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Chapter 1

Overview

1.1 Introduction

Time series models with structural breaks have been intensively investigated over the last fifty
years, and various kinds of estimation methods and testing procedures have been proposed in
the econometric and statistical literature. For the structural change tests, the CUSUM test
by Brown, Durbin and Evans (1975) and Ploberger and Kramer (1992), the sup-type test by
Andrews (1993), and the mean- and exponential-type tests by Andrews and Ploberger (1994)

and Andrews, Lee and Ploberger (1996) are widely used in empirical analyses.

In practice, when we apply structural break tests, we need to take serial correlation into
account, and thus we have to estimate the long-run variance of the error term. However, it
is known in the literature that the finite sample performance of the tests is poor when we
assume serial correlation in the error term. For example, if we estimate the long-run variance
under the null hypothesis of no structural breaks, the tests suffer from the so-called “non-
monotonic power” problem, as explained in Vogelsang (1999), Crainiceanu and Vogelsang
(2007), Deng and Perron (2008) and Perron and Yamamoto (2014). The “non-monotonic
power” problem is that the power decreases as the break magnitude increases, so that we
cannot detect big structural breaks. The reason for this problem is that the long-run variance
estimator using the residuals under the null hypothesis takes extremely large values when the
break magnitude is large, and thus the test statistics take small values under the alternative
hypothesis. On the other hand, if we estimate the long-run variance under the alternative
hypothesis, the tests suffer from the size distortion because the long-run variance estimator

has downward bias under the null hypothesis.

In order to cope with the problems, several methods have been proposed in the literature.



Sayginsoy and Vogelsang (2011) and Yang and Vogelsang (2011) proposed tests with good
size by employing the fixed-b method. Shao and Zhang (2010) applied the self-normalization
method to the CUSUM test to improve the size of the tests. However, the fixed-b and
the self-normalizing methods use an inconsistent long-run variance estimator, so that the
tests suffer from asymptotic power loss. On the other hand, Juhl and Xiao (2009) proposed
to estimate the long-run variance using nonparametrically demeaned residuals to mitigate
the non-monotonic power problem, but the finite sample performance of their test is very
sensitive to the choice of the bandwidth used in the nonparametric estimation. Kejriwal
(2009) proposed to estimate the long-run variance using the residuals both under the null
and alternative hypotheses, but the test has extremely low power when the error term has
strong serial correlation. Overall, the existing methods are not satisfactory, in view of both

size and power.

While most of the existing literature consider the time series models, as the macro panel
data become available, it is necessary to test for the constancy of parameters in panel data
models. For panel data models, we need to consider the cases where the parameters are
time-varying and heterogeneous. The tests for slope heterogeneity in panel data models are
studied by Swamy (1970), Pesaran and Yamagata (2008) and Juhl and Lugovskyy (2014),
but the tests for parameter constancy in the time series direction has not been widely studied
in the literature.

In this thesis, we investigate the theoretical properties of structural break models, and
propose solutions to the problems associated with structural breaks in time series and panel
data models. In Chapter 2, we develop tests for parameter constancy in panel data models,
taking heterogeneity into account. In Chapter 3, we derive the bias of the long-run variance
estimator in the presence of structural breaks in mean, and propose a bias-corrected long-run

variance estimator. In Chapter 4, we propose a bias-corrected test for a shift in mean.

1.2 Overview: Chapter 2

In Chapter 2, we propose tests for parameter constancy in the time series direction in the

following heterogeneous-slope panel data model:

Yit = ai—i_'x;tﬁit"i_uita izla"'vNa t:1>"'7T7 (11)

Bit = DBit—1+ et (1.2)



where «; is the individual effect, N is the number of cross sections, and T is the number
of time series observations. We assume that wu;; is heteroskedastic across cross-sections, and
cross-sectionally dependent. The testing problem which we consider in this chapter is given

by
Hy: Var(ey) =0 Vs. Hy: Var(ey) > 0.

Under the null hypothesis, (;; is constant across time, whereas under the alternative, §;; is
time-varying.

We construct a locally optimal test based on Tanaka (1996) and an asymptotically point
optimal test based on Elliott and Miiller (2006), and derive the asymptotic distribution of
the test statistics as T'— oo while N is fixed. We also consider the case where the parameter

is homogeneous across cross-sections (which we call the “homogeneous-slope” model).

Since the asymptotic distribution depends on N in the heterogeneous-slope case, we need
to calculate critical values and the optimal localizing parameter for each values of N. There-
fore, we obtain the characteristic function of the limiting distributions, and derive the response

surface of the critical values, and the optimal localizing parameter for the point-optimal test.

By Monte Carlo simulations, we find that the tests based on the homogeneous-slope
model have serious size distortion when the true model has heterogeneous slopes. On the
other hand, the tests based on the heterogeneous-slope model have good size for both the
homogeneous- and heterogeneous-slope models, although these tests have lower power when
the true model has homogeneous slopes. Therefore, we need to pay careful attention to the

existence of heterogeneity in the slopes when we apply these tests.

1.3 Overview: Chapter 3

In Chapter 3, we consider the following time series model with multiple shifts in mean:

1+ uy fort=1,---,1T1,

Mo + U fort=T11+4+1,---,T5,

Ut

i1 +ug fort =T, +1,--- T,

and consider estimating the long-run variance of the error term w;. We estimate the long-run

variance by the autoregressive spectral density estimator based on the AR(p) model, which



is defined as
52
P 27
(1 - Zj:l ¢J’>
where 1; = E§:1 éjﬁt_j + & with qgj (j = 1,--- ,p) being the OLS estimator, and 62 =
_ T A~
(T—p) ' 2 &7

It is known that the autoregressive spectral density estimator has downward bias in finite

WAR =

samples. In this chapter, we derive the bias of the autoregressive spectral density estimator
up to O(T~1), under the assumption that u; follows a stationary AR(p) model. In order to
derive the first-order bias of the long-run variance estimator, we first obtain the bias of the
OLS estimator of the AR(p) regression in the presence of multiple shifts in mean. Then, we
obtain the bias of the long-run variance estimator, and propose a bias-correction method.
We find that the downward bias of the OLS estimator gets larger as the number of structural

breaks increases, which leads to the downward bias of the long-run variance estimator.

When the error term u; follows a stationary infinite-order autoregressive process, we need
to truncate the lag order at pr to implement the autoregression, and we let pr go to infinity
at an appropriate rate. In this case, we show that the first-order bias of the long-run variance
estimator is exactly the same as the case with fixed p, so that our bias correction method
can also be applied in such cases.

We perform simulations to investigate the finite sample properties of the long-run variance
estimators. We find that the bias-corrected long-run variance estimator has much smaller
bias than other estimators, and the mean squared error of the bias-corrected estimator is
comparable to that of other estimators. Overall, we can see that our bias correction works

well in finite samples.

1.4 Overview: Chapter 4

Chapter 4 considers the following mean-shift model:
Y = p+O0DUNT)) +ug, t=1,---,T,

where DU(TY) = 1{t > T}, and 1{-} is the indicator function. We are interested in the

following testing problem:
Hy: §=0 wvs. Hy: d#0.

Under Hy, there is no shift in mean, while under Hi, there is a one-time break.



When w; is serially correlated, we need to estimate the long-run variance of w; for the
scale adjustment in order to test for a shift in mean. If we estimate the long-run variance
under the null hypothesis of no structural breaks, it is known that the tests suffer from
the non-monotonic power problem because the long-run variance is over-estimated when
the break magnitude is large (Vogelsang 1999, Crainiceanu and Vogelsang 2007, Perron and
Yamamoto 2014). On the other hand, if we estimate the long-run variance under the alter-
native hypothesis, the tests suffer from the over-size distortion because the long-run variance

is under-estimated under the null hypothesis.

In order to improve the finite sample properties of the tests, we propose bias correction to
the long-run variance estimator, which is estimated under the alternative hypothesis. First,
we derive the bias of the reciprocal of the autoregressive spectral density estimator based
on the AR(p) model, under the assumption that the correct specification of u; is the AR(p)

process. Then, we propose bias correction to the test statistics.

We also discuss the cases where u; follows a stationary AR(co) process, and we find that

the first-order bias is exactly the same as in the AR(p) case.

Simulation results show that the bias-corrected tests have much less size distortion than
the tests without bias correction. Moreover, the bias-corrected tests have higher size-adjusted
power than the existing tests. Since our proposed tests use a consistent long-run variance
estimator, there is no asymptotic power loss due to bias correction. Thus, the bias-corrected

tests have good finite sample property, in terms of both size and power.



Chapter 2

Testing for Parameter Constancy in

the Time Series Direction in Panel

Data Models

We propose tests for parameter constancy in the time series direction in panel data models.
We construct a locally best invariant test based on Tanaka (1996) and an asymptotically
point optimal test based on Elliott and Miiller (2006). We derive the limiting distributions
of the test statistics as T' — oo while N is fixed, and calculate the critical values by applying
numerical integration and response surface regression. Simulation results show that the

proposed tests perform well if we apply them appropriately.!

2.1 Introduction

This study proposes tests for parameter constancy in panel data models given by
Yit = i + T + wit, (2.1)

where «; is the individual effect and z;; is the vector of regressors. It is often the case that
the parameter S is assumed to be constant across cross-sections and over time, but this
assumption does not always hold; the violation of this assumption leads to a problem. If 5
varies across ¢ and/or t, then the estimation based on (2.1) results in misleading statistical

inference because the estimator of § is inconsistent. The variation in S across i is likely

!The published version is Yamazaki and Kurozumi (2015a), “Testing for Parameter Constancy in the Time
Series Direction in Panel Data Models”, Journal of Statistical Computation and Simulation 85, 2874-2902.
(DO1:10.1080,/00949655.2014.945089)



to happen when we use panel data with large N, while the unstable 8 in the time series
direction typically comes from data with long 7', such as financial data and macro panel
data. From this reason, it is important to test whether or not the parameter 3 is constant

across cross-sections and/or across time.

The motivation of this research is to detect parameter instability in the time series direc-
tion in macro panel data models or seemingly unrelated regression (SUR) models with large
T and small to moderately-sized N. Therefore, we discuss the asymptotics as T" — oo while

N is fixed.

There are several works related to this problem. For example, Swamy (1970), Pesaran and
Yamagata (2008), and Juhl and Lugovskyy (2014) constructed tests for slope homogeneity
in panel data models. On the other hand, tests for parameter constancy in the time series
direction are rarely studied in the literature. Bai (2010) proposed a method of estimating
the break point in mean in heterogeneous panel data, while Horvath and Huskovéd (2012)
and Chan, Horvath and Huskova (2013) considered testing a shift in mean. On the other
hand, Kim (2011) extended Bai’s (2010) result for nonstationary panel data, but they did
not consider tests for parameter constancy. One of the possible reasons for the lack of studies
is that tests for parameter constancy in the time series direction may be seen as a simple
extension of a univariate model to a multivariate one. This is partly true; however, as we
show in this chapter, we have to carefully deal with slope heterogeneity across cross-sections

when we test for parameter constancy in the time series direction.

In the time series literature, there have been many studies on testing for parameter
constancy. For example, tests for shifts in slope are proposed by Andrews (1993), Andrews
and Ploberger (1994), Andrews, Lee and Ploberger (1996), Bai (1997, 1999, 2000), Bai,
Lumsdaine and Stock (1998), Bai and Perron (1998), Andrews and Kim (2006), Qu and
Perron (2007), Kejriwal and Perron (2010), and Kim (2010). Further, the optimality is
discussed by Andrews and Ploberger (1994), Andrews, Lee and Ploberger (1996), Sowell
(1996), Kim and Perron (2009), and Perron and Yamamoto (2014). On the other hand,
testing for parameter constancy using a time-varying parameter under the alternative is
considered by Nyblom and Mékeldinen (1983), King and Hillier (1985), Nyblom (1986, 1989),
Nabeya and Tanaka (1988), Hansen (1992a, b), Kurozumi (2003), Elliott and Miiller (2006),
among others, and the optimal properties of the tests are studied in, for example, Nyblom
and Mékeldinen (1983), King and Hillier (1985), Nyblom (1989), Nabeya and Tanaka (1988),
Kurozumi (2003), and Elliott and Miiller (2006). An overall review of structural changes is
given by Perron (2006) and Aue and Horvath (2013).
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In this research, we extend a time series model with time-varying parameter to the cor-
responding panel data model and develop locally optimal and asymptotically point optimal
tests for parameter constancy. We consider both the homogeneous-slope and heterogeneous-
slope models and derive the limiting distributions of the test statistics as T" — oo with N
fixed. Then, we derive the characteristic functions of the test statistics, which are used to
obtain critical values by numerical integration based on Lévy’s inversion formula, and im-
plement response surface regressions to obtain critical values for the case of large degrees
of freedom. We show that critical values are well approximated by response surface re-
gressions. Through simulations, we show the importance of the careful treatment of the

homogeneous/heterogeneous-slope cases in view of size and power.

The remainder of this chapter is organized as follows. In Section 2.2, we develop tests for
parameter constancy. Calculation of critical values is discussed in Section 2.3, and the finite
sample properties are investigated via Monte Carlo simulations in Section 2.4. Concluding

remarks are given in Section 2.5. All mathematical proofs are delegated to the appendix.

2.2 Model, Assumptions and Test Statistics

2.2.1 Model and assumptions
In this section we consider the following panel data model with heterogeneous slopes:
yit:ai+x;tﬁit+uit, ’L':]-a"'an t:]-a""Ta (22)

where «; is an individual effect, z;; is a k x 1 vector of strictly exogenous regressors, and F;;

is a time-varying k x 1 vector of parameters. For each ¢, suppose that 3;; evolves as follows:

Bit = Bit—1 + €, (2.3)

and the initial values B0, ¢ = 1,--- , N are unknown and nonstochastic. The time-varying
specification in (2.3) implies the parameter varies smoothly, and that we cannot expect the
future change in the parameter, such as the direction and the magnitude of change, based on

the past information.? We call model (2.2)-(2.3) the “heterogeneous-slope” model.

For notational convenience, we stack equation (2.2) as follows. First, the equations at

When B;; follows a stationary autoregressive process (i.e., fir — Bi = ?:1 &, (Bijt—j — Bi) + eir where
=37, ®;;27| # 0 for |z| < 1), our tests cannot detect parameter instability. In such cases, we need to use

tests based on Shively (1988) and Lin and Terdsvirta (1999).
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time ¢ for individuals ¢ = 1,--- , N are stacked as

Y1t Qg T, 0 Bt U1y
Yot az T Bat (o
- . + . . + . ’
lunve|  |en| |0 SU/Nt_ One| [ unt
or
Yt = a+ Dyt Bt + g, (2.4)
where Dy = diag{z!;, zb;, -+ , 2\, } is an N x kN matrix, and 8; = (B, B, , By is a
kN x 1 vector.
Then, stacking equation (2.4) from ¢t = 1 to T, we have
Y1 In Dy 0 B1 uy
Y2 In Dyo B2 Uz
= a+ + ,
T | I | 0 Dur| |Br|  |ur
or
y=Fna+ Dgf +u, (2.5)
where Fy = 17 ®1Iy with ¢ being a T'x 1 vector of ones and Dy, = diag{Dy1, D2, -+, Dyn}.
On the other hand, by letting e, = [e],, €5, -+ , e\, and Bo = [B19, Bo: -+ 5 Byo)» B can
also be expressed as
b1 TN Iyn 0 e1
B2 TN Iyn Iy €2
- 60 + ;
Br| [ ey kv en - Dn | |er)
or
,BZFkNﬂo—I—(L@IkN)e, (2.6)

where Fipny = tp ® Iy and L is a T' x T random walk generating matrix, which is a lower

triangular matrix with the diagonal and lower elements equal to 1.

Substituting (2.6) into (2.5) yields

y:FNa—i—XBo—Fde(L@IkN)e—i-u

=Zvy+v+u,

12



where Z = [Fn,X] with X = DgyFyny = [D}y,Doo,---,D.pl', v = [/, 5], and v =

1) M2’

Dy (L ® Ixn)e. Note that v is the error term caused by the variation of 3;; whereas u

is the idiosyncratic error.

In order to construct test statistics and derive the limiting distributions as T" — oo, we

make the following assumptions.
Assumption A1 For each i, {zy}L_, is covariance stationary with finite fourth moments.

Assumption A2 {u;} is an i.i.d. sequence with Elut] =0 and E[uu;] =V, where V is an

N x N known positive definite matrizx.

Assumption A3 {e;} is an i.i.d. sequence with Ele;] = 0 and Eleie}] = pXe, where X, is a
kN x kN known positive definite matriz.

Assumption A4 e is independent of both X and u.
Assumption A5 The individual effect o is fized or independent of u and e.

Assumption A6 The variant D.,V~'u; is a martingale difference sequence with respect
to Ft = o{Dautyut, Dyy—1,ut—1, - } with BE(DLV u}V 1Dy Fim1) = Q where Q =
E(D., V1D, Fi_1) is positive definite.

Assumption A7 T-1 ZE? DLV Dy B rQ and T Zgﬂl} Dat 5 rp hold as T — oo
uniformly in r € [0,1], where u = E(Dyt), and [a] denotes the largest integer less than or

equal to a.

Assumption A8 For all r € [0, 1], the following weak convergences hold jointly as T — oo:

[T7]

() =3 DV S QU (),
t=1
1 ad 1, 4 1/2 "
b — Y DLV v — QX / Wa(s)ds,
U DI A Wi

where p = c2/T? (¢ > 0) with c fived, and Wy (r) and Wa(r) are independent kN -dimensional

standard Brownian motions.

Assumption Al excludes a nonstationary regressor with a unit root. When x;; has a unit

root, it should be first-differenced to be applied in this test. In our model, the regressor x;; is

13



allowed to be correlated across cross-sections. Assumption A2 means that the error term wu;; is
possibly heteroskedastic and cross-sectionally dependent. If we further assume that u is cross-
sectionally independent, then V is simplified as V' = diag {011, ,onn}. By Assumption
A3, the magnitude of the fluctuation in £ is determined by the parameter p as well as 3.
We will localize the parameter p to consider the asymptotic local power functions in later
sections. The assumption of the known variances of V and ¥, will be relaxed later for practical
purpose. The innovations driving the fluctuation in §;; are supposed to be independent of
the regressors and the idiosyncratic errors in Assumption A4. Assumption A5 is required for
deriving the likelihood function but this can be relaxed in practical analysis because our test
statistics are invariant to . We make Assumptions A6-A8 to derive limiting distributions
under both the null and alternative hypotheses. For example, when x; is stationary with

finite fourth moment and z; is independent of u; and e;, Assumptions A6-A8 are satisfied.

We are interested in a testing problem given by
Hy: p=0 vs. Hy: p>0. (2.7)

Under Hy, Var(e;) = 0 and then (; is constant across t. On the other hand, (;; is smoothly
time-varying under H;. Such time-varying parameter models have been considered in the

econometric and statistical literature.

Note that our test can be applied to models with multiple structural changes. For example,

suppose that e; is independently distributed and

Mt with probability p
€it = § —my  with probability p
0 with probability 1 — 2p
where p is close to zero, and m;; is large. This can be viewed as a model with multiple
structural breaks. Therefore, the alternative hypothesis in our model is more general than

that of Bai (1997) and Qu and Perron (2007) because they only assume multiple structural

breaks, and they exclude the time-varying parameter model as the alternative.

2.2.2 The LM test

To derive the Lagrange multiplier (LM) test statistic, we assume that u and e are normally
distributed and X and w are independent. This assumption is made only for the derivation
of the test statistic and the discussion of the optimality; theorems and corollaries in the

following do not require this assumption.

14



By noting that e ~ N(0, pI7 ® ¥.) under Assumptions Al to A5 with normality, the

distribution of y conditional on o and X is given by
ylo, X ~ N (Z7,%(p))  where %(p) = Ir @V + pDyp(LL' ® $.) D),
Then, by letting w = u 4 v, the model can be represented as
y=2Zy+w, w~ N(0,%(p)),

and this corresponds to model (9.5) in Tanaka (1996). Therefore, following Section 9.2 in
Tanaka (1996), the one-sided LM test for the testing problem (2.7) rejects the null hypothesis

when
dx
Y M, %710) dx(p) Y1 (0)Mzy > constant,
dp =0
where My = Iny — Z(Z'(Ip @ V"1)2)7' 2/ (Ir @ V1) and G2 | = Dyy(LL' @ %) Dl
Therefore, the LM test statistic is given by
1 _ _
LMpetero ﬁy,M/Z(IT RV 1)Ddx(LL/ @ Ee)Délz(IT ®V 1)M2y' (28)

For computational purpose, it would be convenient to express the LM test statistic as
1 L
LMhetero = ﬁ Z Sizestv
t=1

where s; = Zizl DLV~ Yo, 9y = [014, -+, 0n¢]', and Dy is the residual of the GLS regression
of
yit:ai+x;t/6i+vita i:17'”7N> tzl?aT

Remark 1 Under the assumption of normality, the LM test is equivalent to the locally best
invariant (LBI) test as shown by Tanaka (1996). Moreover, even without the assumption
of normality, the LM test is an asymptotically LBI test because the limiting distribution in

Theorem 1 does not depend on specific distributions of u; and e;.

In practice, V is replaced with a consistent estimator V, where the (7, j)-th element of 1%

is given by 6;; in equation (2.10).

The limiting distribution of (2.8) is derived under the local alternative given by
(¢=0)
as T' goes to infinity while IV is fixed.

15



Theorem 1 Under Assumptions Al to A8 with p = c?/T?, the LM test statistic weakly

converges to
1
d
LMhetero — / VkN(T; C),VkN(r; C)d?’, (29)
0
as T — oo while N is fized, where

Vin(rie) = B2 (By(r) + ¢Ba(r))
Bi(r) = QY (Wi(r) — rWi(1))

By(r) Q21/2</ Woa(s ds—r/ Wo(s >

and W1(r) and Wa(r) are independent kN -dimensional standard Brownian motions.
Remark 2 In the case of the partial structural change model given by
Yir = i + Ty Bir + wiy0i + wir,

where wy s a covariance stationary and strictly exogenous regressor, the LM test statistic

is the same as (2.8) with Z replaced by [Fn, X, W], W = [D.;, D}y, ,D.r)', and Dy =
diag{w!,, wy, -+ ,wh,}. In this case, the limiting distribution is exactly the same as in
Theorem 1.

Remark 3 In Theorem 1, the limiting distribution depends on ¥, and Q, but when X, = Q™1
holds, we can easily see that the limiting distribution is free of nuisance parameters and is

given by (2.9) with Vin(r;c) replaced by
T 1
Vi (s ) —Wl(r)—rWl(l)—i-c(/ Was)ds —r W2<s>ds>.
0 0

In practice, we do not know the true value of V and X, and we need to modify the test

statistic LMpetero. We replace V with V, whose (i,7)-th element is given by
T

. 1 . 5 . 5
Oij = 7 Z(yit — & — @5y 3i) (Yje — & — 54 3;) (2.10)
t=1

and &;, BZ are based on the following OLS regression:
Yit = o + 2y +u, t=1,---,T.

The proof of consistency of d;; is given in the appendix. On the other hand, to obtain the
asymptotic null distribution that is free of nuisance parameters, we replace X, not with the

consistent estimator of ¥, but with Q_l, where Q is the consistent estimator of () given by

T
1 ~
=7 > D,V Dy (2.11)
t=1
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In this case, the test statistic is modified as

— 1 N A N
LMhetero = ﬁy,M/Z(IT ®V 1>Ddx(LL/ ® Q 1)D2lx(IT QV 1)sz
1 T
= > 5Q 4
t=1

Since V% V and Q 5 Q by the law of large numbers, we obtain the following corollary.

Corollary 1 Under Assumptions Al to A8 with p = ¢2/T?, the modified LM test statistic
weakly converges to

—~ 1 ~ ~
LM notere > / Vi (r; ) View (73 ¢)dr, (2.12)
0

as T — oo while N is fized, where
T 1
Vien (r;¢) = Wi (r) —rWi(1) + CQ1/2Eé/2 </ Wa(s)ds — 7“/ Wz(s)ds> .
0 0

From this result, we can see that the null distribution becomes fol (Wi(r)—rWi (1)) (Wi(r)—
rW1(1))dr, which is free of nuisance parameters and is known as the generalized Von Mises
distribution with kN degrees of freedom. Therefore, the modified LM test is feasible, but
it is not locally optimal unless ¥, = Q' holds. The calculation of critical values for this

distribution will be discussed in a later section.

2.2.3 The asymptotically point optimal test

In this subsection, we extend the asymptotically point optimal test for parameter constancy
in time series models proposed by Elliott and Miiller (2006) to panel data models. Following

their result, the test statistic we consider is given by

kN
qLLhetero = Z @Z(GE - Me)@fa (213)
(=1
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where we reject the null hypothesis when gL Lpetero takes small values, and

by = (It ® thn,Q /*) Dy (Ir ® V1) My,
M, = Ir—T Y,

Ge = H'— H (b HYup) VW HY,

H, = r;'LAALL

1 0
_TE : . .
Az = (T x T matrix),
0 —Te 1
1 2 1/ . &
re = 2<2+W_T 4C2+712>,

and N is a KN x 1 vector with 1 in the /-th element and Os elsewhere. Note that we need
to prespecify the value of the localizing parameter ¢.

To derive the limiting distribution of ¢LLjcsero, we assume ¥, = Q! in order for the test
statistic to be asymptotically free of nuisance parameters under the local alternative, which

is a useful result when we choose an optimal value of ¢ in a later section.

Theorem 2 Under Assumptions A1 to A8 with p = ¢*/T? and ¥ = Q7', the qLLnetero

statistic weakly converges to

kN

d _
qLLhetero — Z Rg(C, C)? (214)
/=1

as T — oo while N is fized, where

Ry (C7 6) =

1 2 ) I 2
—eLy(1)? — 02/ Ly(s)%ds — 1 Ceza <e_CLg(1) + c/ e_CSLg(s)d,s)
0 - 0

+ (Lg(l) + c/ol Lg(s)ds) 2] , (2.15)

Li(r) = Jo(r) + cKy(r),
Jo(r) = WLg(T)—C/O e_E(T_S)WLg(S)dS,

K(r) = /0 Woy(s)ds — ¢ /0 e=er=s) ( /0 Wg,g()\)d)\> ds,

and Wi (r) = (Wi (r), -+, Wi n(r))', m = 1,2 are independent kN -dimensional standard

Brownian motions.
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Remark 4 As is seen in the previous section, the LM test is asymptotically locally best

Lis assumed, but its null limiting distribution becomes

wrrespective of whether or not Yo = Q™
asymptotically free of nuisance parameters only under the assumption of o = Q1. On the
other hand, the qLLpetero statistic is asymptotically free of nuisance parameters under the
null hypothesis even without this assumption, but it is an asymptotically point optimal test

only under the assumption of . = Q~'. The asymptotic optimality is proved in exactly the

same way as in Elliott and Mdller (2006), and we omit the proof.

In practice, Q and V are replaced with consistent estimators Q and V as in the case of
the LM test and in this case, the test statistic is denoted as q?j)hetem. The choice of the

localizing parameter ¢ and the calculation of critical values will be discussed in a later section.

2.2.4 The case with serially correlated errors

The above asymptotic results crucially depend on the assumption that D’V =1y, or u; is
serially uncorrelated but we may need to take serial correlation into account in practical
analysis. When the error term w; is serially correlated, the matrix @ in Assumption A8(a)

must be replaced by the long-run variance of D%,V ~1u,.

One of the possible candidates for the consistent estimator is the heteroskedasticity-
autocorrelation consistent (HAC) estimator. However, it is known that the tests based on
the HAC estimator has non-monotonic power as discussed in Vogelsang (1999) and Perron
and Yamamoto (2014). Although the non-monotonic power problem has not been completely
solved, some methods have been proposed to mitigate the problem (cf. Kejriwal 2009, Juhl
and Xiao 2009).

2.2.5 Tests under the homogeneous-slope model

We have so far considered the heterogeneous-slope model where the parameter § varies across
cross-sections. However, when the slopes are homogeneous across cross-sections, it is better

to apply tests based on the following homogeneous-slope model:

Yir = i+ TyB+ wi, (2.16)
B = PBi-1t+er (2.17)
In the following, we allow an abuse of notation by defining e;, 5B, X, ¥, 4 and @Q in

a different way from the previous subsections to save notation. For the homogeneous-slope

model, we modify Assumptions A3 and A6-AS8 as follows:
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Assumption B3 {e;} is an i.i.d. sequence with Ele] =0 and Eleie}] = pXe, where X, is a

k x k known positive definite matriz.

Assumption B6 The variant X,V ~'u; is a martingale difference sequence with respect to
Fi = o{Xp,up, X 1,us-1, - - } with BE(X]V Yuul VIXG | Fio1) = Q where Xy = [w14,- -+, 2n¢]
and Q = BE(X]V~1X,|F;_1) is positive definite.

Assumption B7 7! Zgrl] X\V1X, B rQ and T1 Z,E:Q"l] X; D rp hold as T — oo uni-
formly in r € [0,1], where p = E(Xy).

Assumption B8 For all r € [0,1], the following weak convergences hold jointly as T — oco:

1 (Tr]

(a) No P Al L Q2w (r),
=1

(T7]

1 _ d r
— N " x/v 1y —>cng/2/ Wa(s)ds,
\/Tt_zl t t 0 ( )

where p = c2/T? (c > 0) with ¢ fized, and W1(r) and Wa(r) are independent k-dimensional

(b)

standard Brownian motions.

The modified LM and qLL statistics for the homogeneous-slope model are given by

— 1 N N ~
LMpomo = =y Mz(Ir @ V"H)Dx(LL © Q™1 D (Ir ® V1) Myy, (2.18)

]

M=

mhomo ﬁé(GE - ME){)@: (219)

~
Il

1

where Q = T-'Y.[, X;V-1X,, Dx = diag{Xy, X, -, X7}, My = Iny — Z(Z'(Ir ®
VYZ2) 1 Z(Ir @ V), Z = [Fy, X], X = [X], X}, , X}) and 0 = (I ® 1}, ,Q~'/?) D..

The limiting distributions of LM homo and qu\ihomo are given by the following corollaries.

Corollary 2 Under Assumptions A1, A2, B3, AJ, A5, B6-B8 with p = c¢*/T?, the modified

LM test statistic LM homo weakly converges to
LM homo —>/ Vie(r; ¢)'Vi(r; c)dr
0

as T — oo while N is fized, where Vi,(r;c) is defined as Vin(r;¢) in Corollary 1 with Wi (r)

and Wy(r) being independent k-dimensional standard Brownian motions.
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Corollary 3 Under Assumptions A1, A2, B3, A4, A5, B6-B8 with p = c?/T?, the qLAihomo

statistic weakly converges to

k
¢LLpomo = Y Ri(c,0), (2.20)

where Ry(c,¢) is defined as in Theorem 2 with Wy, (r) = (W1 (r), Wina(r), -+, Wi r(r))',

m = 1,2 being independent k-dimensional standard Brownian motions.

Note that the limiting distributions in Corollaries 2 and 3 are almost the same as those
in Corollary 1 and Theorem 2, respectively; the only difference is the number of independent

Brownian motions.

2.3 Choice of the Localizing Parameter and Calculation of

Critical Values

In this section, we discuss how to choose the localizing parameter ¢ for the gL L tests and the
calculation of critical values. We first note that critical values for the null limiting distribution
of the LM test statistic, which is the generalized Von Mises distribution, have already been
tabulated in the literature; for example, Canova and Hansen (1995) tabulate critical values up
to 12 degrees of freedom. However, in the heterogeneous-slope case, the degrees of freedom are
kN as given in Theorem 1, which could be very large in practical analysis. Similarly, the null
limiting distribution of the gL L test statistic in the heterogeneous-slope case is also the sum
of kN independent random variables. In order to calculate critical values computationally
efficiently for all practical values of kN, we use the numerical integration of the characteristic
function. This is computationally much faster and more accurate than the simulation based

method.

In general, if the test statistic S is a nonnegative statistic, then it is known that the

distribution of S can be computed by Lévy’s inversion theorem,

1 1—e 0o

P(S<a)=1 /O " Re [wme)] o,

s

where ¢(6) is the characteristic function of S. We can apply this formula to our case because
LM homos LM heteros —qLAihomO, and —qLAEhetem are all nonnegative. Then, we need the

characteristic functions of the limiting distributions of these test statistics, which are given
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o (0:) = E[exp (w / 1VJ(T;O)’VJ(T;O)CZT>],

0

J
exp (—i@ Z Ry(c, E)) ] ,

/=1

bqrr(0;J) = E

where J is a positive integer value (J = k or kN in our theorems). Note that we need only the
characteristic function of the null distribution for the LM test whereas those under the null
and the alternative are required for the gL L test because we will make use of the asymptotic

local power functions to determine the localizing parameter ¢.

Theorem 3 The characteristic functions of the LM and the point optimal tests are given by

—J/2
drm(0;J) =

9

sin v/2:0
V210

al +a ap—a
dLM (122.2;J> dLm (1212, J)
(quL(e; J) = P )

dLM (;;J>

where a1 = (200 — 1)/2 and az = (¢/2){(2i0 — 1)%c* + 8ic*0}1/2.

Although the explicit expression of ¢4rr(6;J) is complicated, it can be expressed in

compact form by using ¢rar(0; J).

The critical values of the LM test statistic are obtained by numerical integration for
J=1,---,500. Because tables for J = 1,---,500 are too large and inconvenient, we derive
the response surface of the critical values. Having considered various functions of .J, we adopt

the following regression:

1 1
corm(p, J) = agp + a1V J + asd + ag\ﬁ + a4j,

where cvrar(p, J) represents the percentiles of the LM test statistic for p = 0.9, 0.95 and 0.99
and J represents the degrees of freedom. The estimated coefficients are given in Table 2.1.

The largest ratio of the residual to the actual critical value is 0.00056 in absolute value.

On the other hand, before obtaining the critical values of the qL L test statistic, we need
to determine the localizing parameter ¢. Elliott and Miiller (2006) proposed to set ¢ to 10
for J = 1,---,10, but as we will see later, this value is optimal only for J = 1, and our
preliminary simulations reveal that when J = 10, the qLL test with ¢ = 10 is less powerful

than the LM test for a wide range of the alternative.
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In this chapter, we determine the localizing parameter ¢ following Juhl and Xiao (2003)
and Kurozumi (2003), which are based on the idea of Cox and Hinkley (1974, p.102). We

propose to choose ¢ that maximizes the weighted average of power3:

M
¢ = arg max/ P(—qLL > z;c)dc
0

where x is a critical value for a given significance level and M is chosen to be so large that
P(—qLL > z; M) is close to 1. In this chapter, we set the significance level to 0.05 and
calculate the optimal values of ¢ for J = 1,---,500. Next, we obtain the response surface of
¢, and for the given value of J and ¢ on the corresponding response surface, we calculate the
critical values of the qLL test for J = 1,--- ,500 and again obtain the response surface of

the critical values as a function of J and ¢. The adopted regressions are as follows:

1 1 1 1

E:a0+a1\/j+a2J+a3\ﬁ+a4j+a5ﬁ+a6ﬁ, (2.21)
1 1 - _ 1 1
cvgrL(p, J) = ao + arV'J + azJ + GBW + a4j + b1VE+ boc + bs% + 5457 (2.22)

where cvgrr(p, J) represents the percentiles of the gL L test statistic for p = 0.9, 0.95, and 0.99
and we used the same notation a; in equations (2.21) and (2.22) for notational convenience
but they take different values depending on the equations. The estimated coefficients are
given in Table 2.1. The largest ratio of the residual to the true value of ¢ is 0.0285 in absolute
value, while the corresponding ratio for the critical values is 0.00007. In practice, we first
obtain ¢ from equation (2.21) and then obtain critical values by putting the estimated ¢ into
(2.22). We also note that the critical values obtained by (2.21) and (2.22) correspond to
_qfﬂ—/homo and _qu\Ehetem'

2.4 Simulation Results

In this section, we investigate the finite sample properties of the tests proposed in this study
by using the Monte Carlo experiment. We examine the sizes and powers of the LM, ¢L L and

sup-Wald tests. The following is the data generating process we considered in the simulations:

(DGP1: Homogeneous-slope model, time-varying parameter, k = 1)

Yit = o + Tit Br + ue, Bt = Br—1 + e

3Juhl and Xiao (2003) proposed to choose & such that fOM (¢(c, ¢) — (e, €))de is minimized, where ¢(c, ¢) =
P(qLL < z;c) is a power function of the ¢LL test and ¢(c, c) is a power envelope. We can easily see that this

strategy is the same as the one considered in this study.
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2
where fBp=1 and e ~i.id.N <o, ;Q1> with Q = Var(X;V " tuy).
(DGP2: Homogeneous-slope model, one-time break, k = 1)

1 for ¢ < 0.5T,
Yit = o + Tt B + wie, By =
14¢/VT fort>0.5T.

(DGP3: Heterogeneous-slope model, time-varying parameter, k = 1)
Yit = o + Tt Bit + Wit Bit = Big—1 + et
2
where i ~ i.i.d.N(1,1) and e; ~i.i.d.N (0, ;QQ‘1> with Q = Var(D.,V tu).
(DGP4: Heterogeneous-slope model, one-time break, k = 1)

Bio for t < 0.5T, N
Yit = o + it Bir + wit,  Bir = where S0 ~ i.i.d.N(1,1).
Bio +¢/VT for t > 0.5T,

In each DGP, the regressor z;; follows a stationary AR(1) process:
Tit = pi%it—1 + &, where & ~i.0.d.N(0,1)

with @1 = &1/4/1 — p2. We set o ~ i.i.d.N(1,1) and p; ~ i.i.d.U(0.3,0.7).

Also, u; is generated by u; = V124, with

o1 0 1 py - po o1 0
v o2 pp 1 T o2 |
Po
| 0 oN| |po o+ pv 1] |0 ON |

¢ ~ i.4.d.N(0,Iy), 02 ~i.i.d.U(1,3) and p, = 0.6.
Throughout the simulation, the values of af and p; are fixed across replications. The

number of replications is 2,000, and the nominal size is 0.05. We estimate V' and @ under the
assumption that u;; is heteroskedastic, cross-sectionally dependent, and serially uncorrelated.

In this simulation, we compare the sizes and powers of the LM test (m homo and
LM hetero), the qLL test (qLLj,, and qLLy..,,) and the sup-Wald test (sup-Whomo and
Sup-Whetero). The sup-Whome and sup-Whetero tests are based on the homogeneous-slope
and heterogeneous-slope models, respectively. We set the trimming parameter to 0.15 for

sup-Wald tests. Note that the LM and qLL tests are optimal against the alternative of
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time-varying parameter (DGP1, DGP3) whereas the sup-Wald test is constructed against
the alternative of one-time break (DGP2, DGP4).

Table 2.2 shows the empirical sizes of the tests under DGP1 and DGP3%. When the
true process has homogeneous slopes (DGP1), the empirical sizes of LM homo and mhomo
are close to the nominal one for all the cases. Because the homogeneous-slope model is a
special case of the heterogeneous-slope one under the null hypothesis, we can also see that
the empirical sizes of LM hetero and qLNLhetem are close to 0.05, although they tend to be
conservative. On the other hand, sup-Wpome and sup-Whetero perform poorly, especially

when N is large.

When the model has heterogeneous slopes (DGP3), the tests developed for the homogeneous-
slope model severely suffer from size distortion. In fact, this tendency is explained theoret-
ically by noting that the LM and qLL test statistics developed for the homogeneous-slope
model can be shown to have the null limiting distributions that stochastically dominate those
obtained in Corollary 1 (from above) and Theorem 2 (from below), which implies that the
rejection frequencies of those tests tend to be greater than the significance level.> Thus, we
have to be careful about using these tests if we need to take into account the possibility of
the slope heterogeneity. On the other hand, Table 2.2 shows that the LM and ¢LL tests

developed for the heterogeneous-slope model can control the empirical size.

Figure 2.1 shows the size-adjusted powers for the homogeneous-slope model with time-
varying parameter. Under DGP1, LM omo performs slightly better than qLAfjhomo when ¢
is close to zero, but this relation is reversed when c takes values away from zero. Overall,
sup-Whomo performs better than LM homo, but qLAi,wmo outperforms sup-Wpomo when c is
away from zero, except the case when N = 50 and T" = 100. On the other hand, under DGP2
with one-time structural break, LM homo has the highest power. In this case, the sup-Whomeo

performs slightly better than qALthomo.

For the heterogeneous-slope model, we can see from Figure 2.3 that there is no significant
difference of power between LM perero and qLAihetem tests, especially when NNV is large, under
DGP3 with time-varying parameter. In this case, sup-Whetero performs worse than LM hetero
and qLAEhetem. Under DGP4 with one-time break, we can see that LM hetero has the highest

power and sup-Whetero has the lowest power. As we can see from the figures, the LM test

4Under the null hypothesis, DGP2 and DGP4 are equivalent to DGP1 and DGP3, respectively, and thus
we omit the results under DGP2 and DGP4.
5Tt can be shown that ﬁ\//[ homo and quA/Lhomo do not diverge to infinity but are stochastically bounded

even in the presence of heterogeneity in the slopes with constant parameters in the time series direction. We

omit the proof to save space.
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can effectively detect an abrupt break, whereas the qLL test has high power against smooth

structural changes.

Noting that all the tests developed in the previous sections can be applied under the
homogeneous-slope model, we can compare the powers of these tests. As expected, we can
see from Figures 2.5 and 2.6 that the tests developed for the homogeneous-slope model are
more powerful than those developed for the heterogeneous-slope model, because the true
model has homogeneous slopes. On the other hand, as seen in Table 2.2, there is no meaning

in comparing these powers for the heterogeneous-slope case because LM homoy 9L Lpome and

sup-Whomo severely suffer from size distortion.

Overall, we can see from Table 2.2 that the sup-Wald test is inappropriate for testing
parameter constancy in cross-sectionally dependent panel data models or seemingly unrelated
regression models with moderately-sized N. In such cases, the proposed LM and gLL tests

can control the empirical size well.

From the simulation results above, we propose the following sequential testing proce-
dure in practical analysis. First, we apply the tests based on the homogeneous-slope model
(E]Téf homo and (jﬂ)homo). If we do not reject the null hypothesis, then we can state that the
parameter [ is constant across time. On the other hand, if we reject the null hypothesis,
then there are two possibilities. One is that § varies across cross-sections, and the other is
that £ is time-varying. In this case, we should apply the tests based on heterogeneous-slope
models (f]\? hetero and qLAEhetem). If the null hypothesis is rejected, then we conclude that g

is time-varying, and if not, then 3 is heterogeneous but stable in the time series direction.

2.5 Conclusion

We have proposed the locally best invariant test based on Tanaka (1996) and the asymptot-
ically point optimal test based on Elliott and Miiller (2006) for parameter constancy in the
time series direction in panel data models. The asymptotic critical values for both tests are
obtained by numerical integration and the response surface regressions are conducted. By
Monte Carlo simulations, we found that the tests based on the homogeneous-slope model
perform poorly when the true model has heterogeneous slopes, while we can control the tests
based on the heterogeneous-slope model for both the homogeneous- and heterogeneous-slope
cases, although these tests may suffer from loss of power if the true model has homogeneous

slopes.

When the errors are serially correlated, we need to consistently estimate the long-run
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variance to preserve the optimality of our tests under the assumption of the local-to-zero
variance. In this case, other tests such as those based on the fixed-b asymptotics by Kiefer and
Vogelsang (2005) and the self-normalization based test by Shao and Zhang (2010) may better
control the empirical size, although they sacrifice optimality. In this case, our optimality
tests may still be useful because those asymptotic powers can be seen as a benchmark. The

development of a test with good finite sample property is our ongoing research.

The tests developed in this study may be extended to various directions. For example,
our tests in this chapter are applicable only in the case where T is greater than N, but tests
with large N and moderately sized T are also useful in practical analysis. We may generalize
the model by allowing for dynamics, or factor structures to model cross-section dependence.
In addition, it would be useful to develop tests for parameter constancy in both time series

and cross-sectional directions. These are left for future studies.

2.6 Appendix
Lemma 1

(i) The t-th block element of Mzu is given by
iy — Dy (Z D;tv—lpxt> > DLV, (2.23)
t=1 t=1
where Dyp = Dyp — T} 23:1 Dys and 4y = uy — T71 23:1 Usg.

(i) The t-th block element of Mzv is given by
O — Dy (Z D;tvlpxt> > DLV, (2.24)
t=1 t=1

where Oy = vy — T—1 ZST:1 V.

Proof of Lemma 1

(i) Let D = , where D, = T~! Z?:l Dg¢. Then,

-D, Iyn

1

My = Int—Z(Z(Ir@V H2) Z(IroV™)

- ~ ~\N—1 .
= Inr— 2D (DZ’(IT ® V—l)ZD’) DZ'(Ir 2 V1.
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By simple algebra, we obtain

ZD ([)Z’(IT ) Z'(Ir® V"
_ T -
w+ Dy (Zt 1 ~'D t) Sty DoVl
—1
B Dy (Zt:l t) > ioy DVt

i+ Dy (ZtT:1 D;tV_lf)xt> Y1 DVl
Thus, the t-th block element of Mzu is given by (2.23).

(ii) This proof is the same as (i). B

Proof of Theorem 1

First, we derive the limiting distribution of the [T'r]-th block of

1 _
ﬁ(LI & IkN)Dtlim(IT RV 1)MZy

1 1
= 7(LI®IkN)D;x(IT®V71)MZu+7(LI®I]€N)DZM(IT®V71)M21). (2.25)

VT VT
Let us consider the first term in (2.25). By Lemma 1 (i), we obtain
(L' ® Iyn) Dy (Ir @ VY Mg
r . . N .
ZtT:1 DVt — ZtTﬂ D}V Dy (ZtTfl D/tV_let> ZtT:1 D}Vl
N -1 .
Sy DVt — 35 DLV Dy (Zt 1 Q:tV_lth> Sy DLVl

. _ N .
DV~ Yy — Doy Vo iDy (ZtT:1 D:/;:tV_IDa:t) Z?:l DV~

Then, the [T'r]-th block of (L' @ In)D), (It ® V') Mzu can be expressed as

T T ) T ) -1 7
> DLVl — Y DL VT'Dy (ZD;tlem) ZD VT,

t=[Tr] t=[Tr] t=1
[Tr]—1 [Tr]—1 -1
= > DLVl Z D' V™D, (ZDmV 1Dm> > DLVl
t=1 t=1 t=1
[Tr]—1 [Tr T i -1 7
- Z D,V — Z D, (ZD;tv—le> > DLVl
t=1 t=1

[Tr]-1 [Tr]—1 T
- Y. DLV Z D! .V™'Dy (Z[);tvlbxt> > DLV a
t=1 t=1 t=1 t=1

= Cr(r)—Dp(r), say.



First, consider the term C7(r). By Assumption A7, we can see that 7~ Z[TT] "D V1D B
rQ holds uniformly in r, where Q = F (]_N?;tV_lf)xt). Therefore, by Assumption A8(a),

1 [Tr]-1 Tr] 1
ﬁCT( Z D!V~ u, — Z D!, V1D,
( ZDW”%>V%ZMW%H+MU
t=1
5 QYW - (rQ)Q QYW (1)
Q2 (Wi(r) — rWi(1)) = Bu(r). (2.26)
Also,
1 [Tr] 1 Tr] 1 .
TP = Z D, v Z DL V™D,
1 - -\
-(sztvw) Ly o (v)
t=1
= 0p(1)- Op(1) = 0p(1) uniformly in r. (2.27)

Similarly, the [T'r]-th block of (L' ® Ijn) D/, (It ® V1) Mzv is given by

[TT] 1 [Tr —1 T

Z DV~ ty, — Z D V1D, (ZD Vo le,5> ZD Vol

[Tr]—1

T -1 7
—| D DV Z DV ™' Dy <ZD$,5V 1th> d DLV e
t=1 t=1 t=1
= Er(r)— Fr(r).

By Assumption A8(b), we have

1 » 5 coxnl/2 ' ss—rl s)ds | = cBs(r
ﬁwwum<ﬁwm Amwﬁ Ba(r). (2.28)

Next, consider the term Fp(r). Define e, = (pX.) V/2e;. Then & is an i.i.d. sequence

with E(e;) = 0 and E(gse)) = Ixn. Since

T T t
1 c
VIo=—= o =2 DuSl?) e, =0,(1)
/T 3/2 ot e s =P
Tt:1 T/ t=1 s=1
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where we used the relation p = ¢?/T2, we obtain the following result:

1 [Tr]-1 1 [Tr]-1
Fr(r) = |7 ) DuV'=4% D> DV 'Du
t=1 t=1

1 - N\ g
: <TZD;tV1Dm> TZD:’MV” (\/T@)
t=1 t=1

= 0p(1) - Op(1) = 0p(1) uniformly in r.

L
VT

(2.29)

Thus, from (2.26)-(2.29), the [Tr]-th block of T~V2(L' ® I;.x) D!}, (It ® V1) Mzy weakly
converges to

1
— (Cr(r) = Dp(r) + Ep(r) — Fp(r)) 5 By(r) + cBaf(r).
VT
Finally, by the continuous mapping theorem, we obtain

1
LMhetero = ﬁy,MZ(IT ® V_I)Ddx(L & IkN)(IT & 26)(L/ ® IkN)(IT & V_I)Délxsz
1
4, / (By(r) + ¢Ba(r)) Se (Bi(r) + eBs(r)) dr
0
1
= / Vin (5 ¢) Vienw (5 ¢)dr
0

as T — oo.ll

Proof of the consistency of d;;
Let us stack equation (2.2) for t = 1,--- , T with a fixed i such that
vi = Zyyi + Di(L® I)e; + u;
= Zivi T vi + i,

ir) s Zi = [, X)) with op = [1,1, -+, 1), X5 = [z, xio, -+ @],
!

where Yi = [yila Yi2,*
Juir), v = i, vig, - vl v = e, B

D; = diag{x;pw;g,--~ anéT}a u; = [ug, Usg, - -
v; = Di(L®Iy)e; and e; = [e;1, €52, -+ ,e;r|’. Then, the OLS residual w; can be expressed as

w; = My, = M;(u; + v;),

where M; = It — Zi(Z{Zi)*lZé. Hence, 0;; can be rewritten as

1
OA'Z'j = nygleij]
= 1 w, M; Mu; + 1 viM; Mv; + 1 w,M; Mjv; + 1 vl M M
T " Vv T 777 T 777 T NV Rav}

= Jir + Jor + Jar + Jur, say. (2.30)
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First, we show that Jip N 0;j. The term Ji7 can be expressed as

1 1 1 1 1 1 -1
R (Tz;z) L Ziu; — tuiz, (Tz;z> * 2z,
1 1 1 1 1
iz, (Tzlz> 172, <Tz;z> * 2. (2.31)

The first term in (2.31) converges in probability to o;; by the weak law of large numbers,

while the other terms are O,(T~!). Therefore, we have Jip LN Tij-

Next, Jor and J3p can be expressed as

L, / - ! L, L. 1 !
JQT == Tvi T’UZZ TZlZ TZl ' TU,LZJ TZJZ‘] TZ]’U]
1 -1
! ! !
+Tle <Tzlz> Tzlz <TZ]Z> =Zv, (2.32)
1 1 1 11 1 1 11
J3T = Tu;vj — Tu;Z, <TZ;ZZ> TZ{’U]‘ — Tu;Zj (TZ;-Z]) TZJ{UJ‘
L, (1, \"1, N
+ i ( 212, ZZ ZZ =Zj;. (2.33)
Since
1 1 T t / t
] =3 (e ) e (3
t=1 s=1 s=1
t 2 1 X
< (sw > eis ) =D ity
tols=1 =1
= Op(Til) Op(l) = Op(Til),
HT Wiz, H = 0,(T~ 1/2 and !T 1v’u]‘ = O,(T~ D), we have Jor 20 and J3r & 0. We can

prove Jyr 0 snmlarly.

By using these results above, we have 6;; = Ji7 + Jor + J3r + Juar EN o;j. B

Lemma 2 Let v = [vy,v9, -+ ,vp|" be a T x 1 random vector such that T-1/2 21[241} U 4

Wi(r) + ¢ [y Wa(s)ds, where Wi(r) and Wa(r) are independent scalar standard Brownian

motions. Then,

V'(Gz — M )v LN
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where L(r) = J(r)+cK(r),
J(r)y = Wilr)—e¢ /O e =W (s)ds

K(r) = /0 Wo(s)ds — a/or e~er=s) (/0 Wg(/\)d)\> ds.

Proof of Lemma 2

Following Lemma 6 in Elliott and Miiller (2006), we have

V' (Gz — Me)v
= V(H' = Ip)w—H W H W) T H o + (T2 0)?

T-1 2
= (re—1)B2—(1—15)?B |B_y+ (T"Y/H; )™ {T(l —re) T2 kB + r;;T—l/QBT} ,
t=1
where B = [By, By, -, Br|', B_1 = [0, By1,-+- , Br_1]/, and By = YL vt v,
By the following joint convergence

1 d

ﬁBT —  L(1), (2.34)

T 1

1

=B, 4 / L(s)2ds, (2.35)

t=1 0

1 T-1 1
T3/ Z riBy LA / e “L(s)ds, (2.36)

t=1 0

1 T d 1
P > By 5 / L(s)ds, (2.37)

t=1 0
rl — e (2.38)

C

and the continuous mapping theorem, we obtain the desired result.
To prove (2.34), we first decompose vy = uy; + cug such that T7—-1/2 EQ;} w5 Wy (r)
and T—1/2 £7~1] sy Jo Wa(s)ds hold jointly. Then,

1 [Tr] [Tr]

1 _ 1 _
ﬁB[TT] = ﬁ ZTET fugy +c- ﬁ ZTET Fugy
t=1 =1
= Aip(r)+c-Ayp(r), say.

32



Since 7z = 1 — &/T + o(T~ 1), we have

AlT(T)

(Tr]

4| Wa(s)ds—c / e er=9) < Wg(/\)d)\> ds.
0 0

Therefore, T/ 2B[T,q] LA L(r) holds. We obtain the result (2.34) by substituting r = 1.

(2.35)—(2.37) can also be proved by the continuous mapping theorem. (2.38) is obvious.

Proof of Theorem 2

This can be proved by following Elliott and Miiller (2006). By Assumption A8, the sum of
the first [T'r] blocks of T~/2(Ir ® Q='/?)D!, (It ® V') Mzy converges in distribution to

T

d
—

e

[

r]

||M

[(IT © QD (I @ V) Mzy|

Wi(r) — 1 Wi (1) + ¢ (/0 Wa(s)ds — r/ol Wg(S)dS) .

Next, for any choice of scalar gy, we have

Here we set gy

Then we have

1

0)(Ge — M)y = (0 + qorr) (Ge — Me) (B0 + qotr).

_ _ _ d
=T 1LkN7gQ 1/2 Zthl DV~ (ug+vy) (so that VTq = Wie(r)

ﬁ(blm], i) (0 + qevr) b Wi / Wau(s

+c for Wae(s)ds).

where 0, is a k X 1 vector of zeros. By Lemma 2, we obtain desired the result.ll
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Proof of Theorem 3

Since the limiting distributions consist of the sum of the functionals of J independent Brow-

nian motions for both the test statistics (J = k and kNN), it is sufficient to show that

E [exp {w/ol (Wi () —rWl(l))zdrH o (6.1) = [S”l\/%e] 1/2, (2.39)
Efexp (—ifR1(c,2))] = - <a12+ia2;1> - <a1 i 1> (2.40)

—c2 ’
1
¢>LM< 57 )
but because the relation (2.39) is derived by (4.13) in Tanaka (1996), we focus on (2.40).

In the following, we assume normality in u; and e; without loss of generality because weak

convergences are established by the invariance principle.

Because (2.40) corresponds to the case of N = 1 and k£ = 1 in the heterogeneous-slope
case (J = 1), we consider not a panel data model but a simple time series model with only a

constant as a regressor (z; = 1):
y=a+ B tu, pt=7p0-1+e, t=1,---,T, (2.41)

where we set By = 0, E[u?] =V = 1 and E[e?] = pX. = p =1 —c?/T? (X, = 1) without
loss of generality. In this case, because yla ~ N(Za,X(p)) where Z = [1,1,---,1] and
Y(p) = Ir + pLL' as Dy, = diag{1,1,--- ,1} = I, the LM test statistic (2.8) becomes

1
LM = 5y MzLL' My, (2.42)

where My = Iy — Z(Z'Z)~*Z'. On the other hand, the Neyman-Pearson lemma tells us that

the exact point optimal test rejects the null hypothesis when
Pr(p) =y (Mz — Mz (p)~" Mz)y (2.43)

takes large values, where My = Iy — Z(Z'S(p)"*Z)~'Z'S(p)~". In the following, we first
show that Pr(p) is numerically equivalent to —gL L as long as this simple model is concerned
and then show that the limiting characteristic function of Pr(p) is expressed as the right

hand side of (2.40), using the characteristic function of (2.42).

Note that for model (2.41), the gL L test statistic (2.13) becomes

—qLL =y My (Myz — Gz) Mgy
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because () = 1, ¢4y = t11 = 1 and M, = Mz in this case. On the other hand, since
MY (p) "Mz = Mz(%(p)"*Mz) My from direct calculation, (2.43) becomes

Pr(p) =y Mz(Mz — (p) ™' Mz)Mzy. (2.44)

Thus, Pr(p) is shown to be equal to —gLL if we prove that X(p)"'M, = Ge. Let B, be a
T x (T — 1) matrix such that B.B, = Ip—; and B,Z = 0. Then, we have

Sz = S(p) - S(p) " 2(Z'S(p) 1 2) 7 25 (p)
= Be<BéE(ﬁ)Be)_1Be
= Ge,

where the second equality holds by Lemma 9.1 in Tanaka (1996) while the last equality is
proved by Lemma 4(ii) of Elliott and Miiller (2006). Therefore, we can see that Pr(p) =
—qLL, which implies that Pr(p) 4 —Ri(c,c¢) under the local alternative by Theorem 2.
Next, we derive the characteristic function of Pr(p) by following Kurozumi (2003). Let
H be a T x (T — 1) matrix such that H'H = Ip_y, HH' = Mz and H'LL'H is a diagonal
matrix given by A = diag{A1, A2, -+, Apr_1}, the existence of which is proved by Patterson
and Thompson (1971). Because it can be shown that ¥(5)Mz and H(I7_1+pA)~"H' are the
Moore-Penrose (MP) inverse of Mz%(p) My, we have X(p)My = H(Ir_1 + pA) "' H' because

of the uniqueness of the MP inverse. From this relation, (2.44) becomes

Pr(p) = yHH' [HH' — H(Ip_y+pA)""H'| HH'y

= y'H[Ir—1 — (Ir—1+pA) "' H'y

T-1
*2
— 2.45
:1( Hm)y (2.45)

<.

where y7 is the j-th element of y* = H'y. Since y = Za +u+ Le in our simple case, we have
y* = H'u+ H'Le ~ N(0, I7_1 + pA)

by using H'Z =0, H'H = Iy and H'LL'H = A. As a result, (2.45) becomes

T— T-1 1
— 1 .: —— | 1+ AEXH)ur? 24
;( 1+p)\>< oA ( 1+c2A;)( O (246)

Jj=1

where u} ~i.0.d.N(0,1) and A} = \j/T?, because p = ¢*/T? and p = 2 /T?.
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Similarly, we can see that

LM

— HH'LL'HH'y

=y Ay

>N+ AN
j=1

and thus, because u;‘ ~ 4.i.d.N(0,1), the characteristic function of the LM statistic under

the null hypothesis (¢ = 0) is given by

drar(6,1) E |exp wZA* x2
T—-1
H ( — 240)\% )1/2
j=1

Because the limiting characteristic function of LM under the null hypothesis is given by

(2.39), we can see that ¢rar7(0,1) = ¢ra(6,1) by the continuity theorem. That is,

T (1 —2i6x5)"% = éras(6,1). (2.47)

Jj=1

On the other hand, from (2.46), the characteristic function of P(¢) becomes

T-1

E[exp {i0P(@)}] =

e

) —1/2
[1—%9( o )(1+c2A;f)]
J

T—1 T—
[1— (a1 + az)A H (a1 — ag))\*]flﬂ
_ J=l J=1
1:[ B —1/2
a +a al —a
dLM,T L2229 éLMm,T L 221
_ 21 21
- —
—11
¢LMT( 5 )
—  (2.40),

where the last convergence holds because of (2.47).1
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Figure 2.1: Size-adjusted power of the mhomo, qLAEhomo and sup-Whomo tests under DGP1
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Figure 2.2: Size-adjusted power of the mhomo, qLAEhomo and sup-Whomo tests under DGP2
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Chapter 3

Bias Correction of the Long-Run
Variance Estimator for Time Series

Models with Structural Breaks

In this chapter, we derive the first-order bias of the long-run variance estimator in the pres-
ence of multiple structural breaks, and propose a bias-corrected long-run variance estimator.

Simulation results show that the proposed long-run variance estimator has good finite sample

property.

3.1 Introduction

Estimation of the long-run variance is important when we make statistical inferences in time
series models with serially correlated errors. For example, in order to construct confidence
intervals of parameters, we need to use a long-run variance estimator. Furthermore, when we
apply hypothesis tests, we have to estimate the long-run variance for the scale adjustment.
Therefore, we need to use a precise long-run variance estimator to improve the accuracy of
statistical inferences.

From this point of view, the bias of the long-run variance estimator has been investigated
in the literature. For example, den Haan and Levin (1997) derived the asymptotic bias of
the kernel estimator and the vector autoregressive spectral density estimator. Velasco and
Robinson (1999) obtained the Edgeworth expansion of the nonparametric kernel estimator.

However, the existing methods do not consider the cases where structural breaks are present.

In this chapter, we derive the bias of the autoregressive spectral density estimator, taking
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structural breaks into account, and we propose a bias-corrected long-run variance estimator.
We find that, as the number of structural breaks increases, the downward bias of the long-run
variance estimator gets larger. We find through simulations that the bias-corrected long-run
variance estimator has much less bias than the one without bias correction. Also, the mean

squared error of the bias-corrected estimator is comparable to that of other estimators.

This chapter is organized as follows. In Section 3.2, we introduce the model and assump-
tions, and the first-order bias of the long-run variance estimator is derived in Section 3.3. The
bias correction method is explained in Section 3.4. In Section 3.5 we extend the results to
the case with the infinite-order autoregressive errors. Section 3.6 gives the simulation results,

and Section 3.7 concludes the chapter. Mathematical proofs are delegated to the appendix.

3.2 Model and Assumptions

Let us consider the following model with multiple shifts in mean:

M1+ ut fOI't:].,"'7T]_,

o + ug fort=T1+1,---,15,

I
—~
©w
—
~—

Yt

mt1 +ug fort =T, +1,--- T,

where Ty (¢ = 1,--- ,m) are the break dates and m is the number of structural breaks. We
assume that u; is a zero-mean stationary process and that the break dates are known. We

need to note that, when the break dates are unknown, we need to estimate them.!

We are interested in estimating the long-run variance of u; defined by w = "2 E(upus—r).

!For example, we may estimate the break dates by minimizing the sum of squared residuals.

45



Here we use the following residuals in order to estimate w:

p
yt_gl fOI‘t:].,“‘,Tl,

yt_gQ fort:T1+17"'aT27

Yt — Ymr1 fort =Ty, +1,--- T,

Ut — Up fort=1,---,71,

U — U fort:Tl—l—l,---,TQ,

\ut—aerl fort="T,,+1,---,T,

where Yp = (Tg — Tg_l)_l ZZ£T4,1+1 Y, Up = (Tg — Tg_l)_l ZZ£T4,1+1 ut, To = 0 and Tm+1 =

T.

One of the commonly used methods to estimate the long-run variance is the kernel esti-
mator given by
T—1 i
Wernel = Yo + 2 Z k <m> Y3 (33)
7j=1
where k(-) is the kernel function, m is the bandwidth, and 4; is the estimator of the j-th

autocovariance of u;, which is defined by 4; = T-1 Z?: 1 Ul

Also, the autoregressive spectral density estimator of w based on the AR(p) model is given

by
&2

WAR = (1 - Z?g:l @)27 (3.4)

where 1; = 2521 éjﬁt_j + & with ¢2j (j = 1,--- ,p) being the OLS estimator, and 62 =

(T—p)~! Z?:p 41 £2. In this chapter, we derive the bias of the autoregressive spectral density

estimator given by (3.4).

In order to derive the bias term, we make the following assumptions when p > 1:

Assumption 1 {u;} follows a zero-mean stationary AR(p) process: u; = Z?:l djus—j +eq,
where 1 — ?:1 ¢;z0 # 0 for |z| < 1, and {&:} is a martingale difference sequence with a

finite 4th moment, which satisfies E(e?|F;_1) = 02 and E(}|F;_1) = K3.
Assumption 2 limp oo T;/T =X and 0 = Xg < A\ < -+ < Ay < Appy1 = L.

When p = 0, we use the following Assumption 1’, instead of Assumption 1.
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Assumption 1’ u; = &, for all t, where {e;} is a martingale difference sequence with a finite

4th moment, which satisfies E(e?|Fi_1) = o2.

Assumptions 1 and 1’ exclude the case where {u;} is a unit root process. Assumption 2

is standard for structural break models.

3.3 Derivation of the Bias

In this section, we derive the bias of the the long-run variance estimator up to O(T~1), under
the assumption that {u;} follows a stationary AR(p) process. The case with infinite-order
autoregressive errors will be discussed later. Throughout this chapter, we define the bias as

the expectation up to O(T~!), ignoring the 0,(7~!) terms.?

3.3.1 Bias of the OLS estimator of the autoregressive coefficients

First, we derive the bias of the OLS estimator of ¢; (j = 1,--- ,p) for p > 1, which is given
by

o1 11 F12 e T1p 710
- |2 Por fa2 - : P20
o=\ .| = ;
Tp—1,p
Pp Fpl o0 Tpp—1  Tpp 7'p0

where fz'j = (T — p)fl Z?:p+1 at—ii\l’t—j'
In order to derive the bias of ¢, we define the following three (p 4+ 1) x (p + 1) matrices,
based on Stine and Shaman (1989) and Patterson (2000):

Blp = diag{ovlv"'vp}a

B _ [—eo,—el, e ,—eg,l,O(pH)Xl,e%,l, . ,el,eo] when p is even,
»o [—dl,—dg,--- ’_dp%l’o(pﬂ)xbd,%l,--- ,dl,do} when p is odd,

-1 forj<i<p—7+2,

(BSp)ij = 1 forp—j+2<i<y,

0 otherwise,

2If we need to evaluate the expectation without ignoring the op(Tfl) terms, we have to make additional

assumptions about the existence of higher-order moments.
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where O¢p11)x1 is a (p+ 1) x 1 vector of zeros, e; is a (p + 1) x 1 vector with ones in rows
Jj+3,7+5,---,p+1—j and zeros elsewhere, and d; is a (p+1) x 1 vector with ones in rows
Jj+2,5+4, -, p+1—7j and zeros elsewhere. For example, dy = [0, 1,0, 1) and d; = [0,0, 1, 0]’
for p = 3, while eg = [0,0,1,0,1] and e; = [0,0,0,1,0]" for p = 4.

Let DI(,m) = Bip + Bgp + (m + 1) B3y, and we divide Dém) into four blocks as follows:

O1x1 ‘ O1xp
K| 5

D™ = (3.5)

where Kzgm) and B,(,m) are p X 1 and p x p, respectively, that is, Kzgm) is (—1) times the p x 1
lower-left block element of D,(,m), and B},’”) is the p x p lower-right block element of D,Sm).

The values of KIS’”) and Bﬁm) forp=1,---,5 are given in Table 3.1.

The following theorem gives the bias of the OLS estimator gZ;

Theorem 1 Under Assumptions 1 and 2, the expectation of the OLS estimatorq@ up to
O(T~1Y) is given by

E(g)=¢— 1_p (K™ + BI™6) +o(T ), (3.6)

T
where ¢ = [¢1,--+ , Ppl'.

Remark 1 The expectation of the OLS estimator without structural breaks can be obtained

by letting m = 0 in equation (3.6).

Remark 2 The first-order bias of the OLS estimator does not depend on the maintained

break fractions \; (i=1,---,m).

Remark 3 When p =1, by Theorem 1, the expectation of the OLS estimator with m struc-

tural breaks in mean reduces to
N 1 _
E(61) = é1 = 7 {(m+ 1) + (m+3)é1} +o(T7).
Hence, when ¢1 > 0, we can see that the downward bias of the OLS estimator gets larger as

the number of structural breaks increases, which also leads to a downward bias in (3.4).

3.3.2 Bias of the long-run variance estimator

Next, we derive the bias of wag, which is given by

A2
o
2 5 forp>1,

oan=1{ (1-X01;) (3.7)

2
€

o for p=0.
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It is known that, when random variables X and Y satisfy X — E(X) = O,(T~%/?),
Y — E(Y) = 0,(T~'/?), E(X) # 0, and E(Y) # 0, the following relation holds:

X\  EX) Cou(X,Y) Var(y)
(Y) - E(Y) [ CBX)E(Y)  {EY)}

which can be obtained by the Taylor expansion of f(z,y) = x/y around (z,y) = (E(X), E(Y)),

+o(T™h), (3.8)

and by taking expectations, ignoring the op(T_l) terms; see Mood, Graybill, and Boes (1974,
p.181).

Therefore, in order to derive the bias of (3.7) up to O(T~ '), we need to obtain E[(1 —
P $;)%, E[62), Var[(1—-Y%_, $;)?], and Cov[62, (1 — 3-7_, ¢;)? for p > 1. Note that we
only need E[62] when p = 0.

The next lemma gives the results for p > 1:

Lemma 1 Under Assumptions 1 and 2, the following relations hold:

(a) E [(1 -y, @-)1 =(1-/¢)+ Tl_p {200=vo) (K™ + B o) + o2/ R} +o(T7),

1
2 ptm+ o2

W) B[5?] = ot Lo

+o(T7),
(¢c) Var [(1 — ?:1 $j)2] = T4—p(1 _ L/¢)2U§L,R_1L + O(T—l)’
(d) Cov [&g, (1 ey ésjﬂ — o(T),

where R is a p x p matriz whose (i,j) element is given by ;| = E(uww_;—j), and ¢ is a

p x 1 vector of ones.

By (3.8) and Lemma 1, we obtain the first-order bias of the long-run variance estimator

for p > 1:

Theorem 2 Under Assumptions 1 and 2, the expectation of @ar up to O(T~1) is given by
2 2
o 1 o 3
E ~ — S . £ 2 /R—l _ 1 1 _ !
(U)AR) (1—L,¢)2+T—p (1—L/¢)3{1—L/¢O-EL L (p+m+ )( qu)

2. (K™ + BiMo) 4+ o(T71).

Remark 4 When p =1, the expectation of WaR is given by
o? 1 o?

(1 —251)2 TT-1 (1 —21)3 {Bm+1) + (m+1)¢1} +o(T7H). (3.9)

Therefore, we can see that the first-order bias of war gets larger as the number of structural

E(@ar) =

breaks increases.
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Similarly, when p = 0, we obtain the following theorem:

Theorem 2’ Under Assumptions 1’ and 2, the expectation of @ar up to O(T~1) is given by

m—+1 _
T o2 +o(T™h

E(@ag) = 0% —
Remark 5 The first-order bias of War does not depend on the maintained break fractions \;
(i=1,---,m).
3.4 Bias-Corrected Long-Run Variance Estimator

In this section, we propose the correction of the bias of (3.7) using Theorems 2 and 2’.

Since the first-order bias of (3.7) is given by Theorems 2 and 2’ the bias-corrected esti-

mator of w is given by

@arBC =WAR — b, (3.10)
where
L im0
T'-p 1—-v¢)3 1 —1o
b= -2/ ( ,(;m) + B,(;m)qAﬁ)} forp > 1,
\_m;l&g for p =0,

and ¢, 62 = (T —p)~! ZtT:pH &2, and #;; for the (i,7) element of R are the least squares
estimators of ¢, o2, and 7ij, respectively.
For example, when p = 1, the correcting term is given by

! o )3{(3m+1)+(m+1)q31}.

b= — :
T—-1 (1-¢

3.5 Extension to the Model with AR(c0) Errors

In this section, we consider the case where the error term wu; is generated by a stationary

AR(c0) process. In this case, we make the following assumption:

Assumption 17 u; = 322 djus—j + &, where 1 — 3772, $;z? #0 for|z| <1, > e lé5] <
00, and {e¢} is a martingale difference sequence with a finite 4th moment, which satisfies

E(e2|Fi—1) = 02 and E(e}|Fi—1) = k3.
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Since the error term is an infinite order AR process, we consider estimating the long-run
variance by the autoregressive spectral density estimator based on the AR(pr) model, where
pr diverges to infinity at an appropriate rate. The following assumption is concerned with

the choice of the lag truncation point pr:

Assumption L

(a) pr—oc and py/T —0 as T — oo. (3.11)

(0) >5p41lé5l = olpr/T) as T — oo.

Assumption L(a) gives the upper bound of the divergence rate of pr. This rate guarantees
the consistency of the autoregressive spectral density estimator as proved by Berk (1974) and
den Haan and Levin (1998), although condition (3.11) is stronger than theirs. Assumption
L(b) imposes the lower bound of pr. This assumption is also related with the higher order
summability of {¢;}. For example, when > 2%, §37%|¢;] < oo holds and pr is greater than
O(TY 4+ for some a > 0, Assumption L(b) is satisfied. Note that this assumption is
satisfied if u; follows a stationary finite-order ARMA process and pr = O(T°) for some

d > 0, because |¢;| declines geometrically to zero.

The following theorem gives the bias of the autoregressive spectral density estimator up

to O(pr/T):

Theorem 2” Under Assumptions 17, 2, and L, the expectation of War up to O(pr/T) is

given by
2 2
o 1 1 3
E A — £ . £ 2 /R—l o 1 1 !
@an) = (5 o (Tt | TR o (=00
-2/ (K}(,;?) + B](f;l)gé)} +o <];l) .
where i i i L
Gpr,1 0 Yo Tpr-1 94!
bpr,2 : V2
o= = | 70 ' e (3.12)
: : S " :
_¢PT DT | | Ypr-1 °° N 7 _'VpT_

This first-order bias is exactly the same as the one in Theorem 2. Therefore, we can

implement the bias correction exactly in the same way as explained in Section 3.4.
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3.6 Simulation Results

In this section, we perform simulations to investigate the finite sample performance of the
long-run variance estimators. We consider the following data generating processes:

(DGP1: 1 break)

Uy fort=1,---,0.5T,
6+u fort=05T+1,---,T.
(DGP2: 2 breaks)
Uy fort=1,---,0.3T,
Yyr=490+u fort=03T+1,---,0.7T, (3.14)

26 +uy fort=07T+41,---,T,
with 6 = 1, 2. In order to obtain the long-run variance estimators, we estimate the break
dates by minimizing the sum of squared residuals under the assumption that the number
of breaks is known. For example, when m = 1, we estimate the break date by T =
arg ming, g7, (1—e)r) SSR(T1), where SSR(T1) is the sum of squared residuals with the break
date T7. When m = 2, we use (Tl,ffg) = arg Ming, ¢(e7,(1—2¢)7], T[Ty 42T, (1—e)1] SSR(T1, T2),
where SSR(T1,T>) is the sum of squared residuals with break dates (77,7%). In both cases,
we set the trimming parameter € = 0.15. For comparison, we also consider the cases where

the break dates are known.

The error term u; follows the following processes:

AR(1) : wy = gug1 + ¢y, er ~idd. N (0, (1-¢)%),
AR(2) :ur = prug—1 + daup—2 + &1, & ~ivid. N (0, (1— 1 — ¢2)?),
MA(1) : ug = g4 + b1, et ~idd. N <0’ ﬁ) ’

where the variance of ¢; is selected so that w = 1.

In this section, we compare the biases and mean squared errors (MSEs) of the following

estimators:

(1): Wkerner: the kernel estimator given by (3.3).
(ii): Wwag: the autoregressive spectral density estimator given by (3.4).

(iii): WaR,Bc: the bias-corrected estimator given by (3.10).

For the kernel estimator (3.3), we use the quadratic spectral kernel with the bandwidth

parameter selected by Andrews’ (1991) rule. When we implement the AR(p) regression to
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obtain the autoregressive spectral density estimator, we select the lag length p by the Bayesian

Information Criterion (BIC) with the maximum lag length 5.

Table 3.2 gives the results with AR(1) errors under DGP1 (one-time break). As we can
see from the table, Wierner has large downward bias in all cases. Wag has less bias than Wrernel,
except for the case where T'= 100 and ¢ = 0.2.3 The bias-corrected estimator (WAR,BC) has
smaller bias, compared with the other estimators. We can also see that the bias becomes
smaller as the magnitude of the break increases because the break date is more precisely
estimated, so that the results are quite similar to those when the break date is known. In
terms of the MSE, we can see that the MSE of the bias-corrected estimator is comparable to

that of the other estimators in all cases.

Table 3.3 shows the results under DGP2 (2 breaks). In this case, the downward bias of
the long-run variance gets larger, compared to the case under DGP1, but we can see that the

relative performance of the estimators is quite similar.

Tables 3.4-3.7 show the results with AR(2) errors. We can see that the bias-corrected
estimator has better finite sample property in most cases. Tables 3.8 and 3.9 give the results
with MA(1) errors. In this case, when 6 < 0, all estimators have large upward bias. When

6 > 0, the bias-corrected long-run variance estimator has less bias than the other estimators.

Overall, we can see from the simulation results that the bias-corrected long-run variance
estimator has less bias than other estimators in most cases, so that our proposed estimator

has good finite sample performance.

3.7 Conclusion

We have derived the first-order bias of the long-run variance estimator, taking structural
breaks into account, and proposed a bias-corrected long-run variance estimator. By Monte
Carlo simulations, we have found that our proposed long-run variance estimator has good
finite sample properties. Our proposed method is useful, for example, when we construct

confidence intervals of the mean of a time series with structural breaks.

In this chapter, we focused only on estimation of the long-run variance, but our method
can also be applied to testing for shifts in mean of a time series. This topic will be investigated

in the next chapter.

3When T = 100 and ¢ = 0.2, the performance of War gets worse because the lag length selected by the
BIC is too short.
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3.8 Appendix A: Proofs of Theorem 1 and Some Related Lem-

mas

Lemma 2 Under Assumptions 1 and 2,

E(@)=¢+RE|f—r— (R - R)¢] “R'E [(R ~RR i - (R - R)ng +o(T™Y),

(3.15)
where R and R are p x p matrices such that (R)U = tij, (R)ij = rij, 7 = [Fo1,--- ,Top),
r=[roy, - aTOp]/: Tij = (T - p)_l Zthp—i-l U—iUg—j, and rij = E(utfiut*j)'

Proof of Lemma 2
Since R~! can be expressed as
R'=R'-RYR-RR, (3.16)
we obtain
R'" = R'-R'YR-RR'+R Y R-RRYR-RR!
~-R"YR-—RR Y R-—RR 'Y R-RR™, (3.17)

by recursively using relation (3.16). Therefore, since ¢ = R™'r, # — r = O,(T~/?), and
R — R = 0,(T~/?), we have

~ ~

¢ = R'7
= R +R*'(#-r)—RYR-RR'r—RYR-RR (7 —r)
+RYR—- R R YR—-RR 'r+0,(TY
= o+ R {i—r—(R-R)o} +0, (T
= —R'R-RR{i-r—(R-R)6} +0,(T7"). (3.18)

By ignoring the o0,(71) term and taking expectation of the rest of (3.18), we obtain
(3.15). m

Lemma 3 Under Assumptions 1 and 2,

m+1

E(fij —rij) = -

w+o(T™),

where w = o2 /(1= 30_, ¢;).
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Proof of Lemma 3

Without loss of generality, we assume ¢ < j. From (3.2), we have

1 T
- Qg iU
? =TS o
Nopti) L NS, —a)
T—p Tl_p+zt:p+1 b= =3
m 1 Te+j
+ T, Do (wmi = ) (usj — )
= P rrin
m . . T[+i
Tg — Tz_l 41— yi 1 _ _
+ Z : — Z (w—i — Ue)(ue—j — )
=2 T=p Te=Ter+0=7 55050
) T
T—-Ty,—j 1 _ _
+ T _mp T Ty — Z (up—i — Um+1)(ut—j — Ump41)
t:Tm+]+1

Note that the second term in the last equation does not appear when ¢ = j, and the third
term does not appear when m = 1. Therefore,

T, —p+i 1 UL g )

. 1 —1 — —1

E(r;) = i — + o(T + E i +o(T

(TU) T_p {TU )\]_(T—p)w O( )} = {T_prlﬂ 0( )}

1
m

S| - e

T—Tp—7 . 1 Wt o T
T { 0 —p~ 7 )}

m+1
1
= - Moo= Ap1) - 7!
v ;U = (Ae—ke—l)(T—p)w+0( )
1
= rij—?jpw—l—o(T—l),l

Lemma 4 Under Assumptions 1 and 2,

COU('f‘ijv ’f'i/j/) e CO’l}(fij, ’):Z/]/) _|_ O(T—3/2)’

where 7i; = (T — 1!))_1 ZtT:pH Ut—iUt—j -
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Proof of Lemma 4

Without loss of generality, we assume ¢ < j and ¢’ < j/. We can see that 7;; can be expressed

as
Th+2 m Ty+i
R 1 _ _ _ _
= e | X e ) + 30 Y (= w0
t=p+1 =1 | t=T,+j+1
m To+1 T
+ E E (we—i — Up) (us—j — Ug) p + E (Ut—i = 1) (Up—j — 1)
m=2 t=Tp_1+j+1 t=Tpm+j+1
1 T1+i T1+i T1+4
_ _ N =2
= T—>p § Up—jUg—j — UL § Ug—; | — U1 E u—j | +T1—p+ i)y
p t=p+1 t=p+1 t=p+1
m Te+j Te+j Te+j
+ Z Z gy j — Uy Z Ui | — Uggr Z ug—j | +(§ — 1)Ugtiesy
/=1 t=Tp+i+1 t=Tp+i+1 t=Tp+i+1
m To+1 Ty+1 Ty+i
+ Z 5 Ut—iUt—j — Ug Z Up— | — Uy § Ut—j
=2 | t=Ty_1+j+1 t=Tp_1+j+1 t=Ty_1+j+1
. N —2
+(Ty — Ty—q +i — j)ug }
T T T
_ _ N =2
= > iy — T > i | — > wg | + (T = Ton — )l
t=Tp+j+1 t=Ty+j+1 t=Tpm+j+1

= (Tij1 = cijn — cij2 + ¢ij3) + (Tij2 — Cija — Cijs + Cije)
+(Tij3 — Cijr — Cijg + Cijo) + (Tija — Cijio — Ciji1 + Cij12), say,

= T + cij,

where ¢;; = 222:1 cijn- Note that 752, ¢ija, ¢ij5, and c;;6 do not appear when ¢ = j, and
that 73, ¢ij7, Cij,8, and ¢;;9 do not appear when m = 1.

Therefore,

Cov(fij,fi/j/) = CO’U(fij, fi/j/) + COU(Cij,fi/j/) + CO’U(fl'j, Cl'/j/) + COU(Cij, Ci’j/)

= Cov(Fyj,Tyy) +di +do +d3, say.

. . . - 12 -
First, let us consider dy, which can be expressed as dy = Cov(cij, Tyjr) = >~ 1 Cov(Cijm, Tirjr)-

For n = 1, by Cauchy-Schwarz inequality,

1 T 41 1 T 1/2
}Cov(cijg,ﬁ/j/) < Var T Z ur—; | uy| Var T Z Up— i Uyt
t=p+1 t=p+1
1/2 1/2
= dl{ d1é’ say.
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Since

dll = Var

A =
T_p<u1—nzut>m]

T 1
2 2 —_ U
Var (T—pu1> + Var <<T—p ;ut> u1>

and di2 = O(T™1'), we obtain Cov(c;j, 1, Tirjr) = O(T‘3/2). Similarly, for n = 2,---,12,
Cov(cijn,Tirjr) can be shown to be O(T~3/2). Therefore, we have d; = O(T~%/?2). In the

IN

=0(T7?)

same way, dy = O(T~3/2) can be proved.

Then, consider the term d3. Since d3 = Cov(cij,cirjr) = 221:1 222:1 Cov(Cijiny» Cirj' o)

and

1/2
‘COU(cij,TU?C’L'/j/,nz)‘ S (Va?”(cw,nl)var CZ_] o ) /

— (0T 20T 2))* =012,

ds is of order T~2. Therefore, we conclude that Cov(#j, #i1j1) = Cov(Fij, Fyrjr) + O(T~3/2). W

Proof of Theorem 1
By Lemma 2,

E(¢) = ¢+R'E [r (R R)qb} ~RE [(R ~ R)R! {r (R R)¢}] Fo(T™Y)
= ¢+ (A) = (B)+o(T™h), say.

Since E(F — 1) = —(T —p)~ - (m+ Dwie + o(T"Y) and E(R—R) = —(T —p)~!- (m +

w4+ o(T~1) by Lemma 3, where ¢ is a p x 1 vector of ones, we obtain

(A) = R'E|f—r—(R—R)¢ (3.19)

[ 1 1
= R! —T;__‘_pr—F?jpwu'gb—ko(T_l)]

1 2 !
- R _m+ o; - 1_Z¢j —i—o(T*l
T p (1_ P ¢> ;
L j=17%J
m+1 o2

= — . R~Y+o(T™h. 3.20
T—-p 1- ?:1%’ ) (3.20)

Note that the first-order bias of (A) is equal to {—(m+1)} times equation (3.6) in Shaman
and Stine (1988).# Therefore, from (5.4) in Shaman and Stine (1988), the j-th element of

“Note that the notation in this chapter is different from that in Shaman and Stine (1988). For example,

¢; (j=1,--+,p) corresponds to —a; (j =1,---,p) in Shaman and Stine (1988).

57



(A) is given by (T —p)~!- (m +1) Eg;&(gbi — ¢p—i), where ¢9 = —1, so that

(A) = =By {(m+ DBuy} 6" +o(T7), (3.21)

where Fj, = [0px1, Ip], ¢* = [—1,¢']’ and Bs,, is defined in Section 3 and Patterson (2000).
For (B), we can see from Lemma 4 that

(B)=R'E (R~ R)R™! {f —r—(R- R)¢}] +o(TY, (3.22)

where (R);; = 7i; and 7 = [Fo1,- -+ ,Top)’. Hence, the first-order bias (B) is the same as the
one in Shaman and Stine (1988), which is given by the sum of (5.1) and (5.3) in Shaman and
Stine (1988). Therefore, we have

1

(B) =7,

Fyp(Bip + Bap)¢* + o(T 1), (3.23)

where By, and By, are defined in Section 3 and Patterson (2000).

From (3.21) and (3.23), we obtain

E@) = ¢+ (4)—(B)+o(T)
= ¢ B 'Tl—pr {Blp + BZP + (m + 1)3317} (b* + O(T_l)
1

O <K1§m) + B;m)qb) Fo(Tl).m

3.9 Appendix B: Proofs of Theorem 2” and Some Related

Lemmas

Because the AR(p) model is a special case of the AR(co) model, we only prove the results
for AR(co) errors. Lemma 1 and Theorems 2 and 2’ can be proved similarly. Note that pr
becomes a fixed number for the finite order AR model and thus, for example, the order given

by o(pr/T) in the following lemmas becomes o(1/T") in the AR(p) case.

In this appendix, we use the vector norm ||z|s = maxj<j<y |z;| for an n x 1 vector
z = [x1, - ,x,), and a matrix norm ||Al|cc = maxi<i<p (2?21 ]aij]> for an n X n matrix
A = (a;j). This matrix norm is sub-multiplicative, that is, ||AB|/cc < [|A]lo - [|B|lo holds

for n x n matrices A and B (cf. Hannan and Deistler, 1988, p.266). Moreover, |2’ Ay| <

1 |2loo || Alloo * |Y]|eo holds for n x 1 vectors z, y, and an n X n matrix A.
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Lemma 1” Under Assumptions 17, 2, and L, the following relations hold:

(a) FE [L/(ﬂ =i¢— T _:lpTL’(KpT + Bp,¢)+ o (?) ,
() B[/&=0)(6- o)t =5 —oZ'R 4o (),
where ¢ is defined by (3.12), ¢ is a pr x 1 vector of ones and
- - ) A o1 . -
Ppr 11 T12 e T1,pp 710
b= P2 _ | T T2 : 720
: pr_lva
_QASPTva_ _fp:ml “ Tprpr—1 Tprpr | _pr:O_

Proof of Lemma 1”

Proof of (a). Using (3.17) and the relation ¢ = R~1r, we have,

Llczg = JR7'%
= o+ /R'?—r)—/RY R—R)¢p—/RYR—-RR '+ —r)
+'RY R~ RR MR~ R)¢+ 'R (R~ RR (R~ RR (7 —r)

A A~

—/R"YR-RRYR-
= o+ (a) = (b)) = (c) +(d) + (e) = (f), say.

First, let us consider (a). Since Lemma 3 holds uniformly in 0 < i < pp and 0 < j < pp,

we have
m+1

- T-pr
where §;; = o(T_l) uniformly in 0 <14 < pp and 0 < j < pp. Therefore,

E(f”) =Ty w + &'j, (3.24)

where & = [£10,++ , &ppo)- Since ||[R7|o = O(1) (cf. den Haan and Levin, 1998), we obtain

(a2)] < pr-llelloe - IR loo - [1€]loo

= pr-0O(1)-0(1)-o(T™) = o(pr/T).
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For (b), we have

. ) . . . '
where = is a pr xpr matrix whose (4, j) element is &;;. Since Z¢ = [ZZ; E1kPprdes s ZZL EpT,kqbp%k] ,

we have

IEfllo = max

pr
> &inbpr
1<j<pr [>T

PT
(z B
k=1

= O)-o(T7Y) =o(T™h).

IN

1<j,k<pr

)' max |£jk‘|

Therefore,

1(02)] < prllelloo - 1R oo - 18]
= pr-0(1)-0(1)-o(T~") = o(pr/T).

Combining these results, we have

El(a) = (0)] = (a1) = (b1) + o(pr/T), (3.25)

where (a1) — (b1) corresponds to the first order bias of (A) given in (3.20) in the proof of

Theorem 1.

We next consider (c¢). Since the result of Lemma 4 holds uniformly in 0 < i < pp,
0<j<pr, 0<i <pr,and 0 < j" < pr, we have

. ) 1
E (73 — rij) (Faryr — rojr)] = Ty tiaitd’ T &g (3.26)

where b;; ;s is the first-order bias of (7 — ;) (7irjr — ri1j1), and &0 = O(T~%/2) uniformly
nm0<i<ppr,0<j<ppr,0<i <pr,and 0 <j' < pr. Now, we have
V0 Y (P = ) (70 — 7o)

(R—R)R ‘(P —r) = E ,

V0 " (o = Tppar)(Fro = 770)
so that

12/1T ’ b117]0+2/12 1T]§11’]’0
E(R-R)R7'(? —r)] =
S S T by o+ 20 Yo T i o
= B+ ga say,
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where 7% is the (i, j) element of R~1. By (3.26), we obtain

[€lle =
<
where Z?’T:1 Ve 7 =
E[(c)]
Note that
[(e2)] < pr-
prng pT .

For (d), because the (i, j) element of (R— R)R~

Tii’)(f'j’j — Tj’j)? we have

E[(R —R)R"Y(R—R)]

i'j 1
—1 Z o1 T (T—pT buir g + gli’,ﬂ)

-/

-/
Z?’Tzl Yyt

— By+E, say,

1
(T—PT bprit, g+ fpw‘@j’l)

pr Ppr

!
max | Y ' g0
1<j<pr s et
pr Pr L
v
]/Z_:U/Z_:l ’T ’ 1<]rzr,l§;‘?<< ‘5]1’]’0|
O(pr) - O(T~*?) = O(pr/T*?),

= J/RE[(R— R)R™(+ — 1))

— L/R_lBl —i—L/R_lg

= (c1)+ (c2), say

ellos - 1R oo - [1€]lso

O(1) - O(1) - O(pr/T??) = O(p7./T*?).

Y(R—R) is given by

and each element of = is uniformly O(py/T?/?). Therefore, we have

E[(d)]

Note that

=
.
[N}

=
A\

= /R'E[(R-—RR Y(R—-R)¢
= VR 'Byp+ /R 'E¢
= (di)+

(d2), say.

pr - elloo IR Hloo - 1Elloo - ¢l
= pr-0(1)-0(1)-

O(p7/T3?) - 0(1) =
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pT
5/

-/

-/
Zg’Tzl 2t

O(pr) holds because || R~ = O(1). Therefore,

pT

-1 -1 r v’ (T'”/ -

DY 17" <T prlz J'pT +§1i',j’pT>

1 . .
(T—pT bpri j'pr + §pTz’,J’pT)

O(pip/T3/?).



Combining the above results, we have
E[-(c) + (d)] = —(c1) + (d1) + o(pr/T), (3.27)

where —(c1) + (d2) corresponds to the first order bias of (B) given in (3.22) in the proof of
Theorem 1.

For (e), because ||R — Rl|oo = Op(pr/VT) and ||# — 7|joo = Op(T~/?) (cf. den Haan and
Levin, 1998), we have

~ 2
@ = prllloe IR Moo - 1R = Rllao} 1R oo - 17 = rll

IN

= pr-0)-{0) - 0,r/VT)} - 0(1) - O,
— O,pH/T)

Finally, let us consider (f), which can be expressed as (f) = /R (R — R)R™'(R —
R)RYR-R) {6+ (6-0)}.
A~ /
Since (R — R)¢p = [Z?T:l(flj' = 115)Bpr gt 2t (Pt — TpT,j')fﬁpT,j’} ; we have

pr
[(R—R)plloc =  nax jzl@jj'—rjj')%nj'
pT
< Jmax g =yl j/z_:l|¢pm’

= 0,(TY%)-0()
= Op(T_1/2)-

DI < pr- el IR oo 1R = Rlloe} 1B oo {Il(R = R)llc + 12— Rlloc - 16— 0l }
= pr-0()-{0(1) - Opr /YD) 001) - {0)(T7) + Oypr/VT) - 0,772}
= O,(B}/T*).

Therefore, we have E(/'¢) = /¢ + (a1) — (b1) — (1) + (d1) + o(pr/T) because ph/T — 0.
Since the first-order bias of /¢ given by (a1) — (b1) — (c1) + (dy) is exactly equal to the one
derived in Appendix A, we obtain the desired result. l

Proof of (b). By defining 1,1 = 7L, (¢ — bprj)ut—j + D72, 11 djur—j, we can see that

pr

Up = Z Gpp jUt—j + Nppt + € (3.28)
j=1
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Therefore, we have, for / =1,--- ,m+ 1,

1 i
iy = — Z m
Ty — Ty 1
pr TZ T[ Te
1 1 1

B Z Orr.i Ty — Ty Z g ) Ty —To Z prt F Ty — Ty Z °t
Jj=1 t=Tp_1+1 t=Tp_1+1 t=Tp_1+1
DT pT 1 J

= Z Pprp. e + ¢ + €0 + Z Ppr.j {w Z(UTZ—1+1_1€ - UTHl—k)} ; (3.29)
j=1 j=1 T k=1

where 7y = (Ty — Tp_1) ! Z?iT[,l+1 Nppt and & = (Tp — Tp—1) ™ ZtTiTth g¢. From (3.28)
and (3.29), we have, for t =Ty +pr+1,---, Ty,

Ut = Ut—ﬂg

pr
= > Gprgie—j + (pps — ) + (60 — &) + e, (3.30)
j=1

where hy = =371, dp, 5 {(Té —T1) ™ g (w1 — uTz-‘rl—k)}'

Similarly, for t =Ty, +1,--- , Ty +pr ({ =1,--- ,m), we have

Uy = U — Uy - 1{t < Tg} — Up4q - 1{t > Tg}
pT
= Z%T,jut—j + Nppt F e — U - 1{t < Ty} — tpypq - 1{t > Ty}
j=1
pT

= Y bppg g+ 10 1{t = § < To} + Ggyr - 1{t = § > T} + 1ppe + &
j=1
=ty - 1{t < Tp} — tgqr - H{t > Ty}
pr

= Z ¢PT,jat*j + Nppyt + €+ Bt,fa (3.31)
=1

where ilt’g = Zl;il ¢PTJ [ﬂg . 1{t -5 < Tg} + U4 - 1{t -7 > Tg}]—ﬁg'l{t < Tg}—ﬂg_,.yl{t >
Ty}
From (3.30) and (3.31), we obtain

@tflgi)—i_(in,t_ﬁ€)+(Et_§€)+hf fOI't:T[_l +pT+]-7 7Tf (62 ]-) 7m+]—)7

@;,ﬁﬁ—i—np%t—%&?t—i—ﬁt,g fort=Tp+1,--- , Ty + pr (ﬁ: 1,--- ,m),

PSSR P - /
where @, = [, -+, Up—pp41]"
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. -1
Since ¢ = (ZtT:pTH @H@;,l) (Z;FZPT-‘Fl @Hat), we obtain, using (3.32),

VT —pr (6 —¢)
= Z Uy 1Ut 1

-1

T4 pr+1
1 m41 iy To+pr
X | —F— E E Uyp_q in: + E Uy 1 Mprt
T —pr

/=1 t=Ty_1+pr+1 ) {=1 \t=Tpy+1
1 m+1 T, ) m Te+pr

v, DI ED DR RIC 2 e

T—pr | 5 =Ty 1 +pr+1 =1 \t=T,+1

1 m+1 Ty m Te+pr

e 5 51 (D SHE A NS ol & SR
PT | = \i=1, S tpr+1 =1 \t=T,+1
= RTA)+(B)+(O)], say.
First, let us consider (A), which can be expressed as
1 T m-+1 Ty m-+1 y)
(A) = g 2o wlra =D | D wee| =Y @ Y e
Pr | (=1 \t=Ty+pr+1 =1 t=Ty—1+pr+1
m+1 m Te+pr
+ Z (T — pr)ueeiie) + Z Z (@1 — W—1)Mprt

=1 =1 \t=T,+1

= (A1) — (42) — (43) + (A4) + (45), say,
where w, = [ug, -+, U—ppt1]’-
By den Haan and Levin (1998), Assumption L(b) implies
pr or
210 = dpril =0 (%) (3.33)

Therefore, from Assumption L(b) and (3.33), we obtain

Bl —m— Z Ut—eTprt
t pr+1
pr 1 T 00 1 T
= K Z(¢j — Ppr.i) JT—pr Z Up—pUt—j | + Z ?; — Z Up—pUt—j
j=1 t=pr+1 Jj=pr+1 t=pr+1

pr o0 1 T
< |95 — Pprl + Z 9j] | -sup B | ——= Z Ut —Ut—j
j VI —pr

J=1 Jj=pr+1
= o(pr/T)-O(VT)
(pT/ﬁ)

= 0
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uniformly in 1 < ¢ < pr, so that |[(A41)]/ec = 0p(pr/VT).

Similarly, since E |(T — pr) ! ZtT:pTH Nppt| = o(pr/T), we have ||(A2)|lc = op(pr/T).
In the same way, we obtain [|(A3)llec = 0p(pr/T), [I(As)llec = 0p(pr/T), and [|(As)]ec =
Op(pr/V'T). Therefore, [[(A)llos = Op(pr/VT).

For (B), since (T — pr)~/? Z?:pT+1 ut—y = Op(1) uniformly in 1 < £ < pp, & =
Op(T~Y/2) for £ =1,--- ,m + 1, we have

T
(B) Tl_pT thTHut_leze ) 0,(T1/2)
Now let us consider (C'). Since
T 1 pT
| Fue] (Z ¢pm) T, T, 1Z(|UT5_1+1—I§|+|UT@+1—I€|)
j=1
= O0(1) - Op(pr/T)
= Op(pr/T)
for 1 < ¢ <m+ 1, we have
m+1 1 Ty ) To+pr
(Ol < ;:; ( /T —pr t:Tz§pT+1Ut_l hé) +Z /775 %1Ut 1ht
= 0p(1) - Op(pr/T) + Oplpr/VT)

= Op(pT/ﬁ)-

Therefore, we obtain

VT —pr(¢—¢)=R" (\/7 Z Uy 15t+CT)7 (3.34)

t=pr+1

where [|¢7(loc = Op(pr/VT).

Then we evaluate the expectation of /(¢ — ¢)(¢ — ¢)'t up to O(pr/T). Using (3.34), this

65



can be expressed as

T
L p p—1 -1 1
= VR + (R —R —_— Uy 1€ +
T 1 )} JTpr 2 Bt

=pr+1
1 T )
X Z uy_1et + Cp {R_l + (R~ R_l)} L
T=pr t=pr+1
1 1 d 1 d
= VRV ——— Z Up_1Et —— Z uy g | RN
T=pr T=pr t=pr+1 T—pr t=pr+1
+op(pr/T), (3.35)

because | R~ |oo = O(1), B! = R Y|oo = Op(pr/VT), (T =pr) ™ 3y &l =
Op(1), and [|¢7]|0 = Op(pr/VT).
Since E(g¢|F;—1) = 0 and E(¢?|F;_1) = 02, we have

1 T T 1 T
E / - E / 2
T—pr Z Ut 1€t Z Up 18t T—pr Z Up 1Up 18

t:pT+1 t:pT+1 t=pT+1
= o’R. (3.36)

Therefore, from (3.35) and (3.36), we obtain

B (/0= 00— 0)1] = =o'+ olpr/T). W

Lemma 2” Under Assumptions 17, 2, and L, the following relations hold:

(W B|(1= S d0s) | = - o

+ T—pr {2(1 — L/¢)L' (K}g;”) +B}(77;1)¢> +U§L’R71L} Yo (}%) ,
2] _ 2 _brtmAl o pr
(b) E[Jg]—ae T UE+O(T>,
. 1 -
(c) Var|5?] = T [(E(ed) — o} +o(T7Y),

~ 1 2 p
(d) Cov [03, <1 -3 ¢pT,j) ] -0 (%) '
Proof of Lemma 2”

Proof of (a). Here we define ¢) = —¢+¢— (T —pr) ! (K,(,?) + BI(,?)QS). Then, from Lemma
1”7, we obtain
E(/Y) = o(pr/T), (3.37)

1
Var(/y) = ma?a’R_lL+o(pT/T). (3.38)
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Since 1 — ZZ;; quT,j =1—Vop=1—Vop+ (T — pr) YW (Kpy + Bpp®) + (1, we have

E[(l— ?21&1}%]‘)1 = FE

1
- it

{1 — ¢+ T_lpTL/ (Kl + Bmo) +up} ]
2
(14 + i) |
+2 {1 — o+ T_lpT/ (K]g? + ngqﬁ) } E[/Y]+E [(wﬂ
= (a)+2-(b)+(c), say. (3.39)
By (3.37) and (3.38), we have

(@ = (1—-/9)*+

(b) = olpr/T),
1

(c) = T pTUgL/R_IL + o(pp/T).

o (1= 00 (K50 + BSY6) + ofpr/T),

Therefore, the expectation up to O(pr/T) is given by

E[(“ ?31<5pT,j)2] = =P o (K + B

+ o2/R™ v + o(pr/T). M

T—pr
Proof of (b). Fort =Ty 1 +pr+1,--- , T, ({=1,--- ;m+ 1), & can be expressed as
& = (ue— 1) Z‘f’pm (ut—j — te)

PT
= (u¢ — ) Z Dprj(Ut—j — Ue) Z ?pr,J Ppr.g) (Ui—j — Tg)

7j=1
= (Et - 54) - (¢ - ¢) Up_1 + (in,t - 774) + hy, (3'40)

where the last equality holds because ¢; = u; — Z?; Gpr,jUt—j — Nppt and & = Uy —
Zfil Ppr,jUe — Te + hy.
Fort=Ty+1,--- , Ty+pr ({L=1,--- ,m), we have

pT pT
& = Up— Z ¢pT,jﬁt—j - Z(@ij - %T,j)ﬁt—J
j=1 i=1
= &+ pra + Oplpr/VT). (3.41)
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Using (3.40) and (3.41) and noting

m+1 Tg

that |hy| = Op(pr/T) for 1 < ¢ < m+ 1, we have

% T T _pp Z Z (er — &0)° +Z Z et

(=1 \t=Ty_1+pr+1

m+1 Ty
2{2 e

(=1 \t=Ty_1+pr+1

(=1 \t=T;_1+pr+1

m+1 T, . 9
+ { > (6-oi)

/=1 t=Tp+1

)ity 1 (e — &)

m+1 Ty A m Te+pr
+192 Z Z (Tprt — 7e) ((515 — &) — (¢ — Gb)/@t—l) + 22 Z Tpr,t€t
/=1 t=Typ_1+pr+1 =1 t=Tp+1
+1 T, m [ Tetpr pr
+ S e |+ X ) | e (%)
(=1 \t=Ty_1+pr+1 (=1 \t=T,+1
= (A)-2-(B)+(O)+ (D) +0, (), say.
First, consider the term (A). Since
m+1 Tg
Ty =Ty —pr 1 _\2
(A=) DDEENCE-I B
=1 T=pr Lo=Tea=pr i
we have
™ 1
E — A— 02} +o(T7t 3.42
A E{ V)@= T B
+1 _
= Jg_T—pTUE+O(T b.

Next, let us consider (B). Since

m+1 T,
1 L

T —
pr /=1 t=Ty_1+pr+1

Z Z Gy_q (et — &) = \/ﬁ Z u_ie¢ + Cr,
t

=pr+1
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where [|C7|loo = Op(y/pr/T), We have

1

(B) = T = pr(d—¢)

T —pr

1 m+1 Tg
1 > (e - )
PT | 021 \i=1, o+t

1 1 T / / i N )
- T—pr (m Z ut1€t+CT> {R L4 (R 1—R1)}

t=pr+1

1 d .
X (mt Y was +CT)

=pr+1

! ! 3 u, e | R71 ! 3 u;_1€¢ | +o (pT)
= Uz 1€t —— Uy _1Et )
T=pr VI =pr =, o VI =pr, =, t AT

because [|(7||c0 = Op(pT/\/T).
From (3.36), we obtain

[ 1 T T
PT \Zprn t=pr+1

- . .
_ 1
— tr |R'E (TPT( > utlet) ( > U,,515t))]
i t=pr+1 t=pr+1

= tr[R™' oZR]

= proz, (3.43)

so that E[(B)] = (T — pr)~ ! - pro? + o(pr/T).

Next, let us consider (C):
1 m—+1 Tg A
el U D D DR Tty I NCEYD
PT = \e=n o ivpr

= (p-d)R(H—¢

€) = (¢-9)

~—

a - +1 T, SN
where R = (T — pr)~! { mh (ZtiTz,ﬁpTH Et—l%—l) }
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Since ||153 — R|lso = Op(pr/VT), we have

© = T_lpT{\/T—pm?—¢>’}é{\/T—pT<¢%—¢>}

1 . 2
- = Z uh_je+ {R*1+(R*1—R*1)}{R+(R—R)}
— T t pr+1
X {R—l (R - R—l)} Z U160+ Cr
\/T pT
T T
1 1 / -1 1 pr
= w_&t | R —— w18 | +o ( )
T—pr \ vI'=pr 2=, - VI —pr, ==, - AT
so that we obtain E[(C)] = (T — pr)~! - pro? + o(pr/T), using (3.43).
Finally, let us consider (D), which can be expressed as
1 m+1 Ty m Te+pr
(D) = 77— |2 > Yo e —e) |+ D mpries
pr =1 \t=T, 1+pr+1 =1 \t=T,+1

m—+1 Ty

—2(¢ — ¢)’ Z Z Uy (Mpy,t — 7le)

(=1 \t=Ty_1+pr+1

m+1 T, m Ty+pr
—\2 2
12 22 = | D2 Dl Mo
t=1 \t=Ty_1+pr+1 (=1 \t=T,+1

= 2- (Dl) -2 (D2)+(D3), say.

First, consider the term (D;). By Assumption L(b) and (3.33), we have

T [e’¢)

Z Mprt€t| < |¢J Pprjl + Z |¢j| ‘SUPE Z Ut—jEt
LA — j=1 j=pr+1 j=1 T pr+1

= o(pr/T)-0(1)

= o(pr/T),

and thus (D1) = op(pr/T).
Then, let us consider (D). Here we define

1 m—+1 Tg

P = Z Z Uy—1 (Mp,t — Te)

T —
pr /=1 t=Tp_1+pr+1

Then, ||P|lcc = op(pr/T) because (T — py)~? ZtT:pTH W—gNppt = 0p(pr/T) uniformly in
1<t <pr.
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Since (Dy) = (T — pr)~ /2. {\/T — pT(¢Z - qb)} P, we have

1 1 d .
1Dl < m.pT-(mtwutlet +<Too>-R Yoo - I1Ploc
= O™ - pr - {0,(1) + Oplpr/VT) } - Op(1) - 0y pr/T)
= o, (p}/T"?).

Then, let us consider (D3). First, we have

1 T 1 T pr 0o 2
E T Z nZ%T»t = B T Z (¢J - ¢pT,j)Ut7j + Z gbjut,j
—pr —pr — -
t=pr+1 t=pr+1 ( j=1 Jj=pr+1
1 T pT 2
< Blm—— D> 4D (65— bprj)ury
pr t=pr+1 | j=1
1 T pr 00
2B 5 Y 3D (&~ Gppgue— > ju
pr t=pr+1 7j=1 j=pr+1
1 T i ’
HE|m——— Y | D by
pr t=pr+1 \ j=pr+1
= (D3—1)+2-(D3—2)+ (D3 —3), say.
Since

2

pr
(Ds—1) < [ D I6) — bprl 'SutPE\usUtI
j=1 S’

= o(pp/T%)-O(1)
= o(p/T?),
and similarly (D3—2) = o(p/T?) and (D3—3) = o(p%/T?), we have E (T — pr)~* ZtT:pT-s—l 77;2>T,t =
o(p2/T?), so that (D3) = o,(p%/T?). Thus we have (D) = op(pr/T).
Using the above results, we obtain

N +m+1
E(62) =02 — pTT_ipTUg +o(pr/T). A

Proof of (c).

. 2 . 4 . 21 2
Since Var [(1 - ﬁpr,j) ] =F [(1 -3 ¢pT,j> } — {E [(1 - ¢pT,j) ]} )

. 4
We only need to obtain E [(1 - Z?; ¢pT7j> } to prove (c).
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Here we have

Ny 4 1 4
1= | = {1 g (K B )}
7=1

_ S Sy e
- &—w¢+T_p#(Kh + Bio)

1
+41—Vp+ J
{ ¢ T —pr

+6{1—U¢+

+4 {1 — o+
+('y)*
= (A)+(B)+(C)+(D)+ (E), say.

T —pr

First,

(A) = (L= o) +

—br

Then, since E(/1) = o(pr/T), we have E[(B)] = o(pr/T).

(1= o) (K,E? + Bg;%) + olpr/T).

Next, we evaluate the expectation of (C'). Because E[(1/1))?] = Var(/v) + {E(L’¢)}2 _
(T — PT)flU?L/Rflb + o(pr/T), we have

E[(O)] = 6{(1—/9)"+Opr/T)} - {T _1

JSL'R_lb + o(pT/T)}
pr

6 _
= T_pT(l—L/¢)20'gL/R L+ o(pr/T).

Finally, let us consider (D) and (E). Here we have (/¢ = Op(y/pr/T) from (3.38), so
that (/)3 = Op(pgT/Q/T:”/z) and (J/1)* = O,(p%/T?). Since pt./T — 0 as T — oo, we obtain
()3 = op(pr/T) and (/)* = o,(pr/T), and thus E[(D)] and E[(E)] are both o(pr/T).

Therefore,

E

pr 4
(1 - Z %m) ] = (1-/9)'+ T _4pT(1 — /)% <K127Tn) + ng%)
j=1

6
T —pr

Using the above result and Lemma 2” (a), we obtain

+ (1= 9)?02/ R 4 o(pr/T).

pT 2 pT ! pr 2 ’
Var (1 - Zépmj) ] = L (1 - Z (ipmj) - {E (1 - ZQBPTJ) ] }
j=1 j=1 J=1
_ 4 N2 2 1 p—1
= = _pT(1 V$) 0/ R™ v+ o(pr/T). M
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Proof of (d). We only need to obtain F [(1 -2 quT,j)zﬁf} to prove (d).
From (3.39), we have

~ 2 1 2
(1= S dpra) 62 = {1—L’¢>+T / (K;?>+B;?>¢)} 5
+2{1—c’¢>+T_1L( (m)+Bm)¢)}( )62 + (y)?6?
= (@+2-(0)+ (o), say.

For (a), we obtain

_ s n2 2 Prtm+1
Bl(@)) = (-gpot-PEE M

2
(=08 o2 o2 (1= o) (Kf + B9 +o(pr/T),

using the result of Lemma 2”7 (b).
For (b), we need to calculate E[(/)52] up to O(pr/T). Since

T

N 1
VT —priv = /R ! \/T7—7PT t:;;rl w18t +Cr | + op(1),
VT —pr (62 —0?) = Z 2) + op(1),
\/T pr

we have

/(62 — o2)

- Ly (R + (- R}

Z Uy 1€t + (1

T—pr VT =pr t=pr+1
1 T
| e 32 (-0 | +oper/T)
pr tmprt1
1 1 T 1 d
= JR7! Z Up_1Et Z (5? —oZ) | +op(pr/T)
T—pr T_th—pT-i-l T_thsz-H
Here we have
1 T T
T— doowas || D (o)) =0
A e — t=pr+1

because ¢; is a martingale difference sequence with a finite 4th moment and satisfies E(e7|F;—1) =
o2 and E(e}|F;_1) = k3. Therefore, we have E[t1(6% —02)] = o(pr/T), and thus E[/152] =
Bl/)(62 — 02)] + E[/'Y]o? = o(pr/T), and E[(b)] = o(pr/T).
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For (c), since

(036t = (02 {o?+ 0T )}
= ('9)%0Z + Oplpr/T°?)
and E[(/V)?] = (T — pr)~'o2/R~Y + o(pr/T), we have E[(c)] = (T — pr) to2/R™ ' +

o(pr/T).

Using the results above and Lemma 2” (a) and (b), we obtain the desired result. B

Proof of Theorem 2”

Here we slightly modify the relation (3.8). When X — E(X) = O,(pr/VT), Y — E(Y) =
O,(pr/VT), E(X) #0, and E(Y) # 0, we have

X\  EX) Cov(X,Y) Var(y)
b <Y> ~ B [1 TEXEY) T EOP

+o(pr/T),

because pﬁfp /T — 0. Therefore, using the results of Lemma 2", we obtain the desired result.
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ZHw THw gHw [ —w— g—w— T4+ w
[+w g+w 0 ¢ T —w-— ¢ t+w
ctw 0 0 0 1] |t
9+w o 0 0 [+ w]
[+w ¢H+w ( g—w— I+ w
ctw T+w g - w— ¢ +w
T+w 0 0 T | L
c+w 0 [T+ w]

[+w pHw T—w- ¢+ w

z+w 0 I T+ w]

prw o 7+ w|

T+w 1 T+ w
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Chapter 4

Improving the Finite Sample
Performance of Tests for a Shift in

Mean

It is widely known that structural break tests based on the long-run variance estimator,
which is estimated under the alternative, suffer from serious size distortion when the errors
are serially correlated. In this chapter, we propose bias-corrected tests for a shift in mean by
correcting the bias of the long-run variance estimator up to O(T~1). Simulation results show

that the proposed tests have good size and high power.!

4.1 Introduction

Testing for structural breaks has been a longstanding problem and various tests have been
proposed in the econometric and statistical literature. One of the frequently used tests for
parameter constancy against the general alternative is the CUSUM test based on recursive
residuals proposed by Brown, Durbin, and Evans (1975), and this test was further developed
based on OLS residuals by Ploberger and Krédmer (1992). By specifying a random walk
as the alternative, optimal tests for parameter constancy were investigated by Nyblom and
Miékeldinen (1983), Nyblom (1986, 1989), and Nabeya and Tanaka (1988), among others,

while the point optimal test for general regression models was studied by Elliott and Miiller

!The published version is Yamazaki and Kurozumi (2015b), “Improving the Finite Sample Perfor-
mance of Tests for a Shift in Mean”, Journal of Statistical Planning and Inference 167, 144-173.
(DOI:10.1016/j.jspi.2015.05.002)
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(2006). On the other hand, it is often the case that a one-time structural change with
an unknown change point is considered as the alternative and the sup-type test by Andrews
(1993) and the mean- and exponential-type tests developed by Andrews and Ploberger (1994)
and Andrews, Lee, and Ploberger (1996) are widely used in practical analyses. For a general
discussion on structural changes, see, for example, Csorgé and Horvéath (1997), Perron (2006),

and Aue and Horvéth (2013).

In practice, when we test for structural breaks in time-series models, we need to take serial
correlation into account, and thus we have to estimate the long-run variance of the errors.
If we estimate the long-run variance under the null hypothesis of no structural breaks, then
it is known that the above tests suffer from the so-called non-monotonic power problem,
that is, the power initially rises under the alternative, but as the magnitude of the break
increases, the power eventually falls and tends to zero. This problem was investigated by
Vogelsang (1999), Crainiceanu and Vogelsang (2007), Deng and Perron (2008), and Perron
and Yamamoto (2014). The reason for this problem is that the long-run variance estimator

takes significantly large values as the magnitude of the break increases.

On the other hand, if we estimate the long-run variance under the alternative, then the
tests suffer from size distortion; they tend to over-reject the null hypothesis. This is because
the long-run variance is under-estimated, so that the test statistics tend to take large values

under the null hypothesis of no break.

In order to cope with the problem associated with the estimation of the long-run variance,
several methods have been proposed. Kejriwal (2009) proposed to estimate the long-run
variance using the residuals under both the null and alternative hypotheses. By using this
hybrid estimator, we can reduce size distortion, but the power becomes extremely low when
the error is strongly serially correlated. Juhl and Xiao (2009) proposed to estimate the
long-run variance using the residuals of the nonparametric regression to mitigate the non-
monotonic power problem. However, the finite sample performance of this test crucially
depends on the choice of the bandwidth in the nonparametric regression. While these papers
tried to improve the accuracy of the long-run variance estimator, there are several methods
with which we do not have to consistently estimate the long-run variance. Sayginsoy and
Vogelsang (2011) and Yang and Vogelsang (2011) proposed fixed-b sup-Wald and fixed-b sup-
LM tests, respectively, which are robust to I(0)/I(1) errors. The fixed-b framework is based on
Kiefer and Vogelsang (2005), which used an inconsistent long-run variance estimator where
the bandwidth is proportional to the sample size. The fixed-b sup-Wald and sup-LM tests

have relatively good sizes under the null hypothesis, but there is a loss of power due to
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the inconsistent estimation of the long-run variance. On the other hand, Shao and Zhang
(2010) proposed a self-normalized test based on the CUSUM test. The basic idea of self-
normalization is similar to the fixed-b approach. Although the finite sample performance of
these tests are improved, compared to the frequently used tests, such as the original CUSUM
and sup-type tests, the existing methods do not seem to be satisfactory in terms of both size

and power.

In this chapter, we develop an accurate long-run variance estimator and propose to use it
to improve the finite sample property of the structural change tests. This estimator can be
obtained by correcting the bias up to O(T~!), where T is the sample size. The key feature
of our method is that bias correction is achieved by taking a structural break into account.
The advantage of our method is that tests with our long-run variance estimator can control
the empirical size well, while maintaining high power. The simulation results show that the
proposed tests have a higher power than other tests, such as the fixed-b test. Moreover, the
power difference between our bias-corrected tests and the original (bias-uncorrected) tests is
very minor, and it becomes negligible as the sample size increases. This result is in contrast

to some other tests, which suffer from asymptotic power loss.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce the
model and the test statistic. The derivation of the bias term is discussed in Section 4.3,
and the bias correction method is explained in Section 4.4. The case with general error
processes is discussed in Section 4.5. Simulation results are given in Section 4.6, and Section

4.7 concludes the chapter. All mathematical proofs are delegated to the appendix.

4.2 Model and Test Statistic

Let us consider the following mean-shift model:
Yo =p+6 - DULTY) + g, t=1,---,T, (4.1)

where DU(TY) = 1{t > TP}, and 1{-} is the indicator function. We assume that u; is a

zero-mean stationary process and that the break date T, l? is unknown.

The testing problem is
Hy: 6=0 Vs. Hy: §#0. (4.2)

Under Hy, there is no shift in mean, whereas under Hi, there is a one-time break.

In order to test for a shift in mean, we need to estimate the long-run variance of u; defined

by w =3 . E(ugui_s) for the scale adjustment, which can be consistently estimated by
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the kernel method. As it is known that tests with w estimated under the null hypothesis suffer
from the non-monotonic power problem, as pointed out by Vogelsang (1999), we exclude the
case where the long-run variance is estimated under the null hypothesis, and focus on the
case where it is estimated under the alternative of a one-time break. That is, we consider the

following kernel estimator of w as a benchmark:
T—1 i
o(Ty) =4 + 2 El— 1% 4.3
o) =023 ()5 (1.3

where k(-) is the kernel function, m is the bandwidth, 4; is the estimator of the jth auto-
covariance of u; defined by 4, = 71 Z;‘FZ i+ Uty j, the residuals 4; are obtained under the
alternative with the supposed break date Tj, and

yt_gl fOI’tzl,"‘,Tb,

Uy = (4.4)

Yyt — Yo fort=T,+1,--- T,
where 7; = Tb_1 ZtTil ye and 7o = (T — Tp)~* ZtT:TbH yr. Note that Ty is specified by a
researcher and it is not necessarily consistent with T, bo . We suppress the dependency of ¥;

and 4; on T for notational simplicity.

When the parametric structure is framed for u;, we may use, instead of the kernel esti-
mator, the autoregressive spectral density estimator of w based on the AR(p) model given

by

war(Ty) = (4.5)

N2’
(1 -2 ¢j)
where 4; = E§:1 ¢jlis_; + & with ¢; (j = 1,---,p) being the OLS estimator, and 62 =
(T =)' Sy &1
In this chapter, we mainly consider the following two structural change tests, which have
been commonly used in many practical analyses, with w*(7}) denoting either &(7}) in (4.3)

or war(Tp) in (4.5), as the estimator of w.

Sup-Wald test
Following Andrews (1993), the sup-Wald statistic for testing problem (4.2) is given by

SSRy — SSR(Ty)
- = T h T -
sup-W TbG[al%la?IX—e)T]W( b), where  W(T) w*(Ty) ’

(4.6)

where SSRy is the sum of squared residuals under Hy, SSR(T}) is the sum of squared
residuals under the alternative of a one-time break with the break date Tp, and e is the

trimming parameter.
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CUSUM test
The CUSUM test statistic proposed by Ploberger and Kramer (1992) is originally defined as

T-1/2 Z;fil Uy
N

where 1 is the residual under H, and the long-run variance estimator @ is estimated under

CUSUM = max
Tye[1,7—1]

)

the null hypothesis. As explained in Crainiceanu and Vogelsang (2007) and Deng and Perron
(2008), this test suffers from the non-monotonic power problem because the long-run variance
is estimated under the null hypothesis of no break. In order to avoid this problem, we again
consider estimating the long-run variance under the alternative of a one-time break. Then,
the test statistic should be modified as

T2

CUSUMy, = max i
w*(Ty)

4.
TbE[l?‘T—l] ( 7)

4.3 Derivation of the Bias

In this section, we derive the bias of the reciprocal of the long-run variance estimator up to
O(T~1), under the assumption that the correct specification for u; is the AR(p) model. The
case with general error processes will be discussed later. Throughout this chapter, we define
the bias as the expectation up to O(T~1), ignoring the op(Tfl) terms.? Note that since our
purpose is to control the size of the tests by precisely estimating the long-run variance, the
bias is derived under the null hypothesis of no break, whereas u; is obtained assuming a
one-time break at Ty, which is given by
u—uy fort=1,--- T,

Uy = (4.8)
ug —ug fort="T,+1,---,T.

Here, we note that T} is not the actual structural break date, but the prespecified possible

break date which is necessary for calculation of the long-run variance estimator.

To derive the bias term, we make the following assumptions when p > 1:

Assumption 1 {w;} follows a zero-mean stationary AR(p) process: u; = 25:1 Gjui—; + €,
where 1 — Z§:1 ¢;z3 # 0 for |z| < 1, and {&:} is a martingale difference sequence with a

finite 4th moment, which satisfies E(c?|Fi_1) = 02 and E(e}|Fi—1) = k3.

2If we need to evaluate the expectation without ignoring the op(Tfl) terms, we have to make additional

assumptions about the existence of higher-order moments.
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Assumption 2 T,/T — X € (0,1) as T — oo.
When p = 0, we use the following Assumption 1’, instead of Assumption 1.

Assumption 1’ u; = &, for all t, where {e;} is a martingale difference sequence with a finite

4th moment, which satisfies E(e?|Fi_1) = o2

z.
Assumptions 1 and 1’ exclude the case where {u;} is a unit root process. Assumption 2
is standard for structural break models.
We derive the bias of the reciprocal of @4g, which is given by
b 2 \2
(-5 0)
forp>1,

. 52 (49)
— for p=0.

Here, we consider the bias of the reciprocal of @w4r because the long-run variance estimator

is placed in the denominator of the test statistics.

In general, when random variables X and Y satisfy X — B(X) = O,(T~'/?), Y —E(Y) =
O,(T~1/?), E(X) # 0, and E(Y) # 0, the following relation holds:

X\  EX) Cov(X,Y) Var(y)
(Y> [ CBE(XE(Y)  {EY)}?

= B +o(T™h), (4.10)

which can be obtained by the Taylor expansion of f(x,y) = x/y around (z,y) = (E(X), E(Y)),

and by taking expectations, ignoring the 0,(T 1) terms. See Mood, Graybill, and Boes (1974,
p.181).

Therefore, in order to derive the bias of (4.9) up to O(T~1!), we need to obtain E[(1 —
o ¢,)?), E[62], Var[5?], and Cov[52, (1 — y $;)?] for p > 1. When p = 0, we only

need E[62] and Var[62].

The following lemma gives the results for p > 1:

Lemma 1 Under Assumptions 1 and 2, the following relations hold:

(a) E {(1 - ;’:1 @)1 =(1—/¢)*+ Tl—p {2(1 — o) (KI(,D + Blgl)qb) + JEL,R_lb} +o(T71),

. p+2 -
W BB -2 220 ),
(¢) Var [32] = o= {B(el) — ot} +o(T)

(d) Cov [682, (1 — Z?:l qgj)? = o(T™),
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where R is a p x p matriz whose (i, j) element is given by v);_j| = E(ugu,_ji—j|), ¢ is ap x 1

vector of ones, and Kz(,l) and B}(,l) are defined in Chapter 3.

By (4.10) and Lemma 1, we obtain the first-order bias of the reciprocal of the long-run

variance estimator for p > 1:

Theorem 1 Under Assumptions 1 and 2, the expectation of 1/@ar up to O(T™1) is given

E |:A1 :| _ (1-;’¢)2 + 1 |:12 {2(1—L/¢)L, (KI()I)—{—B;I)Qs) +U§L,R_1L+(p+2)(1—bl¢)2}

0¢

Remark 1 When p = 1, the expectation of 1/@ag is given by

if the long-run variance is estimated using the residuals under the alternative.

On the other hand, if we use the residuals under the null hypothesis of no structural break

to estimate the long-run variance, the expectation can be shown to be given by

Bl ] =0l L a- s oen +a- ot {EE -1 o,

WAR Ug T-1 O'g 2

Therefore, we can see that the first-order bias of 1/war with the residuals under the alternative

hypothesis is larger than the one with the residuals under the null hypothesis.

Similarly, when p = 0, we obtain the following lemma and theorem:

Lemma 1’ Under Assumptions 1’ and 2, the following relations hold:

. 2 _
(@) E[5] =0t = 20t +o(T)

(b) Var|6Z] = % {E(e}) — o} +o(T7).

Theorem 1° Under Assumptions 1’ and 2, the expectation of 1/@ag up to O(T1) is given
by

1 1 1[2 1 (EE)
E ==+=|5+=
[m} a§+T{az+a§{ o8

— 1}] +o(T7Y).

Remark 2 The first-order bias of 1/war does not depend on the maintained break fraction

A
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4.4 Bias-Corrected Test

In this section, we propose the correction of the bias of (4.9) using Theorems 1 and 1’, and

explain how to use our bias-corrected estimator in order to test for a shift in mean.

4.4.1 Bias correction of the reciprocal of the long-run variance estimator

In this subsection, we obtain the bias-corrected estimator of the reciprocal of the long-run
variance.
Since the first-order bias of (4.9) is given by Theorems 1 and 1’, the bias-corrected esti-

mator of 1/w is

<A1 ) _ ! — b, (4.11)
WAR/) pc  WAR
where
1 1 PN ! (1) 8 ~2 1 H—1
T—p[ﬁg {2(1 o) (Kp + B, qﬁ)—l—a/EL\R L
N 1—4J9)? | B(e4
- +(p+2)(1—/¢)2}+( &2@ { é4t>—1}] for p > 1,
£ €
l 2+i @_1 forp=20
T (527 52) & P="

5o 1T 22 AN 1T A . .
and ¢, 62 = (T —p)~1 D iepi1 &2, B(e)=(T—-p)t Diepi1 g}, and 4;; for the (4,5) element
of R are the least squares estimators of ¢, o2, E (E?), and 5, respectively.?

For example, when p = 1, the correcting term is given by

! . . o [ BED)
; T_1~&g[<1—¢><8+6¢>+<1—¢>2{ gi)—l}].

£

4.4.2 Tests based on the bias-corrected long-run variance estimator

The bias-corrected test statistic can be obtained by using the bias-corrected estimator (4.11).

For example, the bias-corrected sup-Wald test statistic is given by

-Wgeo = Wgo(T; 4.12
sup-Wpgc Tbe[grﬁ?ism Bo(Th), (4.12)
where
1
Woe(Ty) = () - (S5Ro — SSR(T})).
WAR/ BC

30ther consistent estimators can also be plugged in.
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Similarly, the bias-corrected CUSUM test statistic? is given by

[/ 1 i
— TN g,
<WAR>BC ;

Note that @wag in (4.12) and (4.13) depends on T, so that this bias correction procedure

CUSUMH, pc = max

. (4.13)
Ty€leT,(1—€)T]

needs to be repeatedly applied to each wap for all possible Ty with the repeatedly estimated
lag order. However, we suppress the dependency on T} for notational simplicity.

Since the correcting terms are O, (T —1), the asymptotic distribution of the test statistic
under the null hypothesis is exactly the same as that of the original test, and thus we do not
have to modify critical values in order to apply the bias-corrected test. Moreover, even under
the alternative, it can be shown that the first-order bias is asymptotically negligible, so that

there is no asymptotic power loss.

4.5 Extension to the Model with General Error Processes

In this section, we consider the case where the error term wu; is generated by a stationary

AR(c0) process. In this case, we make the following assumption:

Assumption 17 w; = 7% djus—j + &, where 1 — 377, $;z0 #0 for|z| <1, > e |8l <
0o, and {e¢} is a martingale difference sequence with a finite 4th moment, which satisfies

E(e?|Fi_1) = 02 and E(e}|Fi_1) = k3.

Although only the absolute summability of {¢;} is assumed in Assumption 17, we may require

the higher order summability of {¢;}, as explained below.

Since the error term is an infinite order AR process, we need to truncate the lag order
at some point pr and consider estimating the AR(pr) model. The following assumption is

concerned with the lag truncation point pp.

Assumption L

(a) pr—+o0 and pt/T —0 as T — oo. (4.14)

(0) 352,41 105 = olpr/T) as T — oo.

Assumption L(a) gives the upper bound of the divergence rate of pp. This rate guar-

antees the consistency of the autoregressive spectral density estimator as proved by Berk

4We use a trimming for the CUSUM test so that Assumption 2 is satisfied.
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(1974) and den Haan and Levin (1998), although condition (4.14) is stronger than theirs.
Assumption L(b) not only imposes the lower bound of pr but is also related with the higher
order summability of {¢;}. For example, when 3 72, §3T%|¢;| < oo holds and pr is greater
than O(T"/4+) for some o > 0, Assumption L(b) is satisfied. Note that this assumption is
satisfied if u; is generated by a finite-order ARMA process and py = O(T?) for some § > 0,

because |¢;| declines geometrically to zero.

The next theorem gives the bias of the reciprocal of the autoregressive spectral density

estimator up to O(pr/T):

Theorem 1” Under Assumptions 17, 2, and L, the expectation of 1/wagr up to O(pr/T) is
given by

12
E[ ! ]:“ A [12{zu_uqs)/(zc,g;uB;;w)+a§a’R—%+<pT+2><1—W}

WAR oF T —pr

L= L2’¢)2 {E(sf) B 1}] o (g) |

£

where ) ) i L
Gpr .1 Yot Vpr—1 ol
bpr,2 : V2
p=| T = e (4.15)
. . N . . ° . . ’Yl .
_¢pT DT | | Ypr—1 " 71 Y0 i _’VPT_

This first-order bias is exactly the same as the one in Theorem 1. Therefore, we can

implement the bias correction as explained in Section 4.4.

4.6 Simulation Results

4.6.1 Biases and mean squared errors of the estimators of 1/w

In this subsection, we investigate the finite sample performance of the estimators of the

reciprocal of the long-run variance. The data generating process is as follows:
y=p+u, t=1,---,T. (4.16)
We consider the following cases for the error processes of wy:

AR(1) : ug = duyg_1 + &y, ey ~ii.d. N (0, (1 —¢)?),
AR(Q) SuUp = Qrug—1 + Goup_o + g4, g ~iid. N (07 (1 —¢1— ¢2)2) s

MA(L) : uy = g4 + 041, & ~idd. N (0’ (1+16)2> ’
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where the variance of ¢, is selected so that 1/w = 1.

We compare the biases and mean squared errors (MSEs) of the following estimators:

(i): 1/@kerner: the reciprocal of the kernel estimator given by (4.3).
(ii): 1/wag: the reciprocal of the autoregressive spectral density estimator given by (4.5).

(iii): (1/@waRr)Bc: the bias-corrected estimator given by (4.11).

Throughout the simulation in this subsection, we set 7, = 0.57". For the kernel estimator
(4.3), we use the quadratic spectral kernel with the bandwidth parameter selected by An-
drews’ (1991) rule. When we implement the AR(p) regression to obtain the autoregressive
spectral density estimator, we select the lag length p by the Bayesian Information Criterion
(BIC) with the maximum lag length 5. In this simulation, the number of replications is

10,000.

Tables 4.1-4.3 give the simulation results. As we can see from Table 4.1, when the error
term follows a stationary AR(1) process, the bias-corrected estimator has much less bias
than the other ones. Moreover, the bias-corrected estimator has less MSE, compared to
other estimators. Table 4.2 shows the results with AR(2) errors. In this case, we can see
similar results. When u; follows an MA(1) process, we can see from Table 4.3 that the bias-
corrected estimator has less bias in most cases, and the MSE of the bias-corrected estimator
is comparable to that of other estimators. Overall, the bias-corrected estimator performs well

in finite samples.

4.6.2 Finite sample performance of the tests

In this subsection, we investigate the finite sample performance of the tests through a Monte

Carlo experiment. The data generating process is as follows:

ye = p+6- DUTY) +ug, p=0, 5:%, 70 = 0.5T.
We consider the following four processes of w;:
(AR(l) Cup = Qui—1 + €4, er ~ii.d. N (0, 1 —¢?),
AR(2)  up = prue—1 + dour—2 + &, er ~id.d. N (07 (1+¢2){§1_—¢¢;2)2—¢?}) 7
MA(1) : ug = & + 0241, g ~i.4.d. N <0, ﬁ) ,
ARMA(3,3) : us = Pug_s + &1 + 013, &1~ idind. N <0, @%) ,
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where the variance of ¢, is selected so that Var(u;) = 1.
In this subsection, we compare the sizes and powers of the following tests:

(sup-Wald test)

(i): sup-W: the sup-Wald test (4.6) with the long-run variance estimator given by (4.3).
(ii): sup-Wypg: the sup-Wald test (4.6) with the long-run variance estimator given by (4.5).
(iii): sup-Wpge: the bias-corrected sup-Wald test (4.12).

(iv): sup-Whe;: the sup-Wald test (4.6) with the hybrid long-run variance estimator by
Kejriwal (2009).

(v): fixed-b sup-W: the fixed-b sup-Wald test based on Sayginsoy and Vogelsang (2011),
where we use the J statistic as a scaling factor. We use the Daniell kernel with the
feasible integrated power optimal data-dependent bandwidth as described in Sayginsoy

and Vogelsang (2011), and a 10% trimming for this test.
(CUSUM test)

(i): CUSUMp,: the CUSUM test with a 15% trimming, which is given by

-1/25T  ~
CUSUMy, —  max | L2z )
w*(Tp)

(4.17)
T,€[0.157',0.85T)

We use the long-run variance estimator given by (4.3).

(ii): CUSUMp, ar: the CUSUM test (4.17) with the long-run variance estimator given by
(4.5).

(iii): CUSUMpy, pc: the bias-corrected CUSUM test (4.13).

(iv): SN: the self-normalizing method by Shao and Zhang (2010).

For the kernel estimator (4.3), we use the quadratic spectral kernel with the bandwidth
parameter selected by Andrews’ (1991) rule to estimate the long-run variance, except for the
fixed-b sup-Wald test. When we implement the AR(p) regression to obtain the autoregressive
spectral density estimator, we select the lag length p by the BIC, where the maximum lag
length is 5. For the sup-Wald and CUSUM tests, we use a 15% trimming, except for the
fixed-b sup-Wald test. The number of replications is 2,000, and the nominal size is 0.05.
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Empirical sizes of the tests

Tables 4.4-4.9 show the empirical sizes of the tests. When the error follows an AR(1) pro-
cess, we can see from Table 4.4 that the original sup-Wald test tends to over-reject the null
hypothesis as ¢ gets larger. By using the autoregressive spectral density estimator, we can
mitigate the over-rejection problem, except the case where ¢ = 0.2, but the test still has size
distortion. We need to note that, when ¢ = 0.2, the sup-W R test has a larger size distortion
than the original sup-Wald test because the lag length selected by the BIC is sometimes too
short in finite samples. The bias-corrected sup-Wald test performs much better than the bias-
uncorrected tests, in particular when wu; is strongly serially correlated. The empirical sizes
of the sup-Wald test based on Kejriwal (2009) and the fixed-b sup-Wald test are relatively
close to the nominal one, although the fixed-b test is rather conservative. We observe similar
results for the CUSUM test. The bias-corrected CUSUM test (CUSUMp, pc) has much less
size distortion than the bias-uncorrected CUSUM tests (CUSUMp, and CUSUMHp, ar), un-
less ¢ = 0.2. Moreover, the CUSUMF, pc test performs better than the self-normalization
based test when ¢ is large. As the sample size increases, the sizes of all tests get closer to

the nominal one.

Tables 4.5 and 4.6 show the empirical sizes with AR(2) errors. We can see that the relative
performance holds when ¢9 = —0.3, compared to the case with AR(1), whereas when ¢ = 0.3
and T = 100, all the tests tend to over-reject the null hypothesis, including the bias-corrected
tests. In this case, only the fixed-b sup-Wald test has relatively good size. However, as the
sample size increases, the performance of the bias-corrected tests greatly improves, and it is
superior to that of the other tests. When the error follows an MA(1) process, we can see

from Table 4.7 that the bias-corrected tests have good finite sample properties.

Tables 4.8 and 4.9 give the results with ARMA(3,3) errors. Note that an important
feature of this error process is that the autocovariance satisfies v; = E(usu;—;) # 0 if and
only if j = 0,43, 46, ---. Therefore, it is difficult to fit with the autoregressive process.

In this case, we can see from Table 4.8 that most tests tend to under-reject the null
hypothesis when 8 = —0.3 and ¢ < 0.6. When § = —0.3 and ¢ = 0.8, all tests are over-sized.
In this case, the fixed-b sup-Wald test and the self-normalization based test have relatively
good size.

When 6 = 0.3, we can see from Table 4.9 that the original sup-Wald test and Kejriwal’s
(2009) test are severely over-sized, especially when ¢ is large. The sup-Wald test with the

autoregressive spectral density estimator performs better than the original sup-Wald test
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when ¢ is large. The bias-corrected sup-Wald test performs well when ¢ is large, although
it tends to be over-sized when ¢ is small. The fixed-b sup-Wald test has relatively good
size when ¢ is small, but it is over-sized when ¢ is large. We can see similar results for the

CUSUM test.

Size-adjusted power of the tests

We compare the size-adjusted power of the tests.?® Figure 4.1 shows the size-adjusted pow-
ers with AR(1) errors and 7" = 100. We can see from Figure 4.1 that, when ¢ = 0.6,
the bias-corrected sup-Wald test is more powerful than the sup-Wj,; and fixed-b sup-Wald
tests, while for the CUSUM test, the bias-corrected test performs much better than the self-
normalization based test. We can see that the power difference between the bias-corrected
and bias-uncorrected tests is relatively small. Similar results are obtained when ¢ = 0.8.
Although the power loss due to bias correction is slightly larger than that of the case with
¢ = 0.6, the bias-corrected test has higher power than the other tests.

As in Figure 4.2, when T' = 200, the power difference between the bias-corrected and bias-
uncorrected tests is much smaller than the case when T' = 100. In this case, the bias-corrected

test still outperforms the other tests.

Figures 4.3 and 4.4 show the size-adjusted power of the sup-Wald tests with ARMA(3,3)
errors.” When 6 = —0.3, all tests have similar size-adjusted power, although the sup-Wie;
test has slightly non-monotonic power when 7' = 100. When 6 = 0.3, the size-adjusted power
of the bias-corrected test is lower than that of the original sup-Wald test and the Kejriwal’s
(2009) test. As the sample size increases, we can see that the finite sample performance of

the bias-corrected test improves.

Overall, our bias-corrected tests have good finite sample property, in terms of both size
and power. Even when it is difficult to fit the AR approximation, such as the ARMA(3,3)

case with 8 = 0.3, the bias-corrected test has less size distortion than the original tests in

5Because the critical value of the fixed-b sup-Wald test is data-dependent, we adjust the size of the other

tests to the empirical size of the fixed-b sup-Wald test with nominal one 0.05 in the case with AR(1) errors.
5Since the size-adjusted powers of the sup-Wagr and CUSUMpg, ar tests are almost the same as those

of the sup-W and CUSUMHpy, tests, respectively, in the AR(1) case, we omit the results of sup-War and

CUSUMuy,,Ar tests.
"We omit the results of the fixed-b sup-Wald test because its critical value is data-dependent, and this test

has serious size distortion in some cases. Our preliminary simulation results show that the size-adjusted power
of the fixed-b sup-Wald test is similar to that of the sup-War test, if the size is adjusted to the empirical size
of the fixed-b sup-Wald test.
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most cases, although it has low size-adjusted power, especially when the sample size is small.

Comparison of the finite sample performance of bias-corrected tests

Here, we focus on only the bias-corrected versions of the tests commonly used in the literature
and compare their sizes and powers. We consider the sup-Wald test (sup-Wpc) by Andrews
(1993), the mean-Wald test (mean-Wpc) and the exponential-Wald test (exp-Wpc) by An-
drews, Lee, and Ploberger (1996), the locally best invariant test against the random walk
alternative by Nabeya and Tanaka (1988) (which we denote as LMy, pc), the asymptotically
point optimal test against the random walk alternative by Elliott and Miiller (2006) (which
we denote as qLLp, pc), and the CUSUMp, pc test given by (4.17). Since the original
LM, ¢qLL, and CUSUM tests use the long-run variance estimator under the null hypothesis
and they have non-monotonic power, we consider estimating the long-run variance under the
alternative of a one-time break. For the LM and ¢LL tests, we use the residuals under the
alternative with break date 7}, = arg ming; e(o.157,0.857) SSR(Tp). For the CUSUM test, we

use the bias-corrected test statistic (4.13).

The empirical sizes with AR(1) errors are given in Table 4.10 (we omit the other cases
to save space). We observe that the bias-corrected mean-Wald test has relatively good size,

while the other tests are slightly over-sized.

The size-adjusted powers of the tests are given in Figure 4.5. We observe that the bias-
corrected CUSUM test performs best, while the mean-Wald, LM, and ¢LL tests suffer from
power loss, in particular when the errors are strongly serially correlated, or when the sample

size is small.

Overall, we can see that the bias-corrected CUSUM test with the long-run variance esti-
mated under the alternative has the best finite sample properties, against the alternative of a
one-time break. However, it is not clear whether this bias-corrected CUSUM test outperforms
other tests against various kinds of the alternative, such as multiple breaks or time-varying

parameter models.

4.7 Conclusion

We have proposed a bias correction to the long-run variance estimator, which is estimated
under the alternative hypothesis of a one-time break. We have derived the first-order bias
of the reciprocal of the long-run variance estimator, taking a structural break into account.

By Monte Carlo simulations, we have found that our bias-corrected tests have better finite
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sample properties than the existing tests.

So far, we have considered tests for a mean shift, but it is also in our interest to con-
sider bias correction to test for structural change in general regression models. We wish to

investigate such topics in future studies.

4.8 Appendix: Proofs of Theorem 1”7 and Related Lemma

Because the AR(p) model is a special case of the AR (o0) model, we only prove the results for
AR(o0) errors. Lemmas 1 and 1’, and Theorems 1 and 1’ can be proved similarly. Note that
pr becomes a fixed number for the finite order AR model and thus, for example, the order

given by o(pr/T) in the following lemmas becomes o(1/T') in the AR(p) case.

Lemma 1” Under Assumptions 1”7, 2, and L, the following relations hold:

(@ B|(1= S d0s) | = - o

= _1pT {2(1 Y (KZEQ + B},lT)qb) + o2/ R } 0 (%
0) B[] =0t - B0t w0 (B,

(¢) Var [62] = 7= {B(el) — ot} +o(T)

(d) Cov [6527 (1 -0 Qng,j)Q] =0 (%) :

Proof of Lemma 1”

Since (a), (b), and (d) are proved in Lemma 2” in Chapter 3, we only need to prove (c).
Proof of (c).

Since 62 = (T — pr) 1 EtT:pTH g7 + Op(pr/T), we obtain

VT — 62 —o2) = —O'
T pT(e s) mt%;rl +O(pT/\/>)

4 N(0,E(E)) —od),

so that Var(62) = (T —pr) ' {E(e}) — o2} +o(T"!). B
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Proof of Theorem 1”
When X — E(X) = O,(pr/VT), Y —E(Y) = O,(T'/?), E(X) # 0, and E(Y) # 0, we have

+o(pr/T),

. (X) _ E(X) [1 _ Cou(X,Y) | Var(Y)

v)TEY) T EXEY) T {EO)P

because p4T /T — 0. Therefore, using the results of Lemma 1”7, we obtain the desired result.
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Figure 4.1: Size-adjusted power of the tests with AR(1) errors and 7' = 100
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Figure 4.2: Size-adjusted power of the tests with AR(1) errors and 7' = 200
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Figure 4.3: Size-adjusted power of the sup-Wald tests with ARMA(3,3) errors and 7" = 100

113



T=200, ARMA(3,3), phi=0.6 (phi*3=0.216), theta=-0.3 T=200, ARMA(3,3), phi=0.6 (phi*3=0.216), theta=0.3

o | o | - & & a8 8 B a
- -
< @
=] o
© © |
=] o
E :
g g
< ] <
<] o
N N —6— sup-W
o ° —%— sup-W_AR
—8— sup-W_BC
—£—  sup-W_kej
o | o |
o 5]
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
c c
T=200, ARMA(3,3), phi=0.8 (phi*3=0.512), theta=—-0.3 T=200, ARMA(3,3), phi=0.8 (phi~3=0.512), theta=0.3
e S
Aal —
@ « |
o o
© | © |
o o
9] 9]
g g
< ] g
(=] S}
~N ] N
=] =)
o o |
o o
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
c c

Figure 4.4: Size-adjusted power of the sup-Wald tests with ARMA(3,3) errors and 7" = 200
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