Gx (z′′)

Gy (z′′)
y′′
)
. (32)

According to assumption (A2), ∂Y (x, z′) /∂x < 0. Hence, we find a point lying on

y = Y (x, z′), say (x′′′, y′′′), so that

x′′′
(
Gx (z′)

Gy (z′)
y′′′
)−1

= x′′
(
Gx (z′′)

Gy (z′′)
y′′
)−1

. (33)

Because (x′′, y′′) lies outward to y = Y (x, z′), we have x′′′ < x′′. Since (x′′′, y′′′) lies on

y = Y (x, z′),

Gx (z′) z′ = R

(
x′′′,

Gx (z′)

Gy (z′)
y′′′
)
.

Hence we have Gx (z′′) z′′ > Gx (z′) z′ according to the linear homogeneity of R (vx, vy).

On the other hand, according to Lemma 9, Gi (z) vi is pseudo-concave if 1/Gi (·)

is convex. This simply means, noting that Gi (z) z can be obtained by letting z = vi in

Gi (z) vi, that Gi (z) z is pseudo-concave as well. One of the properties of pseudo-concavity

is that Gi (z) z attains a global maximum when d (Gi (z) z) /dz = 0, i.e. εi = 1. Since

εx = εy = 1 when z = z′, Gi (z′) z′ ≥ Gx (z′′) z′′, this leads to a contradiction. Hence, there

is no feasible output bundle lying outside of y = Y (x, z′), which means T (x) = Y (x, z′).

Furthermore, along the PPF we have z = z′ and εx = εy = 1.

A.12 Two Factors: A Special Case

Here, instead of focusing on the general multi-factor case to derive the detailed condition

for the PPF to be convex or concave, we examine a special two-factor model in which the

factor intensity is identical between two goods. We begin by writing down the general
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two-good, two-factor model:

x = Gx (z)F x (v1x, v2x) , (34a)

y = Gy (z)F y (v1y, v2y) , (34b)

z = R (v1x, v1y, v2x, v2y) , (34c)

where vji (j = 1, 2; i = x, y) is the use of factor j in good i. R (v1x, v1y, v2x, v2y) describes

the relationship between the output of by-product and factor uses. F i (v1i, v2i) has the

standard properties of a Neoclassical production function that reflect the contribution of

factors.

The PPF is defined by the following maximum value function

y = T (x) ≡ max
z,v1y ,v2y

Gy (z)F y (v1y, v2y) , (35)

subject to Gx (z)F x (v1x, v2x) = x and z = R (v1x, v1y, v2x, v2y). Again, assume that the

factor constraint is slack on the PPF. It follows from the first-order conditions that

F x
1

F x
2

=
F y
1

F y
2

.

Assume that two goods share the same factor intensity, i.e., F x and F y satisfy

F x
1

F x
2

=
F y
1

F y
2

if
v1x
v2x

=
v1y
v2y

. (36)

Then, according to the first-order condition, v1x/v2x = v1y/v2y on the PPF. Let c denote

this ratio, then we have v1x = cv2x and v1y = cv2y. The PPF can be expressed equivalently

as

T (x) ≡ max
c
t (x, c) ,

where

t (x, c) ≡ max
z,v2y

Gy (z)F y (c, 1) v2y, (37)

subject to Gx (z)F x (c, 1) v2x = x and z = R (cv2x, cv2y, v2x, v2y). For convenience, let

r (v2x, v2y) ≡ R (cv2x, cv2y, v2x, v2y).

Clearly, the problem (37) is the single-factor case with a constant c. From Proposition

4, t (x, c) is convex with respect to x, given that r (v2x, v2y) is quasi-concave with respect

to (v2x, v2y). Since the upper envelope of t (x, c) by changing c constructs T (x), T (x)
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is also convex. Therefore, in the two-factor case and given assumptions (A1′), (A2),

(A3) and (A4), the PPF is convex if two goods share the identical factor intensity and

R (v1x, v1y, v2x, v2y) is quasi-concave.
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