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Abstract

We propose a generalized version of the RESET test for linearity in regressions with I(1)

processes against various nonlinear alternatives and no cointegration. The proposed test statistic

for linearity is given by the Wald statistic and its limiting distribution under the null hypothesis

is shown to be a χ2 distribution with a “leads and lags” estimation technique. We show that the

test is consistent against a class of nonlinear alternatives and no cointegration. Finite-sample

simulations show that the empirical size is close to the nominal one and the test succeeds in

detecting both nonlinearity and no cointegration.
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I. Introduction

The objective of this paper is to study the relationships between economic variables in the

context of regression models where explanatory variables are integrated of order one, I(1). It is

well known that dynamic relationships, such as cost and production functions, are nonlinear.

Many researchers have also found empirical evidence of nonlinearity in economic relationships

(for example, see Granger and Teräsvirta 1993, Granger 1995 and the references contained

therein). However, most of the econometric techniques for testing linearity and nonlinearity are

developed for stationary variables and are not applicable for nonstationary variables, especially

I(1) variables.

In studying linear relationships between I (1) economic variables, Granger (1983) and

Engle and Granger (1987) introduced the concept of cointegration. Cointegration has been an

intensive subject of research ever since. However, most results on cointegration provided so far

have been restricted to cointegration in a linear sense. That is, most attentions has been paid
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only to linear relationships between I(1) variables. After Granger (1995) introduced the concept

of nonlinear cointegration, some researchers began to pay attention to nonlinear relationships

between nonstationary variables.

Since any relationships that are not linear can be called nonlinear, the concept of nonlinear

cointegration is quite broad. Several specific types of nonlinear cointegration have been

discussed by various authors. Park and Phillips (2000) established the limiting properties of

nonstationary binary choice models where covariates are integrated of order one. Park and

Phillips (2001) showed the limiting properties of nonlinear regression models with I (1)

regressors. Chang et al. (2001) extend earlier work by Phillips and Hansen (1990) to nonlinear

models with integrated time series. Hansen and Seo (2002) developed a test for threshold

cointegration. They dealt with a model where a cointegrating vector changes according to the

regime to which the error correction term belongs. Corradi et al. (2000) studied nonlinear

relationships between variables that are first order Markov processes. Tøstheim (2012) provide

an extensive survey on nonlinear and nonstationary time series. They considered an error

correction-like system with a nonlinear component and proposed some tests to discriminate

linear cointegration from nonlinear cointegration or no cointegration. However, these tests are

directed toward specific kinds of nonlinear cointegration and may have low power against other

alternatives. It is desirable that a test for linear cointegration be consistent with a wide variety

of nonlinear relationships because we typically lack precise information about them in practice.

Thus we seek a test for linearity in regressions with I (1) processes that is consistent with a

wide variety of nonlinear alternatives as well as no cointegration.

In this paper we propose a generalized version of the RESET test for linearity in

regressions with I (1) processes. Note that the linearity in regressions with I (1) processes we

consider in this paper is equivalent to the linear cointegration of Engle and Granger (1987)
1
. In

this sense we are trying to propose a test for the null hypothesis of linear cointegration. We

cannot simply apply the RESET test directly to the present context because it is well known

that the limiting distribution of the least squares estimators in regressions with (linear) I (1)

processes generally involves second-order bias effects and these make standard statistical

inference invalid without modification. In fact we show that second-order bias effects are still

present when we use nonlinear transformations of integrated processes as regressors as in the

formulation of the RESET test (see de Jong, 2002 for more general treatment on this issue).

Thus we propose employing a “leads and lags” estimation technique by Saikkonen (1991)

among others to get a test statistics that is free of nuisance parameters. With this modification

we can show that the limiting distribution of the test statistic under the null hypothesis of linear

cointegration is the χ2 distribution with degrees of freedom that depend on the number of

regressors. Moreover the test that we propose is consistent against a class of nonlinear

alternatives. For example, our test for linearity can distinguish linear cointegration models from

nonlinear cointegration models that involve the logarithmic function, any distribution type

functions,
2
and polynomial functions of finite order. Further the test is consistent against the

alternative of no cointegration.

One important feature of the test is that it allows for an endogenous regressor. That is, the
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regressor may be correlated with the regression error. This not usually allowed in nonlinear

regression models with I(1) processes as in Park and Phillips (2000, 2001), but special features

of the RESET test enable us to accommodate it. With this generality we would potentially be

able to apply the test to many empirical problems which would be excluded when we assume

that a regressor is exogenous.

The approach of this article and the asymptotic distribution theory developed here are

similar to those developed independently in closely related work by Hong and Phillips (2010),

although this article is different in several key aspects. First, it considers simple regression

while we consider multiple regression. Second, it allows for an endogenous regressor as our test

does, however, it assumes that the regressor is predetermined as in Park and Phillips (2000,

2001) and Chang et al. (2001) although our test does not. Third, it employs a technique similar

to the fully-modified OLS proposed by Phillips and Hansen (1990) to deal with second-order

bias effects, while we extend the “leads and lags” estimation technique proposed by Saikkonen

(1991).

The rest of the paper is organized as follows. Some assumptions and preliminary results

are presented in section II. Section III explains our test for linearity and the power property of

our test is examined in section IV. Section V gives some simulation evidence. We summarize

some conclusions in Section VII. All proofs are in the Appendix.

A word on notation. For a vector a=(ai) “ a ” stands for the standard Euclidean norm,

i.e.,  a 
2
=∑ i

a i
2. When applied to a matrix,  A  signifies the operator norm, i.e.

 A =sup
x
 Ax / x . We also use  ⋅  to denote the supremum of a function.  ⋅ K stands for

the supremum norm over a subset of K of its domain,   f  K=sup xK  f(x)  . “⇒” denotes weak

convergence with respect to the Skorohod metric (as defined in Billingsley (1968)). [s] denotes

the largest integer not exceeding s.

II. Assumptions and Preliminary Results

The regression model from which we derive a test statistic is driven by a sequence of

innovation variables denoted by ut where ut consists of a scalar time series u1t and an m×1

vector time series u2t=(u21, t,u22,t,...,u2m,t), i.e. ut=(u1t,u′2t)′. We assume throughout that the

innovation sequence ut satisfies the following assumption.

Assumption 2.1 For some p>β>2, ut is a zero mean, strong mixing sequence with mixing

coefficients αm of size −pβ/(p−β) and sup t≥1(Eu1t
p
+∑ i1

m

Eu2i,t
p
)
1p
=C<∞. In addition,

(1/T )E(UTU ′T)→Ω as n→∞ where Ui=∑ j1

i

u j.

For example, Assumption 2.1 permits ut to be weakly dependent with possible heterogeneity. A

wide variety of data generating processes satisfies Assumption 2.1, including invertible

autoregressive moving average (ARMA) processes under general conditions. Assumption 2.1 is

one of the common assumptions for innovation processes. We sometimes maintain the

following assumption in addition to Assumption 2.1.
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Assumption 2.2 We assume ut is a general linear process

u1t=ϕ(L)e1, t=∑
i0



ϕie1, ti u2t=Ψ(L)e2,t=∑
i0



Ψ ie2,ti (1)

where ϕi is a scalar with ϕ0=1, Ψ i is an (m×m) matrix with Ψ0=Im, e1t is a scalar

sequence and e2t is an (m×1) vector sequence. et=(e1t,e′2t)′ is iid with mean zero and

covariance Σ e.

(a) ϕ(1) nonsingular,∑ i0



i ϕi <∞, and sup t≥1E e2t 
q
<∞ for some q>4.

(b) Ψ(1) nonsingular, ∑ i0



i Ψ i <∞, and E e2t 
r
<∞ for some r>8. e2t has a distribution

that is absolutely continuous with respect to Lebesgue measure and has a characteristic

function ψ(t) that satisfies lim  t  t 

ψ(t)=0 for some ξ>0.

In the following sections, u1t serves as a regression error process and u2t generates an

integrated process. The nonsingularity and summability conditions for ϕ and Ψ in Assumption

2.2 are common in stationary time series analysis. Assumption 2.2 (b) states stronger conditions

on the moment and characteristic function for e2t than for e1t. It will be needed when we deal

with nonlinear transformations of integrated processes. Assumption 2.2 (b) is commonly

imposed in nonlinear regression models with integrated regressors.
3
Processes that satisfy both

Assumptions 2.1 and 2.2 include invertible ARMA models under general conditions. Note that

u1t is allowed to have a general correlation structure with u2t. This is usually not the case as

in Park and Phillips (2000, 2001). We will return to this point in section IV.

Under Assumption 2.1, the sequence ut satisfies a multivariate invariance principle.

Lemma 2.1 (Wooldridge and White 1988)

T12∑
t1

[Tr]

ut⇒B(r), 0<r≤1,

where B(r)=(B1(r),B2(r)′)′ is an (m+1) dimensional Brownian motion with covariance matrix

Ω. B1(r) and B2(r)=(B21,...,B2m)′ denote Brownian motions of 1 and m dimensions respectively.

We assume that Ω can be written as

Ω=
ω11 ω′21

ω21 Ω22
=lim

T
T1

E(UTU ′T)=Σ+Λ+Λ′,

where

Σ=
σ11 σ′21

σ21 Σ22
=lim

T
T1∑

t1

T

E(ut u′t), Λ=
λ11 λ12

λ21 Λ22
=lim

T
T1∑

t2

T

∑
j1

t1

E(uju′t).

These notation will be used repeatedly throughout the paper. We assume that the covariance

matrices ω11 and Ω22 of B1(r) and B2(r) are positive definite. It will often be convenient to write

these and other stochastic processes on [0,1] without the argument. Thus, we shall frequently

use B, B1 and B2 in place of B(r), B1(r), and B2(r).
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Let an m-vector time series xt satisfy xt=xt1+u2t where xt=(x1t,...,xmt)′. Our results do

not depend on the initialization x0 as long as it is bounded in probability. For notational

convenience we assume x0=0. Let xt
( j)=(x1t

j ,...,xmt
j )′ and B2

( j)=(B21
j ,...,B2m

j )′ where j is a positive

integer. In Lemma 2.2, we show the limiting distributions of some partial sums that will be

needed to derive the limiting distributions of test statistics. The limit distributions are expressed

as functions of Brownian motion. To simplify formulae, all integrals are understood to be taken

over the interval [0, 1] unless otherwise stated, and integrals such as B and B () are

understood to be taken with respect to Lebesgue measure.

The following lemma is very useful in the derivation of our result in the next section.

Lemma 2.2 Let Assumption 2.1 hold with β=κ+1. Then for 2≤i,j≤κ, as T→∞

(a) T2∑ t1

T

x t x′t⇒B2B′2,

(b) T(ij2)2∑ t1

T

x t
(i)xt

( j)⇒B2
(i)B2

( j),

(c) T1∑ t1

T

x t u1, t1⇒B2dB1+Λ21,

(d) T1∑ t1

T

x t u1t⇒B2dB1+Δ21,

(e) T(i1)2∑ t1

T

x t
(i)u1, t1⇒B2

(i)dB1+iD(B2
(i1))Λ21,

(f) T(i1)2∑ t1

T

x t
(i)u1t⇒B2

(i)dB1+iD(B2
(i1))Δ21,

where Δ21=Σ21+Λ21 and D(B2
(i))=diagB21

i ,B22
i ,...,B2m

i .
Parts (a)− (d) of Lemma 2.2 are standard results that can be found in the literature (e.g.,

Phillips, 1987 and Park and Phillips, 1988) or can be derived easily from it. However, part (e)

of Lemma 2.2 is nonstandard and part (f) is an extension of part (e). Part (e) can be considered

as an extension of the results of Park and Phillips (1999, 2001) in the sense that we extend

their results to a case where a regressor xt is endogenous and multivariate. Recently de Jong,

(2002) extended the results by Park and Phillips (1999, 2001) to accommodate general

correlation structure between u1t and u2t under a different set of assumptions. However, we note

that his result still deals with a scalar process u2t rather than a multivariate process as

considered in Lemma 2.2 although it includes results for general functional forms other than

polynomials.

III. Testing for Linearity in Regressions with I(1) Processes

In this section we propose a generalized version of the RESET test for linearity in

regression with I(1) processes. Consider the following regression model:

yt=γ0+γ′1xt+γ′2xt
(2)+γ′3xt

(3)+…+γ′xt
()+u1t, t=1,...,T. (2)

where γ0 is a scalar parameter, γi is an (m×1) parameter vector for 1≤i≤κ, xt, xt
( j) for
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2≤j≤κ, and u1t are defined in the previous section. Our test is a generalized version of the test

for functional misspecification proposed by Thursby and Schmidt (1977) that is a variant of the

RESET test originally proposed by Ramsey (1969). If xt is stationary and u1t is normally

distributed, the present situation reduces to that in Thursby and Schmidt (1977).

The idea of their test is that if there is functional misspecification, i.e. if the functional

form is nonlinear, “the omitted portion of the regression is definitely a function of the included

regressors.” If this function is analytic, it can be expressed in a Taylor series expansion,

involving powers and cross products of the explanatory variables. Hence they proposed to test

whether coefficients of powers of the explanatory variables were zero or not. Since this

justification does not depend on the property of the process xt, it would be natural to expect

that this test will work even if xt is I(1) as in our present situation. However, note that we are

not claiming that our test is consistent against nonlinear cointegration because of this argument.

We must prove consistency against a whole class of nonlinear alternatives and no cointegration

and this is covered in the next section.

Another word on the regression model (2). We do not include cross products of the

explanatory variables. Thursby and Schmidt (1977) found that they do not contribute to the

power of their test very much through Monte Carlo experiments. Since the present situation is

different from theirs, those cross products may contribute to the power of the test in the present

circumstance. However, they are not included in the regression (2) in order to keep our

theoretical development simple.

The null hypothesis of linearity or linear cointegration between yt and xt corresponds to

H0： γ2=…=γ=0. (3)

If the null hypothesis is true, the specification in (2) would correspond to “deterministic

cointegration” as defined by Ogaki and Park (1997). The results that will be shown in this

section can easily be extended to “stochastic cointegration” where nonzero deterministic time

trends are present in (2). The null hypothesis (3) is to be tested against the alternative of

nonlinear cointegration or no cointegration. In this section we will present the limiting property

of the test under the null hypothesis of linear cointegration and establish the limiting property

under the alternative of nonlinear cointegration and no cointegration in the next section. The

next theorem characterizes the limiting distribution of the least squares estimator from the

regression model (2) under the null hypothesis.

Theorem 3.1 Suppose Assumption 2.1 holds with β=κ+1. Then under the null hypothesis (3)

(as T→∞)

ϒT 
γ


0−γ0

γ


1−γ1

γ


2

⫶

γ




 ⇒ 
1 B′2 B2

(2)′ … B2
()′

B2 B2B′2 B2B2
(2)′ … B2B2

()′

B2
(2) B2

(2)B′2 B2
(2)B2

(2)′ … B2
(2)B2

()′

⫶ ⫶ ⫶ ⋱

B2
() B2

()B′2 B2
()B2

(2)′ … B2
()B2

()′
1


B1

B2dB1+Δ21

B2
(2)dB1+D(B2)Δ21

⫶

B2
()dB1+D(B2

(1))Δ21

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where ϒT=diag[T12,TIm,T
32Im,...,T

(1)2Im]

Before we move on to the development of our test statistic, some remarks are in order. As

described above, our null hypothesis is that there exists a linear cointegration relationship

between yt and xt. Therefore it would not be hard to imagine that the limiting properties of the

least squares estimates of the present regression model under H0 would share some

characteristics with the least squares estimates of cointegrating vectors in standard cointegrated

regression models.

First, a regressor xt is allowed to be endogenous under Assumption 2.1, i.e. xt can be

correlated with the regression error u1t as in linearly cointegrated regression models. When it is

enogenous in stationary regression models, the least squares estimator fails to satisfy the

conditions for consistency and therefore we typically employ an instrumental variable estimator

to achieve consistency. However, one notable difference between stationary regression models

and linearly cointegrated regression models is that the least squares estimator in the latter is still

consistent for its population value (e.g., Stock, 1987, Park and Phillips, 1988, and Phillips and

Hansen, 1990). In the present regression model, this is true and the least squares estimator is

consistent even though we have an endogenous regressor, as shown in Theorem 3.1.

Second, we have second order bias effects such as Δ21, D(B2)Δ21, ..., D(B2
(1))Δ21 in the

limiting distribution of Theorem 3.1 that are similar to the limiting properties of the

cointegrating vectors in linear cointegrating models. We call this the second order bias because

it does not have an effect on the consistency result but does have an effect on the limiting

distribution (see Stock, 1987 and Phillips and Hansen, 1990). It arises because of the existence

of contemporaneous and serial dependence between the regressors xt and the regression error

u1t. This is directly analogous to the phenomenon that occurs in linearly cointegrated regression.

Next we propose our test statistic. There are two obstacles in the limiting distribution of

the least squares estimator given in Theorem 3.1 in conducting a standard hypothesis testing

procedure such as a χ2 test. One is the existence of a nonzero covariance structure between B1

and B2 and another is that the limiting distribution of the least squares estimates depends not

only on the property of the Brownian motion B1 and B2 but also on the nuisance parameter

matrix Δ21. These obstacles are same as those arising in linearly cointegrated models and the

methods proposed to remove these obstacles in linearly cointegrated regression models can be

extended to our regression model. Here we consider an estimation technique by Saikkonen

(1991).
4

Saikkonen (1991) proposed an efficient estimator that eventually removes the obstacles by

adding leads and lags of Δxt in linearly cointegrated regressions where Δxt=xt−xt1. We show

that this “leads and lags” estimation technique works in our regression model (2).

Consider the following new regression model:

yt=γ0+γ′1xt+γ′2xt
(2)+γ′3xt

(3)+…+γ′xt
()+∑

sK

K

θ′sΔxts+vt
＊, t=1,...,T, (4)

where θi is an (m×1) parameter vector for −K≤i≤K. This is a regression model where leads
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and lags of Δxt are added to the regression model (2).
5
Note that the regression error here is not

u1t but vt
＊. The relationship between them is characterized below. To derive the limiting

distribution of the least squares estimator of the regression model (4), we need to make the

following assumption on the error process ut in (2):

Assumption 3.1 (a) ut is strictly stationary with the spectral density matrix fuu(λ) bounded

away from zero so that fuu(λ)≥αIn, λ∈[0,π], where α>0.

(b) The covariance function of ut is absolutely summable ∑ j



 Γ( j)  <∞, where Γ( j)=

E(ut u′tj) and  ⋅  is the standard Euclidean norm.

(c) The fourth order cumulants of ut, denoted by cijkl(m1,m2,m3), satisfy ∑m1,m2,m3



cijkl(m1,m2,m3) <∞.

It is well known that we can deduce under Assumption 3.1 that u1t=∑ j



Π ju2,tj+vt where

∑ j



 Π j <∞ and vt is a stationary process with the property that E(u2tv tk)=0, k=0,

±1,±2,…. Furthermore, 2πf vv(0)=ω11−ω′21Ω22
1ω21 where f vv(λ) is the spectral density of v at

frequency λ. These are key properties that play important roles in proving the next theorem.

Note that vt
＊ in (4) can be represented as vt

＊=vt+∑ jKΠ ju2,tj. If Π j=0 for j>K, then vt
＊

is strictly exogenous and we get the desired limiting properties of the coefficient estimator in

(4). That is, there exist neither the second order bias effects nor the correlation between B1 and

B2. However, this is not the case in general. Thus we also need to make an assumption on the

truncation parameter K:

Ks∑
jK

 Π j 
2
→0 for some s≥5. (5)

We must let K→∞ as T→∞. We choose the rate of K=T such that
1

s
<δ<

r

2(2+3r)
, where

r is given by the moment condition for e2t in Assumption 2.2. For example, invertible ARMA

models satisfy Assumptions 2.2 and (5) for any finite r and s under general conditions. In this

case δ can take any value between 0 and 1/6. The condition (5) is analogous to Assumption 5.1

of Chang et al. (2001) although the admissible values of δ are different. In fact, the condition

(5) is more than necessary to derive the limiting distribution in Theorem 3.2, but it will be

required when we deal with the limiting property under the alternative of nonlinear

cointegration.

The regression model (4) leads to the following limiting distribution for the least squares

estimator: Let (γ


0,γ′

1,γ′

2,...,γ′


)′ be the least squares estimator of (γ0,γ′1,γ′2,...,γ′)′ in the regression

model (4).

Theorem 3.2 Suppose that wt satisfies Assumption 2.1 with β=κ+1 where wt=(vt,u′2t)′. Also
suppose Assumption 3.1 and the conditions (5) on the truncation parameter K hold. Then under

the null hypothesis (3) (as T→∞)
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ϒT 
γ


0−γ0

γ


1−γ1

γ


2

⫶

γ


 ⇒ 

1 B′2 B2
(2)′ … B2

()′

B2 B2B′2 B2B′2 (2)′ … B2B2
()′

B2
(2) B2

(2)B′2 B2
(2)B2

(2)′ … B2
(2)B2

()′

⫶ ⫶ ⫶ ⋱

B2
() B2

()B′2 B2
()B2

(2)′ … B2
()B2

()′
1


B11⋅2

B2dB11⋅2

B2
(2)dB11⋅2

⫶

B2
()dB11⋅2


where B11⋅2(r)=B1(r)−ω′21Ω22

1B2(r) with covariance matrix ω11−ω′21Ω22
1ω21.

There are two notable differences between the limiting distribution given in Theorem 3.1

and that in Theorem 3.2. First, the Brownian motions B1 and B2 in Theorem 3.1 are generally

correlated, but the Brownian motions B11⋅2 and B2 in Theorem 3.2 are uncorrelated, implying

independence due to the Gaussian properties of a Brownian motion. Second, the second order

bias terms that are present in Theorem 3.1 vanish in Theorem 3.2. Therefore the limiting

distribution in Theorem 3.2 is free of the obstacles mentioned above and so we can apply the

standard hypothesis testing procedure. Thus Theorem 3.2 suggests that we use the Wald

statistic. Let γ

=(γ


0,γ′

1,γ′

2,...,γ′


)′, M=∑ t1

T

XtX ′t, Xt=(1,x′t,xt
(2),...,xt

())′, ω11⋅2 be any consistent

estimator of ω11−ω′21Ω22
1ω21 (see Newey and West, 1987, Phillips, 1987 and Andrews, 1991 for

a discussion of possible estimators), and

R=
0 0 Im 0 0 … 0

0 0 0 Im 0 … 0

0 0 0 0 Im … 0

⫶ ⋱ ⫶

0 0 0 0 Im
 m(κ−1)×(mκ+1),

Construct the following statistic:

WT=(Rγ

)′(ω11⋅2RM

1R′)
1
(Rγ


).

The next theorem shows the limiting distribution of this statistic under the null hypothesis.

Theorem 3.3 Suppose the conditions in Theorem 3. 2 are satisfied. Then under the null

hypothesis (3) (as T→∞)

WT⇒χm(1)
2 .

Theorem 3.3 shows that we can apply the standard χ2 test procedure to our test. If Ω21=0, the

test statistic based on the estimator considered in Theorem 3.1 has the limiting distribution

given in Theorem 3.3. For example, this will occur when xt is strictly exogenous and the

driving process u2t is independent of the regression error u1t.
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IV. Power of The Test

In this section we show that the proposed test is consistent against a class of nonlinear

alternatives and no cointegration. First, we shall consider the types of nonlinear functions for

which our test for linear cointegration is consistent. From the construction of the test statistic

discussed in the previous section, it would be clear that the test is consistent against nonlinear

cointegration involved in finite order polynomial functions of xt. So now we are interested in

for which types of nonlinear functions other than finite order polynomial functions the test is

consistent. Consider the following alternative hypothesis:

H1： yt=g1(x1t)+g2(x2t)+…+gm(xmt)+u1t, (6)

where gi：R→R is a nonlinear measurable function for 1≤i≤m. This structure is same as that

considered in Chang et al. (2001). To prove consistency, we must investigate the limiting

property of the test statistic under the alternative. This involves some nonlinear transformations

of integrated variables. However, the limiting properties of nonlinear functions of integrated

time series are fairly complicated. These remained unknown until Park and Phillips (1999)

showed the limiting properties of nonlinear transformations of “scalar” integrated time series.
6

Unfortunately, analogous results for vector-valued integrated time series has not yet been

proven. Since we use their results, we confine ourselves to alternatives that can be expressed by

(6).

We consider the following two classes of functions treated in Park and Phillips (1999), the

integrable class (I ) and the homogeneous class (H )

Definition 4.1 (Park and Phillips 1999) (a) A transformation T on R is said to be regular if

and only if (i) it is continuous in a neighborhood of infinity, and (ii) for any compact

subset K on R given, there exist for each ε>0 continuous functions T, T, and δ>0 such

that T(x)≤T(y)≤T(x) for all x−y<δ on K, and such that K
(T−T)(x)dx→0 as

ε→0.

(b) A transformation T is said to be in Class (I), denoted by T∈ (I ), if it is bounded and

integrable.

(c) A transformation T is said to be in Class (H), denoted by T∈ (H ), if and only if

T(λx)=ν(λ)h(x)+R(x,λ) (7)

where h is regular and R(x,λ) is of order smaller than ν(λ). ν and h are sometimes called

the asymptotic order and the limit homogeneous function of T respectively.

All homogeneous functions belong to (H ) as long as they are locally integrable. Other

functions that belong to (H ) include polynomials of finite order, the logarithmic function and

the distribution function of any random variable. Each of the two classes, (I ) and (H ) is

closed under the operations of addition, subtraction, and multiplication (see Park and Phillips,

1999 for more details). In the following, if gi∈ (H ), we denote its asymptotic order by νi(λ)
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and its limit homogeneous function by hi(x).

Before we develop the limiting property of the test statistic under the alternative (6), we

show some useful results that are helpful in proving consistency of the test and that give some

intuition about why the proposed test works. To do so, we assume either gi∈ (I ) or gi∈ (H )

for all i. If there exists at least one i such that gi∈ (H ), without loss of generality we let g1 be

the function that is in (H ) and dominates other giʼs belonging to (H ) asymptotically, i.e. for

any j≠1 such that gj∈ (H ),
ν1(T

12)

νj(T
12)
→∞ or

ν1(T
12)

νj(T
12)
→ constant. For part (b) in the next

lemma, we must specify the consistent estimator for ω11⋅2 explicitly. We employ the

semiparametric consistent estimator

ω


11⋅2=T1∑
t1

T

v

t
＊2+2T1∑

s1

l

wsl∑
ts1

T

v

t
＊v

ts
＊

where v

t
＊ is the residual obtained from the regression (4) and wsl=1−s/(l+1). This is one of

the standard choices for a consistent estimator in the present context (see Phillips, 1987, Newey

and West, 1987, and Andrews, 1991 for more discussions on this choice).

Lemma 4.1 Let ut satisfy Assumption 2.1 with β=κ+1, Assumptions 2.2 and 3.1 and the

truncation parameter K satisfies (5). Also, suppose either gi∈ (I ) or gi∈ (H ) for all i, and

the limit homogeneous function hi is piecewise differentiable with a locally bounded derivative

for i such that gi∈ (H ). In addition, assume that for some q≥1 there exists a grid a1,...,aq,
where aj<aj1 for all j=1,...,q−1, such that hi is continuous at any x∈Ra1,...,aq, and

monotone on (aj1,aj) for j=1,...,q+1 for i such that gi∈ (H ).

(a) Let γ

=(γ


0,γ′

1,γ′

2,...,γ′


)′ be the least squares estimator of (γ0,γ′1,γ′2,...,γ′)′ in the regression

model (4).

(i) If gi∈ (H ) with T12νi(T
12)→∞ as T→∞ for some i, then under the alternative,

ϒTγ

=Op(T

12ν1(T
12)),

(ii) Otherwise, under the alternative (6), ϒTγ

=Op(1),

(b) Suppose l→∞ as T→∞ such that l=o(T ).

(i) If gi∈ (H ) with νi(T
12)→∞ as T→∞ for some i, then under the alternative (6),

ω


11⋅2=Op(lν1
2(T12)),

(ii) Otherwise, under the alternative (6), ω


11⋅2=Op(l ).

The intuition behind Lemma 4.1 is clear if we consider some simple functional forms of g.

For example, letʼs consider g(x)=x52. This function belongs to (H ) with ν(T12)=T54. Thus

Lemma 4.1 (a) implies that ϒTγ

=Op(T

74). In particular, we have T32γ


2=Op(T
74) or

equivalently γ


2=Op(T
14). That is, the coefficient estimator of xt

(2) diverges at the rate T14 and

this would be a signal of nonlinearity. Now consider g(x)=x12. In this case, Lemma 4.1

implies γ


2=Op(T
34). Thus γ


2 converges to zero but at much slower rate than under the null

hypothesis because γ


2=Op(T
32) under the null, as we can see in Theorem 3.2. If it converges

to zero at a rate that is slow enough, it would be interpreted as a signal of nonlinearity and the

next theorem tells us how slow it must be for the test to be consistent.
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The following theorem tells us for which type of functions our test is consistent.

Theorem 4.1 Let the conditions in Lemma 4.1 hold.

(a) If gi∈ (H ) with either νi(T
12)→∞ or νi(T

12) is constant as T→∞ for some i, then under

the alternative (6), WT=Op(T/l ),
(b) If gi∈ (H ) for some i and if T12ν1(T

12)→∞ and ν1(T
12)→0 as T→∞, then under the

alternative (6), WT=Op(Tν1
2(T12)/l ).

(c) Otherwise, under the alternative (6), WT=Op(l
1).

First, Theorem 4.1 (a) shows that our test for linear cointegration is consistent against

nonlinear cointegration if either gi∈ (H ) with ν(T12)→∞ or ν(T12) is constant as T→∞ for

some i, i.e. consistency of the test can be achieved if there exists at least one function that

satisfies the conditions of Theorem 4.1 (a). A class of functions that satisfy the conditions of

Theorem 4.1 (a) includes gi(x)=x
k
for k>0 and k≠1, gi(x)=1/(1+ex), the logarithmic

function gi(x)=log x, polynomial functions of finite order g(x)=xk+a1x
k1+…+ak for k>1.

All distribution functions also satisfy the conditions of Theorem 4.1 (a).

Second, we can deduce from Theorem 4.1 (b) that if gi∈ (H ) for some i and

T12ν1(T
12)→∞, ν1(T

12)→0 and Tν1
2(T12)/l→∞ as T→∞, the test is still consistent but the test

statistic diverges at a slower rate than in case (a). For example, this happens when all functions

gi(x) for 1≤i≤m decrease to zero as x goes to infinity, but at least one of them decreases to

zero at a moderate rate as in a case where g1(x)=x
12

and we choose the lag truncation

parameter l such that l=o(T13). In this case, WT=Op(T
12/l ) and WT diverges at an

approximate rate of T16 that is much slower than that for case (a). The argument above shows

that a choice of the lag truncation parameter is crucial for case (b). If we choose l such that

l=O(T12), the test becomes inconsistent for g1(x)=x
12
. Thus we must be careful about the

choice of l when we are especially interested in this type of nonlinear alternatives. A class of

functions that satisfies the conditions of Theorem 4.1 (b) includes gi(x)=x
k
for −2/3≤k≤0

when we choose l=o(T13).

Finally, Theorem 4.1 (c) implies that our test is inconsistent if all functions gi(x) (1≤i≤m)

decrease rapidly as x goes to infinity such as when gi(x)=x
k
where k<−2/3 and we use the

lag truncation parameter l such that l=o(T13) or especially when all functions are integrable.

This is expected from Lemma 4.1 because in this case γ

converges to zero at the same rate as

it does under the null hypothesis.

One important characteristic of our test for linear cointegration is that it allows for an

endogenous regressor as mentioned in the last section. Researchers who are familiar with

nonlinear regression models with integrated regressors from Park and Phillips (2000, 2001) and

Chang et al. (2001) may wonder why we can do this because all models mentioned here

assume that xt is predetermined and (u1t,Ft) is a martingale difference sequence where Ft is a

natural filteration to which u1t is adapted. When this is the case, xt is uncorrelated with u1t, i.e.

E(xt u1t)=0, which rules out an endogenous regressor xt. In general, when we deal with the

limiting properties of nonlinear models with integrated regressors xt, we must investigate the

limiting properties of a sample mean function such as∑ t1

T

f(xt) and a covariance function such
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as ∑ t1

T

f(xt)u1t for some nonlinear function f. An exogenous xt is critical in deriving the

limiting distribution of the covariance function in Park and Phillips (2000, 2001) and Chang et

al. (2001). However, as shown in the proofs of Lemma 4.1 and Theorem 4.1, the covariance

function which we need to deal with has a specific form where f is a polynomial function.

Moreover its limiting properties is provided in Lemma 2.2 (f) without assuming exogeneity.

Thus we can allow an endogenous regressor xt in the alternative model of nonlinear

cointegration. This is a very important assumption in practice. Suppose we are interested in

investigating the nonlinear relationship between the exchange rate et and the fundamentals. We

take output yt and money mt as proxies for fundamentals and post it a nonlinear relationship

et=f1(yt)+f2(mt)+u1t. In this model, it would be very unrealistic to assume that yt and mt are

predetermined because it is usually the case that et, yt and mt interact simultaneously. Allowing

a endogenous regressor will thus make it possible to apply our test of nonlinear cointegration to

many economic problems.

Finally we show that the test is also consistent against the alternative of no cointegration.

Suppose that the system of yt and xt is generated by the following:

yt=yt1+u1t, xt=xt1+u2t, t=1,...,T. (8)

In this case, there is neither linear nor nonlinear cointegration in the system and the present

problem reduces to that spurious regressions as studied by Granger and Newbold (1974) and

Phillips (1986). As we have done for the case of nonlinear cointegration, we first show the

limiting properties of the normalized coefficient estimator and the long-run variance estimator

and then show the limiting properties of the test statistics.

Lemma 4.2 Suppose that the system of yt and xt is generated by (8) . Also suppose that ut
satisfies Assumption 2.1 with β=κ+1. In addition, suppose thatwt satisfies Assumptions 2.2

and 3.1 and the truncation parameter K satisfies (5).

(a) Letγ

=(γ


0,γ′

1,γ′

2,...,γ′


)′ be the least squares estimator of (γ0,γ′1,γ′2,...,γ′)′ in the regression

model (4). Then as T→∞, ϒTγ

=Op(T ),

(b) Supposel→∞ as T→∞ such that l=o(T14). Then as T→∞, ω


11⋅2=Op(lT ).

Theorem 4.2 Suppose the conditions in Lemma 4.2 hold. Then as T→∞, WT=Op(T/l ),
In other words the intuition in Lemma 4.1 applies to the case of nonlinear cointegration as

well. γ


2 converges to zero, but at a rate T12 that is much slower than under the null hypothesis.

This slow rate serves as a signal of no cointegration and underlies the consistency of the test.

V. Some Simulation Evidence

In this section we show some simulation evidence to investigate the properties of our test

in small samples. First we show the size properties. For the study of size properties, we use the

following data generating process (DGP):

DGP1： yt = 1.5xt+u1t, xt=xt1+u2t,
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with x0=0. ut=(u1t,u2t)′ is generated from a simplified version of a MA process (1)


u1t

u2t
=

e1t

e2t
+

ϕ1 0

0 0.5
e1, t1

e2,t1
,

where et=(e1t,e2t)′ is distributed as NID(0,Σ) with

Σ=
1 σe,12

σe,12 1 , σe,12=0.8,0.4,0,−0.4, and −0.8.

The test statistics are constructed as described in section III. The sizes of the test depend on

sample size (T ), the lag truncation parameter (l ) used to estimate ω


11⋅2, and κ in equation (4).

We consider three types of sample size (T=100,200 and 400) and four types of l. First three

choices of l are l0=0, l4=4(T/100)
14

 and l12=12(T/100)
14

. These choices of l are used in

many simulations (e.g. Schwert, 1989 and Kwiatkowski et al., 1992). The last choice of l,

denoted lA, is a truncated version of a data dependent choice by Andrews (1991)

lA=1.1447min  4Tρ
2

(1−ρ

)
2
(1+ρ


)
2

1

3

, 4T0.92

(1−0.9)
2
(1+0.9)

2
1

3

 (9)

where ρ


is a coefficient estimated from the first order autoregression of v

t
＊. The truncation was

made to avoid a choice of l which would make our test inconsistent.
7
We use a value of κ=3

for all experiments. We do not use a value of κ>3 because for values of κ that are greater than

3 the second moment matrix often becomes close to singular in small samples and therefore we

may not be able to get accurate results. We choose κ=3 rather than κ=2 because, in terms of

size-corrected power, the result using κ=3 dominates that obtained using κ=2. The number of

leads and lags used to estimate the parameters in (4) is determined by Schwartzʼs Bayesian

criterion
8
with a maximum lag length of 10.

Table 1 shows the size properties. Since we use the upper 5% critical value from a χ2

distribution, the nominal size of the test is 0.05. For each experiment, the number of

replications is 1000. The results of the simulation are summarized as follows: (i) The size of

the test becomes closer to the nominal size as the sample size becomes larger. (ii) A nonzero

correlation σe,12 between e1t and e2t causes moderate degrees of size distortion as opposed to

cases where σe,12=0. (iii) The size of the test for positive ϕ1 tends to be larger than the nominal

size, while that for negative ϕ1 tends to be smaller. This positive correlation between the size

and the MA parameter ϕ1 is also commonly observed in unit root tests (e.g. Schwert, 1989).

(iv) The size of the test with l0 is overly sensitive to ϕ1. This is a consequence of ignoring
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serial correlation when constructing ω


11⋅2. (v) The size of the test with l12 tends to be larger

than the nominal size. This generally results from using too many lags to construct ω


11⋅2. (vi)

The size of the test with l4 and lA is close to the nominal size for moderate values of the MA

parameter ϕ1. Hence we recommend that applied researchers use the lag truncation choice either

l4 or lA rather than l0 or l12.

Next we turn to power properties against several nonlinear alternatives. The nonlinear

alternatives considered are as follows:

DGP2： yt=5(Ψ(xt)−0.5)+u1t, DGP3： yt=1/xt
13
+u1t, DGP4： yt=yt1+u1t,

where Ψ(⋅) is the cumulative distribution function of a normal random variable with mean zero

and variance 6. Other assumptions on xt and ut are same as in DGP1. DGP2 satisfy the

assumption in Theorem 4.1 (a) and DGP3 does likewise for Theorem 4.1 (b). DGP4 represents

the case of no cointegration in Theorem 4.2.

Tables 2-4 show the size-corrected power properties at a 5% nominal level for DGP2 -

DGP4 respectively. We summarize the general results first and discuss some specific

alternatives later. (i) The power of the test becomes better as the sample size becomes larger

for all alternatives. (ii) As expected, a nonzero correlation σe,12 between e1t and e2t increases the
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0.056 0.139 0.070 0.001 0.036 0.079

0.007 0.118 0.247 0.121 0.001 0.054 0.141 0.067 0.001 0.049

0.8

lA

−0.8

0.8

0.012

σe,12

0.4

0.0120

0.002 0.065 0.156 0.070 0.000 0.040 0.112 0.052 0.000 0.037 0.079

0.004 0.095 0.191 0.103 0.004

0.0480

0.045

−0.4

−0.4

0.009

0.051

0.8

−0.8

0.091

ϕ1

0.017

0.122 0.067 0.001 0.040 0.084

0.002 0.086 0.207 0.086 0.000 0.042 0.116 0.063 0.000 0.030 0.087

0

0.062−0.4

−0.8

0.066

0.022

−0.8

0.0560.8−0.4

0.0400.4

0.056 0.174 0.088 0.000 0.011 0.085 0.035 0.000 0.004 0.043

0.009 0.101 0.227 0.102 0.000 0.051

0

0.078−0.4

0.069−0.8

0.0790.80

0.0680.4

TABLE 1. SIZE OF THE TEST

0.066

0.020 0.000 0.004 0.030

0.001 0.049 0.147 0.069 0.000 0.010 0.089 0.036 0.000 0.002 0.038

0.001

0

0.091−0.4

0.077−0.8

0.0920.80.4

0.0770.4

0.088

0.170 0.078 0.000 0.006 0.081 0.028 0.000 0.002 0.041

0.000 0.036 0.138 0.057 0.000 0.004 0.063

l12

T=100 T=200 T=400

0.0880.4

0.089

0.000 0.064 0.194 0.104 0.000 0.011 0.081 0.037 0.000 0.005 0.047

0.001 0.050

0.102 0.131 0.105 0.244 0.086 0.107

l0 l4 l12 lA l0 l4 l12 lA l0 l4

0.269 0.138 0.189 0.142 0.249 0.098 0.132 0.105 0.230 0.086 0.101

0.258 0.159 0.223 0.157 0.223

0.129 0.109 0.238 0.081 0.100

0.225 0.115 0.159 0.120 0.242 0.108 0.132 0.108 0.206 0.082 0.099

0.144 0.199 0.144 0.238 0.113 0.141 0.111 0.242 0.076 0.088

0.220 0.112 0.170 0.112 0.220 0.101

0.090 0.165 0.079 0.097

0.196 0.134 0.191 0.129 0.179 0.094 0.115 0.095 0.180 0.091 0.106

0.264

0.161 0.106 0.188 0.102 0.126 0.103 0.161 0.083 0.093

0.198 0.131 0.186 0.130 0.196 0.089 0.126

0.183 0.077 0.087

0.170 0.105 0.169 0.102 0.181 0.099 0.122 0.097 0.178 0.077 0.096

0.175 0.114

0.125 0.074 0.085 0.142 0.079 0.070 0.085 0.104

0.194 0.117 0.180 0.115 0.192 0.103 0.119 0.100

0.072 0.092

0.083 0.126 0.184 0.106 0.079 0.092 0.138 0.083 0.063 0.072 0.094

0.096 0.151 0.238

0.069 0.089 0.128 0.083 0.056 0.070 0.104

0.075 0.104 0.165 0.089 0.070 0.087 0.122 0.071 0.062

0.092

0.091 0.143 0.200 0.115 0.074 0.093 0.137 0.084 0.059 0.074 0.100

0.059 0.101 0.170 0.079



power of the test for all alternatives. (iii) The power of the test for positive ϕ1 tends to be less

powerful than the test with ϕ1=0, and that for negative ϕ1 tends to be more powerful especially

when T=100. (iv) The power of the test against nonlinear alternatives that satisfy the

assumption in Theorem 4.1 (a) increases very quickly as the sample size grows, on the other

hand when the nonlinear alternatives that satisfy the assumption in Theorem 4.1 (b), the power

increases very slowly as Theorem 4.1 (b) predicts. (v) The power of the test with l4 is as

powerful as that with lA for all nonlinear alternatives. (vi) The power of the test for DGP3 is

more sensitive to the choice of l than that for DGP2.

The second thing to note is that the test with lA against the alternative of no cointegration

suffers from a lack of power. This is because the truncated version of the lag length choice lA

tends to choose a longer lag length since ρ


in the formula of lA (9) is close to 1. As we see in

Theorem 4.2, there exists a tradeoff between lag length l and power, so the test with lA

performs poorly against the alternative.

VI. Concluding Remarks

This paper has developed a testing procedure for linearity in regressions with I (1)
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TABLE 2. SIZE‒ADJUSTED POWER OF THE TEST, g(x)=5(Ψ(x)−0.5)
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processes. We proposed the Wald test based on a generalization of the RESET test and we

showed that the limiting distribution of the test statistic under the null of linearity is a χ2

distribution when a “leads and lags” estimation technique is employed to construct it. We also

showed that the test is consistent against both a class of nonlinear alternatives and no

cointegration. The simulation experiment revealed that the proposed test has nice power

properties against the functions considered. Finally, we applied our test for linearity to see

whether relationships between exchange rates and fundamentals and found significant evidence

against linearity.

APPENDIX A

Proof of Lemma 2.2: Proofs of (a) and (b) are trivial extensions of the results in Phillips (1987). Proof of

(c) can be found in Hansen (1992). Part (c) is an extension of part (d) and its proof follows the argument

of Durlauf (1986).

Proof of (e): This is a version of Theorem 4.2 of Hansen (1992). The case for i=2 is given by Theorem

4.2 of Hansen (1992). Thus we show the case for i=3. Cases where i≥4 can be proved by the same

argument as in the case for i=3. Let Ft=σ(us：s≤t) be the smallest σ−field containing the past of ut
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TABLE 3. SIZE‒ADJUSTED POWER OF THE TEST, g(x)=1/|x|13
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0.379
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l0 l4 l12 lA l0 l4 l12 lA l0 l4
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for all t. We can decompose u1t into two parts

u1t=εt+zt1−zt (10)

where εt=∑ k0



(E t u1, tk−E t1u1, tk) and zt=∑ k1



E t u1, tk where E t(⋅)=E(⋅Ft). Note that εt,Ft is a

martingale difference sequence. By the decomposition (10) we have

T2∑
t1

T

x t
(3)u1, t1=T2∑

t1

T

x t
(3)ε1, t1+T2∑

t1

T

x t
(3)(zt−zt1). (11)

Applying Theorem 3.1 of Hansen (1992) gives

T2∑
t1

T

x t
(3)ε1, t1⇒B2

(3)dB1. (12)

Note that no second order bias terms show up in the limit.

It remains to be shown that

T2∑
t1

T

x t
(3)(zt−zt1)⇒3D(B2

(2))λ21. (13)

Observe that

T2∑
t1

T

x t
(3)(zt−zt1)=T2∑

t1

T

(xt
(3)−xt1

(3) )zt−T2xT
(3)zT1.
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TABLE 4. SIZE‒ADJUSTED POWER OF THE TEST, NO COINTEGRATION
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By the argument of Theorem 4.1 in Hansen (1992), we have T2xT
(3)zT1=op(1). Since a typical element of

xt
(3)−xt1

(3) can be written as

xit
3−xi,t1

3 =(xi,t1+u2i,t)
3
−xi,t1

3 =3xi,t1
2 u2i,t+3xi,t1u2i,t

2 +u2i,t
3 ,

we have

T2∑
t1

T

x t
(3)(zt−zt1)=3T2∑

t1

T

(xt1
(2)⊙u2t)zt+3T2∑

t1

T

(xt1⊙u2t
(2))zt+T2∑

t1

T

u2t
(3)zt+op(1),

where “⊙” is the element-by-element product and u2t
(k)=(u21, t

k ,...,u2m,t
k )′. Note that

(xt1
(2)⊙u2t)zt=

x1, t1
2 u21, t

x2,t1
2 u22,t

⫶

xm,t1
2 u2m,t

 zt=D

(xt1

(2) )u2tz t,

where D

(xt1

(2) )=diag[x1, t1
2 ,x2,t1

2 ,...,xm,t1
2 ]. Then we have

T2∑
t1

T

x t
(3)(zt−zt1)=3T2∑

t1

T

D

(xt1

(2) )u2tz t+3T2∑
t1

T

(xt1⊙u2t
(2))zt

+T2∑
t1

T

u2t
(3)zt+op(1) (14)

First, the second and third terms on the right-hand side of (14) vanish in probability because we

have by the Hölderʼs inequality that

ET2∑
t1

T

(xt1⊙u2t
(2))zt≤T32∑

t1

T

  xt1

 T
⊙u2t

(2) 
43

 zt 4

≤T32∑
t1

T  xt1

 T  4 u2t 4
2
 zt 4→0 (15)

and

ET2∑
t1

T

u2t
(3)zt≤T2∑

t1

T

 u2t
(3) 43 zt 4=T2∑

t1

T

 u2t 4
3
 zt 4→0 (16)

since  xt1/ T  
4
is bounded as in the proof of Lemma 3.1 (f) of Chang et al. (2001),  u2t 4

3
<C by

Assumption 1 and  zt 4 is uniformly bounded by the proof of Theorem 3.1 in Hansen (1992) where  a r

denotes the Lr-norm with subscript, defined by  a r=(∑ i
Eai

r
)
1r
.

Second, note that the first term on the right-hand side of (14) can be written as

T2∑
t1

T

D

(xt1

(2) )u2tz t=T2∑
t1

T

D

(xt1

(2) )λ21+T2∑
t1

T

D

(xt1

(2) )(u2tz t−λ21).

By Theorem 3.2 of Hansen (1992), the sequence u2tz t−λ21 is an L2 -mixingale and D

(xt1

(2) )=Op(T ).

TESTING FOR LINEARITY IN REGRESSIONS WITH I(1) PROCESSES2016] 129



Then, applying Theorem 3.3 of Hansen (1992), T2∑ t1

T

D

(xt1

(2) )(u2tz t−Λ21) →
p

0. By the continuous

mapping theorem we obtain

T2∑
t1

T

D

(xt1)Λ21⇒D(B2)Λ21 (17)

Thus combining (14)-(17) gives (13).

(11), (12), and (13) together establishes the result of Lemma 2.2 (e) when i=3. The proof for the

case where i≥4 follows along the same line with appropriate moment conditions specified in Lemma 2.2.

The proof for part (f) can be shown by combining that of part (e) and the argument used in Phillips

(1988). □

Proof of Theorem 3.1: Observe that

ϒT 
γ


0−γ0

γ


1−γ1

γ


2

⫶

γ




 ⇒ϒT 
T ∑

t1

T

x′t ∑
t1

T

x t
(2)′ … ∑

t1

T

x t
()′

∑
t1

T

x t ∑
t1

T

x t x′t ∑
t1

T

x t x t
(2)′ … ∑

t1

T

x t x t
()′

∑
t1

T

x t
(2) ∑

t1

T

x t
(2)x′t ∑

t1

T

x t
(2)xt

(2)′ … ∑
t1

T

x t
(2)xt

()′

⫶ ⫶ ⫶ ⋱

∑
t1

T

x t
() ∑

t1

T

x t
()x′t ∑

t1

T

x t
()xt

(2)′ … ∑
t1

T

x t
()xt

()′

1

ϒT

×ϒT
1
∑
t1

T

u1t

∑
t1

T

x t u1t

∑
t1

T

x t
(2)u1t

⫶

∑
t1

T

x t
()u1t

.
Applying Lemma 2.2 to each element on the right hand side of the equation gives the required result. □

Proof of Theorem 3.2: Although we now have stationary regressors in (4), we may concentrate on γ


without loss of generality because they are asymptotically orthogonal to the integrated parts of the model,

1

T (i2)2∑ t1

T

x jt
iΔxk,ts→

p

0, for 1≤i≤κ, 1≤j,k≤m, and any s by Lemma 3.1 of Chang et al. (2001). This

asymptotic orthogonality of nonlinear transformations of integrated regressors to stationary regressors are

analogous to that of (untransformed) integrated regressors to stationary regressors in linear cointegration

models as noted in Chang et al. (2001).
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Note that

1

T12∑
j

[Tr]

wj⇒
B11⋅2(r)

B2(r) 
with covariance matrix


ω11−ω′21Ω22

1ω21 0

0 Ω22


Then by Lemma 2.2 (e) we have T(i1)2∑ t1

T

x t
(i)vt⇒B2

(i)dB11⋅2 for 2≤i≤κ. Since similar arguments are

used as in the proof of Theorem 4.1 in Saikkonen (1991), it suffices to show that for 2≤i≤κ and

1≤j≤m

1

T (i1)2∑
t1

T

x jt
i v t

＊=
1

T (i1)2∑
t1

T

x jt
i v t+op(1). (18)

Note that the number of observations now is T−2K, but we may use T instead of T−2K without loss of

generality. Note that

  1

Ti2∑
t1

T

x jt
i (vt

＊−vt)  ≤ xjt

T12 
i

 
Ej

∑
t1

T

 vt
＊−vt 

where

Ej=[ min
0≤r≤1

B2j(r)−1,max
0≤r≤1

B2j(r)+1]. (19)

It can be shown by the argument in Lemma A1 of Chang et al. (2001) that

E( vt
＊−vt 

r
)=O(Krs2). (20)

Then by (20) and the fact that  (xjt/T12)
i

 
Ei
=Op(1) we can deduce

1

Ti2∑ t1

T

x jt
i (vt

＊−vt)=Op(TK
s2) as

shown in Lemma A4 (b) of Chang et al. (2001), leading to
1

T (i1)2∑ t1

T

x jt
i v t

＊=
1

T (i1)2∑ t1

T

x jt
i v t+

Op(T
12Ks2). Thus (18) follows if δ>1/s since K=T. □

Proof of Theorem 3.3: Given the result of Theorem 3.2, applying Lemma 5.1 in Park and Phillips (1988)

gives the required result. □

Proof of Lemma 4.1: In this proof and the subsequent proof, we frequently use results from Park and

Phillips (2001) and Chang et al. (2001). In those citations, the space D[0,1] is endowed with the uniform

metric. However, we use “⇒” to imply weak convergence using the Skorohod metric in our proofs. This

is possible because convergence in the uniform metric implies the convergence in the Skorohod metric.

Proof of (a): Note that we have stationary regressors in (4). Again we may concentrate on γ

without loss

of generality by the same reasoning as described in the proof of Theorem 3.2. Observe that

ϒTγ

=ϒTM

1ϒT×ϒT
1∑

t1

T

Xty t. (21)
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First, as we have seen in the proof of Theorem 3.1

ϒTM
1ϒT=Op(1). (22)

Next we consider the second component of the right hand side of (21). Observe that under the

alternative (6) we have

ϒT
1∑

t1

T

Xty t=ϒT
1∑

t1

T

g(xt)Xt+ϒT
1∑

t1

T

Xt u1t (23)

where g(xt)≡∑ i1

m

gi(xit). The second term on the right hand side of (23) is Op(1) as we saw in the proof

of Theorem 3.1. To analyze the first term on the right hand side of (23), we consider the asymptotic

properties of gi∈ (I ) and gi∈ (H ) separately. For a function gi∈ (I ), it follows from Part (k) of

Lemma 3.1 of Chang et al. (2001), for 0≤s≤κ and 1≤j,k≤m,
1

T (s1)2∑ t1

T

gi(xjt)xkt
s=Op(1). Hence we

have for a function gi∈ (I )

ϒT
1∑

t1

T

gi(xit)Xt=Op(1). (24)

It follows that if gi∈ (I ) for all i

ϒT
1∑

t1

T

Xty t=Op(1). (25)

Thus if gi∈ (I ) for all i, we can deduce by (21), (22) and (25) that ϒT
1γ

=Op(1), giving one case of the

result required for Part (ii) of Lemma 4.1 (a).

For a function gi∈ (H ) with asymptotic order νi and limit homogeneous function hi, we have, from

Part (l) of Lemma 3.1 in Chang et al. (2001) and Theorem 1 of de Jong (2004), for 0≤s≤κ and

1≤j,k≤m,
1

T (s21)νi(T
12)∑ t1

T

gi(xjt)xkt
s=Op(1). Thus we have for a function gi∈ (H )

ϒT
1∑

t1

T

gi(xit)Xt=Op(T
12νi(T

12)). (26)

Note that (26) holds for any νi(⋅) that satisfies the assumptions of Lemma 4.1.

Now we consider a case where gi∈ (H ) for some i under the alternative (6). Remember that g1 is

the dominating function among functions belonging to (H ). Then it is clear from the argument above

that the order of the dominating component in the first term of (23) is given by

ϒT
1∑

t1

T

g1(x1t)Xt=
Op(T

12ν1(T
12)) if T12ν1(T

12)→∞ as T→∞,

Op(1) otherwise.

Thus we get

ϒT
1∑

t1

T

g(xt)Xt=
Op(T

12ν1(T
12)) if T12ν1(T

12)→∞ as T→∞,

Op(1) otherwise,

leading to

HITOTSUBASHI JOURNAL OF ECONOMICS [June132



ϒT
1∑

t1

T

Xty t=
Op(T

12ν1(T
12)) if T12ν1(T

12)→∞ as T→∞,

Op(1) otherwise.
(27)

Hence combining (21), (22) and (27) shows that

ϒTγ

=

Op(T
12ν1(T

12)) if T12ν1(T
12)→∞ as T→∞,

Op(1) otherwise,

giving the result required for Part (i) and the other case of Part (ii) in Lemma 4.1 (a).

Proof of (b): Recall that

ω


11⋅2=T1∑
t1

T

v t
＊ 2+2T1∑

s1

l

wsl∑
ts1

T

v t
＊ vts

＊ (28)

where vt
＊ is the residual obtained from the regression (4) and wsl=1−s/(l+1). First, consider the first

term in (28). Let θ=(θ′K,θ′K1,θ′K2,...,θ′K2,θ′K1,θK)′ and

Zt=(Δx′tK,Δx′tK1,Δx′tK2,...,Δx′tK2,Δx′tK1,Δx′tK)′.

Also let θ

be the OLS estimator of θ from (4). Observe that

T1∑
t1

T

v t
＊ 2=T1∑

t1

T

(yt−Xt′γ

−Zt′θ


)
2
=T1∑

t1

T

(g(xt)+u1t−Xt′γ

−Zt′θ


)
2

=T1∑
t1

T

g2(xt)+T1∑
t1

T

u1t
2+T1γ


′∑

t1

T

XtXt′γ+T1θ

′∑

t1

T

ZtZt′θ

+2T1∑
t1

T

g(xt)u1t−T1γ

′∑
t1

T

g(xt)Xt−T1θ

′∑
t1

T

g(xt)Zt

−T1γ

′∑
t1

T

Xt u1t−T1θ

′∑
t1

T

Zt u1t+T1γ

′(∑

t1

T

XtZt′)θ
 (29)

First, we deal with the case where gi∈ (H ) with νi(T
12)→∞ as T→∞ for some i. Again remember that

g1 is the dominating function among functions that belong to (H ) We check the order of convergence of

each term in (29). T1∑ t1

T

g2(xt)=Op(ν1
2(T12)) by the argument in Part (a) of Lemma 4.1,

T1∑ t1

T

u1t
2=Op(1) by the law of large numbers and T1∑ t1

T

g(xt)u1t=op(ν(T
12)) by Lemma 3.1 (f) of

Chang et al. (2001) and Theorem 1 of de Jong (2004). It follows by the proof of Theorem 3.1 and Part (a)

of Lemma 4.1 that

T1γ

′∑

t1

T

XtXt′γ=(T12ϒTγ

)′ϒT

1∑
t1

T

XtXt′ϒT
1(T12ϒTγ


)

=Op(ν1(T
12))Op(1)Op(ν1(T

12))=Op(ν1
2(T12)),

T1γ

′∑
t1

T

g(xt)Xt=(T12ϒTγ

)′T12∑

t1

T

g(xt)ϒT
1Xt

=Op(ν1(T
12))Op(ν1(T

12))=Op(ν1
2(T12))

and
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T1γ

′∑
t1

T

Xt u1t=(T12ϒTγ

)′T12∑

t1

T

ϒT
1Xtu1t

=Op(ν1(T
12))Op(T

12)=Op(T
12ν1(T

12))

Observe that

T1θ

′∑

t1

T

ZtZt′θ=∑
t1

T

ZtZt′
1

∑
t1

T

Zt y t
′

∑
t1

T

ZtZt′∑
t1

T

ZtZt′
1

∑
t1

T

Zt y t
=T2∑

t1

T

g(xt)Zt
′

T1∑
t1

T

ZtZt′
1

∑
t1

T

g(xt)Zt
+2T32∑

t1

T

g(xt)Zt
′

T1∑
t1

T

ZtZt′
1

T12∑
t1

T

Zt u1t
+T1T12∑

t1

T

Zt u1t
′

T1∑
t1

T

ZtZt′
1

T12∑
t1

T

Zt u1t (30)

since yt=g(xt)+u1t. Note that  (T1∑ t1

T

ZtZt′)
1

 =Op(1) and  T12∑ t1

T

Zt u1t =Op(K
12) by the proof

of Lemma 3 in Berk (1974). Also note that

∑
t1

T

g(xt)Δxtk=Opν1(T
12)T

43r

4(1r)K
r

2(1r),

uniformly for k=1,...,K by Lemma A4 (b) of Chang et al. (2001). Then it follows by (30) that

T1θ

′

t1

T

Z tZ t′θ=Op(T
2)Opν1(T

12)T
43r

4(1r)K
r

2(1r)KOp(1)Opν1(T
12)T

43r

4(1r)K
r

2(1r)K
+Op(T

32)Opν1(T
12)T

43r

4(1r)K
r

2(1r)KOp(1)Op(K
12)

+Op(T
1)Op(K

12)Op(1)Op(K
12)

=Oν1
2(T12)T

2(23r)1

2(1r) +Oν1(T
12)T

2(34r)23r

4(1r) +O(T1), (31)

letting K=T. Thus we get T1θ

′∑ t1

T

ZtZt′θ=op(ν1
2(T12)), for δ<r/(2(2+3r)). Similarly, we get

T1θ

′∑ t1

T

g(xt)Zt=op(ν1
2(T12)), T1θ


′∑ t1

T

Zt u1t=op(ν1(T
12)), and T1γ


′∑ t1

T

XtZt′θ=op(ν1
2(T12)) for

δ<r/(2(2+3r)). Thus by the discussion above we can deduce that

T1∑
t1

T

v t
＊ 2=

Op(ν1
2(T12)) if ν1(T

12)→∞ as T→∞,

Op(1) otherwise,
(32)

When gi∈ (I ) for all i, the similar arguments show that T1∑ t1

T

g2(xt)=op(1) by Theorem 5.1 of

Park and Phillips (1999), T1∑ t1

T

g(xt)u1t=op(1) by Theorem 3.2 of Park and Phillips (2001),

T1γ

′T1∑ t1

T

XtXt′γ=op(1), T
1γ

′∑ t1

T

g(xt)Xt=op(1) by the proof of Theorem 3.1, Part (a) of Lemma

4.1 and Part (k) of Lemma 3.1 in Chang et al. (2001), T1θ

′T1∑ t1

T

ZtZt′θ=op(1) by Lemma A3 (b) of

Chang et al. (2001). Thus we can deduce that a dominating term in (29) for this case is T1∑ t1

T

u1t
2 and
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its order Op(1), leading to

T1∑
t1

T

v t
＊ 2=Op(1) if gi∈ (I ) for all i. (33)

Next we consider the cross product terms in (28). Observe that

T1∑
t1

T

v t
＊ 2=T1∑

t1

T

(yt−X ′tγ

−Zt′θ


)(yts−X ′tsγ


−Z′tsθ


)

=T1∑
t1

T

g(xt)+u1t−X ′tγ

−Z′tθ


g(xts)+u1, ts−X ′tsγ


−Z′tsθ




=T1∑
t1

T

g(xt)g(xts)+T1∑
t1

T

u1t u1, ts

+T1γ

′∑

t1

T

XtX ′tsγ+T1θ

′∑

t1

T

ZtZ′tsθ

+T1∑
t1

T

g(xt)u1, ts+T1∑
t1

T

g(xts)u1t−T1γ

′∑

t1

T

g(xt)Xts+∑
t1

T

g(xts)Xt
−T1θ


′∑

t1

T

g(xt)Zts+∑
t1

T

g(xts)Zt−T1γ

′∑

t1

T

Xt u1, ts+∑
t1

T

Xtsu1t
−T1θ


′∑

t1

T

Zt u1, ts+∑
t1

T

Ztsu1t+T1γ

′∑

t1

T

XtZ′tsθ+∑
t1

T

XtsZt′θ.
A similar argument to the one used deriving (32) and (33) can be applied to each term to get

T1∑
ts1

T

v t
＊ vts

＊ =
Op(ν1

2(T12)) if gi∈ (H ) with νi(T
12)→∞ as T→∞ for some i

Op(1) otherwise.
(34)

except for the two terms, T1∑ t1

T

g(xt)g(xtx) and γ

′(T1∑ t1

T

XtXts)γ

. For the former, observe that when

gi∈ (H ) for some i,

1

Tν1
2(T12)∑t1

T

g(xt)g(xts)=T1∑
t1

T

h1(x1t)h1(x1, ts)+op(1) (35)

by Theorem 3.3 of Park and Phillips (2001). We can also show that for large T

T1∑
t1

T

 h1(x1t)h1(x1, ts)  ≤T1∑
t1

T

h(x1t) 
2

12

T1∑
t1

T

h(x1, ts) 
2

12

≤h1 E
2

(36)

where the first inequality follows from Cauchy-Schwartz inequality and Ei is defined in (19). Then it

follows from (35) and (36) that

T1∑
t1

T

g(xt)g(xts)=
Op(ν1

2(T12)) if ν1(T
12)→∞ as T→∞,

Op(1) otherwise,

When gi∈ (I ) for all i, we get from (36) that T1∑ t1

T

g(xt)g(xts)=Op(1). Applying the same argument
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to (T1∑ t1

T

XtXts) gives γ

′(T1∑ t1

T

XtXts)γ

=Op(1) leading to (34).

Given (32), (33) and (34), the argument used in the proof of Theorem 3.1 of Phillips (1991) shows

that

ω


11⋅2=
Op(lν1

2(T12)) if gi∈ (H ) with νi(T
12)→∞ as T→∞ for some i

Op(l ) otherwise.

□

Proof of Theorem 4.1: Observe that

WT=(Rγ

)′(ω11⋅2RM

1R′)
1
(Rγ


)

=(RϒT
1ϒTγ


)′(ω11⋅2RϒT

1ϒTM
1ϒTϒT

1R′)
1
(RϒT

1ϒTγ

)

=(ϒTγ

)′(RϒT

1)′ω11⋅2(RϒT
1)(ϒTM

1ϒT)(ϒT
1R′)

1

(RϒT
1)(ϒTγ


).

=(ϒTγ

)′(R′ϒ


T
1)ω11⋅2(ϒ


T
1R)(ϒTM

1ϒT)(R′ϒ


T
1)

1

(ϒ


T
1R(ϒTγ


)

=(RϒTγ

)′ω11⋅2R(ϒTM

1ϒT)R′
1

(RϒTγ

) (37)

where ϒ


T is a lower-right (κ−1)×(κ−1) submatrix of ϒT. If gi∈ (H ) with νi(T
12)→∞ as T→∞ for

some i,

WT=(RϒTγ

)′ω11⋅2R(ϒTM

1ϒT)R′
1

(RϒTγ

)

=Op(T
12ν1(T

12))Op(l
1ν1

2(T12))Op(1)Op(T
12ν1(T

12))=Op(T/l ),

by Lemma 4.1 and the proof of Theorem 3.1. If gi∈ (H ) with ν1(T
12) is constant as T→∞ for some i,

using the same argument we get WT=Op(T
12)Op(l

1)Op(1)Op(T
12)=Op(T/l ). If gi∈ (H ) with

T12ν1(T
12)→∞ and ν1(T

12)→0 as T→∞, we also obtain by the same argument

WT=Op(T
12ν1(T

12))Op(l
1)Op(1)Op(T

12ν1(T
12))=Op(Tν1

2(T12)/l ).

Otherwise WT=Op(1)Op(l
1)Op(1)Op(1)=Op(l

1), giving the required result. □

Proof of Lemma 4.2: (a) Given the result of the proof of Lemma 4.1, it is sufficient to show that

ϒT∑
t1

T

Xty t=Op(T ) (38)

since the arguments in Lemma 4.1 can be applied to other parts of the proof. (38) can be easily proved by

the application of the continuous mapping theorem T(i3)2∑ t1

T

x t
(i)yt⇒B2

(i)B1.

(b) Given (a), the proof of (b) is completely analogous to that of Lemma 4.1 (b) and so it is omitted. □

Proof of Theorem 4.2: By (37), we have

WT=(RϒTγ

)′ω11⋅2R(ϒTM

1ϒT)R′
1

(RϒTγ

)=Op(T )Op(l

1T1)Op(1)Op(T ))=Op(T/l ),
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where the last equality is from Lemma 4.1. □
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