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Chapter 1

Overview

1.1 Introduction

Time series models with structural breaks have been intensively investigated over the last fifty

years, and various kinds of estimation methods and testing procedures have been proposed in

the econometric and statistical literature. For the structural change tests, the CUSUM test

by Brown, Durbin and Evans (1975) and Ploberger and Kramer (1992), the sup-type test by

Andrews (1993), and the mean- and exponential-type tests by Andrews and Ploberger (1994)

and Andrews, Lee and Ploberger (1996) are widely used in empirical analyses.

In practice, when we apply structural break tests, we need to take serial correlation into

account, and thus we have to estimate the long-run variance of the error term. However, it

is known in the literature that the finite sample performance of the tests is poor when we

assume serial correlation in the error term. For example, if we estimate the long-run variance

under the null hypothesis of no structural breaks, the tests suffer from the so-called “non-

monotonic power” problem, as explained in Vogelsang (1999), Crainiceanu and Vogelsang

(2007), Deng and Perron (2008) and Perron and Yamamoto (2014). The “non-monotonic

power” problem is that the power decreases as the break magnitude increases, so that we

cannot detect big structural breaks. The reason for this problem is that the long-run variance

estimator using the residuals under the null hypothesis takes extremely large values when the

break magnitude is large, and thus the test statistics take small values under the alternative

hypothesis. On the other hand, if we estimate the long-run variance under the alternative

hypothesis, the tests suffer from the size distortion because the long-run variance estimator

has downward bias under the null hypothesis.

In order to cope with the problems, several methods have been proposed in the literature.
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Sayginsoy and Vogelsang (2011) and Yang and Vogelsang (2011) proposed tests with good

size by employing the fixed-b method. Shao and Zhang (2010) applied the self-normalization

method to the CUSUM test to improve the size of the tests. However, the fixed-b and

the self-normalizing methods use an inconsistent long-run variance estimator, so that the

tests suffer from asymptotic power loss. On the other hand, Juhl and Xiao (2009) proposed

to estimate the long-run variance using nonparametrically demeaned residuals to mitigate

the non-monotonic power problem, but the finite sample performance of their test is very

sensitive to the choice of the bandwidth used in the nonparametric estimation. Kejriwal

(2009) proposed to estimate the long-run variance using the residuals both under the null

and alternative hypotheses, but the test has extremely low power when the error term has

strong serial correlation. Overall, the existing methods are not satisfactory, in view of both

size and power.

While most of the existing literature consider the time series models, as the macro panel

data become available, it is necessary to test for the constancy of parameters in panel data

models. For panel data models, we need to consider the cases where the parameters are

time-varying and heterogeneous. The tests for slope heterogeneity in panel data models are

studied by Swamy (1970), Pesaran and Yamagata (2008) and Juhl and Lugovskyy (2014),

but the tests for parameter constancy in the time series direction has not been widely studied

in the literature.

In this thesis, we investigate the theoretical properties of structural break models, and

propose solutions to the problems associated with structural breaks in time series and panel

data models. In Chapter 2, we develop tests for parameter constancy in panel data models,

taking heterogeneity into account. In Chapter 3, we derive the bias of the long-run variance

estimator in the presence of structural breaks in mean, and propose a bias-corrected long-run

variance estimator. In Chapter 4, we propose a bias-corrected test for a shift in mean.

1.2 Overview: Chapter 2

In Chapter 2, we propose tests for parameter constancy in the time series direction in the

following heterogeneous-slope panel data model:

yit = αi + x′itβit + uit, i = 1, · · · , N, t = 1, · · · , T, (1.1)

βit = βi,t−1 + eit, (1.2)
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where αi is the individual effect, N is the number of cross sections, and T is the number

of time series observations. We assume that uit is heteroskedastic across cross-sections, and

cross-sectionally dependent. The testing problem which we consider in this chapter is given

by

H0 : V ar(eit) = 0 vs. H1 : V ar(eit) > 0.

Under the null hypothesis, βit is constant across time, whereas under the alternative, βit is

time-varying.

We construct a locally optimal test based on Tanaka (1996) and an asymptotically point

optimal test based on Elliott and Müller (2006), and derive the asymptotic distribution of

the test statistics as T → ∞ while N is fixed. We also consider the case where the parameter

is homogeneous across cross-sections (which we call the “homogeneous-slope” model).

Since the asymptotic distribution depends on N in the heterogeneous-slope case, we need

to calculate critical values and the optimal localizing parameter for each values of N . There-

fore, we obtain the characteristic function of the limiting distributions, and derive the response

surface of the critical values, and the optimal localizing parameter for the point-optimal test.

By Monte Carlo simulations, we find that the tests based on the homogeneous-slope

model have serious size distortion when the true model has heterogeneous slopes. On the

other hand, the tests based on the heterogeneous-slope model have good size for both the

homogeneous- and heterogeneous-slope models, although these tests have lower power when

the true model has homogeneous slopes. Therefore, we need to pay careful attention to the

existence of heterogeneity in the slopes when we apply these tests.

1.3 Overview: Chapter 3

In Chapter 3, we consider the following time series model with multiple shifts in mean:

yt =



µ1 + ut for t = 1, · · · , T1,

µ2 + ut for t = T1 + 1, · · · , T2,
...

µm+1 + ut for t = Tm + 1, · · · , T,

and consider estimating the long-run variance of the error term ut. We estimate the long-run

variance by the autoregressive spectral density estimator based on the AR(p) model, which
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is defined as

ω̂AR =
σ̂2ε(

1−
∑p

j=1 ϕ̂j

)2 ,
where ût =

∑p
j=1 ϕ̂j ût−j + ε̂t with ϕ̂j (j = 1, · · · , p) being the OLS estimator, and σ̂2ε =

(T − p)−1
∑T

t=p+1 ε̂
2
t .

It is known that the autoregressive spectral density estimator has downward bias in finite

samples. In this chapter, we derive the bias of the autoregressive spectral density estimator

up to O(T−1), under the assumption that ut follows a stationary AR(p) model. In order to

derive the first-order bias of the long-run variance estimator, we first obtain the bias of the

OLS estimator of the AR(p) regression in the presence of multiple shifts in mean. Then, we

obtain the bias of the long-run variance estimator, and propose a bias-correction method.

We find that the downward bias of the OLS estimator gets larger as the number of structural

breaks increases, which leads to the downward bias of the long-run variance estimator.

When the error term ut follows a stationary infinite-order autoregressive process, we need

to truncate the lag order at pT to implement the autoregression, and we let pT go to infinity

at an appropriate rate. In this case, we show that the first-order bias of the long-run variance

estimator is exactly the same as the case with fixed p, so that our bias correction method

can also be applied in such cases.

We perform simulations to investigate the finite sample properties of the long-run variance

estimators. We find that the bias-corrected long-run variance estimator has much smaller

bias than other estimators, and the mean squared error of the bias-corrected estimator is

comparable to that of other estimators. Overall, we can see that our bias correction works

well in finite samples.

1.4 Overview: Chapter 4

Chapter 4 considers the following mean-shift model:

yt = µ+ δDUt(T
0
b ) + ut, t = 1, · · · , T,

where DUt(T
0
b ) = 1{t > T 0

b }, and 1{·} is the indicator function. We are interested in the

following testing problem:

H0 : δ = 0 vs. H1 : δ ̸= 0.

Under H0, there is no shift in mean, while under H1, there is a one-time break.
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When ut is serially correlated, we need to estimate the long-run variance of ut for the

scale adjustment in order to test for a shift in mean. If we estimate the long-run variance

under the null hypothesis of no structural breaks, it is known that the tests suffer from

the non-monotonic power problem because the long-run variance is over-estimated when

the break magnitude is large (Vogelsang 1999, Crainiceanu and Vogelsang 2007, Perron and

Yamamoto 2014). On the other hand, if we estimate the long-run variance under the alter-

native hypothesis, the tests suffer from the over-size distortion because the long-run variance

is under-estimated under the null hypothesis.

In order to improve the finite sample properties of the tests, we propose bias correction to

the long-run variance estimator, which is estimated under the alternative hypothesis. First,

we derive the bias of the reciprocal of the autoregressive spectral density estimator based

on the AR(p) model, under the assumption that the correct specification of ut is the AR(p)

process. Then, we propose bias correction to the test statistics.

We also discuss the cases where ut follows a stationary AR(∞) process, and we find that

the first-order bias is exactly the same as in the AR(p) case.

Simulation results show that the bias-corrected tests have much less size distortion than

the tests without bias correction. Moreover, the bias-corrected tests have higher size-adjusted

power than the existing tests. Since our proposed tests use a consistent long-run variance

estimator, there is no asymptotic power loss due to bias correction. Thus, the bias-corrected

tests have good finite sample property, in terms of both size and power.
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Chapter 2

Testing for Parameter Constancy in

the Time Series Direction in Panel

Data Models

We propose tests for parameter constancy in the time series direction in panel data models.

We construct a locally best invariant test based on Tanaka (1996) and an asymptotically

point optimal test based on Elliott and Müller (2006). We derive the limiting distributions

of the test statistics as T → ∞ while N is fixed, and calculate the critical values by applying

numerical integration and response surface regression. Simulation results show that the

proposed tests perform well if we apply them appropriately.1

2.1 Introduction

This study proposes tests for parameter constancy in panel data models given by

yit = αi + x′itβ + uit, (2.1)

where αi is the individual effect and xit is the vector of regressors. It is often the case that

the parameter β is assumed to be constant across cross-sections and over time, but this

assumption does not always hold; the violation of this assumption leads to a problem. If β

varies across i and/or t, then the estimation based on (2.1) results in misleading statistical

inference because the estimator of β is inconsistent. The variation in β across i is likely

1The published version is Yamazaki and Kurozumi (2015a), “Testing for Parameter Constancy in the Time

Series Direction in Panel Data Models”, Journal of Statistical Computation and Simulation 85, 2874–2902.

(DOI:10.1080/00949655.2014.945089)
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to happen when we use panel data with large N , while the unstable β in the time series

direction typically comes from data with long T , such as financial data and macro panel

data. From this reason, it is important to test whether or not the parameter β is constant

across cross-sections and/or across time.

The motivation of this research is to detect parameter instability in the time series direc-

tion in macro panel data models or seemingly unrelated regression (SUR) models with large

T and small to moderately-sized N . Therefore, we discuss the asymptotics as T → ∞ while

N is fixed.

There are several works related to this problem. For example, Swamy (1970), Pesaran and

Yamagata (2008), and Juhl and Lugovskyy (2014) constructed tests for slope homogeneity

in panel data models. On the other hand, tests for parameter constancy in the time series

direction are rarely studied in the literature. Bai (2010) proposed a method of estimating

the break point in mean in heterogeneous panel data, while Horváth and Hušková (2012)

and Chan, Horváth and Hušková (2013) considered testing a shift in mean. On the other

hand, Kim (2011) extended Bai’s (2010) result for nonstationary panel data, but they did

not consider tests for parameter constancy. One of the possible reasons for the lack of studies

is that tests for parameter constancy in the time series direction may be seen as a simple

extension of a univariate model to a multivariate one. This is partly true; however, as we

show in this chapter, we have to carefully deal with slope heterogeneity across cross-sections

when we test for parameter constancy in the time series direction.

In the time series literature, there have been many studies on testing for parameter

constancy. For example, tests for shifts in slope are proposed by Andrews (1993), Andrews

and Ploberger (1994), Andrews, Lee and Ploberger (1996), Bai (1997, 1999, 2000), Bai,

Lumsdaine and Stock (1998), Bai and Perron (1998), Andrews and Kim (2006), Qu and

Perron (2007), Kejriwal and Perron (2010), and Kim (2010). Further, the optimality is

discussed by Andrews and Ploberger (1994), Andrews, Lee and Ploberger (1996), Sowell

(1996), Kim and Perron (2009), and Perron and Yamamoto (2014). On the other hand,

testing for parameter constancy using a time-varying parameter under the alternative is

considered by Nyblom and Mäkeläinen (1983), King and Hillier (1985), Nyblom (1986, 1989),

Nabeya and Tanaka (1988), Hansen (1992a, b), Kurozumi (2003), Elliott and Müller (2006),

among others, and the optimal properties of the tests are studied in, for example, Nyblom

and Mäkeläinen (1983), King and Hillier (1985), Nyblom (1989), Nabeya and Tanaka (1988),

Kurozumi (2003), and Elliott and Müller (2006). An overall review of structural changes is

given by Perron (2006) and Aue and Horváth (2013).
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In this research, we extend a time series model with time-varying parameter to the cor-

responding panel data model and develop locally optimal and asymptotically point optimal

tests for parameter constancy. We consider both the homogeneous-slope and heterogeneous-

slope models and derive the limiting distributions of the test statistics as T → ∞ with N

fixed. Then, we derive the characteristic functions of the test statistics, which are used to

obtain critical values by numerical integration based on Lévy’s inversion formula, and im-

plement response surface regressions to obtain critical values for the case of large degrees

of freedom. We show that critical values are well approximated by response surface re-

gressions. Through simulations, we show the importance of the careful treatment of the

homogeneous/heterogeneous-slope cases in view of size and power.

The remainder of this chapter is organized as follows. In Section 2.2, we develop tests for

parameter constancy. Calculation of critical values is discussed in Section 2.3, and the finite

sample properties are investigated via Monte Carlo simulations in Section 2.4. Concluding

remarks are given in Section 2.5. All mathematical proofs are delegated to the appendix.

2.2 Model, Assumptions and Test Statistics

2.2.1 Model and assumptions

In this section we consider the following panel data model with heterogeneous slopes:

yit = αi + x′itβit + uit, i = 1, · · · , N, t = 1, · · · , T, (2.2)

where αi is an individual effect, xit is a k × 1 vector of strictly exogenous regressors, and βit

is a time-varying k × 1 vector of parameters. For each i, suppose that βit evolves as follows:

βit = βi,t−1 + eit, (2.3)

and the initial values βi0, i = 1, · · · , N are unknown and nonstochastic. The time-varying

specification in (2.3) implies the parameter varies smoothly, and that we cannot expect the

future change in the parameter, such as the direction and the magnitude of change, based on

the past information.2 We call model (2.2)-(2.3) the “heterogeneous-slope” model.

For notational convenience, we stack equation (2.2) as follows. First, the equations at

2When βit follows a stationary autoregressive process (i.e., βit − β̄i =
∑p

j=1 Φij(βi,t−j − β̄i) + eit where

|I −
∑p

j=1 Φijz
j | ≠ 0 for |z| ≤ 1), our tests cannot detect parameter instability. In such cases, we need to use

tests based on Shively (1988) and Lin and Teräsvirta (1999).
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time t for individuals i = 1, · · · , N are stacked as
y1t

y2t
...

yNt

 =


α1

α2

...

αN

+


x′1t 0

x′2t
. . .

0 x′Nt




β1t

β2t
...

βNt

+


u1t

u2t
...

uNt

 ,

or

yt = α+Dxtβt + ut, (2.4)

where Dxt = diag{x′1t, x′2t, · · · , x′Nt} is an N × kN matrix, and βt = [β′1t, β
′
2t, · · · , β′Nt]

′ is a

kN × 1 vector.

Then, stacking equation (2.4) from t = 1 to T , we have
y1

y2
...

yT

 =


IN

IN
...

IN

α+


Dx1 0

Dx2

. . .

0 DxT




β1

β2
...

βT

+


u1

u2
...

uT

 ,

or

y = FNα+Ddxβ + u, (2.5)

where FN = ιT⊗IN with ιT being a T×1 vector of ones and Ddx = diag{Dx1, Dx2, · · · , DxN}.

On the other hand, by letting et = [e′1t, e
′
2t, · · · , e′Nt]

′ and β0 = [β′10, β
′
20, · · · , β′

N0]
′, β can

also be expressed as 
β1

β2
...

βT

 =


IkN

IkN
...

IkN

β0 +

IkN 0

IkN IkN
...

...
. . .

IkN IkN . . . IkN




e1

e2
...

eT

 ,

or

β = FkNβ0 + (L⊗ IkN )e, (2.6)

where FkN = ιT ⊗ IkN and L is a T × T random walk generating matrix, which is a lower

triangular matrix with the diagonal and lower elements equal to 1.

Substituting (2.6) into (2.5) yields

y = FNα+Xβ0 +Ddx(L⊗ IkN )e+ u

= Zγ + v + u,

12



where Z = [FN , X] with X = DdxFkN = [D′
x1, D

′
x2, · · · , D′

xT ]
′, γ = [α′, β′0]

′, and v =

Ddx(L ⊗ IkN )e. Note that v is the error term caused by the variation of βit whereas u

is the idiosyncratic error.

In order to construct test statistics and derive the limiting distributions as T → ∞, we

make the following assumptions.

Assumption A1 For each i, {xit}Tt=1 is covariance stationary with finite fourth moments.

Assumption A2 {ut} is an i.i.d. sequence with E[ut] = 0 and E[utu
′
t] = V , where V is an

N ×N known positive definite matrix.

Assumption A3 {et} is an i.i.d. sequence with E[et] = 0 and E[ete
′
t] = ρΣe, where Σe is a

kN × kN known positive definite matrix.

Assumption A4 e is independent of both X and u.

Assumption A5 The individual effect α is fixed or independent of u and e.

Assumption A6 The variant D′
xtV

−1ut is a martingale difference sequence with respect

to Ft = σ{Dxt, ut, Dx,t−1, ut−1, · · · } with E(D′
xtV

−1utu
′
tV

−1Dxt|Ft−1) = Q where Q =

E(D′
xtV

−1Dxt|Ft−1) is positive definite.

Assumption A7 T−1
∑[Tr]

t=1 D
′
xtV

−1Dxt
p→ rQ and T−1

∑[Tr]
t=1 Dxt

p→ rµ hold as T → ∞

uniformly in r ∈ [0, 1], where µ = E(Dxt), and [a] denotes the largest integer less than or

equal to a.

Assumption A8 For all r ∈ [0, 1], the following weak convergences hold jointly as T → ∞:

(a)
1√
T

[Tr]∑
t=1

D′
xtV

−1ut
d→ Q1/2W1(r),

(b)
1√
T

[Tr]∑
t=1

D′
xtV

−1vt
d→ cQΣ1/2

e

∫ r

0
W2(s)ds,

where ρ = c2/T 2 (c ≥ 0) with c fixed, and W1(r) and W2(r) are independent kN -dimensional

standard Brownian motions.

Assumption A1 excludes a nonstationary regressor with a unit root. When xit has a unit

root, it should be first-differenced to be applied in this test. In our model, the regressor xit is
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allowed to be correlated across cross-sections. Assumption A2 means that the error term uit is

possibly heteroskedastic and cross-sectionally dependent. If we further assume that u is cross-

sectionally independent, then V is simplified as V = diag {σ11, · · · , σNN}. By Assumption

A3, the magnitude of the fluctuation in β is determined by the parameter ρ as well as Σe.

We will localize the parameter ρ to consider the asymptotic local power functions in later

sections. The assumption of the known variances of V and Σe will be relaxed later for practical

purpose. The innovations driving the fluctuation in βit are supposed to be independent of

the regressors and the idiosyncratic errors in Assumption A4. Assumption A5 is required for

deriving the likelihood function but this can be relaxed in practical analysis because our test

statistics are invariant to α. We make Assumptions A6-A8 to derive limiting distributions

under both the null and alternative hypotheses. For example, when xt is stationary with

finite fourth moment and xt is independent of ut and et, Assumptions A6-A8 are satisfied.

We are interested in a testing problem given by

H0 : ρ = 0 vs. H1 : ρ > 0. (2.7)

Under H0, V ar(eit) = 0 and then βit is constant across t. On the other hand, βit is smoothly

time-varying under H1. Such time-varying parameter models have been considered in the

econometric and statistical literature.

Note that our test can be applied to models with multiple structural changes. For example,

suppose that et is independently distributed and

eit =


mit with probability p

−mit with probability p

0 with probability 1− 2p

where p is close to zero, and mit is large. This can be viewed as a model with multiple

structural breaks. Therefore, the alternative hypothesis in our model is more general than

that of Bai (1997) and Qu and Perron (2007) because they only assume multiple structural

breaks, and they exclude the time-varying parameter model as the alternative.

2.2.2 The LM test

To derive the Lagrange multiplier (LM) test statistic, we assume that u and e are normally

distributed and X and u are independent. This assumption is made only for the derivation

of the test statistic and the discussion of the optimality; theorems and corollaries in the

following do not require this assumption.
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By noting that e ∼ N(0, ρIT ⊗ Σe) under Assumptions A1 to A5 with normality, the

distribution of y conditional on α and X is given by

y|α,X ∼ N (Zγ,Σ(ρ)) where Σ(ρ) = IT ⊗ V + ρDdx(LL
′ ⊗ Σe)D

′
dx.

Then, by letting w = u+ v, the model can be represented as

y = Zγ + w, w ∼ N(0,Σ(ρ)),

and this corresponds to model (9.5) in Tanaka (1996). Therefore, following Section 9.2 in

Tanaka (1996), the one-sided LM test for the testing problem (2.7) rejects the null hypothesis

when

y′M ′
ZΣ

−1(0)

(
dΣ(ρ)

dρ

∣∣∣∣
ρ=0

)
Σ−1(0)MZy > constant,

where MZ = INT − Z(Z ′(IT ⊗ V −1)Z)−1Z ′(IT ⊗ V −1) and dΣ(ρ)
dρ

∣∣
ρ=0

= Ddx(LL
′ ⊗ Σe)D

′
dx.

Therefore, the LM test statistic is given by

LMhetero =
1

T 2
y′M ′

Z(IT ⊗ V −1)Ddx(LL
′ ⊗ Σe)D

′
dx(IT ⊗ V −1)MZy. (2.8)

For computational purpose, it would be convenient to express the LM test statistic as

LMhetero =
1

T 2

T∑
t=1

s′tΣest,

where st =
∑t

s=1D
′
xsV

−1v̂s, v̂t = [v̂1t, · · · , v̂Nt]
′, and v̂it is the residual of the GLS regression

of

yit = αi + x′itβi + vit, i = 1, · · · , N, t = 1, · · · , T.

Remark 1 Under the assumption of normality, the LM test is equivalent to the locally best

invariant (LBI) test as shown by Tanaka (1996). Moreover, even without the assumption

of normality, the LM test is an asymptotically LBI test because the limiting distribution in

Theorem 1 does not depend on specific distributions of ut and et.

In practice, V is replaced with a consistent estimator V̂ , where the (i, j)-th element of V̂

is given by σ̂ij in equation (2.10).

The limiting distribution of (2.8) is derived under the local alternative given by

H1 : ρ =
c2

T 2
(c ≥ 0)

as T goes to infinity while N is fixed.
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Theorem 1 Under Assumptions A1 to A8 with ρ = c2/T 2, the LM test statistic weakly

converges to

LMhetero
d→
∫ 1

0
VkN (r; c)′VkN (r; c)dr, (2.9)

as T → ∞ while N is fixed, where

VkN (r; c) = Σ1/2
e (B1(r) + cB2(r)) ,

B1(r) = Q1/2 (W1(r)− rW1(1)) ,

B2(r) = QΣ1/2
e

(∫ r

0
W2(s)ds− r

∫ 1

0
W2(s)ds

)
,

and W1(r) and W2(r) are independent kN -dimensional standard Brownian motions.

Remark 2 In the case of the partial structural change model given by

yit = αi + x′itβit + w′
itδi + uit,

where wit is a covariance stationary and strictly exogenous regressor, the LM test statistic

is the same as (2.8) with Z replaced by [FN , X,W ], W = [D′
w1, D

′
w2, · · · , D′

wT ]
′, and Dwt =

diag{w′
1t, w

′
2t, · · · , w′

Nt}. In this case, the limiting distribution is exactly the same as in

Theorem 1.

Remark 3 In Theorem 1, the limiting distribution depends on Σe and Q, but when Σe = Q−1

holds, we can easily see that the limiting distribution is free of nuisance parameters and is

given by (2.9) with VkN (r; c) replaced by

VkN (r; c) =W1(r)− rW1(1) + c

(∫ r

0
W2(s)ds− r

∫ 1

0
W2(s)ds

)
.

In practice, we do not know the true value of V and Σe and we need to modify the test

statistic LMhetero. We replace V with V̂ , whose (i, j)-th element is given by

σ̂ij =
1

T

T∑
t=1

(yit − α̂i − x′itβ̂i)(yjt − α̂j − x′jtβ̂j) (2.10)

and α̂i, β̂i are based on the following OLS regression:

yit = αi + x′itβi + uit, t = 1, · · · , T.

The proof of consistency of σ̂ij is given in the appendix. On the other hand, to obtain the

asymptotic null distribution that is free of nuisance parameters, we replace Σe not with the

consistent estimator of Σe but with Q̂−1, where Q̂ is the consistent estimator of Q given by

Q̂ =
1

T

T∑
t=1

D′
xtV̂

−1Dxt. (2.11)
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In this case, the test statistic is modified as

L̃Mhetero =
1

T 2
y′M ′

Z(IT ⊗ V̂ −1)Ddx(LL
′ ⊗ Q̂−1)D′

dx(IT ⊗ V̂ −1)MZy

=
1

T 2

T∑
t=1

ŝ′tQ̂
−1ŝt.

Since V̂
p→ V and Q̂

p→ Q by the law of large numbers, we obtain the following corollary.

Corollary 1 Under Assumptions A1 to A8 with ρ = c2/T 2, the modified LM test statistic

weakly converges to

L̃Mhetero
d→
∫ 1

0
ṼkN (r; c)′ṼkN (r; c)dr, (2.12)

as T → ∞ while N is fixed, where

ṼkN (r; c) =W1(r)− rW1(1) + cQ1/2Σ1/2
e

(∫ r

0
W2(s)ds− r

∫ 1

0
W2(s)ds

)
.

From this result, we can see that the null distribution becomes
∫ 1
0 (W1(r)−rW1(1))

′(W1(r)−

rW1(1))dr, which is free of nuisance parameters and is known as the generalized Von Mises

distribution with kN degrees of freedom. Therefore, the modified LM test is feasible, but

it is not locally optimal unless Σe = Q−1 holds. The calculation of critical values for this

distribution will be discussed in a later section.

2.2.3 The asymptotically point optimal test

In this subsection, we extend the asymptotically point optimal test for parameter constancy

in time series models proposed by Elliott and Müller (2006) to panel data models. Following

their result, the test statistic we consider is given by

qLLhetero =

kN∑
ℓ=1

v̂′ℓ(Gc̄ −Me)v̂ℓ, (2.13)
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where we reject the null hypothesis when qLLhetero takes small values, and

v̂ℓ = (IT ⊗ ι′kN,ℓQ
−1/2)D′

dx(IT ⊗ V −1)MZy,

Me = IT − T−1ιT ι
′
T ,

Gc̄ = H−1
c̄ −H−1

c̄ ιT (ι
′
TH

−1
c̄ ιT )

−1ι′TH
−1
c̄ ,

Hc̄ = r−1
c̄ LAc̄A

′
c̄L

′,

Ac̄ =


1 0

−rc̄
. . .

. . .
. . .

0 −rc̄ 1

 (T × T matrix),

rc̄ =
1

2

(
2 +

c̄2

T 2
− 1

T

√
4c̄2 +

c̄4

T 2

)
,

and ιkN,ℓ is a kN × 1 vector with 1 in the ℓ-th element and 0s elsewhere. Note that we need

to prespecify the value of the localizing parameter c̄.

To derive the limiting distribution of qLLhetero, we assume Σe = Q−1 in order for the test

statistic to be asymptotically free of nuisance parameters under the local alternative, which

is a useful result when we choose an optimal value of c̄ in a later section.

Theorem 2 Under Assumptions A1 to A8 with ρ = c2/T 2 and Σe = Q−1, the qLLhetero

statistic weakly converges to

qLLhetero
d→

kN∑
ℓ=1

Rℓ(c, c̄), (2.14)

as T → ∞ while N is fixed, where

Rℓ(c, c̄) =

[
−c̄Lℓ(1)

2 − c̄2
∫ 1

0
Lℓ(s)

2ds− 2c̄

1− e2c̄

(
e−c̄Lℓ(1) + c̄

∫ 1

0
e−c̄sLℓ(s)ds

)2

+

(
Lℓ(1) + c̄

∫ 1

0
Lℓ(s)ds

)2
]
, (2.15)

Lℓ(r) = Jℓ(r) + cKℓ(r),

Jℓ(r) = W1,ℓ(r)− c̄

∫ r

0
e−c̄(r−s)W1,ℓ(s)ds,

Kℓ(r) =

∫ r

0
W2,ℓ(s)ds− c̄

∫ r

0
e−c̄(r−s)

(∫ s

0
W2,ℓ(λ)dλ

)
ds,

and Wm(r) = (Wm,1(r), · · · ,Wm,kN (r))′, m = 1, 2 are independent kN -dimensional standard

Brownian motions.
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Remark 4 As is seen in the previous section, the LM test is asymptotically locally best

irrespective of whether or not Σe = Q−1 is assumed, but its null limiting distribution becomes

asymptotically free of nuisance parameters only under the assumption of Σe = Q−1. On the

other hand, the qLLhetero statistic is asymptotically free of nuisance parameters under the

null hypothesis even without this assumption, but it is an asymptotically point optimal test

only under the assumption of Σe = Q−1. The asymptotic optimality is proved in exactly the

same way as in Elliott and Müller (2006), and we omit the proof.

In practice, Q and V are replaced with consistent estimators Q̂ and V̂ as in the case of

the LM test and in this case, the test statistic is denoted as q̃LLhetero. The choice of the

localizing parameter c̄ and the calculation of critical values will be discussed in a later section.

2.2.4 The case with serially correlated errors

The above asymptotic results crucially depend on the assumption that D′
xtV

−1ut or ut is

serially uncorrelated but we may need to take serial correlation into account in practical

analysis. When the error term ut is serially correlated, the matrix Q in Assumption A8(a)

must be replaced by the long-run variance of D′
xtV

−1ut.

One of the possible candidates for the consistent estimator is the heteroskedasticity-

autocorrelation consistent (HAC) estimator. However, it is known that the tests based on

the HAC estimator has non-monotonic power as discussed in Vogelsang (1999) and Perron

and Yamamoto (2014). Although the non-monotonic power problem has not been completely

solved, some methods have been proposed to mitigate the problem (cf. Kejriwal 2009, Juhl

and Xiao 2009).

2.2.5 Tests under the homogeneous-slope model

We have so far considered the heterogeneous-slope model where the parameter β varies across

cross-sections. However, when the slopes are homogeneous across cross-sections, it is better

to apply tests based on the following homogeneous-slope model:

yit = αi + x′itβt + uit, (2.16)

βt = βt−1 + et. (2.17)

In the following, we allow an abuse of notation by defining et, βt, X, Σe, µ and Q in

a different way from the previous subsections to save notation. For the homogeneous-slope

model, we modify Assumptions A3 and A6–A8 as follows:
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Assumption B3 {et} is an i.i.d. sequence with E[et] = 0 and E[ete
′
t] = ρΣe, where Σe is a

k × k known positive definite matrix.

Assumption B6 The variant X ′
tV

−1ut is a martingale difference sequence with respect to

Ft = σ{Xt, ut, Xt−1, ut−1, · · · } with E(X ′
tV

−1utu
′
tV

−1Xt|Ft−1) = Q where Xt = [x1t, · · · , xNt]
′

and Q = E(X ′
tV

−1Xt|Ft−1) is positive definite.

Assumption B7 T−1
∑[Tr]

t=1 X
′
tV

−1Xt
p→ rQ and T−1

∑[Tr]
t=1 Xt

p→ rµ hold as T → ∞ uni-

formly in r ∈ [0, 1], where µ = E(Xt).

Assumption B8 For all r ∈ [0, 1], the following weak convergences hold jointly as T → ∞:

(a)
1√
T

[Tr]∑
t=1

X ′
tV

−1ut
d→ Q1/2W1(r),

(b)
1√
T

[Tr]∑
t=1

X ′
tV

−1vt
d→ cQΣ1/2

e

∫ r

0
W2(s)ds,

where ρ = c2/T 2 (c ≥ 0) with c fixed, and W1(r) and W2(r) are independent k-dimensional

standard Brownian motions.

The modified LM and qLL statistics for the homogeneous-slope model are given by

L̃Mhomo =
1

T
y′MZ(IT ⊗ V̂ −1)DX(LL′ ⊗ Q̂−1)D′

X(IT ⊗ V̂ −1)MZy, (2.18)

q̃LLhomo =

k∑
ℓ=1

v̂′ℓ(Gc̄ −Me)v̂ℓ, (2.19)

where Q̂ = T−1
∑T

t=1X
′
tV̂

−1Xt, DX = diag{X1, X2, · · · , XT }, MZ = INT − Z(Z ′(IT ⊗

V̂ −1)Z)−1Z ′(IT ⊗ V̂ −1), Z = [FN , X], X = [X ′
1, X

′
2, · · · , X ′

T ]
′ and v̂ℓ = (IT ⊗ ι′k,ℓQ̂

−1/2)D′
X .

The limiting distributions of L̃Mhomo and q̃LLhomo are given by the following corollaries.

Corollary 2 Under Assumptions A1, A2, B3, A4, A5, B6–B8 with ρ = c2/T 2, the modified

LM test statistic L̃Mhomo weakly converges to

L̃Mhomo
d→
∫ 1

0
Ṽk(r; c)

′Ṽk(r; c)dr

as T → ∞ while N is fixed, where Ṽk(r; c) is defined as ṼkN (r; c) in Corollary 1 with W1(r)

and W2(r) being independent k-dimensional standard Brownian motions.
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Corollary 3 Under Assumptions A1, A2, B3, A4, A5, B6–B8 with ρ = c2/T 2, the q̃LLhomo

statistic weakly converges to

q̃LLhomo
d→

k∑
ℓ=1

Rℓ(c, c̄), (2.20)

where Rℓ(c, c̄) is defined as in Theorem 2 with Wm(r) = (Wm,1(r),Wm,2(r), · · · ,Wm,k(r))
′,

m = 1, 2 being independent k-dimensional standard Brownian motions.

Note that the limiting distributions in Corollaries 2 and 3 are almost the same as those

in Corollary 1 and Theorem 2, respectively; the only difference is the number of independent

Brownian motions.

2.3 Choice of the Localizing Parameter and Calculation of

Critical Values

In this section, we discuss how to choose the localizing parameter c̄ for the qLL tests and the

calculation of critical values. We first note that critical values for the null limiting distribution

of the LM test statistic, which is the generalized Von Mises distribution, have already been

tabulated in the literature; for example, Canova and Hansen (1995) tabulate critical values up

to 12 degrees of freedom. However, in the heterogeneous-slope case, the degrees of freedom are

kN as given in Theorem 1, which could be very large in practical analysis. Similarly, the null

limiting distribution of the qLL test statistic in the heterogeneous-slope case is also the sum

of kN independent random variables. In order to calculate critical values computationally

efficiently for all practical values of kN , we use the numerical integration of the characteristic

function. This is computationally much faster and more accurate than the simulation based

method.

In general, if the test statistic S is a nonnegative statistic, then it is known that the

distribution of S can be computed by Lévy’s inversion theorem,

P (S ≤ x) =
1

π

∫ ∞

0
Re

[
1− e−iθx

iθ
ϕ(θ)

]
dθ,

where ϕ(θ) is the characteristic function of S. We can apply this formula to our case because

L̃Mhomo, L̃Mhetero, −q̃LLhomo, and −q̃LLhetero are all nonnegative. Then, we need the

characteristic functions of the limiting distributions of these test statistics, which are given
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by

ϕLM (θ; J) = E

[
exp

(
iθ

∫ 1

0
ṼJ(r; 0)

′ṼJ(r; 0)dr

)]
,

ϕqLL(θ; J) = E

[
exp

(
−iθ

J∑
ℓ=1

Rℓ(c, c̄)

)]
,

where J is a positive integer value (J = k or kN in our theorems). Note that we need only the

characteristic function of the null distribution for the LM test whereas those under the null

and the alternative are required for the qLL test because we will make use of the asymptotic

local power functions to determine the localizing parameter c̄.

Theorem 3 The characteristic functions of the LM and the point optimal tests are given by

ϕLM (θ; J) =

[
sin

√
2iθ√

2iθ

]−J/2

,

ϕqLL(θ; J) =

ϕLM

(
a1 + a2

2i
; J

)
ϕLM

(
a1 − a2

2i
; J

)
ϕLM

(
−c2

2i
; J

) ,

where a1 = c̄2(2iθ − 1)/2 and a2 = (c̄/2){(2iθ − 1)2c2 + 8ic̄2θ}1/2.

Although the explicit expression of ϕqLL(θ; J) is complicated, it can be expressed in

compact form by using ϕLM (θ;J).

The critical values of the LM test statistic are obtained by numerical integration for

J = 1, · · · , 500. Because tables for J = 1, · · · , 500 are too large and inconvenient, we derive

the response surface of the critical values. Having considered various functions of J , we adopt

the following regression:

cvLM (p, J) = a0 + a1
√
J + a2J + a3

1√
J
+ a4

1

J
,

where cvLM (p, J) represents the percentiles of the LM test statistic for p = 0.9, 0.95 and 0.99

and J represents the degrees of freedom. The estimated coefficients are given in Table 2.1.

The largest ratio of the residual to the actual critical value is 0.00056 in absolute value.

On the other hand, before obtaining the critical values of the qLL test statistic, we need

to determine the localizing parameter c̄. Elliott and Müller (2006) proposed to set c̄ to 10

for J = 1, · · · , 10, but as we will see later, this value is optimal only for J = 1, and our

preliminary simulations reveal that when J = 10, the qLL test with c̄ = 10 is less powerful

than the LM test for a wide range of the alternative.
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In this chapter, we determine the localizing parameter c̄ following Juhl and Xiao (2003)

and Kurozumi (2003), which are based on the idea of Cox and Hinkley (1974, p.102). We

propose to choose c̄ that maximizes the weighted average of power3:

c̄ = argmax

∫ M

0
P (−qLL > x; c)dc

where x is a critical value for a given significance level and M is chosen to be so large that

P (−qLL > x;M) is close to 1. In this chapter, we set the significance level to 0.05 and

calculate the optimal values of c̄ for J = 1, · · · , 500. Next, we obtain the response surface of

c̄, and for the given value of J and c̄ on the corresponding response surface, we calculate the

critical values of the qLL test for J = 1, · · · , 500 and again obtain the response surface of

the critical values as a function of J and c̄. The adopted regressions are as follows:

c̄ = a0 + a1
√
J + a2J + a3

1√
J
+ a4

1

J
+ a5

1

J
√
J
+ a6

1

J2
, (2.21)

cvqLL(p, J) = a0 + a1
√
J + a2J + a3

1√
J
+ a4

1

J
+ b1

√
c̄+ b2c̄+ b3

1√
c̄
+ b4

1

c̄
, (2.22)

where cvqLL(p, J) represents the percentiles of the qLL test statistic for p = 0.9, 0.95, and 0.99

and we used the same notation ai in equations (2.21) and (2.22) for notational convenience

but they take different values depending on the equations. The estimated coefficients are

given in Table 2.1. The largest ratio of the residual to the true value of c̄ is 0.0285 in absolute

value, while the corresponding ratio for the critical values is 0.00007. In practice, we first

obtain c̄ from equation (2.21) and then obtain critical values by putting the estimated c̄ into

(2.22). We also note that the critical values obtained by (2.21) and (2.22) correspond to

−q̃LLhomo and −q̃LLhetero.

2.4 Simulation Results

In this section, we investigate the finite sample properties of the tests proposed in this study

by using the Monte Carlo experiment. We examine the sizes and powers of the LM, qLL and

sup-Wald tests. The following is the data generating process we considered in the simulations:

(DGP1: Homogeneous-slope model, time-varying parameter, k = 1)

yit = αi + xitβt + uit, βt = βt−1 + et

3Juhl and Xiao (2003) proposed to choose c̄ such that
∫M

0
(φ(c, c)−φ(c, c̄))dc is minimized, where φ(c, c̄) =

P (qLL < x; c) is a power function of the qLL test and φ(c, c) is a power envelope. We can easily see that this

strategy is the same as the one considered in this study.
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where β0 = 1 and et ∼ i.i.d.N

(
0,

c2

T 2
Q−1

)
with Q = V ar(X ′

tV
−1ut).

(DGP2: Homogeneous-slope model, one-time break, k = 1)

yit = αi + xitβt + uit, βt =

1 for t ≤ 0.5T,

1 + c/
√
T for t > 0.5T.

(DGP3: Heterogeneous-slope model, time-varying parameter, k = 1)

yit = αi + xitβit + uit, βit = βi,t−1 + eit

where βi0 ∼ i.i.d.N(1, 1) and et ∼ i.i.d.N

(
0,

c2

T 2
Q−1

)
with Q = V ar(D′

xtV
−1ut).

(DGP4: Heterogeneous-slope model, one-time break, k = 1)

yit = αi + xitβit + uit, βit =

βi0 for t ≤ 0.5T,

βi0 + c/
√
T for t > 0.5T,

where βi0 ∼ i.i.d.N(1, 1).

In each DGP, the regressor xit follows a stationary AR(1) process:

xit = ρixi,t−1 + ξit, where ξit ∼ i.i.d.N(0, 1)

with xi1 = ξi1/
√

1− ρ2i . We set αi ∼ i.i.d.N(1, 1) and ρi ∼ i.i.d.U(0.3, 0.7).

Also, ut is generated by ut = V 1/2ũt with

V =


σ1 0

σ2
. . .

0 σN




1 ρv · · · ρv

ρv 1
. . .

...
...

. . .
. . . ρv

ρv · · · ρv 1




σ1 0

σ2
. . .

0 σN

 ,

ũt ∼ i.i.d.N(0, IN ), σ2i ∼ i.i.d.U(1, 3) and ρv = 0.6.

Throughout the simulation, the values of σ2i and ρi are fixed across replications. The

number of replications is 2,000, and the nominal size is 0.05. We estimate V and Q under the

assumption that uit is heteroskedastic, cross-sectionally dependent, and serially uncorrelated.

In this simulation, we compare the sizes and powers of the LM test (L̃Mhomo and

L̃Mhetero), the qLL test (q̃LLhomo and q̃LLhetero) and the sup-Wald test (sup-Whomo and

sup-Whetero). The sup-Whomo and sup-Whetero tests are based on the homogeneous-slope

and heterogeneous-slope models, respectively. We set the trimming parameter to 0.15 for

sup-Wald tests. Note that the LM and qLL tests are optimal against the alternative of
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time-varying parameter (DGP1, DGP3) whereas the sup-Wald test is constructed against

the alternative of one-time break (DGP2, DGP4).

Table 2.2 shows the empirical sizes of the tests under DGP1 and DGP34. When the

true process has homogeneous slopes (DGP1), the empirical sizes of L̃Mhomo and q̃LLhomo

are close to the nominal one for all the cases. Because the homogeneous-slope model is a

special case of the heterogeneous-slope one under the null hypothesis, we can also see that

the empirical sizes of L̃Mhetero and q̃LLhetero are close to 0.05, although they tend to be

conservative. On the other hand, sup-Whomo and sup-Whetero perform poorly, especially

when N is large.

When the model has heterogeneous slopes (DGP3), the tests developed for the homogeneous-

slope model severely suffer from size distortion. In fact, this tendency is explained theoret-

ically by noting that the LM and qLL test statistics developed for the homogeneous-slope

model can be shown to have the null limiting distributions that stochastically dominate those

obtained in Corollary 1 (from above) and Theorem 2 (from below), which implies that the

rejection frequencies of those tests tend to be greater than the significance level.5 Thus, we

have to be careful about using these tests if we need to take into account the possibility of

the slope heterogeneity. On the other hand, Table 2.2 shows that the LM and qLL tests

developed for the heterogeneous-slope model can control the empirical size.

Figure 2.1 shows the size-adjusted powers for the homogeneous-slope model with time-

varying parameter. Under DGP1, L̃Mhomo performs slightly better than q̃LLhomo when c

is close to zero, but this relation is reversed when c takes values away from zero. Overall,

sup-Whomo performs better than L̃Mhomo, but q̃LLhomo outperforms sup-Whomo when c is

away from zero, except the case when N = 50 and T = 100. On the other hand, under DGP2

with one-time structural break, L̃Mhomo has the highest power. In this case, the sup-Whomo

performs slightly better than q̃LLhomo.

For the heterogeneous-slope model, we can see from Figure 2.3 that there is no significant

difference of power between L̃Mhetero and q̃LLhetero tests, especially when N is large, under

DGP3 with time-varying parameter. In this case, sup-Whetero performs worse than L̃Mhetero

and q̃LLhetero. Under DGP4 with one-time break, we can see that L̃Mhetero has the highest

power and sup-Whetero has the lowest power. As we can see from the figures, the LM test

4Under the null hypothesis, DGP2 and DGP4 are equivalent to DGP1 and DGP3, respectively, and thus

we omit the results under DGP2 and DGP4.
5It can be shown that L̃Mhomo and −q̃LLhomo do not diverge to infinity but are stochastically bounded

even in the presence of heterogeneity in the slopes with constant parameters in the time series direction. We

omit the proof to save space.
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can effectively detect an abrupt break, whereas the qLL test has high power against smooth

structural changes.

Noting that all the tests developed in the previous sections can be applied under the

homogeneous-slope model, we can compare the powers of these tests. As expected, we can

see from Figures 2.5 and 2.6 that the tests developed for the homogeneous-slope model are

more powerful than those developed for the heterogeneous-slope model, because the true

model has homogeneous slopes. On the other hand, as seen in Table 2.2, there is no meaning

in comparing these powers for the heterogeneous-slope case because L̃Mhomo, q̃LLhomo and

sup-Whomo severely suffer from size distortion.

Overall, we can see from Table 2.2 that the sup-Wald test is inappropriate for testing

parameter constancy in cross-sectionally dependent panel data models or seemingly unrelated

regression models with moderately-sized N . In such cases, the proposed LM and qLL tests

can control the empirical size well.

From the simulation results above, we propose the following sequential testing proce-

dure in practical analysis. First, we apply the tests based on the homogeneous-slope model

(L̃Mhomo and q̃LLhomo). If we do not reject the null hypothesis, then we can state that the

parameter β is constant across time. On the other hand, if we reject the null hypothesis,

then there are two possibilities. One is that β varies across cross-sections, and the other is

that β is time-varying. In this case, we should apply the tests based on heterogeneous-slope

models (L̃Mhetero and q̃LLhetero). If the null hypothesis is rejected, then we conclude that β

is time-varying, and if not, then β is heterogeneous but stable in the time series direction.

2.5 Conclusion

We have proposed the locally best invariant test based on Tanaka (1996) and the asymptot-

ically point optimal test based on Elliott and Müller (2006) for parameter constancy in the

time series direction in panel data models. The asymptotic critical values for both tests are

obtained by numerical integration and the response surface regressions are conducted. By

Monte Carlo simulations, we found that the tests based on the homogeneous-slope model

perform poorly when the true model has heterogeneous slopes, while we can control the tests

based on the heterogeneous-slope model for both the homogeneous- and heterogeneous-slope

cases, although these tests may suffer from loss of power if the true model has homogeneous

slopes.

When the errors are serially correlated, we need to consistently estimate the long-run
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variance to preserve the optimality of our tests under the assumption of the local-to-zero

variance. In this case, other tests such as those based on the fixed-b asymptotics by Kiefer and

Vogelsang (2005) and the self-normalization based test by Shao and Zhang (2010) may better

control the empirical size, although they sacrifice optimality. In this case, our optimality

tests may still be useful because those asymptotic powers can be seen as a benchmark. The

development of a test with good finite sample property is our ongoing research.

The tests developed in this study may be extended to various directions. For example,

our tests in this chapter are applicable only in the case where T is greater than N , but tests

with large N and moderately sized T are also useful in practical analysis. We may generalize

the model by allowing for dynamics, or factor structures to model cross-section dependence.

In addition, it would be useful to develop tests for parameter constancy in both time series

and cross-sectional directions. These are left for future studies.

2.6 Appendix

Lemma 1

(i) The t-th block element of MZu is given by

ũt − D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D̃′
xtV

−1ut, (2.23)

where D̃xt = Dxt − T−1
∑T

s=1Dxs and ũt = ut − T−1
∑T

s=1 us.

(ii) The t-th block element of MZv is given by

ṽt − D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D̃′
xtV

−1vt, (2.24)

where ṽt = vt − T−1
∑T

s=1 vs.

Proof of Lemma 1

(i) Let D̃ =

 IN 0

−D̄′
x IkN

, where D̄x = T−1
∑T

t=1Dxt. Then,

MZ = INT − Z
(
Z ′(IT ⊗ V −1)Z

)−1
Z ′(IT ⊗ V −1)

= INT − ZD̃′
(
D̃Z ′(IT ⊗ V −1)ZD̃′

)−1
D̃Z ′(IT ⊗ V −1).
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By simple algebra, we obtain

ZD̃′
(
D̃Z ′(IT ⊗ V −1)ZD̃′

)−1
D̃Z ′(IT ⊗ V −1)u

=



ū+ D̃x1

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut

ū+ D̃x2

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut
...

ū+ D̃xT

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut


.

Thus, the t-th block element of MZu is given by (2.23).

(ii) This proof is the same as (i). �

Proof of Theorem 1

First, we derive the limiting distribution of the [Tr]-th block of

1√
T
(L′ ⊗ IkN )D′

dx(IT ⊗ V −1)MZy

=
1√
T
(L′ ⊗ IkN )D′

dx(IT ⊗ V −1)MZu+
1√
T
(L′ ⊗ IkN )D′

dx(IT ⊗ V −1)MZv. (2.25)

Let us consider the first term in (2.25). By Lemma 1 (i), we obtain

(L′ ⊗ IkN )D′
dx(IT ⊗ V −1)MZu

=



∑T
t=1D

′
xtV

−1ũt −
∑T

t=1D
′
xtV

−1D̃xt

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut∑T−1
t=1 D

′
xtV

−1ũt −
∑T−1

t=1 D
′
xtV

−1D̃xt

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut
...

D′
x1V

−1ũ1 −D′
x1V

−1D̃x1

(∑T
t=1 D̃

′
xtV

−1D̃xt

)−1∑T
t=1 D̃

′
xtV

−1ut


.

Then, the [Tr]-th block of (L′ ⊗ IkN )D′
dx(IT ⊗ V −1)MZu can be expressed as

T∑
t=[Tr]

D′
xtV

−1ũt −
T∑

t=[Tr]

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D̃′
xtV

−1ut

=

[Tr]−1∑
t=1

D′
xtV

−1ũt −
[Tr]−1∑
t=1

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D̃′
xtV

−1ut

=

[Tr]−1∑
t=1

D′
xtV

−1ut −
[Tr]−1∑
t=1

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D′
xtV

−1ut


−

[Tr]−1∑
t=1

D′
xtV

−1 −
[Tr]−1∑
t=1

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D′
xtV

−1

 ū
= CT (r)−DT (r), say.
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First, consider the term CT (r). By Assumption A7, we can see that T−1
∑[Tr]−1

t=1 D′
xtV

−1D̃xt
p→

rQ̃ holds uniformly in r, where Q̃ = E(D̃′
xtV

−1D̃xt). Therefore, by Assumption A8(a),

1√
T
CT (r) =

1√
T

[Tr]−1∑
t=1

D′
xtV

−1ut −

 1

T

[Tr]−1∑
t=1

D′
xtV

−1D̃xt

·

(
1

T

T∑
t=1

D̃′
xtV

−1D̃xt

)−1
1√
T

T∑
t=1

D′
xtV

−1ut

+ op(1)

d→ Q1/2W1(r)− (rQ̃)Q̃−1Q1/2W1(1)

= Q1/2 (W1(r)− rW1(1)) = B1(r). (2.26)

Also,

1√
T
DT (r) =

 1

T

[Tr]−1∑
s=1

D′
xsV

−1 −

 1

T

[Tr]−1∑
s=1

D′
xsV

−1D̃xs

·

(
1

T

T∑
t=1

D̃′
xtV

−1D̃xt

)−1
1

T

T∑
t=1

D′
xtV

−1


(√T ū)

= op(1) ·Op(1) = op(1) uniformly in r. (2.27)

Similarly, the [Tr]-th block of (L′ ⊗ IkN )D′
dx(IT ⊗ V −1)MZv is given by[Tr]−1∑

t=1

D′
xtV

−1vt −
[Tr]−1∑
t=1

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D′
xtV

−1vt


−

[Tr]−1∑
t=1

D′
xtV

−1 −
[Tr]−1∑
t=1

D′
xtV

−1D̃xt

(
T∑
t=1

D̃′
xtV

−1D̃xt

)−1 T∑
t=1

D′
xtV

−1

 v̄
= ET (r)− FT (r).

By Assumption A8(b), we have

1√
T
ET (r)

d→ cQΣ1/2
e

(∫ r

0
W2(s)ds− r

∫ 1

0
W2(s)ds

)
= cB2(r). (2.28)

Next, consider the term FT (r). Define εt = (ρΣe)
−1/2et. Then εt is an i.i.d. sequence

with E(εt) = 0 and E(εtε
′
t) = IkN . Since

√
T v̄ =

1√
T

T∑
t=1

vt =
c

T 3/2

T∑
t=1

DxtΣ
1/2
e

t∑
s=1

εs = Op(1),
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where we used the relation ρ = c2/T 2, we obtain the following result:

1√
T
FT (r) =

 1

T

[Tr]−1∑
t=1

D′
xtV

−1 −

 1

T

[Tr]−1∑
t=1

D′
xtV

−1D̃xt

·

(
1

T

T∑
t=1

D̃′
xtV

−1D̃xt

)−1
1

T

T∑
t=1

D′
xtV

−1


(√T v̄)

= op(1) ·Op(1) = op(1) uniformly in r. (2.29)

Thus, from (2.26)–(2.29), the [Tr]-th block of T−1/2(L′⊗ IkN )D′
dx(IT ⊗V −1)MZy weakly

converges to

1√
T

(CT (r)−DT (r) + ET (r)− FT (r))
d→ B1(r) + cB2(r).

Finally, by the continuous mapping theorem, we obtain

LMhetero =
1

T 2
y′MZ(IT ⊗ V −1)Ddx(L⊗ IkN )(IT ⊗ Σe)(L

′ ⊗ IkN )(IT ⊗ V −1)D′
dxMZy

d→
∫ 1

0
(B1(r) + cB2(r))

′Σe (B1(r) + cB2(r)) dr

=

∫ 1

0
VkN (r; c)′VkN (r; c)dr

as T → ∞.�

Proof of the consistency of σ̂ij

Let us stack equation (2.2) for t = 1, · · · , T with a fixed i such that

yi = Ziγi +Di(L⊗ Ik)ei + ui

= Ziγi + vi + ui,

where yi = [yi1, yi2, · · · , yiT ]′, Zi = [ιT , Xi] with ιT = [1, 1, · · · , 1]′, Xi = [xi1, xi2, · · · , xiT ]′,

Di = diag{x′i1, x′i2, · · · , x′iT }, ui = [ui1, ui2, · · · , uiT ]′, vi = [vi1, vi2, · · · , viT ]′, γi = [αi, β
′
i]
′,

vi = Di(L⊗ Ik)ei and ei = [ei1, ei2, · · · , eiT ]′. Then, the OLS residual ŵi can be expressed as

ŵi =Miyi =Mi(ui + vi),

where Mi = IT − Zi(Z
′
iZi)

−1Z ′
i. Hence, σ̂ij can be rewritten as

σ̂ij =
1

T
y′iMiMjyj

=
1

T
u′iMiMjuj +

1

T
v′iMiMjvj +

1

T
u′iMiMjvj +

1

T
v′iMiMjuj

= J1T + J2T + J3T + J4T , say. (2.30)
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First, we show that J1T
p→ σij . The term J1T can be expressed as

J1T =
1

T
u′iuj −

1

T
u′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
iuj −

1

T
u′iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
juj

+
1

T
u′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
juj . (2.31)

The first term in (2.31) converges in probability to σij by the weak law of large numbers,

while the other terms are Op(T
−1). Therefore, we have J1T

p→ σij .

Next, J2T and J3T can be expressed as

J2T =
1

T
v′ivj −

1

T
v′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
ivj −

1

T
v′iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
jvj

+
1

T
v′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
jvj , (2.32)

J3T =
1

T
u′ivj −

1

T
u′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
ivj −

1

T
u′iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
jvj

+
1

T
u′iZi

(
1

T
Z ′
iZi

)−1 1

T
Z ′
iZj

(
1

T
Z ′
jZj

)−1 1

T
Z ′
jvj . (2.33)

Since ∣∣∣∣ 1T v′ivj
∣∣∣∣ =

∣∣∣∣∣∣ 1T
T∑
t=1


(

t∑
s=1

eis

)′

xitx
′
jt

(
t∑

s=1

eis

)
∣∣∣∣∣∣

≤

(
sup
t

∣∣∣∣∣
∣∣∣∣∣

t∑
s=1

eis

∣∣∣∣∣
∣∣∣∣∣
)2

·

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

xitx
′
jt

∣∣∣∣∣
∣∣∣∣∣

= Op(T
−1) ·Op(1) = Op(T

−1),

∣∣∣∣T−1v′iZj

∣∣∣∣ = Op(T
−1/2) and

∣∣T−1v′iuj
∣∣ = Op(T

−1), we have J2T
p→ 0 and J3T

p→ 0. We can

prove J4T
p→ 0 similarly.

By using these results above, we have σ̂ij = J1T + J2T + J3T + J4T
p→ σij . �

Lemma 2 Let v = [v1, v2, · · · , vT ]′ be a T × 1 random vector such that T−1/2
∑[Tr]

t=1 vt
d→

W1(r) + c
∫ r
0 W2(s)ds, where W1(r) and W2(r) are independent scalar standard Brownian

motions. Then,

v′(Gc̄ −Me)v
d→

[
−c̄L(1)2 − c̄2

∫ 1

0
L(s)2ds− 2c̄

1− e2c̄

(
e−c̄L(1) + c̄

∫ 1

0
e−c̄sL(s)ds

)2

+

(
L(1) + c̄

∫ 1

0
L(s)ds

)2
]
,
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where L(r) = J(r) + cK(r),

J(r) = W1(r)− c̄

∫ r

0
e−c̄(r−s)W1(s)ds,

K(r) =

∫ r

0
W2(s)ds− c̄

∫ r

0
e−c̄(r−s)

(∫ s

0
W2(λ)dλ

)
ds.

Proof of Lemma 2

Following Lemma 6 in Elliott and Müller (2006), we have

v′(Gc̄ −Me)v

= v′(H−1
c̄ − IT )v − v′H−1

c̄ ι(ι′H−1
c̄ ι)−1ι′H−1

c̄ v + (T−1/2ι′v)2

= (rc̄ − 1)B2
T − (1− rc̄)

2B′
−1B−1 + (T−1ι′H−1

c̄ ι)−1

{
T (1− rc̄)T

−3/2
T−1∑
t=1

rtc̄Bt + rtc̄T
−1/2BT

}2

,

where B = [B1, B2, · · · , BT ]
′, B−1 = [0, B1, · · · , BT−1]

′, and Bt =
∑t

s=1 r
t−s
c̄ vs.

By the following joint convergence

1√
T
BT

d→ L(1), (2.34)

1

T 2

T∑
t=1

B2
t−1

d→
∫ 1

0
L(s)2ds, (2.35)

1

T 3/2

T−1∑
t=1

rtc̄Bt
d→

∫ 1

0
e−c̄sL(s)ds, (2.36)

1

T 3/2

T∑
t=1

Bt−1
d→

∫ 1

0
L(s)ds, (2.37)

rTc̄ −→ e−c̄, (2.38)

and the continuous mapping theorem, we obtain the desired result.

To prove (2.34), we first decompose vt = u1t + c u2t such that T−1/2
∑[Tr]

t=1 u1t
d→ W1(r)

and T−1/2
∑[Tr]

t=1 u2t
d→
∫ r
0 W2(s)ds hold jointly. Then,

1√
T
B[Tr] =

1√
T

[Tr]∑
t=1

rT−t
c̄ u1t + c · 1√

T

[Tr]∑
t=1

rT−t
c̄ u2t

= A1T (r) + c ·A2T (r), say.
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Since rc̄ = 1− c̄/T + o(T−1), we have

A1T (r) =
1√
T

[Tr]∑
t=1

rT−t
c̄ u1t

= r−1
c̄

1√
T

[Tr]∑
t=1

u1t −
c̄

T 3/2

[Tr]∑
t=1

r
[Tr]−t−1
c̄

(
t∑

s=1

u1s

)
+ op(1)

d→ W1(r)− c̄

∫ r

0
e−c̄(r−s)W1(s)ds,

A2T (r) =
1√
T

[Tr]∑
t=1

rT−t
c̄ u2t

= r−1
c̄

1√
T

[Tr]∑
t=1

u2t −
c̄

T 3/2

[Tr]∑
t=1

r
[Tr]−t−1
c̄

(
t∑

s=1

u2s

)
+ op(1)

d→
∫ r

0
W2(s)ds− c̄

∫ r

0
e−c̄(r−s)

(∫ s

0
W2(λ)dλ

)
ds.

Therefore, T−1/2B[Tr]
d→ L(r) holds. We obtain the result (2.34) by substituting r = 1.

(2.35)–(2.37) can also be proved by the continuous mapping theorem. (2.38) is obvious.

�

Proof of Theorem 2

This can be proved by following Elliott and Müller (2006). By Assumption A8, the sum of

the first [Tr] blocks of T−1/2(IT ⊗Q−1/2)D′
dx(IT ⊗ V −1)MZy converges in distribution to

1√
T

[Tr]∑
t=1

[
(IT ⊗Q−1/2)D′

dx(IT ⊗ V −1)MZy
]
[t]

d→ W1(r)− rW1(1) + c

(∫ r

0
W2(s)ds− r

∫ 1

0
W2(s)ds

)
.

Next, for any choice of scalar qℓ, we have

v̂′ℓ(Gc̄ −Me)v̂ℓ = (v̂ℓ + qℓιT )
′(Gc̄ −Me)(v̂ℓ + qℓιT ).

Here we set qℓ = T−1ιkN,ℓQ
−1/2

∑T
t=1DxtV

−1(ut+vt) (so that
√
Tqℓ

d→W1,ℓ(r)+c
∫ r
0 W2,ℓ(s)ds).

Then we have

1√
T
(ι′[Tr], 0

′
T−[Tr])(v̂ℓ + qℓιT )

d→W1,ℓ(r) + c

∫ r

0
W2,ℓ(s)ds,

where 0k is a k × 1 vector of zeros. By Lemma 2, we obtain desired the result.�
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Proof of Theorem 3

Since the limiting distributions consist of the sum of the functionals of J independent Brow-

nian motions for both the test statistics (J = k and kN), it is sufficient to show that

E

[
exp

{
iθ

∫ 1

0
(W1(r)− rW1(1))

2 dr

}]
= ϕLM (θ, 1) =

[
sin

√
2iθ√

2iθ

]−1/2

, (2.39)

E [exp (−iθR1(c, c̄))] =

ϕLM

(
a1 + a2

2i
; 1

)
ϕLM

(
a1 − a2

2i
; 1

)
ϕLM

(
−c2

2i
; 1

) , (2.40)

but because the relation (2.39) is derived by (4.13) in Tanaka (1996), we focus on (2.40).

In the following, we assume normality in ut and et without loss of generality because weak

convergences are established by the invariance principle.

Because (2.40) corresponds to the case of N = 1 and k = 1 in the heterogeneous-slope

case (J = 1), we consider not a panel data model but a simple time series model with only a

constant as a regressor (xt = 1):

yt = α+ βt + ut, βt = βt−1 + et, t = 1, · · · , T, (2.41)

where we set β0 = 0, E[u2t ] = V = 1 and E[e2t ] = ρΣe = ρ = 1 − c2/T 2 (Σe = 1) without

loss of generality. In this case, because y|α ∼ N(Zα,Σ(ρ)) where Z = [1, 1, · · · , 1]′ and

Σ(ρ) = IT + ρLL′ as Ddx = diag{1, 1, · · · , 1} = IT , the LM test statistic (2.8) becomes

LM =
1

T 2
y′MZLL

′MZy, (2.42)

where MZ = IT −Z(Z ′Z)−1Z ′. On the other hand, the Neyman-Pearson lemma tells us that

the exact point optimal test rejects the null hypothesis when

PT (ρ̄) = y′(MZ − M̃ ′
ZΣ(ρ̄)

−1M̃Z)y (2.43)

takes large values, where M̃Z = IT − Z(Z ′Σ(ρ̄)−1Z)−1Z ′Σ(ρ̄)−1. In the following, we first

show that PT (ρ̄) is numerically equivalent to −qLL as long as this simple model is concerned

and then show that the limiting characteristic function of PT (ρ̄) is expressed as the right

hand side of (2.40), using the characteristic function of (2.42).

Note that for model (2.41), the qLL test statistic (2.13) becomes

−qLL = y′MZ (MZ −Gc̄)MZy
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because Q = 1, ιk,ℓ = ι1,1 = 1 and Me = MZ in this case. On the other hand, since

M̃ ′
ZΣ(ρ̄)

−1M̃Z =MZ(Σ(ρ̄)
−1M̃Z)MZ from direct calculation, (2.43) becomes

PT (ρ̄) = y′MZ(MZ − Σ(ρ̄)−1M̃Z)MZy. (2.44)

Thus, PT (ρ̄) is shown to be equal to −qLL if we prove that Σ(ρ̄)−1M̃Z = Gc̄. Let Be be a

T × (T − 1) matrix such that B′
eBe = IT−1 and B′

eZ = 0. Then, we have

Σ(ρ̄)M̃Z = Σ(ρ̄)−1 − Σ(ρ̄)−1Z(Z ′Σ(ρ̄)−1Z)−1Z ′Σ(ρ̄)−1

= Be(B
′
eΣ(ρ̄)Be)

−1Be

= Gc̄,

where the second equality holds by Lemma 9.1 in Tanaka (1996) while the last equality is

proved by Lemma 4(ii) of Elliott and Müller (2006). Therefore, we can see that PT (ρ̄) =

−qLL, which implies that PT (ρ̄)
d→ −R1(c, c̄) under the local alternative by Theorem 2.

Next, we derive the characteristic function of PT (ρ̄) by following Kurozumi (2003). Let

H be a T × (T − 1) matrix such that H ′H = IT−1, HH
′ = MZ and H ′LL′H is a diagonal

matrix given by Λ = diag{λ1, λ2, · · · , λT−1}, the existence of which is proved by Patterson

and Thompson (1971). Because it can be shown that Σ(ρ̄)M̃Z and H(IT−1+ ρ̄Λ)
−1H ′ are the

Moore-Penrose (MP) inverse of MZΣ(ρ̄)MZ , we have Σ(ρ̄)M̃Z = H(IT−1+ ρ̄Λ)−1H ′ because

of the uniqueness of the MP inverse. From this relation, (2.44) becomes

PT (ρ̄) = y′HH ′ [HH ′ −H(IT−1 + ρ̄Λ)−1H ′]HH ′y

= y′H
[
IT−1 − (IT−1 + ρ̄Λ)−1

]
H ′y

=

T−1∑
j=1

(
1− 1

1 + ρ̄λj

)
y∗2j , (2.45)

where y∗j is the j-th element of y∗ = H ′y. Since y = Zα+ u+Le in our simple case, we have

y∗ = H ′u+H ′Le ∼ N(0, IT−1 + ρΛ)

by using H ′Z = 0, H ′H = IT−1 and H ′LL′H = Λ. As a result, (2.45) becomes

PT (ρ̄) =

T−1∑
j=1

(
1− 1

1 + ρ̄λj

)
(1 + ρλj)u

∗2
j =

T−1∑
j=1

(
1− 1

1 + c̄2λ∗j

)
(1 + c2λ∗j )u

∗2
j , (2.46)

where u∗j ∼ i.i.d.N(0, 1) and λ∗j = λj/T
2, because ρ̄ = c̄2/T 2 and ρ = c2/T 2.
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Similarly, we can see that

LM =
1

T 2
y′HH ′LL′HH ′y

=
1

T 2
y∗Λy∗

=

T−1∑
j=1

λ∗j (1 + c2λ∗j )u
∗2
j ,

and thus, because u∗j ∼ i.i.d.N(0, 1), the characteristic function of the LM statistic under

the null hypothesis (c = 0) is given by

ϕLM,T (θ, 1) = E

exp
iθ T−1∑

j=1

λ∗ju
∗2
j


=

T−1∏
j=1

(
1− 2iθλ∗j

)1/2
.

Because the limiting characteristic function of LM under the null hypothesis is given by

(2.39), we can see that ϕLM,T (θ, 1) → ϕLM (θ, 1) by the continuity theorem. That is,

T−1∏
j=1

(
1− 2iθλ∗j

)1/2 → ϕLM (θ, 1). (2.47)

On the other hand, from (2.46), the characteristic function of P (c̄) becomes

E [exp {iθP (c̄)}] =
T−1∏
j=1

[
1− 2iθ

(
1− 1

1 + c̄2λ∗j

)
(1 + c2λ∗j )

]−1/2

=

T−1∏
j=1

[
1− (a1 + a2)λ

∗
j

]−1/2
T−1∏
j=1

[
1− (a1 − a2)λ

∗
j

]−1/2

T−1∏
j=1

[
1− (−c2)λ∗j

]−1/2

=

ϕLM,T

(
a1 + a2

2i
, 1

)
ϕLM,T

(
a1 − a2

2i
, 1

)
ϕLM,T

(
−c2

2i
, 1

)
→ (2.40),

where the last convergence holds because of (2.47).�
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Figure 2.1: Size-adjusted power of the L̃Mhomo, q̃LLhomo and sup-Whomo tests under DGP1
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Figure 2.2: Size-adjusted power of the L̃Mhomo, q̃LLhomo and sup-Whomo tests under DGP2
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Figure 2.3: Size-adjusted power of the L̃Mhetero, q̃LLhetero and sup-Whetero tests under DGP3
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Figure 2.4: Size-adjusted power of the L̃Mhetero, q̃LLhetero and sup-Whetero tests under DGP4

42



0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

po
w

er

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

po
w

er

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DGP1, N=10, T=100

LM_homo
qLL_homo
sup−W_homo
LM_hetero
qLL_hetero
sup−W_hetero

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
c

po
w

er
0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

po
w

er
0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DGP1, N=50, T=100

LM_homo
qLL_homo
sup−W_homo
LM_hetero
qLL_hetero
sup−W_hetero

Figure 2.5: Size-adjusted power of the L̃Mhomo, q̃LLhomo, sup-Whomo, L̃Mhetero, q̃LLhetero

and sup-Whetero tests under DGP1
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Figure 2.6: Size-adjusted power of the L̃Mhomo, q̃LLhomo, sup-Whomo, L̃Mhetero, q̃LLhetero

and sup-Whetero tests under DGP2
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Chapter 3

Bias Correction of the Long-Run

Variance Estimator for Time Series

Models with Structural Breaks

In this chapter, we derive the first-order bias of the long-run variance estimator in the pres-

ence of multiple structural breaks, and propose a bias-corrected long-run variance estimator.

Simulation results show that the proposed long-run variance estimator has good finite sample

property.

3.1 Introduction

Estimation of the long-run variance is important when we make statistical inferences in time

series models with serially correlated errors. For example, in order to construct confidence

intervals of parameters, we need to use a long-run variance estimator. Furthermore, when we

apply hypothesis tests, we have to estimate the long-run variance for the scale adjustment.

Therefore, we need to use a precise long-run variance estimator to improve the accuracy of

statistical inferences.

From this point of view, the bias of the long-run variance estimator has been investigated

in the literature. For example, den Haan and Levin (1997) derived the asymptotic bias of

the kernel estimator and the vector autoregressive spectral density estimator. Velasco and

Robinson (1999) obtained the Edgeworth expansion of the nonparametric kernel estimator.

However, the existing methods do not consider the cases where structural breaks are present.

In this chapter, we derive the bias of the autoregressive spectral density estimator, taking
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structural breaks into account, and we propose a bias-corrected long-run variance estimator.

We find that, as the number of structural breaks increases, the downward bias of the long-run

variance estimator gets larger. We find through simulations that the bias-corrected long-run

variance estimator has much less bias than the one without bias correction. Also, the mean

squared error of the bias-corrected estimator is comparable to that of other estimators.

This chapter is organized as follows. In Section 3.2, we introduce the model and assump-

tions, and the first-order bias of the long-run variance estimator is derived in Section 3.3. The

bias correction method is explained in Section 3.4. In Section 3.5 we extend the results to

the case with the infinite-order autoregressive errors. Section 3.6 gives the simulation results,

and Section 3.7 concludes the chapter. Mathematical proofs are delegated to the appendix.

3.2 Model and Assumptions

Let us consider the following model with multiple shifts in mean:

yt =



µ1 + ut for t = 1, · · · , T1,

µ2 + ut for t = T1 + 1, · · · , T2,
...

µm+1 + ut for t = Tm + 1, · · · , T,

(3.1)

where Tℓ (ℓ = 1, · · · ,m) are the break dates and m is the number of structural breaks. We

assume that ut is a zero-mean stationary process and that the break dates are known. We

need to note that, when the break dates are unknown, we need to estimate them.1

We are interested in estimating the long-run variance of ut defined by ω =
∑∞

ℓ=−∞E(utut−ℓ).

1For example, we may estimate the break dates by minimizing the sum of squared residuals.
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Here we use the following residuals in order to estimate ω:

ût =



yt − ȳ1 for t = 1, · · · , T1,

yt − ȳ2 for t = T1 + 1, · · · , T2,
...

yt − ȳm+1 for t = Tm + 1, · · · , T,

=



ut − ū1 for t = 1, · · · , T1,

ut − ū2 for t = T1 + 1, · · · , T2,
...

ut − ūm+1 for t = Tm + 1, · · · , T,

(3.2)

where ȳℓ = (Tℓ − Tℓ−1)
−1
∑Tℓ

t=Tℓ−1+1 yt, ūℓ = (Tℓ − Tℓ−1)
−1
∑Tℓ

t=Tℓ−1+1 ut, T0 = 0 and Tm+1 =

T .

One of the commonly used methods to estimate the long-run variance is the kernel esti-

mator given by

ω̂kernel = γ̂0 + 2

T−1∑
j=1

k

(
j

m

)
γ̂j , (3.3)

where k(·) is the kernel function, m is the bandwidth, and γ̂j is the estimator of the j-th

autocovariance of ut, which is defined by γ̂j = T−1
∑T

t=j+1 ûtût−j .

Also, the autoregressive spectral density estimator of ω based on the AR(p) model is given

by

ω̂AR =
σ̂2ε(

1−
∑p

j=1 ϕ̂j

)2 , (3.4)

where ût =
∑p

j=1 ϕ̂j ût−j + ε̂t with ϕ̂j (j = 1, · · · , p) being the OLS estimator, and σ̂2ε =

(T −p)−1
∑T

t=p+1 ε̂
2
t . In this chapter, we derive the bias of the autoregressive spectral density

estimator given by (3.4).

In order to derive the bias term, we make the following assumptions when p ≥ 1:

Assumption 1 {ut} follows a zero-mean stationary AR(p) process: ut =
∑p

j=1 ϕjut−j + εt,

where 1 −
∑p

j=1 ϕjz
j ̸= 0 for |z| ≤ 1, and {εt} is a martingale difference sequence with a

finite 4th moment, which satisfies E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.

Assumption 2 limT→∞ Ti/T = λi and 0 = λ0 < λ1 < · · · < λm < λm+1 = 1.

When p = 0, we use the following Assumption 1’, instead of Assumption 1.
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Assumption 1’ ut = εt for all t, where {εt} is a martingale difference sequence with a finite

4th moment, which satisfies E(ε2t |Ft−1) = σ2ε .

Assumptions 1 and 1’ exclude the case where {ut} is a unit root process. Assumption 2

is standard for structural break models.

3.3 Derivation of the Bias

In this section, we derive the bias of the the long-run variance estimator up to O(T−1), under

the assumption that {ut} follows a stationary AR(p) process. The case with infinite-order

autoregressive errors will be discussed later. Throughout this chapter, we define the bias as

the expectation up to O(T−1), ignoring the op(T
−1) terms.2

3.3.1 Bias of the OLS estimator of the autoregressive coefficients

First, we derive the bias of the OLS estimator of ϕj (j = 1, · · · , p) for p ≥ 1, which is given

by

ϕ̂ =


ϕ̂1

ϕ̂2
...

ϕ̂p

 =


r̂11 r̂12 · · · r̂1p

r̂21 r̂22
. . .

...
...

. . .
. . . r̂p−1,p

r̂p1 · · · r̂p,p−1 r̂pp



−1 
r̂10

r̂20
...

r̂p0

 ,

where r̂ij = (T − p)−1
∑T

t=p+1 ût−iût−j .

In order to derive the bias of ϕ̂, we define the following three (p+ 1)× (p+ 1) matrices,

based on Stine and Shaman (1989) and Patterson (2000):

B1p = diag{0, 1, · · · , p},

B2p =


[
−e0,−e1, · · · ,−e p

2
−1, 0(p+1)×1, e p

2
−1, · · · , e1, e0

]
when p is even,[

−d1,−d2, · · · ,−d p−1
2
, 0(p+1)×1, d p−1

2
, · · · , d1, d0

]
when p is odd,

(B3p)ij =


−1 for j < i ≤ p− j + 2,

1 for p− j + 2 < i ≤ j,

0 otherwise,

2If we need to evaluate the expectation without ignoring the op(T
−1) terms, we have to make additional

assumptions about the existence of higher-order moments.
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where 0(p+1)×1 is a (p + 1) × 1 vector of zeros, ej is a (p + 1) × 1 vector with ones in rows

j+3, j+5, · · · , p+1− j and zeros elsewhere, and dj is a (p+1)× 1 vector with ones in rows

j+2, j+4, · · · , p+1−j and zeros elsewhere. For example, d0 = [0, 1, 0, 1]′ and d1 = [0, 0, 1, 0]′

for p = 3, while e0 = [0, 0, 1, 0, 1]′ and e1 = [0, 0, 0, 1, 0]′ for p = 4.

Let D
(m)
p = B1p +B2p + (m+ 1)B3p, and we divide D

(m)
p into four blocks as follows:

D(m)
p =

 01×1 01×p

−K(m)
p B

(m)
p

 . (3.5)

where K
(m)
p and B

(m)
p are p× 1 and p× p, respectively, that is, K

(m)
p is (−1) times the p× 1

lower-left block element of D
(m)
p , and B

(m)
p is the p × p lower-right block element of D

(m)
p .

The values of K
(m)
p and B

(m)
p for p = 1, · · · , 5 are given in Table 3.1.

The following theorem gives the bias of the OLS estimator ϕ̂.

Theorem 1 Under Assumptions 1 and 2, the expectation of the OLS estimator ϕ̂ up to

O(T−1) is given by

E(ϕ̂) = ϕ− 1

T − p

(
K(m)

p +B(m)
p ϕ

)
+ o(T−1), (3.6)

where ϕ = [ϕ1, · · · , ϕp]′.

Remark 1 The expectation of the OLS estimator without structural breaks can be obtained

by letting m = 0 in equation (3.6).

Remark 2 The first-order bias of the OLS estimator does not depend on the maintained

break fractions λi (i = 1, · · · ,m).

Remark 3 When p = 1, by Theorem 1, the expectation of the OLS estimator with m struc-

tural breaks in mean reduces to

E(ϕ̂1) = ϕ1 −
1

T − 1
{(m+ 1) + (m+ 3)ϕ1}+ o(T−1).

Hence, when ϕ1 > 0, we can see that the downward bias of the OLS estimator gets larger as

the number of structural breaks increases, which also leads to a downward bias in (3.4).

3.3.2 Bias of the long-run variance estimator

Next, we derive the bias of ω̂AR, which is given by

ω̂AR =


σ̂2ε(

1−
∑p

j=1 ϕ̂j

)2 for p ≥ 1,

σ̂2ε for p = 0.

(3.7)
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It is known that, when random variables X and Y satisfy X − E(X) = Op(T
−1/2),

Y − E(Y ) = Op(T
−1/2), E(X) ̸= 0, and E(Y ) ̸= 0, the following relation holds:

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(T−1), (3.8)

which can be obtained by the Taylor expansion of f(x, y) = x/y around (x, y) = (E(X), E(Y )),

and by taking expectations, ignoring the op(T
−1) terms; see Mood, Graybill, and Boes (1974,

p.181).

Therefore, in order to derive the bias of (3.7) up to O(T−1), we need to obtain E[(1 −∑p
j=1 ϕ̂j)

2], E[σ̂2ε ], V ar[(1−
∑p

j=1 ϕ̂j)
2], and Cov[σ̂2ε , (1−

∑p
j=1 ϕ̂j)

2] for p ≥ 1. Note that we

only need E[σ̂2ε ] when p = 0.

The next lemma gives the results for p ≥ 1:

Lemma 1 Under Assumptions 1 and 2, the following relations hold:

(a) E

[(
1−

∑p
j=1 ϕ̂j

)2]
= (1− ι′ϕ)2 +

1

T − p

{
2(1− ι′ϕ)ι′

(
K(m)

p +B(m)
p ϕ

)
+ σ2ε ι

′R−1ι
}
+ o(T−1),

(b) E
[
σ̂2ε
]
= σ2ε −

p+m+ 1

T − p
σ2ε + o(T−1),

(c) V ar

[(
1−

∑p
j=1 ϕ̂j

)2]
=

4

T − p
(1− ι′ϕ)2σ2ε ι

′R−1ι+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑p
j=1 ϕ̂j

)2]
= o(T−1),

where R is a p × p matrix whose (i, j) element is given by γ|i−j| = E(utut−|i−j|), and ι is a

p× 1 vector of ones.

By (3.8) and Lemma 1, we obtain the first-order bias of the long-run variance estimator

for p ≥ 1:

Theorem 2 Under Assumptions 1 and 2, the expectation of ω̂AR up to O(T−1) is given by

E(ω̂AR) =
σ2ε

(1− ι′ϕ)2
+

1

T − p
· σ2ε
(1− ι′ϕ)3

{
3

1− ι′ϕ
σ2ε ι

′R−1ι− (p+m+ 1)(1− ι′ϕ)

−2 · ι′
(
K(m)

p +B(m)
p ϕ

)}
+ o(T−1).

Remark 4 When p = 1, the expectation of ω̂AR is given by

E(ω̂AR) =
σ2ε

(1− ϕ1)2
− 1

T − 1
· σ2ε
(1− ϕ1)3

{(3m+ 1) + (m+ 1)ϕ1}+ o(T−1). (3.9)

Therefore, we can see that the first-order bias of ω̂AR gets larger as the number of structural

breaks increases.
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Similarly, when p = 0, we obtain the following theorem:

Theorem 2’ Under Assumptions 1’ and 2, the expectation of ω̂AR up to O(T−1) is given by

E(ω̂AR) = σ2ε −
m+ 1

T
σ2ε + o(T−1)

Remark 5 The first-order bias of ω̂AR does not depend on the maintained break fractions λi

(i = 1, · · · ,m).

3.4 Bias-Corrected Long-Run Variance Estimator

In this section, we propose the correction of the bias of (3.7) using Theorems 2 and 2’.

Since the first-order bias of (3.7) is given by Theorems 2 and 2’, the bias-corrected esti-

mator of ω is given by

ω̂AR,BC = ω̂AR − b̂, (3.10)

where

b̂ =



1

T − p
· σ̂2ε

(1− ι′ϕ̂)3

{
3

1− ι′ϕ̂
σ̂2ε ι

′R̂−1ι− (p+m+ 1)(1− ι′ϕ̂)

−2 · ι′
(
K

(m)
p +B

(m)
p ϕ̂

)}
for p ≥ 1,

−m+ 1

T
σ̂2ε for p = 0,

and ϕ̂, σ̂2ε = (T − p)−1
∑T

t=p+1 ε̂
2
t , and γ̂ij for the (i, j) element of R̂ are the least squares

estimators of ϕ, σ2ε , and γij , respectively.

For example, when p = 1, the correcting term is given by

b̂ = − 1

T − 1
· σ̂2ε

(1− ϕ̂1)3

{
(3m+ 1) + (m+ 1)ϕ̂1

}
.

3.5 Extension to the Model with AR(∞) Errors

In this section, we consider the case where the error term ut is generated by a stationary

AR(∞) process. In this case, we make the following assumption:

Assumption 1” ut =
∑∞

j=1 ϕjut−j + εt, where 1−
∑∞

j=1 ϕjz
j ̸= 0 for |z| ≤ 1,

∑∞
j=1 |ϕj | <

∞, and {εt} is a martingale difference sequence with a finite 4th moment, which satisfies

E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.
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Since the error term is an infinite order AR process, we consider estimating the long-run

variance by the autoregressive spectral density estimator based on the AR(pT ) model, where

pT diverges to infinity at an appropriate rate. The following assumption is concerned with

the choice of the lag truncation point pT :

Assumption L

(a) pT → ∞ and p4T /T → 0 as T → ∞. (3.11)

(b)
∑∞

j=pT+1 |ϕj | = o(pT /T ) as T → ∞.

Assumption L(a) gives the upper bound of the divergence rate of pT . This rate guarantees

the consistency of the autoregressive spectral density estimator as proved by Berk (1974) and

den Haan and Levin (1998), although condition (3.11) is stronger than theirs. Assumption

L(b) imposes the lower bound of pT . This assumption is also related with the higher order

summability of {ϕj}. For example, when
∑∞

j=0 j
3+α|ϕj | < ∞ holds and pT is greater than

O(T 1/(4+α)) for some α > 0, Assumption L(b) is satisfied. Note that this assumption is

satisfied if ut follows a stationary finite-order ARMA process and pT = O(T δ) for some

δ > 0, because |ϕj | declines geometrically to zero.

The following theorem gives the bias of the autoregressive spectral density estimator up

to O(pT /T ):

Theorem 2” Under Assumptions 1”, 2, and L, the expectation of ω̂AR up to O(pT /T ) is

given by

E(ω̂AR) =
σ2ε

(1− ι′ϕ)2
+

1

T − pT
· σ2ε
(1− ι′ϕ)3

{
3

1− ι′ϕ
σ2ε ι

′R−1ι− (pT +m+ 1)(1− ι′ϕ)

−2 · ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}

+ o
(pT
T

)
.

where

ϕ =


ϕpT ,1

ϕpT ,2

...

ϕpT ,pT

 =


γ0 γ1 · · · γpT−1

γ1 γ0
. . .

...
...

. . .
. . . γ1

γpT−1 · · · γ1 γ0



−1 
γ1

γ2
...

γpT

 . (3.12)

This first-order bias is exactly the same as the one in Theorem 2. Therefore, we can

implement the bias correction exactly in the same way as explained in Section 3.4.
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3.6 Simulation Results

In this section, we perform simulations to investigate the finite sample performance of the

long-run variance estimators. We consider the following data generating processes:

(DGP1: 1 break)

yt =

ut for t = 1, · · · , 0.5T,

δ + ut for t = 0.5T + 1, · · · , T.
(3.13)

(DGP2: 2 breaks)

yt =


ut for t = 1, · · · , 0.3T,

δ + ut for t = 0.3T + 1, · · · , 0.7T,

2δ + ut for t = 0.7T + 1, · · · , T,

(3.14)

with δ = 1, 2. In order to obtain the long-run variance estimators, we estimate the break

dates by minimizing the sum of squared residuals under the assumption that the number

of breaks is known. For example, when m = 1, we estimate the break date by T̂1 =

argminT1∈[εT,(1−ε)T ] SSR(T1), where SSR(T1) is the sum of squared residuals with the break

date T1. When m = 2, we use (T̂1, T̂2) = argminT1∈[εT,(1−2ε)T ],T2∈[T1+εT,(1−ε)T ] SSR(T1, T2),

where SSR(T1, T2) is the sum of squared residuals with break dates (T1, T2). In both cases,

we set the trimming parameter ε = 0.15. For comparison, we also consider the cases where

the break dates are known.

The error term ut follows the following processes:
AR(1) : ut = ϕut−1 + εt, εt ∼ i.i.d. N

(
0, (1− ϕ)2

)
,

AR(2) : ut = ϕ1ut−1 + ϕ2ut−2 + εt, εt ∼ i.i.d. N
(
0, (1− ϕ1 − ϕ2)

2
)
,

MA(1) : ut = εt + θεt−1, εt ∼ i.i.d. N
(
0, 1

(1+θ)2

)
,

where the variance of εt is selected so that ω = 1.

In this section, we compare the biases and mean squared errors (MSEs) of the following

estimators:

(i): ω̂kernel: the kernel estimator given by (3.3).

(ii): ω̂AR: the autoregressive spectral density estimator given by (3.4).

(iii): ω̂AR,BC : the bias-corrected estimator given by (3.10).

For the kernel estimator (3.3), we use the quadratic spectral kernel with the bandwidth

parameter selected by Andrews’ (1991) rule. When we implement the AR(p) regression to
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obtain the autoregressive spectral density estimator, we select the lag length p by the Bayesian

Information Criterion (BIC) with the maximum lag length 5.

Table 3.2 gives the results with AR(1) errors under DGP1 (one-time break). As we can

see from the table, ω̂kernel has large downward bias in all cases. ω̂AR has less bias than ω̂kernel,

except for the case where T = 100 and ϕ = 0.2.3 The bias-corrected estimator (ω̂AR,BC) has

smaller bias, compared with the other estimators. We can also see that the bias becomes

smaller as the magnitude of the break increases because the break date is more precisely

estimated, so that the results are quite similar to those when the break date is known. In

terms of the MSE, we can see that the MSE of the bias-corrected estimator is comparable to

that of the other estimators in all cases.

Table 3.3 shows the results under DGP2 (2 breaks). In this case, the downward bias of

the long-run variance gets larger, compared to the case under DGP1, but we can see that the

relative performance of the estimators is quite similar.

Tables 3.4–3.7 show the results with AR(2) errors. We can see that the bias-corrected

estimator has better finite sample property in most cases. Tables 3.8 and 3.9 give the results

with MA(1) errors. In this case, when θ < 0, all estimators have large upward bias. When

θ ≥ 0, the bias-corrected long-run variance estimator has less bias than the other estimators.

Overall, we can see from the simulation results that the bias-corrected long-run variance

estimator has less bias than other estimators in most cases, so that our proposed estimator

has good finite sample performance.

3.7 Conclusion

We have derived the first-order bias of the long-run variance estimator, taking structural

breaks into account, and proposed a bias-corrected long-run variance estimator. By Monte

Carlo simulations, we have found that our proposed long-run variance estimator has good

finite sample properties. Our proposed method is useful, for example, when we construct

confidence intervals of the mean of a time series with structural breaks.

In this chapter, we focused only on estimation of the long-run variance, but our method

can also be applied to testing for shifts in mean of a time series. This topic will be investigated

in the next chapter.

3When T = 100 and ϕ = 0.2, the performance of ω̂AR gets worse because the lag length selected by the

BIC is too short.
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3.8 Appendix A: Proofs of Theorem 1 and Some Related Lem-

mas

Lemma 2 Under Assumptions 1 and 2,

E(ϕ̂) = ϕ+R−1E
[
r̂ − r − (R̂−R)ϕ

]
−R−1E

[
(R̂−R)R−1

{
r̂ − r − (R̂−R)ϕ

}]
+ o(T−1),

(3.15)

where R̂ and R are p × p matrices such that (R̂)ij = r̂ij, (R)ij = rij, r̂ = [r̂01, · · · , r̂0p]′,

r = [r01, · · · , r0p]′, r̂ij = (T − p)−1
∑T

t=p+1 ût−iût−j, and rij = E(ut−iut−j).

Proof of Lemma 2

Since R̂−1 can be expressed as

R̂−1 = R−1 −R−1(R̂−R)R̂−1, (3.16)

we obtain

R̂−1 = R−1 −R−1(R̂−R)R−1 +R−1(R̂−R)R−1(R̂−R)R−1

−R−1(R̂−R)R−1(R̂−R)R−1(R̂−R)R̂−1, (3.17)

by recursively using relation (3.16). Therefore, since ϕ = R−1r, r̂ − r = Op(T
−1/2), and

R̂−R = Op(T
−1/2), we have

ϕ̂ = R̂−1r̂

= R−1r +R−1(r̂ − r)−R−1(R̂−R)R−1r −R−1(R̂−R)R−1(r̂ − r)

+R−1(R̂−R)R−1(R̂−R)R−1r + op(T
−1)

= ϕ+R−1
{
r̂ − r − (R̂−R)ϕ

}
+ op(T

−1)

= −R−1(R̂−R)R−1
{
r̂ − r − (R̂−R)ϕ

}
+ op(T

−1). (3.18)

By ignoring the op(T
−1) term and taking expectation of the rest of (3.18), we obtain

(3.15). �

Lemma 3 Under Assumptions 1 and 2,

E(r̂ij − rij) = −m+ 1

T − p
ω + o(T−1),

where ω = σ2ε/(1−
∑p

j=1 ϕj)
2.
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Proof of Lemma 3

Without loss of generality, we assume i ≤ j. From (3.2), we have

r̂ij =
1

T − p

T∑
t=p+1

ût−iût−j

=
T1 − p+ i

T − p

 1

T1 − p+ i

T1+i∑
t=p+1

(ut−i − ū1)(ut−j − ū1)


+

m∑
ℓ=1

 1

T − p

Tℓ+j∑
t=Tℓ+i+1

(ut−i − ūℓ+1)(ut−j − ūℓ)


+

m∑
ℓ=2

Tℓ − Tℓ−1 + i− j

T − p
· 1

Tℓ − Tℓ−1 + i− j

Tℓ+i∑
t=Tℓ−1+j+1

(ut−i − ūℓ)(ut−j − ūℓ)


+
T − Tm − j

T − p

 1

T − Tm − j

T∑
t=Tm+j+1

(ut−i − ūm+1)(ut−j − ūm+1)

 .

Note that the second term in the last equation does not appear when i = j, and the third

term does not appear when m = 1. Therefore,

E(r̂ij) =
T1 − p+ i

T − p

{
rij −

1

λ1(T − p)
ω + o(T−1)

}
+

m∑
ℓ=1

{
j − i

T − p
rij + o(T−1)

}

+

m∑
ℓ=2

[
Tℓ − Tℓ−1 + j − i

T − p

{
rij −

1

(λℓ − λℓ−1)(T − p)
ω + o(T−1)

}]
+
T − Tm − j

T − p

{
rij −

1

(1− λm)(T − p)
ω + o(T−1)

}
= rij −

m+1∑
ℓ=1

(λℓ − λℓ−1) ·
1

(λℓ − λℓ−1)(T − p)
ω + o(T−1)

= rij −
m+ 1

T − p
ω + o(T−1).�

Lemma 4 Under Assumptions 1 and 2,

Cov(r̂ij , r̂i′j′) = Cov(r̃ij , r̃i′j′) +O(T−3/2),

where r̃ij = (T − p)−1
∑T

t=p+1 ut−iut−j.
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Proof of Lemma 4

Without loss of generality, we assume i ≤ j and i′ ≤ j′. We can see that r̂ij can be expressed

as

r̂ij =
1

T − p

 T1+i∑
t=p+1

(ut−i − ū1)(ut−j − ū1) +
m∑
ℓ=1


Tℓ+i∑

t=Tℓ+j+1

(ut−i − ūℓ+1)(ut−j − ūℓ)


+

m∑
m=2


Tℓ+i∑

t=Tℓ−1+j+1

(ut−i − ūℓ)(ut−j − ūℓ)

+

T∑
t=Tm+j+1

(ut−i − ūm+1)(ut−j − ūm+1)


=

1

T − p

 T1+i∑
t=p+1

ut−iut−j − ū1

 T1+i∑
t=p+1

ut−i

− ū1

 T1+i∑
t=p+1

ut−j

+ (T1 − p+ i)ū21

+

m∑
ℓ=1


Tℓ+j∑

t=Tℓ+i+1

ut−iut−j − ūℓ

 Tℓ+j∑
t=Tℓ+i+1

ut−i

− ūℓ+1

 Tℓ+j∑
t=Tℓ+i+1

ut−j

+ (j − 1)ūℓūℓ+1


+

m∑
ℓ=2


Tℓ+i∑

t=Tℓ−1+j+1

ut−iut−j − ūℓ

 Tℓ+i∑
t=Tℓ−1+j+1

ut−i

− ūℓ

 Tℓ+i∑
t=Tℓ−1+j+1

ut−j


+(Tℓ − Tℓ−1 + i− j)ū2ℓ

}
=

T∑
t=Tm+j+1

ut−iut−j − ūm+1

 T∑
t=Tm+j+1

ut−i

− ūm+1

 T∑
t=Tm+j+1

ut−j

+ (T − Tm − j)ū2m+1


= (r̃ij,1 − cij,1 − cij,2 + cij,3) + (r̃ij,2 − cij,4 − cij,5 + cij,6)

+(r̃ij,3 − cij,7 − cij,8 + cij,9) + (r̃ij,4 − cij,10 − cij,11 + cij,12), say,

= r̃ij + cij ,

where cij =
∑12

n=1 cij,n. Note that r̃ij,2, cij,4, cij,5, and cij,6 do not appear when i = j, and

that r̃ij,3, cij,7, cij,8, and cij,9 do not appear when m = 1.

Therefore,

Cov(r̂ij , r̂i′j′) = Cov(r̃ij , r̃i′j′) + Cov(cij , r̃i′j′) + Cov(r̃ij , ci′j′) + Cov(cij , ci′j′)

= Cov(r̃ij , r̃i′j′) + d1 + d2 + d3, say.

First, let us consider d1, which can be expressed as d1 = Cov(cij , r̃i′j′) =
∑12

n=1Cov(cij,n, r̃i′j′).

For n = 1, by Cauchy-Schwarz inequality,

∣∣Cov(cij,1, r̃i′j′)∣∣ ≤

V ar
 1

T − p

T1+i∑
t=p+1

ut−i

 ū1

V ar
 1

T − p

T∑
t=p+1

ut−i′ut−j′

1/2

= d
1/2
11 d

1/2
12 , say.
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Since

d11 = V ar

[
T1

T − p

(
ū1 −

1

T1

p−i∑
t=1

ut

)
ū1

]

≤ 2

[
V ar

(
T1

T − p
ū21

)
+ V ar

((
1

T − p

p−i∑
t=1

ut

)
ū1

)]
= O(T−2)

and d12 = O(T−1), we obtain Cov(cij,1, r̃i′j′) = O(T−3/2). Similarly, for n = 2, · · · , 12,

Cov(cij,n, r̃i′j′) can be shown to be O(T−3/2). Therefore, we have d1 = O(T−3/2). In the

same way, d2 = O(T−3/2) can be proved.

Then, consider the term d3. Since d3 = Cov(cij , ci′j′) =
∑9

n1=1

∑9
n2=1Cov(cij,n1 , ci′j′,n2)

and ∣∣Cov(cij,n1 , ci′j′,n2)
∣∣ ≤

(
V ar(cij,n1)V ar(ci′j′,n2)

)1/2
=

(
O(T−2)O(T−2)

)1/2
= O(T−2),

d3 is of order T−2. Therefore, we conclude that Cov(r̂ij , r̂i′j′) = Cov(r̃ij , r̃i′j′)+O(T−3/2). �

Proof of Theorem 1

By Lemma 2,

E(ϕ̂) = ϕ+R−1E
[
r̂ − r − (R̂−R)ϕ

]
−R−1E

[
(R̂−R)R−1

{
r̂ − r − (R̂−R)ϕ

}]
+ o(T−1)

= ϕ+ (A)− (B) + o(T−1), say.

Since E(r̂ − r) = −(T − p)−1 · (m + 1)ωι + o(T−1) and E(R̂ − R) = −(T − p)−1 · (m +

1)ωιι′ + o(T−1) by Lemma 3, where ι is a p× 1 vector of ones, we obtain

(A) = R−1E
[
r̂ − r − (R̂−R)ϕ

]
(3.19)

= R−1

[
−m+ 1

T − p
ωι+

m+ 1

T − p
ωιι′ϕ+ o(T−1)

]

= R−1

−m+ 1

T − p
· σ2ε(

1−
∑p

j=1 ϕj

)2 · ι

1−
p∑

j=1

ϕj

+ o(T−1)


= −m+ 1

T − p
· σ2ε
1−

∑p
j=1 ϕj

R−1ι+ o(T−1). (3.20)

Note that the first-order bias of (A) is equal to {−(m+1)} times equation (3.6) in Shaman

and Stine (1988).4 Therefore, from (5.4) in Shaman and Stine (1988), the j-th element of
4Note that the notation in this chapter is different from that in Shaman and Stine (1988). For example,

ϕj (j = 1, · · · , p) corresponds to −αj (j = 1, · · · , p) in Shaman and Stine (1988).
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(A) is given by (T − p)−1 · (m+ 1)
∑j−1

i=0 (ϕi − ϕp−i), where ϕ0 = −1, so that

(A) = − 1

T − p
Fp · {(m+ 1)B3p}ϕ∗ + o(T−1), (3.21)

where Fp = [0p×1, Ip], ϕ
∗ = [−1, ϕ′]′ and B3p is defined in Section 3 and Patterson (2000).

For (B), we can see from Lemma 4 that

(B) = R−1E
[
(R̃−R)R−1

{
r̃ − r − (R̃−R)ϕ

}]
+ o(T−1), (3.22)

where (R̃)ij = r̃ij and r̃ = [r̃01, · · · , r̃0p]′. Hence, the first-order bias (B) is the same as the

one in Shaman and Stine (1988), which is given by the sum of (5.1) and (5.3) in Shaman and

Stine (1988). Therefore, we have

(B) =
1

T − p
Fp(B1p +B2p)ϕ

∗ + o(T−1), (3.23)

where B1p and B2p are defined in Section 3 and Patterson (2000).

From (3.21) and (3.23), we obtain

E(ϕ̂) = ϕ+ (A)− (B) + o(T−1)

= ϕ− 1

T − p
Fp {B1p +B2p + (m+ 1)B3p}ϕ∗ + o(T−1)

= ϕ− 1

T − p

(
K(m)

p +B(m)
p ϕ

)
+ o(T−1).�

3.9 Appendix B: Proofs of Theorem 2” and Some Related

Lemmas

Because the AR(p) model is a special case of the AR(∞) model, we only prove the results

for AR(∞) errors. Lemma 1 and Theorems 2 and 2’ can be proved similarly. Note that pT

becomes a fixed number for the finite order AR model and thus, for example, the order given

by o(pT /T ) in the following lemmas becomes o(1/T ) in the AR(p) case.

In this appendix, we use the vector norm ∥x∥∞ = max1≤i≤n |xi| for an n × 1 vector

x = [x1, · · · , xn]′, and a matrix norm ∥A∥∞ = max1≤i≤n

(∑n
j=1 |aij |

)
for an n × n matrix

A = (aij). This matrix norm is sub-multiplicative, that is, ∥AB∥∞ ≤ ∥A∥∞ · ∥B∥∞ holds

for n × n matrices A and B (cf. Hannan and Deistler, 1988, p.266). Moreover, |x′Ay| ≤

n · ∥x∥∞ · ∥A∥∞ · ∥y∥∞ holds for n× 1 vectors x, y, and an n× n matrix A.
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Lemma 1” Under Assumptions 1”, 2, and L, the following relations hold:

(a) E
[
ι′ϕ̂
]
= ι′ϕ− 1

T − pT
ι′(KpT +BpT ϕ) + o

(pT
T

)
,

(b) E
[
ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

]
=

1

T − pT
σ2ε ι

′R−1ι+ o
(pT
T

)
,

where ϕ is defined by (3.12), ι is a pT × 1 vector of ones and

ϕ̂ =


ϕ̂pT ,1

ϕ̂pT ,2

...

ϕ̂pT ,pT

 =


r̂11 r̂12 · · · r̂1,pT

r̂21 r̂22
. . .

...
...

. . .
. . . r̂pT−1,pT

r̂pT ,1 · · · r̂pT ,pT−1 r̂pT ,pT



−1 
r̂10

r̂20
...

r̂pT ,0

 .

Proof of Lemma 1”

Proof of (a). Using (3.17) and the relation ϕ = R−1r, we have,

ι′ϕ̂ = ι′R̂−1r̂

= ι′ϕ+ ι′R−1(r̂ − r)− ι′R−1(R̂−R)ϕ− ι′R−1(R̂−R)R−1(r̂ − r)

+ι′R−1(R̂−R)R−1(R̂−R)ϕ+ ι′R−1(R̂−R)R−1(R̂−R)R−1(r̂ − r)

−ι′R−1(R̂−R)R−1(R̂−R)R−1(R̂−R)R̂−1r̂

= ι′ϕ+ (a)− (b)− (c) + (d) + (e)− (f), say.

First, let us consider (a). Since Lemma 3 holds uniformly in 0 ≤ i ≤ pT and 0 ≤ j ≤ pT ,

we have

E(r̂ij) = rij −
m+ 1

T − pT
ω + ξij , (3.24)

where ξij = o(T−1) uniformly in 0 ≤ i ≤ pT and 0 ≤ j ≤ pT . Therefore,

E[(a)] = ι′R−1E(r̂ − r)

= −ι′R−1 · m+ 1

T − pT
ωι+ ι′R−1ξ

= (a1) + (a2), say,

where ξ = [ξ10, · · · , ξpT ,0]
′. Since ∥R−1∥∞ = O(1) (cf. den Haan and Levin, 1998), we obtain

|(a2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥ξ∥∞

= pT ·O(1) ·O(1) · o(T−1) = o(pT /T ).

59



For (b), we have

E[(b)] = ι′R−1E(R̂−R)ϕ

= ι′R−1 · m+ 1

T − pT
ωιι′ϕ+ ι′R−1Ξϕ

= (b1) + (b2), say,

where Ξ is a pT×pT matrix whose (i, j) element is ξij . Since Ξϕ =
[∑pT

k=1 ξ1kϕpT ,k, · · · ,
∑pT

k=1 ξpT ,kϕpT ,k

]′
,

we have

∥Ξϕ∥∞ = max
1≤j≤pT

∣∣∣∣∣
pT∑
k=1

ξjkϕpT ,k

∣∣∣∣∣
≤

(
pT∑
k=1

|ϕpT ,k|

)
· max
1≤j,k≤pT

|ξjk|

= O(1) · o(T−1) = o(T−1).

Therefore,

|(b2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥Ξϕ∥∞

= pT ·O(1) ·O(1) · o(T−1) = o(pT /T ).

Combining these results, we have

E[(a)− (b)] = (a1)− (b1) + o(pT /T ), (3.25)

where (a1) − (b1) corresponds to the first order bias of (A) given in (3.20) in the proof of

Theorem 1.

We next consider (c). Since the result of Lemma 4 holds uniformly in 0 ≤ i ≤ pT ,

0 ≤ j ≤ pT , 0 ≤ i′ ≤ pT , and 0 ≤ j′ ≤ pT , we have

E
[
(r̂ij − rij)(r̂i′j′ − ri′j′)

]
=

1

T − pT
bij,i′j′ + ξij,i′j′ , (3.26)

where bij,i′j′ is the first-order bias of (r̂ij − rij)(r̂i′j′ − ri′j′), and ξij,i′j′ = O(T−3/2) uniformly

in 0 ≤ i ≤ pT , 0 ≤ j ≤ pT , 0 ≤ i′ ≤ pT , and 0 ≤ j′ ≤ pT . Now, we have

(R̂−R)R−1(r̂ − r) =


∑pT

ℓ=1

∑pT
i′=1 r

i′j′(r̂1i′ − r1i′)(r̂j′0 − rj′0)
...∑pT

ℓ=1

∑pT
i′=1 r

i′j′(r̂pT ,i′ − rpT ,i′)(r̂j′0 − rj′0)

 ,
so that

E[(R̂−R)R−1(r̂ − r)] =


∑pT

j′=1

∑pT
i′=1 r

i′j′ · 1
T−pT

b1i′,j′0 +
∑pT

j′=1

∑pT
i′=1 r

kj′ξ1i′,j′0
...∑pT

j′=1

∑pT
i′=1 r

i′j′ · 1
T−pT

bpT i′,j′0 +
∑pT

j′=1

∑pT
i′=1 r

i′j′ξpT i′,j′0


= B1 + ξ̃, say,
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where rij is the (i, j) element of R−1. By (3.26), we obtain

∥ξ̃∥∞ = max
1≤j≤pT

∣∣∣∣∣∣
pT∑
j′=1

pT∑
i′=1

ri
′j′ξji′,j′0

∣∣∣∣∣∣
≤

 pT∑
j′=1

pT∑
i′=1

|ri′j′ |

 · max
1≤j,i′,j′≤pT

|ξji′,j′0|

= O(pT ) ·O(T−3/2) = O(pT /T
3/2),

where
∑pT

j′=1

∑pT
i′=1 |r

i′j′ | = O(pT ) holds because ∥R−1∥∞ = O(1). Therefore,

E[(c)] = ι′R−1E[(R̂−R)R−1(r̂ − r)]

= ι′R−1B1 + ι′R−1ξ̃

= (c1) + (c2), say

Note that

|(c2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥ξ̃∥∞

= pT ·O(1) ·O(1) ·O(pT /T
3/2) = O(p2T /T

3/2).

For (d), because the (i, j) element of (R̂−R)R−1(R̂−R) is given by
∑pT

j′=1

∑pT
i′=1 r

i′j′(r̂ii′−

rii′)(r̂j′j − rj′j), we have

E[(R̂−R)R−1(R̂−R)]

=


∑pT

j′=1

∑pT
i′=1 r

i′j′
(

1
T−pT

b1i′,j′1 + ξ1i′,j′1

)
· · ·

∑pT
j′=1

∑pT
i′=1 r

i′j′
(

1
T−pT

b1i′,j′pT + ξ1i′,j′pT

)
...

. . .
...∑pT

j′=1

∑pT
i′=1 r

i′j′
(

1
T−pT

bpT i′,j′1 + ξpT i′,j′1

)
· · ·

∑pT
j′=1

∑pT
i′=1 r

i′j′
(

1
T−pT

bpT i′,j′pT + ξpT i′,j′pT

)


= B2 + Ξ̃, say,

and each element of Ξ̃ is uniformly O(pT /T
3/2). Therefore, we have

E[(d)] = ι′R−1E[(R̂−R)R−1(R̂−R)]ϕ

= ι′R−1B2ϕ+ ι′R−1Ξ̃ϕ

= (d1) + (d2), say.

Note that

|(d2)| ≤ pT · ∥ι∥∞ · ∥R−1∥∞ · ∥Ξ̃∥∞ · ∥ϕ∥∞

= pT ·O(1) ·O(1) ·O(p2T /T
3/2) ·O(1) = O(p3T /T

3/2).
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Combining the above results, we have

E[−(c) + (d)] = −(c1) + (d1) + o(pT /T ), (3.27)

where −(c1) + (d2) corresponds to the first order bias of (B) given in (3.22) in the proof of

Theorem 1.

For (e), because ∥R̂−R∥∞ = Op(pT /
√
T ) and ∥r̂− r∥∞ = Op(T

−1/2) (cf. den Haan and

Levin, 1998), we have

|(e)| ≤ pT · ∥ι∥∞
{
∥R−1∥∞ · ∥R̂−R∥∞

}2
∥R−1∥∞ · ∥r̂ − r∥∞

= pT ·O(1) ·
{
O(1) ·Op(pT /

√
T )
}2

·O(1) ·Op(T
−1/2)

= Op(p
3
T /T

3/2).

Finally, let us consider (f), which can be expressed as (f) = ι′R−1(R̂ − R)R−1(R̂ −

R)R−1(R̂−R)
{
ϕ+ (ϕ̂− ϕ)

}
.

Since (R̂−R)ϕ =
[∑pT

j′=1(r̂1j′ − r1j′)ϕpT ,j′ , · · · ,
∑pT

j′=1(r̂pT ,j′ − rpT ,j′)ϕpT ,j′

]′
, we have

∥(R̂−R)ϕ∥∞ = max
1≤j≤pT

∣∣∣∣∣∣
pT∑
j′=1

(r̂jj′ − rjj′)ϕpT ,j′

∣∣∣∣∣∣
≤ max

1≤j,j′≤pT
|r̂jj′ − rjj′ | ·

 pT∑
j′=1

|ϕpT ,j′ |


= Op(T

−1/2) ·O(1)

= Op(T
−1/2).

Hence,

|(f)| ≤ pT · ∥ι∥∞
{
∥R−1∥∞ · ∥R̂−R∥∞

}2
∥R−1∥∞

{
∥(R̂−R)ϕ∥∞ + ∥R̂−R∥∞ · ∥ϕ̂− ϕ∥∞

}
= pT ·O(1) ·

{
O(1) ·Op(pT /

√
T )
}2

·O(1) ·
{
Op(T

−1/2) +Op(pT /
√
T ) ·Op(T

−1/2)
}

= Op(p
3
T /T

3/2).

Therefore, we have E(ι′ϕ̂) = ι′ϕ+ (a1)− (b1)− (c1) + (d1) + o(pT /T ) because p
4
T /T → 0.

Since the first-order bias of ι′ϕ̂ given by (a1)− (b1)− (c1) + (d1) is exactly equal to the one

derived in Appendix A, we obtain the desired result. �

Proof of (b). By defining ηpT ,t =
∑pT

j=1(ϕj − ϕpT ,j)ut−j +
∑∞

j=pT+1 ϕjut−j , we can see that

ut =

pT∑
j=1

ϕpT ,jut−j + ηpT ,t + εt. (3.28)
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Therefore, we have, for ℓ = 1, · · · ,m+ 1,

ūℓ =
1

Tℓ − Tℓ−1

Tℓ∑
t=Tℓ−1+1

ut

=

pT∑
j=1

ϕpT ,j

 1

Tℓ − Tℓ−1

Tℓ∑
t=Tℓ−1+1

ut−j

+
1

Tℓ − Tℓ−1

Tℓ∑
t=Tℓ−1+1

ηpT ,t +
1

Tℓ − Tℓ−1

Tℓ∑
t=Tℓ−1+1

εt

=

pT∑
j=1

ϕpT ,j ūℓ + η̄ℓ + ε̄ℓ +

pT∑
j=1

ϕpT ,j

{
1

Tℓ − Tℓ−1

j∑
k=1

(uTℓ−1+1−k − uTℓ+1−k)

}
, (3.29)

where η̄ℓ = (Tℓ − Tℓ−1)
−1
∑Tℓ

t=Tℓ−1+1 ηpT ,t and ε̄ℓ = (Tℓ − Tℓ−1)
−1
∑Tℓ

t=Tℓ−1+1 εt. From (3.28)

and (3.29), we have, for t = Tℓ−1 + pT + 1, · · · , Tℓ,

ût = ut − ūℓ

=

pT∑
j=1

ϕpT ,j ût−j + (ηpT ,t − η̄ℓ) + (εt − ε̄ℓ) + hℓ, (3.30)

where hℓ = −
∑pT

j=1 ϕpT ,j

{
(Tℓ − Tℓ−1)

−1
∑j

k=1(uTℓ−1+1−k − uTℓ+1−k)
}
.

Similarly, for t = Tℓ + 1, · · · , Tℓ + pT (ℓ = 1, · · · ,m), we have

ût = ut − ūℓ · 1{t ≤ Tℓ} − ūℓ+1 · 1{t > Tℓ}

=

pT∑
j=1

ϕpT ,jut−j + ηpT ,t + εt − ūℓ · 1{t ≤ Tℓ} − ūℓ+1 · 1{t > Tℓ}

=

pT∑
j=1

ϕpT ,j [ût−j + ūℓ · 1{t− j ≤ Tℓ}+ ūℓ+1 · 1{t− j > Tℓ}] + ηpT ,t + εt

−ūℓ · 1{t ≤ Tℓ} − ūℓ+1 · 1{t > Tℓ}

=

pT∑
j=1

ϕpT ,j ût−j + ηpT ,t + εt + h̃t,ℓ, (3.31)

where h̃t,ℓ =
∑pT

j=1 ϕpT ,j [ūℓ · 1{t− j ≤ Tℓ}+ ūℓ+1 · 1{t− j > Tℓ}]−ūℓ ·1{t ≤ Tℓ}−ūℓ+1 ·1{t >

Tℓ}.

From (3.30) and (3.31), we obtain

ût =

û
′
t−1ϕ+ (ηpT ,t − η̄ℓ) + (εt − ε̄ℓ) + hℓ for t = Tℓ−1 + pT + 1, · · · , Tℓ (ℓ = 1, · · · ,m+ 1),

û′t−1ϕ+ ηpT ,t + εt + h̃t,ℓ for t = Tℓ + 1, · · · , Tℓ + pT (ℓ = 1, · · · ,m),

(3.32)

where ût = [ût, · · · , ût−pT+1]
′.

63



Since ϕ̂ =
(∑T

t=pT+1 ût−1û
′
t−1

)−1 (∑T
t=pT+1 ût−1ût

)
, we obtain, using (3.32),√

T − pT (ϕ̂− ϕ)

=

 1

T − pT

T∑
t=pT+1

ût−1û
′
t−1

−1

×

 1√
T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(ηpT ,t − η̄ℓ)

+

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ût−1ηpT ,t


+

1√
T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(εt − ε̄ℓ)

+

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ût−1εt


+

1√
T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1hℓ

+

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ût−1h̃t,ℓ




= R̂−1[(A) + (B) + (C)], say.

First, let us consider (A), which can be expressed as

(A) =
1√

T − pT

 T∑
t=pT+1

ut−1ηpT ,t −
m+1∑
ℓ=1

 Tℓ∑
t=Tℓ+pT+1

ut−1η̄ℓ

−
m+1∑
ℓ=1

ūℓι Tℓ∑
t=Tℓ−1+pT+1

ηpT ,t


+

m+1∑
ℓ=1

((Tℓ − pT )ūℓιη̄ℓ) +

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

(ût−1 − ut−1)ηpT ,t


= (A1)− (A2)− (A3) + (A4) + (A5), say,

where ut = [ut, · · · , ut−pT+1]
′.

By den Haan and Levin (1998), Assumption L(b) implies

pT∑
j=1

|ϕj − ϕpT ,j | = o
(pT
T

)
. (3.33)

Therefore, from Assumption L(b) and (3.33), we obtain

E

∣∣∣∣∣∣ 1√
T − pT

T∑
t=pT+1

ut−ℓηpT ,t

∣∣∣∣∣∣
= E

∣∣∣∣∣∣
pT∑
j=1

(ϕj − ϕpT ,j)

 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

+

∞∑
j=pT+1

ϕj

 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

∣∣∣∣∣∣
≤

 pT∑
j=1

|ϕj − ϕpT ,j |+
∞∑

j=pT+1

|ϕj |

 · sup
j≥1

E

∣∣∣∣∣∣ 1√
T − pT

T∑
t=pT+1

ut−ℓut−j

∣∣∣∣∣∣
= o(pT /T ) ·O(

√
T )

= o(pT /
√
T )
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uniformly in 1 ≤ ℓ ≤ pT , so that ∥(A1)∥∞ = op(pT /
√
T ).

Similarly, since E
∣∣∣(T − pT )

−1
∑T

t=pT+1 ηpT ,t

∣∣∣ = o(pT /T ), we have ∥(A2)∥∞ = op(pT /T ).

In the same way, we obtain ∥(A3)∥∞ = op(pT /T ), ∥(A4)∥∞ = op(pT /T ), and ∥(A5)∥∞ =

Op(pT /
√
T ). Therefore, ∥(A)∥∞ = Op(pT /

√
T ).

For (B), since (T − pT )
−1/2

∑T
t=pT+1 ut−ℓ = Op(1) uniformly in 1 ≤ ℓ ≤ pT , ε̄ℓ =

Op(T
−1/2) for ℓ = 1, · · · ,m+ 1, we have∥∥∥∥∥∥(B)− 1√

T − pT

T∑
t=pT+1

ut−1εt

∥∥∥∥∥∥
∞

= Op(T
−1/2).

Now let us consider (C). Since

|hℓ| ≤

 pT∑
j=1

|ϕpT ,j |

 · 1

Tℓ − Tℓ−1

pT∑
k=1

(
|uTℓ−1+1−k|+ |uTℓ+1−k|

)
= O(1) ·Op(pT /T )

= Op(pT /T )

for 1 ≤ ℓ ≤ m+ 1, we have

∥(C)∥∞ ≤
m+1∑
ℓ=1

∥∥∥∥∥∥ 1√
T − pT

Tℓ∑
t=Tℓ−1+pT+1

ût−1

∥∥∥∥∥∥
∞

· |hℓ|

+
m∑
ℓ=1

∥∥∥∥∥∥ 1√
T − pT

Tℓ+pT∑
t=Tℓ+1

ût−1h̃t

∥∥∥∥∥∥
∞

= Op(1) ·Op(pT /T ) +Op(pT /
√
T )

= Op(pT /
√
T ).

Therefore, we obtain

√
T − pT (ϕ̂− ϕ) = R̂−1

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT

 , (3.34)

where ∥ζT ∥∞ = Op(pT /
√
T ).

Then we evaluate the expectation of ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι up to O(pT /T ). Using (3.34), this
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can be expressed as

ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

=
1

T − pT
ι′
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


×

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}
ι

=
1

T − pT
ι′R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1ι

+op(pT /T ), (3.35)

because ∥R−1∥∞ = O(1), ∥R̂−1 −R−1∥∞ = Op(pT /
√
T ), ∥(T − pT )

−1/2
∑T

t=pT+1 ut−1εt∥∞ =

Op(1), and ∥ζT ∥∞ = Op(pT /
√
T ).

Since E(εt|Ft−1) = 0 and E(ε2t |Ft−1) = σ2ε , we have

E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

u′t−1εt

 = E

 1

T − pT

T∑
t=pT+1

ut−1u
′
t−1ε

2
t


= σ2εR. (3.36)

Therefore, from (3.35) and (3.36), we obtain

E
[
ι′(ϕ̂− ϕ)(ϕ̂− ϕ)′ι

]
=

1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ). �

Lemma 2” Under Assumptions 1”, 2, and L, the following relations hold:

(a) E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= (1− ι′ϕ)2

+
1

T − pT

{
2(1− ι′ϕ)ι′

(
K(m)

pT
+B(m)

pT
ϕ
)
+ σ2ε ι

′R−1ι
}
+ o

(pT
T

)
,

(b) E
[
σ̂2ε
]
= σ2ε −

pT +m+ 1

T − pT
σ2ε + o

(pT
T

)
,

(c) V ar
[
σ̂2ε
]
=

1

T − pT

{
E(ε4t )− σ4ε

}
+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= o

(pT
T

)
.

Proof of Lemma 2”

Proof of (a). Here we define ψ = −ϕ̂+ϕ−(T −pT )−1
(
K

(m)
pT +B

(m)
pT ϕ

)
. Then, from Lemma

1”, we obtain

E(ι′ψ) = o(pT /T ), (3.37)

V ar(ι′ψ) =
1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ). (3.38)

66



Since 1−
∑pT

j=1 ϕ̂pT ,j = 1− ι′ϕ̂ = 1− ι′ϕ+ (T − pT )
−1ι′(KpT +BpT ϕ) + ι′ψ, we have

E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= E

[{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)
+ ι′ψ

}2
]

=

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}2

+2

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}

E
[
ι′ψ
]
+ E

[(
ι′ψ
)2]

= (a) + 2 · (b) + (c), say. (3.39)

By (3.37) and (3.38), we have

(a) = (1− ι′ϕ)2 +
2

T − pT
(1− ι′ϕ)ι′

(
K(m)

pT
+B(m)

pT
ϕ
)
+ o(pT /T ),

(b) = o(pT /T ),

(c) =
1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ).

Therefore, the expectation up to O(pT /T ) is given by

E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= (1− ι′ϕ)2 +

2

T − pT
(1− ι′ϕ)ι′

(
K(m)

pT
+B(m)

pT
ϕ
)

+
1

T − pT
σ2ε ι

′R−1ι+ o(pT /T ).�

Proof of (b). For t = Tℓ−1 + pT + 1, · · · , Tℓ (ℓ = 1, · · · ,m+ 1), ε̂t can be expressed as

ε̂t = (ut − ūℓ)−
pT∑
j=1

ϕ̂pT ,j(ut−j − ūℓ)

= (ut − ūℓ)−
pT∑
j=1

ϕpT ,j(ut−j − ūℓ)−
pT∑
j=1

(ϕ̂pT ,j − ϕpT ,j)(ut−j − ūℓ)

= (εt − ε̄ℓ)− (ϕ̂− ϕ)′ût−1 + (ηpT ,t − η̄ℓ) + hℓ, (3.40)

where the last equality holds because εt = ut −
∑pT

j=1 ϕpT ,jut−j − ηpT ,t and ε̄ℓ = ūℓ −∑pT
j=1 ϕpT ,j ūℓ − η̄ℓ + hℓ.

For t = Tℓ + 1, · · · , Tℓ + pT (ℓ = 1, · · · ,m), we have

ε̂t = ût −
pT∑
j=1

ϕpT ,j ût−j −
pT∑
j=1

(ϕ̂pT ,j − ϕpT ,j)ût−j

= εt + ηpT ,t +Op(pT /
√
T ). (3.41)
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Using (3.40) and (3.41) and noting that |hℓ| = Op(pT /T ) for 1 ≤ ℓ ≤ m+ 1, we have

σ̂2ε =
1

T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(εt − ε̄ℓ)
2

+

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ε2t


−2


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(ϕ̂− ϕ)′ût−1(εt − ε̄ℓ)


+


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(
(ϕ̂− ϕ)′ût−1

)2
+

2
m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(ηpT ,t − η̄ℓ)
(
(εt − ε̄ℓ)− (ϕ̂− ϕ)′ût−1

)+ 2
m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ηpT ,tεt


+

m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(ηpT ,t − η̄ℓ)
2

+
m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

η2pT ,t


+ op

(pT
T

)
= (A)− 2 · (B) + (C) + (D) + op

(pT
T

)
, say.

First, consider the term (A). Since

(A) =

m+1∑
ℓ=1

Tℓ − Tℓ−1 − pT
T − pT

 1

Tℓ − Tℓ−1 − pT

Tℓ∑
t=Tℓ−1+pT+1

(εt − ε̄ℓ)
2

 ,

we have

E[(A)] = σ2ε −
m+1∑
ℓ=1

{
(λℓ − λℓ−1) ·

1

(λℓ − λℓ−1)(T − pT )
σ2ε

}
+ o(T−1) (3.42)

= σ2ε −
m+ 1

T − pT
σ2ε + o(T−1).

Next, let us consider (B). Since

1√
T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(εt − ε̄ℓ)

 =
1√

T − pT

T∑
t=pT+1

ut−1εt + ζ̃T ,
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where ∥ζ̃T ∥∞ = Op(
√
pT /T ), we have

(B) =
1

T − pT
·
√
T − pT (ϕ̂− ϕ)′

 1√
T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(εt − ε̄ℓ)




=
1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}

×

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζ̃T


=

1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

+ op

(pT
T

)
,

because ∥ζT ∥∞ = Op(pT /
√
T ).

From (3.36), we obtain

E

 1

T − pT

 T∑
t=pT+1

u′t−1εt

R−1

 T∑
t=pT+1

ut−1εt


= tr

R−1E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

u′t−1εt


= tr

[
R−1 · σ2εR

]
= pTσ

2
ε , (3.43)

so that E[(B)] = (T − pT )
−1 · pTσ2ε + o(pT /T ).

Next, let us consider (C):

(C) = (ϕ̂− ϕ)′

 1

T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1û
′
t−1


 (ϕ̂− ϕ)

= (ϕ̂− ϕ)′
ˆ̂
R(ϕ̂− ϕ),

where
ˆ̂
R = (T − pT )

−1
{∑m+1

ℓ=1

(∑Tℓ
t=Tℓ−1+pT+1 ût−1û

′
t−1

)}
.
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Since ∥ ˆ̂R−R∥∞ = Op(pT /
√
T ), we have

(C) =
1

T − pT

{√
T − pT (ϕ̂− ϕ)′

}
ˆ̂
R
{√

T − pT (ϕ̂− ϕ)
}

=
1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt + ζ ′T

{R−1 + (R̂−1 −R−1)
}{

R+ (
ˆ̂
R−R)

}

×
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


=

1

T − pT

 1√
T − pT

T∑
t=pT+1

u′t−1εt

R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

+ op

(pT
T

)
,

so that we obtain E[(C)] = (T − pT )
−1 · pTσ2ε + o(pT /T ), using (3.43).

Finally, let us consider (D), which can be expressed as

(D) =
1

T − pT

2


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(ηpT ,t − η̄ℓ)(εt − ε̄ℓ)

+
m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

ηpT ,tεt


−2(ϕ̂− ϕ)′


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(ηpT ,t − η̄ℓ)


+


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

(ηpT ,t − η̄ℓ)
2

+

m∑
ℓ=1

 Tℓ+pT∑
t=Tℓ+1

η2pT ,t




= 2 · (D1)− 2 · (D2) + (D3), say.

First, consider the term (D1). By Assumption L(b) and (3.33), we have

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

ηpT ,tεt

∣∣∣∣∣∣ ≤

 pT∑
j=1

|ϕj − ϕpT ,j |+
∞∑

j=pT+1

|ϕj |

 · sup
j≥1

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

ut−jεt

∣∣∣∣∣∣
= o(pT /T ) ·O(1)

= o(pT /T ),

and thus (D1) = op(pT /T ).

Then, let us consider (D2). Here we define

P =
1

T − pT


m+1∑
ℓ=1

 Tℓ∑
t=Tℓ−1+pT+1

ût−1(ηpT ,t − η̄ℓ)

 .

Then, ∥P∥∞ = op(pT /T ) because (T − pT )
−1
∑T

t=pT+1 ut−ℓηpT ,t = op(pT /T ) uniformly in

1 ≤ ℓ ≤ pT .
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Since (D2) = (T − pT )
−1/2 ·

{√
T − pT (ϕ̂− ϕ)

}
P , we have

∥(D2)∥∞ ≤ 1√
T − pT

· pT ·

∥∥∥∥∥∥ 1√
T − pT

T∑
t=pT+1

ut−1εt

∥∥∥∥∥∥
∞

+ ∥ζT ∥∞

 · ∥R̂−1∥∞ · ∥P∥∞

= O(T−1/2) · pT ·
{
Op(1) +Op(pT /

√
T )
}
·Op(1) · op(pT /T )

= op(p
2
T /T

3/2).

Then, let us consider (D3). First, we have

E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1

η2pT ,t

∣∣∣∣∣∣ = E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j +
∞∑

j=pT+1

ϕjut−j


2∣∣∣∣∣∣

≤ E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j


2∣∣∣∣∣∣

+2E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


pT∑
j=1

(ϕj − ϕpT ,j)ut−j




∞∑
j=pT+1

ϕjut−j


∣∣∣∣∣∣

+E

∣∣∣∣∣∣ 1

T − pT

T∑
t=pT+1


∞∑

j=pT+1

ϕjut−j


2∣∣∣∣∣∣

= (D3 − 1) + 2 · (D3 − 2) + (D3 − 3), say.

Since

(D3 − 1) ≤

 pT∑
j=1

|ϕj − ϕpT ,j |

2

· sup
s,t

E|usut|

= o(p2T /T
2) ·O(1)

= o(p2T /T
2),

and similarly (D3−2) = o(p2T /T
2) and (D3−3) = o(p2T /T

2), we have E
∣∣∣(T − pT )

−1
∑T

t=pT+1 η
2
pT ,t

∣∣∣ =
o(p2T /T

2), so that (D3) = op(p
2
T /T

2). Thus we have (D) = op(pT /T ).

Using the above results, we obtain

E(σ̂2ε) = σ2ε −
pT +m+ 1

T − pT
σ2ε + o(pT /T ).�

Proof of (c).

Since V ar

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)4]
−
{
E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]}2

,

We only need to obtain E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)4]
to prove (c).
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Here we have1−
pT∑
j=1

ϕ̂pT ,j

4

=

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ+ ι′ψ

)}4

=

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}4

+4

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}3

(ι′ψ)

+6

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}2

(ι′ψ)2

+4

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}

(ι′ψ)3

+(ι′ψ)4

= (A) + (B) + (C) + (D) + (E), say.

First,

(A) = (1− ι′ϕ)4 +
4

T − pT
(1− ι′ϕ)3ι′

(
K(m)

pT
+B(m)

pT
ϕ
)
+ o(pT /T ).

Then, since E(ι′ψ) = o(pT /T ), we have E[(B)] = o(pT /T ).

Next, we evaluate the expectation of (C). Because E[(ι′ψ)2] = V ar(ι′ψ) + {E(ι′ψ)}2 =

(T − pT )
−1σ2ε ι

′R−1ι+ o(pT /T ), we have

E[(C)] = 6
{
(1− ι′ϕ)2 +O(pT /T )

}
·
{

1

T − pT
σ2ε ι

′R−1ι+ o(pT /T )

}
=

6

T − pT
(1− ι′ϕ)2σ2ε ι

′R−1ι+ o(pT /T ).

Finally, let us consider (D) and (E). Here we have ι′ψ = Op(
√
pT /T ) from (3.38), so

that (ι′ψ)3 = Op(p
3/2
T /T 3/2) and (ι′ψ)4 = Op(p

2
T /T

2). Since p4T /T → 0 as T → ∞, we obtain

(ι′ψ)3 = op(pT /T ) and (ι′ψ)4 = op(pT /T ), and thus E[(D)] and E[(E)] are both o(pT /T ).

Therefore,

E

1−
pT∑
j=1

ϕ̂pT ,j

4 = (1− ι′ϕ)4 +
4

T − pT
(1− ι′ϕ)3ι′

(
K(m)

pT
+B(m)

pT
ϕ
)

+
6

T − pT
(1− ι′ϕ)2σ2ε ι

′R−1ι+ o(pT /T ).

Using the above result and Lemma 2” (a), we obtain

V ar

1−
pT∑
j=1

ϕ̂pT ,j

2 = E

1−
pT∑
j=1

ϕ̂pT ,j

4−

E
1−

pT∑
j=1

ϕ̂pT ,j

2
2

=
4

T − pT
(1− ι′ϕ)2σ2ε ι

′R−1ι+ o(pT /T ).�
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Proof of (d). We only need to obtain E
[
(1−

∑pT
j=1 ϕ̂pT ,j)

2σ̂2ε

]
to prove (d).

From (3.39), we have

(
1−

∑pT
j=1 ϕ̂pT ,j

)2
σ̂2ε =

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}2

σ̂2ε

+2

{
1− ι′ϕ+

1

T − pT
ι′
(
K(m)

pT
+B(m)

pT
ϕ
)}

(ι′ψ)σ̂2ε + (ι′ψ)2σ̂2ε

= (a) + 2 · (b) + (c), say.

For (a), we obtain

E[(a)] = (1−ι′ϕ)2σ2ε−
pT +m+ 1

T − pT
(1−ι′ϕ)2σ2ε+

2

T − pT
σ2ε(1−ι′ϕ)ι′

(
K(m)

pT
+B(m)

pT
ϕ
)
+o(pT /T ),

using the result of Lemma 2” (b).

For (b), we need to calculate E[(ι′ψ)σ̂2ε ] up to O(pT /T ). Since

√
T − pT ι

′ψ = ι′R̂−1

 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT

+ op(1),

√
T − pT (σ̂2ε − σ2ε) =

1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε) + op(1),

we have

ι′ψ(σ̂2ε − σ2ε)

=
1

T − pT
ι′
{
R−1 + (R̂−1 −R−1)

} 1√
T − pT

T∑
t=pT+1

ut−1εt + ζT


×

 1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε)

+ op(pT /T )

=
1

T − pT
ι′R−1

 1√
T − pT

T∑
t=pT+1

ut−1εt

 1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε)

+ op(pT /T ).

Here we have

E

 1

T − pT

 T∑
t=pT+1

ut−1εt

 T∑
t=pT+1

(ε2t − σ2ε)

 = 0

because εt is a martingale difference sequence with a finite 4th moment and satisfies E(ε2t |Ft−1) =

σ2ε and E(ε3t |Ft−1) = κ3. Therefore, we have E[ι′ψ(σ̂2ε −σ2ε)] = o(pT /T ), and thus E[ι′ψσ̂2ε ] =

E[ι′ψ(σ̂2ε − σ2ε)] + E[ι′ψ]σ2ε = o(pT /T ), and E[(b)] = o(pT /T ).
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For (c), since

(ι′ψ)2σ̂2ε = (ι′ψ)2
{
σ2ε +Op(T

−1/2)
}

= (ι′ψ)2σ2ε +Op(pT /T
3/2)

and E[(ι′ψ)2] = (T − pT )
−1σ2ε ι

′R−1ι + o(pT /T ), we have E[(c)] = (T − pT )
−1σ2ε ι

′R−1ι +

o(pT /T ).

Using the results above and Lemma 2” (a) and (b), we obtain the desired result. �

Proof of Theorem 2”

Here we slightly modify the relation (3.8). When X − E(X) = Op(pT /
√
T ), Y − E(Y ) =

Op(pT /
√
T ), E(X) ̸= 0, and E(Y ) ̸= 0, we have

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(pT /T ),

because p4T /T → 0. Therefore, using the results of Lemma 2”, we obtain the desired result.

�
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Chapter 4

Improving the Finite Sample

Performance of Tests for a Shift in

Mean

It is widely known that structural break tests based on the long-run variance estimator,

which is estimated under the alternative, suffer from serious size distortion when the errors

are serially correlated. In this chapter, we propose bias-corrected tests for a shift in mean by

correcting the bias of the long-run variance estimator up to O(T−1). Simulation results show

that the proposed tests have good size and high power.1

4.1 Introduction

Testing for structural breaks has been a longstanding problem and various tests have been

proposed in the econometric and statistical literature. One of the frequently used tests for

parameter constancy against the general alternative is the CUSUM test based on recursive

residuals proposed by Brown, Durbin, and Evans (1975), and this test was further developed

based on OLS residuals by Ploberger and Krämer (1992). By specifying a random walk

as the alternative, optimal tests for parameter constancy were investigated by Nyblom and

Mäkeläinen (1983), Nyblom (1986, 1989), and Nabeya and Tanaka (1988), among others,

while the point optimal test for general regression models was studied by Elliott and Müller

1The published version is Yamazaki and Kurozumi (2015b), “Improving the Finite Sample Perfor-

mance of Tests for a Shift in Mean”, Journal of Statistical Planning and Inference 167, 144–173.

(DOI:10.1016/j.jspi.2015.05.002)
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(2006). On the other hand, it is often the case that a one-time structural change with

an unknown change point is considered as the alternative and the sup-type test by Andrews

(1993) and the mean- and exponential-type tests developed by Andrews and Ploberger (1994)

and Andrews, Lee, and Ploberger (1996) are widely used in practical analyses. For a general

discussion on structural changes, see, for example, Csörgő and Horváth (1997), Perron (2006),

and Aue and Horváth (2013).

In practice, when we test for structural breaks in time-series models, we need to take serial

correlation into account, and thus we have to estimate the long-run variance of the errors.

If we estimate the long-run variance under the null hypothesis of no structural breaks, then

it is known that the above tests suffer from the so-called non-monotonic power problem,

that is, the power initially rises under the alternative, but as the magnitude of the break

increases, the power eventually falls and tends to zero. This problem was investigated by

Vogelsang (1999), Crainiceanu and Vogelsang (2007), Deng and Perron (2008), and Perron

and Yamamoto (2014). The reason for this problem is that the long-run variance estimator

takes significantly large values as the magnitude of the break increases.

On the other hand, if we estimate the long-run variance under the alternative, then the

tests suffer from size distortion; they tend to over-reject the null hypothesis. This is because

the long-run variance is under-estimated, so that the test statistics tend to take large values

under the null hypothesis of no break.

In order to cope with the problem associated with the estimation of the long-run variance,

several methods have been proposed. Kejriwal (2009) proposed to estimate the long-run

variance using the residuals under both the null and alternative hypotheses. By using this

hybrid estimator, we can reduce size distortion, but the power becomes extremely low when

the error is strongly serially correlated. Juhl and Xiao (2009) proposed to estimate the

long-run variance using the residuals of the nonparametric regression to mitigate the non-

monotonic power problem. However, the finite sample performance of this test crucially

depends on the choice of the bandwidth in the nonparametric regression. While these papers

tried to improve the accuracy of the long-run variance estimator, there are several methods

with which we do not have to consistently estimate the long-run variance. Sayginsoy and

Vogelsang (2011) and Yang and Vogelsang (2011) proposed fixed-b sup-Wald and fixed-b sup-

LM tests, respectively, which are robust to I(0)/I(1) errors. The fixed-b framework is based on

Kiefer and Vogelsang (2005), which used an inconsistent long-run variance estimator where

the bandwidth is proportional to the sample size. The fixed-b sup-Wald and sup-LM tests

have relatively good sizes under the null hypothesis, but there is a loss of power due to
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the inconsistent estimation of the long-run variance. On the other hand, Shao and Zhang

(2010) proposed a self-normalized test based on the CUSUM test. The basic idea of self-

normalization is similar to the fixed-b approach. Although the finite sample performance of

these tests are improved, compared to the frequently used tests, such as the original CUSUM

and sup-type tests, the existing methods do not seem to be satisfactory in terms of both size

and power.

In this chapter, we develop an accurate long-run variance estimator and propose to use it

to improve the finite sample property of the structural change tests. This estimator can be

obtained by correcting the bias up to O(T−1), where T is the sample size. The key feature

of our method is that bias correction is achieved by taking a structural break into account.

The advantage of our method is that tests with our long-run variance estimator can control

the empirical size well, while maintaining high power. The simulation results show that the

proposed tests have a higher power than other tests, such as the fixed-b test. Moreover, the

power difference between our bias-corrected tests and the original (bias-uncorrected) tests is

very minor, and it becomes negligible as the sample size increases. This result is in contrast

to some other tests, which suffer from asymptotic power loss.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce the

model and the test statistic. The derivation of the bias term is discussed in Section 4.3,

and the bias correction method is explained in Section 4.4. The case with general error

processes is discussed in Section 4.5. Simulation results are given in Section 4.6, and Section

4.7 concludes the chapter. All mathematical proofs are delegated to the appendix.

4.2 Model and Test Statistic

Let us consider the following mean-shift model:

yt = µ+ δ ·DUt(T
0
b ) + ut, t = 1, · · · , T, (4.1)

where DUt(T
0
b ) = 1{t > T 0

b }, and 1{·} is the indicator function. We assume that ut is a

zero-mean stationary process and that the break date T 0
b is unknown.

The testing problem is

H0 : δ = 0 vs. H1 : δ ̸= 0. (4.2)

Under H0, there is no shift in mean, whereas under H1, there is a one-time break.

In order to test for a shift in mean, we need to estimate the long-run variance of ut defined

by ω =
∑∞

ℓ=−∞E(utut−ℓ) for the scale adjustment, which can be consistently estimated by
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the kernel method. As it is known that tests with ω estimated under the null hypothesis suffer

from the non-monotonic power problem, as pointed out by Vogelsang (1999), we exclude the

case where the long-run variance is estimated under the null hypothesis, and focus on the

case where it is estimated under the alternative of a one-time break. That is, we consider the

following kernel estimator of ω as a benchmark:

ω̂(Tb) = γ̂0 + 2

T−1∑
j=1

k

(
j

m

)
γ̂j , (4.3)

where k(·) is the kernel function, m is the bandwidth, γ̂j is the estimator of the jth auto-

covariance of ut defined by γ̂j = T−1
∑T

t=j+1 ûtût−j , the residuals ût are obtained under the

alternative with the supposed break date Tb, and

ût =

yt − ȳ1 for t = 1, · · · , Tb,

yt − ȳ2 for t = Tb + 1, · · · , T,
(4.4)

where ȳ1 = T−1
b

∑Tb
t=1 yt and ȳ2 = (T − Tb)

−1
∑T

t=Tb+1 yt. Note that Tb is specified by a

researcher and it is not necessarily consistent with T 0
b . We suppress the dependency of γ̂j

and ût on Tb for notational simplicity.

When the parametric structure is framed for ut, we may use, instead of the kernel esti-

mator, the autoregressive spectral density estimator of ω based on the AR(p) model given

by

ω̂AR(Tb) =
σ̂2ε(

1−
∑p

j=1 ϕ̂j

)2 , (4.5)

where ût =
∑p

j=1 ϕ̂j ût−j + ε̂t with ϕ̂j (j = 1, · · · , p) being the OLS estimator, and σ̂2ε =

(T − p)−1
∑T

t=p+1 ε̂
2
t .

In this chapter, we mainly consider the following two structural change tests, which have

been commonly used in many practical analyses, with ω̂∗(Tb) denoting either ω̂(Tb) in (4.3)

or ω̂AR(Tb) in (4.5), as the estimator of ω.

Sup-Wald test

Following Andrews (1993), the sup-Wald statistic for testing problem (4.2) is given by

sup-W = max
Tb∈[εT,(1−ε)T ]

W (Tb), where W (Tb) =
SSR0 − SSR(Tb)

ω̂∗(Tb)
, (4.6)

where SSR0 is the sum of squared residuals under H0, SSR(Tb) is the sum of squared

residuals under the alternative of a one-time break with the break date Tb, and ε is the

trimming parameter.
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CUSUM test

The CUSUM test statistic proposed by Ploberger and Krämer (1992) is originally defined as

CUSUM = max
Tb∈[1,T−1]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̃

∣∣∣∣∣ ,
where ũt is the residual under H0, and the long-run variance estimator ω̃ is estimated under

the null hypothesis. As explained in Crainiceanu and Vogelsang (2007) and Deng and Perron

(2008), this test suffers from the non-monotonic power problem because the long-run variance

is estimated under the null hypothesis of no break. In order to avoid this problem, we again

consider estimating the long-run variance under the alternative of a one-time break. Then,

the test statistic should be modified as

CUSUMH1 = max
Tb∈[1,T−1]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̂∗(Tb)

∣∣∣∣∣ . (4.7)

4.3 Derivation of the Bias

In this section, we derive the bias of the reciprocal of the long-run variance estimator up to

O(T−1), under the assumption that the correct specification for ut is the AR(p) model. The

case with general error processes will be discussed later. Throughout this chapter, we define

the bias as the expectation up to O(T−1), ignoring the op(T
−1) terms.2 Note that since our

purpose is to control the size of the tests by precisely estimating the long-run variance, the

bias is derived under the null hypothesis of no break, whereas ût is obtained assuming a

one-time break at Tb, which is given by

ût =

ut − ū1 for t = 1, · · · , Tb,

ut − ū2 for t = Tb + 1, · · · , T.
(4.8)

Here, we note that Tb is not the actual structural break date, but the prespecified possible

break date which is necessary for calculation of the long-run variance estimator.

To derive the bias term, we make the following assumptions when p ≥ 1:

Assumption 1 {ut} follows a zero-mean stationary AR(p) process: ut =
∑p

j=1 ϕjut−j + εt,

where 1 −
∑p

j=1 ϕjz
j ̸= 0 for |z| ≤ 1, and {εt} is a martingale difference sequence with a

finite 4th moment, which satisfies E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.

2If we need to evaluate the expectation without ignoring the op(T
−1) terms, we have to make additional

assumptions about the existence of higher-order moments.
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Assumption 2 Tb/T → λ ∈ (0, 1) as T → ∞.

When p = 0, we use the following Assumption 1’, instead of Assumption 1.

Assumption 1’ ut = εt for all t, where {εt} is a martingale difference sequence with a finite

4th moment, which satisfies E(ε2t |Ft−1) = σ2ε .

Assumptions 1 and 1’ exclude the case where {ut} is a unit root process. Assumption 2

is standard for structural break models.

We derive the bias of the reciprocal of ω̂AR, which is given by

1

ω̂AR
=


(
1−

∑p
j=1 ϕ̂j

)2
σ̂2ε

for p ≥ 1,

1

σ̂2ε
for p = 0.

(4.9)

Here, we consider the bias of the reciprocal of ω̂AR because the long-run variance estimator

is placed in the denominator of the test statistics.

In general, when random variables X and Y satisfy X−E(X) = Op(T
−1/2), Y −E(Y ) =

Op(T
−1/2), E(X) ̸= 0, and E(Y ) ̸= 0, the following relation holds:

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(T−1), (4.10)

which can be obtained by the Taylor expansion of f(x, y) = x/y around (x, y) = (E(X), E(Y )),

and by taking expectations, ignoring the op(T
−1) terms. See Mood, Graybill, and Boes (1974,

p.181).

Therefore, in order to derive the bias of (4.9) up to O(T−1), we need to obtain E[(1 −∑p
j=1 ϕ̂j)

2], E[σ̂2ε ], V ar[σ̂
2
ε ], and Cov[σ̂2ε , (1 −

∑p
j=1 ϕ̂j)

2] for p ≥ 1. When p = 0, we only

need E[σ̂2ε ] and V ar[σ̂
2
ε ].

The following lemma gives the results for p ≥ 1:

Lemma 1 Under Assumptions 1 and 2, the following relations hold:

(a) E

[(
1−

∑p
j=1 ϕ̂j

)2]
= (1− ι′ϕ)2 +

1

T − p

{
2(1− ι′ϕ)ι′

(
K(1)

p +B(1)
p ϕ

)
+ σ2ε ι

′R−1ι
}
+ o(T−1),

(b) E
[
σ̂2ε
]
= σ2ε −

p+ 2

T − p
σ2ε + o(T−1),

(c) V ar
[
σ̂2ε
]
=

1

T − p

{
E(ε4t )− σ4ε

}
+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑p
j=1 ϕ̂j

)2]
= o(T−1),
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where R is a p× p matrix whose (i, j) element is given by γ|i−j| = E(utut−|i−j|), ι is a p× 1

vector of ones, and K
(1)
p and B

(1)
p are defined in Chapter 3.

By (4.10) and Lemma 1, we obtain the first-order bias of the reciprocal of the long-run

variance estimator for p ≥ 1:

Theorem 1 Under Assumptions 1 and 2, the expectation of 1/ω̂AR up to O(T−1) is given

by

E

[
1

ω̂AR

]
=

(1− ι′ϕ)2

σ2ε
+

1

T − p

[
1

σ2ε

{
2(1− ι′ϕ)ι′

(
K(1)

p +B(1)
p ϕ

)
+ σ2ε ι

′R−1ι+ (p+ 2)(1− ι′ϕ)2
}

+
(1− ι′ϕ)2

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Remark 1 When p = 1, the expectation of 1/ω̂AR is given by

E

[
1

ω̂AR

]
=

(1− ϕ1)
2

σ2ε
+

1

T − 1
· 1

σ2ε

[
(1− ϕ1)(8 + 6ϕ1) + (1− ϕ1)

2

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1),

if the long-run variance is estimated using the residuals under the alternative.

On the other hand, if we use the residuals under the null hypothesis of no structural break

to estimate the long-run variance, the expectation can be shown to be given by

E

[
1

ω̂AR

]
=

(1− ϕ1)
2

σ2ε
+

1

T − 1
· 1

σ2ε

[
(1− ϕ1)(5 + 5ϕ1) + (1− ϕ1)

2

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Therefore, we can see that the first-order bias of 1/ω̂AR with the residuals under the alternative

hypothesis is larger than the one with the residuals under the null hypothesis.

Similarly, when p = 0, we obtain the following lemma and theorem:

Lemma 1’ Under Assumptions 1’ and 2, the following relations hold:

(a) E
[
σ̂2ε
]
= σ2ε −

2

T
σ2ε + o(T−1),

(b) V ar
[
σ̂2ε
]
=

1

T

{
E(ε4t )− σ4ε

}
+ o(T−1).

Theorem 1’ Under Assumptions 1’ and 2, the expectation of 1/ω̂AR up to O(T−1) is given

by

E

[
1

ω̂AR

]
=

1

σ2ε
+

1

T

[
2

σ2ε
+

1

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o(T−1).

Remark 2 The first-order bias of 1/ω̂AR does not depend on the maintained break fraction

λ.
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4.4 Bias-Corrected Test

In this section, we propose the correction of the bias of (4.9) using Theorems 1 and 1’, and

explain how to use our bias-corrected estimator in order to test for a shift in mean.

4.4.1 Bias correction of the reciprocal of the long-run variance estimator

In this subsection, we obtain the bias-corrected estimator of the reciprocal of the long-run

variance.

Since the first-order bias of (4.9) is given by Theorems 1 and 1’, the bias-corrected esti-

mator of 1/ω is

(
1

ω̂AR

)
BC

=
1

ω̂AR
− b̂, (4.11)

where

b̂ =



1

T − p

[
1

σ̂2ε

{
2(1− ι′ϕ̂)ι′

(
K(1)

p +B(1)
p ϕ̂

)
+ σ̂2ε ι

′R̂−1ι

+(p+ 2)(1− ι′ϕ̂)2
}
+

(1− ι′ϕ̂)2

σ̂2ε

{
Ê(ε4t )

σ̂4ε
− 1

}]
for p ≥ 1,

1

T

[
2

σ̂2ε
+

1

σ̂2ε

{
Ê(ε4t )

σ̂4ε
− 1

}]
for p = 0,

and ϕ̂, σ̂2ε = (T − p)−1
∑T

t=p+1 ε̂
2
t , Ê(ε4t ) = (T − p)−1

∑T
t=p+1 ε̂

4
t , and γ̂ij for the (i, j) element

of R̂ are the least squares estimators of ϕ, σ2ε , E(ε4t ), and γij , respectively.
3

For example, when p = 1, the correcting term is given by

b̂ =
1

T − 1
· 1

σ̂2ε

[
(1− ϕ̂)(8 + 6ϕ̂) + (1− ϕ̂)2

{
Ê(ε4t )

σ̂4ε
− 1

}]
.

4.4.2 Tests based on the bias-corrected long-run variance estimator

The bias-corrected test statistic can be obtained by using the bias-corrected estimator (4.11).

For example, the bias-corrected sup-Wald test statistic is given by

sup-WBC = max
Tb∈[εT,(1−ε)T ]

WBC(Tb), (4.12)

where

WBC(Tb) =

(
1

ω̂AR

)
BC

· (SSR0 − SSR(Tb)) .

3Other consistent estimators can also be plugged in.
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Similarly, the bias-corrected CUSUM test statistic4 is given by

CUSUMH1,BC = max
Tb∈[εT,(1−ε)T ]

∣∣∣∣∣
√(

1

ω̂AR

)
BC

· T−1/2
Tb∑
t=1

ũt

∣∣∣∣∣ . (4.13)

Note that ω̂AR in (4.12) and (4.13) depends on Tb, so that this bias correction procedure

needs to be repeatedly applied to each ω̂AR for all possible Tb with the repeatedly estimated

lag order. However, we suppress the dependency on Tb for notational simplicity.

Since the correcting terms are Op(T
−1), the asymptotic distribution of the test statistic

under the null hypothesis is exactly the same as that of the original test, and thus we do not

have to modify critical values in order to apply the bias-corrected test. Moreover, even under

the alternative, it can be shown that the first-order bias is asymptotically negligible, so that

there is no asymptotic power loss.

4.5 Extension to the Model with General Error Processes

In this section, we consider the case where the error term ut is generated by a stationary

AR(∞) process. In this case, we make the following assumption:

Assumption 1” ut =
∑∞

j=1 ϕjut−j + εt, where 1−
∑∞

j=1 ϕjz
j ̸= 0 for |z| ≤ 1,

∑∞
j=1 |ϕj | <

∞, and {εt} is a martingale difference sequence with a finite 4th moment, which satisfies

E(ε2t |Ft−1) = σ2ε and E(ε3t |Ft−1) = κ3.

Although only the absolute summability of {ϕj} is assumed in Assumption 1”, we may require

the higher order summability of {ϕj}, as explained below.

Since the error term is an infinite order AR process, we need to truncate the lag order

at some point pT and consider estimating the AR(pT ) model. The following assumption is

concerned with the lag truncation point pT .

Assumption L

(a) pT → ∞ and p4T /T → 0 as T → ∞. (4.14)

(b)
∑∞

j=pT+1 |ϕj | = o(pT /T ) as T → ∞.

Assumption L(a) gives the upper bound of the divergence rate of pT . This rate guar-

antees the consistency of the autoregressive spectral density estimator as proved by Berk

4We use a trimming for the CUSUM test so that Assumption 2 is satisfied.

92



(1974) and den Haan and Levin (1998), although condition (4.14) is stronger than theirs.

Assumption L(b) not only imposes the lower bound of pT but is also related with the higher

order summability of {ϕj}. For example, when
∑∞

j=0 j
3+α|ϕj | < ∞ holds and pT is greater

than O(T 1/(4+α)) for some α > 0, Assumption L(b) is satisfied. Note that this assumption is

satisfied if ut is generated by a finite-order ARMA process and pT = O(T δ) for some δ > 0,

because |ϕj | declines geometrically to zero.

The next theorem gives the bias of the reciprocal of the autoregressive spectral density

estimator up to O(pT /T ):

Theorem 1” Under Assumptions 1”, 2, and L, the expectation of 1/ω̂AR up to O(pT /T ) is

given by

E

[
1

ω̂AR

]
=

(1− ι′ϕ)2

σ2ε
+

1

T − pT

[
1

σ2ε

{
2(1− ι′ϕ)ι′

(
K(1)

pT
+B(1)

pT
ϕ
)
+ σ2ε ι

′R−1ι+ (pT + 2)(1− ι′ϕ)2
}

+
(1− ι′ϕ)2

σ2ε

{
E(ε4t )

σ4ε
− 1

}]
+ o

(pT
T

)
,

where

ϕ =


ϕpT ,1

ϕpT ,2

...

ϕpT ,pT

 =


γ0 γ1 · · · γpT−1

γ1 γ0
. . .

...
...

. . .
. . . γ1

γpT−1 · · · γ1 γ0



−1 
γ1

γ2
...

γpT

 . (4.15)

This first-order bias is exactly the same as the one in Theorem 1. Therefore, we can

implement the bias correction as explained in Section 4.4.

4.6 Simulation Results

4.6.1 Biases and mean squared errors of the estimators of 1/ω

In this subsection, we investigate the finite sample performance of the estimators of the

reciprocal of the long-run variance. The data generating process is as follows:

yt = µ+ ut, t = 1, · · · , T. (4.16)

We consider the following cases for the error processes of ut:
AR(1) : ut = ϕut−1 + εt, εt ∼ i.i.d. N

(
0, (1− ϕ)2

)
,

AR(2) : ut = ϕ1ut−1 + ϕ2ut−2 + εt, εt ∼ i.i.d. N
(
0, (1− ϕ1 − ϕ2)

2
)
,

MA(1) : ut = εt + θεt−1, εt ∼ i.i.d. N
(
0, 1

(1+θ)2

)
,
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where the variance of εt is selected so that 1/ω = 1.

We compare the biases and mean squared errors (MSEs) of the following estimators:

(i): 1/ω̂kernel: the reciprocal of the kernel estimator given by (4.3).

(ii): 1/ω̂AR: the reciprocal of the autoregressive spectral density estimator given by (4.5).

(iii): (1/ω̂AR)BC : the bias-corrected estimator given by (4.11).

Throughout the simulation in this subsection, we set Tb = 0.5T . For the kernel estimator

(4.3), we use the quadratic spectral kernel with the bandwidth parameter selected by An-

drews’ (1991) rule. When we implement the AR(p) regression to obtain the autoregressive

spectral density estimator, we select the lag length p by the Bayesian Information Criterion

(BIC) with the maximum lag length 5. In this simulation, the number of replications is

10,000.

Tables 4.1–4.3 give the simulation results. As we can see from Table 4.1, when the error

term follows a stationary AR(1) process, the bias-corrected estimator has much less bias

than the other ones. Moreover, the bias-corrected estimator has less MSE, compared to

other estimators. Table 4.2 shows the results with AR(2) errors. In this case, we can see

similar results. When ut follows an MA(1) process, we can see from Table 4.3 that the bias-

corrected estimator has less bias in most cases, and the MSE of the bias-corrected estimator

is comparable to that of other estimators. Overall, the bias-corrected estimator performs well

in finite samples.

4.6.2 Finite sample performance of the tests

In this subsection, we investigate the finite sample performance of the tests through a Monte

Carlo experiment. The data generating process is as follows:

yt = µ+ δ ·DUt(T
0
b ) + ut, µ = 0, δ =

c√
T
, T 0

b = 0.5T.

We consider the following four processes of ut:

AR(1) : ut = ϕut−1 + εt, εt ∼ i.i.d. N
(
0, 1− ϕ2

)
,

AR(2) : ut = ϕ1ut−1 + ϕ2ut−2 + εt, εt ∼ i.i.d. N
(
0,

(1+ϕ2){(1−ϕ2)2−ϕ2
1}

1−ϕ2

)
,

MA(1) : ut = εt + θεt−1, εt ∼ i.i.d. N
(
0, 1

1+θ2

)
,

ARMA(3, 3) : ut = ϕ3ut−3 + εt + θεt−3, εt ∼ i.i.d. N
(
0, 1−ϕ6

1+2ϕ3θ+θ2

)
,
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where the variance of εt is selected so that V ar(ut) = 1.

In this subsection, we compare the sizes and powers of the following tests:

(sup-Wald test)

(i): sup-W : the sup-Wald test (4.6) with the long-run variance estimator given by (4.3).

(ii): sup-WAR: the sup-Wald test (4.6) with the long-run variance estimator given by (4.5).

(iii): sup-WBC : the bias-corrected sup-Wald test (4.12).

(iv): sup-Wkej : the sup-Wald test (4.6) with the hybrid long-run variance estimator by

Kejriwal (2009).

(v): fixed-b sup-W : the fixed-b sup-Wald test based on Sayginsoy and Vogelsang (2011),

where we use the J statistic as a scaling factor. We use the Daniell kernel with the

feasible integrated power optimal data-dependent bandwidth as described in Sayginsoy

and Vogelsang (2011), and a 10% trimming for this test.

(CUSUM test)

(i): CUSUMH1 : the CUSUM test with a 15% trimming, which is given by

CUSUMH1 = max
Tb∈[0.15T,0.85T ]

∣∣∣∣∣T−1/2
∑Tb

t=1 ũt√
ω̂∗(Tb)

∣∣∣∣∣ . (4.17)

We use the long-run variance estimator given by (4.3).

(ii): CUSUMH1,AR: the CUSUM test (4.17) with the long-run variance estimator given by

(4.5).

(iii): CUSUMH1,BC : the bias-corrected CUSUM test (4.13).

(iv): SN: the self-normalizing method by Shao and Zhang (2010).

For the kernel estimator (4.3), we use the quadratic spectral kernel with the bandwidth

parameter selected by Andrews’ (1991) rule to estimate the long-run variance, except for the

fixed-b sup-Wald test. When we implement the AR(p) regression to obtain the autoregressive

spectral density estimator, we select the lag length p by the BIC, where the maximum lag

length is 5. For the sup-Wald and CUSUM tests, we use a 15% trimming, except for the

fixed-b sup-Wald test. The number of replications is 2,000, and the nominal size is 0.05.
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Empirical sizes of the tests

Tables 4.4–4.9 show the empirical sizes of the tests. When the error follows an AR(1) pro-

cess, we can see from Table 4.4 that the original sup-Wald test tends to over-reject the null

hypothesis as ϕ gets larger. By using the autoregressive spectral density estimator, we can

mitigate the over-rejection problem, except the case where ϕ = 0.2, but the test still has size

distortion. We need to note that, when ϕ = 0.2, the sup-WAR test has a larger size distortion

than the original sup-Wald test because the lag length selected by the BIC is sometimes too

short in finite samples. The bias-corrected sup-Wald test performs much better than the bias-

uncorrected tests, in particular when ut is strongly serially correlated. The empirical sizes

of the sup-Wald test based on Kejriwal (2009) and the fixed-b sup-Wald test are relatively

close to the nominal one, although the fixed-b test is rather conservative. We observe similar

results for the CUSUM test. The bias-corrected CUSUM test (CUSUMH1,BC) has much less

size distortion than the bias-uncorrected CUSUM tests (CUSUMH1 and CUSUMH1,AR), un-

less ϕ = 0.2. Moreover, the CUSUMH1,BC test performs better than the self-normalization

based test when ϕ is large. As the sample size increases, the sizes of all tests get closer to

the nominal one.

Tables 4.5 and 4.6 show the empirical sizes with AR(2) errors. We can see that the relative

performance holds when ϕ2 = −0.3, compared to the case with AR(1), whereas when ϕ2 = 0.3

and T = 100, all the tests tend to over-reject the null hypothesis, including the bias-corrected

tests. In this case, only the fixed-b sup-Wald test has relatively good size. However, as the

sample size increases, the performance of the bias-corrected tests greatly improves, and it is

superior to that of the other tests. When the error follows an MA(1) process, we can see

from Table 4.7 that the bias-corrected tests have good finite sample properties.

Tables 4.8 and 4.9 give the results with ARMA(3,3) errors. Note that an important

feature of this error process is that the autocovariance satisfies γj = E(utut−j) ̸= 0 if and

only if j = 0,±3,±6, · · · . Therefore, it is difficult to fit with the autoregressive process.

In this case, we can see from Table 4.8 that most tests tend to under-reject the null

hypothesis when θ = −0.3 and ϕ ≤ 0.6. When θ = −0.3 and ϕ = 0.8, all tests are over-sized.

In this case, the fixed-b sup-Wald test and the self-normalization based test have relatively

good size.

When θ = 0.3, we can see from Table 4.9 that the original sup-Wald test and Kejriwal’s

(2009) test are severely over-sized, especially when ϕ is large. The sup-Wald test with the

autoregressive spectral density estimator performs better than the original sup-Wald test
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when ϕ is large. The bias-corrected sup-Wald test performs well when ϕ is large, although

it tends to be over-sized when ϕ is small. The fixed-b sup-Wald test has relatively good

size when ϕ is small, but it is over-sized when ϕ is large. We can see similar results for the

CUSUM test.

Size-adjusted power of the tests

We compare the size-adjusted power of the tests.56 Figure 4.1 shows the size-adjusted pow-

ers with AR(1) errors and T = 100. We can see from Figure 4.1 that, when ϕ = 0.6,

the bias-corrected sup-Wald test is more powerful than the sup-Wkej and fixed-b sup-Wald

tests, while for the CUSUM test, the bias-corrected test performs much better than the self-

normalization based test. We can see that the power difference between the bias-corrected

and bias-uncorrected tests is relatively small. Similar results are obtained when ϕ = 0.8.

Although the power loss due to bias correction is slightly larger than that of the case with

ϕ = 0.6, the bias-corrected test has higher power than the other tests.

As in Figure 4.2, when T = 200, the power difference between the bias-corrected and bias-

uncorrected tests is much smaller than the case when T = 100. In this case, the bias-corrected

test still outperforms the other tests.

Figures 4.3 and 4.4 show the size-adjusted power of the sup-Wald tests with ARMA(3,3)

errors.7 When θ = −0.3, all tests have similar size-adjusted power, although the sup-Wkej

test has slightly non-monotonic power when T = 100. When θ = 0.3, the size-adjusted power

of the bias-corrected test is lower than that of the original sup-Wald test and the Kejriwal’s

(2009) test. As the sample size increases, we can see that the finite sample performance of

the bias-corrected test improves.

Overall, our bias-corrected tests have good finite sample property, in terms of both size

and power. Even when it is difficult to fit the AR approximation, such as the ARMA(3,3)

case with θ = 0.3, the bias-corrected test has less size distortion than the original tests in

5Because the critical value of the fixed-b sup-Wald test is data-dependent, we adjust the size of the other

tests to the empirical size of the fixed-b sup-Wald test with nominal one 0.05 in the case with AR(1) errors.
6Since the size-adjusted powers of the sup-WAR and CUSUMH1,AR tests are almost the same as those

of the sup-W and CUSUMH1 tests, respectively, in the AR(1) case, we omit the results of sup-WAR and

CUSUMH1,AR tests.
7We omit the results of the fixed-b sup-Wald test because its critical value is data-dependent, and this test

has serious size distortion in some cases. Our preliminary simulation results show that the size-adjusted power

of the fixed-b sup-Wald test is similar to that of the sup-WAR test, if the size is adjusted to the empirical size

of the fixed-b sup-Wald test.
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most cases, although it has low size-adjusted power, especially when the sample size is small.

Comparison of the finite sample performance of bias-corrected tests

Here, we focus on only the bias-corrected versions of the tests commonly used in the literature

and compare their sizes and powers. We consider the sup-Wald test (sup-WBC) by Andrews

(1993), the mean-Wald test (mean-WBC) and the exponential-Wald test (exp-WBC) by An-

drews, Lee, and Ploberger (1996), the locally best invariant test against the random walk

alternative by Nabeya and Tanaka (1988) (which we denote as LMH1,BC), the asymptotically

point optimal test against the random walk alternative by Elliott and Müller (2006) (which

we denote as qLLH1,BC), and the CUSUMH1,BC test given by (4.17). Since the original

LM, qLL, and CUSUM tests use the long-run variance estimator under the null hypothesis

and they have non-monotonic power, we consider estimating the long-run variance under the

alternative of a one-time break. For the LM and qLL tests, we use the residuals under the

alternative with break date T̂b = argminTb∈[0.15T,0.85T ] SSR(Tb). For the CUSUM test, we

use the bias-corrected test statistic (4.13).

The empirical sizes with AR(1) errors are given in Table 4.10 (we omit the other cases

to save space). We observe that the bias-corrected mean-Wald test has relatively good size,

while the other tests are slightly over-sized.

The size-adjusted powers of the tests are given in Figure 4.5. We observe that the bias-

corrected CUSUM test performs best, while the mean-Wald, LM, and qLL tests suffer from

power loss, in particular when the errors are strongly serially correlated, or when the sample

size is small.

Overall, we can see that the bias-corrected CUSUM test with the long-run variance esti-

mated under the alternative has the best finite sample properties, against the alternative of a

one-time break. However, it is not clear whether this bias-corrected CUSUM test outperforms

other tests against various kinds of the alternative, such as multiple breaks or time-varying

parameter models.

4.7 Conclusion

We have proposed a bias correction to the long-run variance estimator, which is estimated

under the alternative hypothesis of a one-time break. We have derived the first-order bias

of the reciprocal of the long-run variance estimator, taking a structural break into account.

By Monte Carlo simulations, we have found that our bias-corrected tests have better finite
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sample properties than the existing tests.

So far, we have considered tests for a mean shift, but it is also in our interest to con-

sider bias correction to test for structural change in general regression models. We wish to

investigate such topics in future studies.

4.8 Appendix: Proofs of Theorem 1” and Related Lemma

Because the AR(p) model is a special case of the AR(∞) model, we only prove the results for

AR(∞) errors. Lemmas 1 and 1’, and Theorems 1 and 1’ can be proved similarly. Note that

pT becomes a fixed number for the finite order AR model and thus, for example, the order

given by o(pT /T ) in the following lemmas becomes o(1/T ) in the AR(p) case.

Lemma 1” Under Assumptions 1”, 2, and L, the following relations hold:

(a) E

[(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= (1− ι′ϕ)2

+
1

T − pT

{
2(1− ι′ϕ)ι′

(
K(1)

pT
+B(1)

pT
ϕ
)
+ σ2ε ι

′R−1ι
}
+ o

(pT
T

)
,

(b) E
[
σ̂2ε
]
= σ2ε −

pT + 2

T − pT
σ2ε + o

(pT
T

)
,

(c) V ar
[
σ̂2ε
]
=

1

T − pT

{
E(ε4t )− σ4ε

}
+ o(T−1),

(d) Cov

[
σ̂2ε ,
(
1−

∑pT
j=1 ϕ̂pT ,j

)2]
= o

(pT
T

)
.

Proof of Lemma 1”

Since (a), (b), and (d) are proved in Lemma 2” in Chapter 3, we only need to prove (c).

Proof of (c).

Since σ̂2ε = (T − pT )
−1
∑T

t=pT+1 ε
2
t +Op(pT /T ), we obtain

√
T − pT

(
σ̂2ε − σ2ε

)
=

1√
T − pT

T∑
t=pT+1

(ε2t − σ2ε) +Op(pT /
√
T )

d→ N
(
0, E(ε4t )− σ4ε

)
,

so that V ar(σ̂2ε) = (T − pT )
−1
{
E(ε4t )− σ4ε

}
+ o(T−1). �
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Proof of Theorem 1”

When X −E(X) = Op(pT /
√
T ), Y −E(Y ) = Op(T

−1/2), E(X) ̸= 0, and E(Y ) ̸= 0, we have

E

(
X

Y

)
=
E(X)

E(Y )

[
1− Cov(X,Y )

E(X)E(Y )
+

V ar(Y )

{E(Y )}2

]
+ o(pT /T ),

because p4T /T → 0. Therefore, using the results of Lemma 1”, we obtain the desired result.

�
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Figure 4.1: Size-adjusted power of the tests with AR(1) errors and T = 100
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Figure 4.2: Size-adjusted power of the tests with AR(1) errors and T = 200
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Figure 4.3: Size-adjusted power of the sup-Wald tests with ARMA(3,3) errors and T = 100
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Figure 4.4: Size-adjusted power of the sup-Wald tests with ARMA(3,3) errors and T = 200
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Figure 4.5: Size-adjusted power of the bias-corrected tests with AR(1) errors
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