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Abstract

We extend Cochrane and Saá-Requejoʼs (2000) analysis to derive good-deal bounds on

asset prices when investors are concerned about model uncertainty and seek robust pricing

decisions in incomplete markets. We investigate properties of the proposed pricing bounds and

apply these bounds to value a European option whose underlying asset is a non-traded stock

index. We find that, under certain circumstances of model uncertainty, the proposed pricing

bounds can include sufficient amounts of the actual option prices, which is in contrast with the

empirical finding of the good-deal bounds proposed by Cochrane and Saá-Requejo (2000).
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I. Introduction

One of the most important breakthroughs in modern asset pricing theory is that, under the

complete markets assumption, complex financial instruments can be perfectly replicated by

sophisticated dynamic trading strategies that involve simpler securities. However, in many

realistic situations, perfect replication is impracticable and impossible due to non-traded

underlying assets or market frictions, which may further lead to the collapse of complete-

market conditions. To circumvent this problem, several seminal papers, including Cochrane and

Saá-Requejo (2000), Bernardo and Ledoit (2000) and Carr et al. (2001) propose various novel

methods to deal with the valuation of securities in incomplete markets. In particular, Cochrane

and Saá-Requejo (2000) argue that no portfolio traded in the market has more than twice the

market Sharpe ratio. Thus, they propose an approach to calculate asset pricing bounds

conditional on the absence of arbitrage and high Sharpe ratios. These pricing bounds (hereafter,

good-deal bounds) are useful in situations for which a relative pricing approach is appropriate

but perfect replication is not possible. For example, banks can use these good-deal bounds as

bid and ask prices to synthesize non-traded securities.
1

While these good-deal bounds are convenient and useful in certain applications, our

empirical study finds that good-deal bounds are not sufficiently wide to cover the actual prices

of options, particularly during the recent financial crisis. Specifically, we value a European call

option whose underlying asset is the Taiwan Stock Exchange Capitalization Weighted Stock

Index (TAIEX). Because the TAIEX is not a traded asset, we use the exchange traded fund of

the Taiwan 50 index (TWETF) as an approximate hedge and calculate good-deal bounds

conditional on the assumption that no portfolio has more than twice the Sharpe ratio from

January 2, 2006 to December 28, 2012. We find that approximately 54% of the option prices

fall outside the good-deal bounds during the entire sample period. Even though we widen these

pricing bounds associated with four-times the market Sharpe ratio to allow for “unbelievably

good deals,” these pricing bounds are not sufficiently large to cover the option prices.

Moreover, we find that during the financial crisis in late 2008, only 27% of the option prices

remained within the good-deal bounds. These results suggest that good-deal bounds should be

used with caution. For example, our results imply that if banks would use these pricing bounds

as bid and ask prices, these bounds would cause great losses for banks.

A possible cause for these results is that, under the assumption of Cochrane and Saá-

Requejo (2000), investors have perfect knowledge of the true probability law governing the

stochastic processes of asset prices, even in the face of the global financial crisis. However, in

many situations, investors are uncertain regarding the true probability law; hence, any particular

probability law or model used to describe the asset prices would be subject to potential model

misspecification.
2
For these reasons, the objective of this study is to develop an asset pricing

model in which investors account explicitly for model uncertainty in incomplete markets.
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Inspired by Cochrane and Saá-Requejo (2000), Maenhout (2004), and Hansen and Sargent

(2008), we derive good-deal bounds that are robust to a particular type of model

misspecification, stemming from the parameter uncertainty of asset processes. More specifically,

we consider a European option whose underlying asset is non-tradable, but it is correlated with

a traded asset. To obtain analytic-form solutions of pricing bounds, we assume that the non-

tradable and traded assets are driven by geometric Brownian motions with some perturbation

parameters. By controlling these perturbation parameters, we design a collection of models that

comprise a broad range of alternative processes whose Kullback-Leibler divergence from the

benchmark model is bounded by a specified value. Then, we use the collection of models to

characterize a particular form of model misspecification for investorsʼ decisions. Finally, we

solve the optimization problem encountered by investors who maximize their utilities and

consider the worst-case scenario under circumstances of model misspecification.

By eliminating investments with high Sharpe ratios, the derived pricing bounds (hereafter

referred to as robust good-deal bounds) have several features. First, when markets are

incomplete and investors have perfect knowledge of the data generating processes (DGPs) of

asset prices, the proposed pricing bounds are reduced to those discussed in Cochrane and Saá-

Requejo (2000). Second, when markets are incomplete but investors are concerned that the

stochastic processes of asset prices are misspecified, our robust good-deal bounds are wider

than those of Cochrane and Saá-Requejo (2000). The greater the uncertainty regarding the asset

price processes, the wider the pricing bounds appear. This result is rather natural. For example,

in practice, the bid-ask spread tends to be larger when banks are uncertain of their asset price

processes. Finally, to provide a possible explanation for the finding that Cochrane and Saá-

Requejoʼs (2000) pricing bounds cannot cover actual prices, a calibration to the TAIEX

example in the Taiwan stock market is re-investigated using our robust good-deal bounds. We

find that, under certain circumstances of model misspecification, the robust good-deal bounds

can contain sufficient amounts of actual option prices. More importantly, compared to other

time periods, it is also found that investors were less confident regarding the stochastic

processes of asset prices in the face of the recent financial crisis.

The remainder of this paper is organized in the following manner. In section II, we

describe the good-deal bounds given by Cochrane and Saá-Requejo (2000); moreover, we also

present an empirical study on the TAIEX. In section III, we introduce robust good-deal bounds

and the study on the TAIEX is re-examined by applying these robust pricing bounds. In section

IV, we present some concluding remarks.

II. Pricing Bounds and an Empirical Study on the TAIEX

1. Good-Deal Asset Pricing Bounds

First, we briefly describe the arbitrage-free, good-deal bounds proposed by Cochrane and

Saá-Requejo (2000). Consider a traded basis asset that yields a stream of payoffs or dividends,

Dtdt. Under the assumption of expected utility maximization, the basic pricing model for the

basis asset can be derived in the following manner:

St= t


0

Λ t

Λ t

Dtdτ, (1)
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where St denotes the price of the basis asset and Λ t is a stochastic discount factor. The process

St in (1) is assumed to satisfy

dSt

St
=μSdt+σSdBt, (2)

where dBt is a Brownian motion with (dBtdBt)=1. Now, consider a derivative whose

underlying asset is non-tradable. This derivative pays continuous dividends at the rate  c(Vt)dt

at time t, where Vt is the value of the non-tradable asset. The process Vt is assumed to satisfy

dVt

Vt

=μVdt+σBdBt+σWdWt, (3)

where dWt is a Brownian motion with (dWtdWt)=1 and (dBtdWt)=0.
3

Because the payoff  c(Vt) depends on the non-tradable asset, the derivative is not able to

replicate perfectly, and hence the basic pricing model in (1) is not directly applicable for

evaluating this derivative. To deal with this problem, Cochrane and Saá-Requejo (2000)

considered arbitrage-free, good-deal bounds and showed that the lower pricing bound, ct, can be

obtained by solving the following constrained optimization problem:

min
Λ≥0,t≤≤T

t
T

t

Λ

Λ t

 c(V)dτ+ tΛT

Λ t

 c(VT), (4)

subject to the following two constraints: that the discount factor prices the basis assets St

correctly at each moment and that the volatility of the discount factor process, t(dΛ
2
tΛ

2
t ), is

less than a pre-specified value:

tdΛ
2
t

Λ2
t ≤A2dt (5)

with A2=(1+h2)(1+rf)
2
, where rf is the instantaneously risk-free rate and h is the pre-

specified volatility bound. As shown in Hansen and Jagannathan (1991), the constraint in (5)

implies that no portfolio priced by Λ t can have a Sharpe ratio greater than h. That is, the

pricing bounds rule out “good deals” with a high Sharpe ratio if h is sufficiently large. Because

Rose (1976) and Cochrane and Saá-Requejo (2000) argue that no portfolio traded in the market

has more than twice the market Sharpe ratio, in practice, the term h can be pre-specified to the

value of twice the market Sharpe ratio. The upper bound ct follows from replacing min with

max in the above optimization.

In particular, when there is only one extra noise, dWt, driving dVt, the good-deal bounds

for a European option are given by

ct or ct=V0e
TΦ(d+0.5σV T )−Ke

rfTΦ(d−0.5σV T ), (6)

where Φ(⋅) denotes the standard normal cumulative distribution function, K is the strike price,
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σ 2
V=σ 2

B+σ 2
W,

d=
ln (V0K)+(η+rf)T

σV T
,

η=hV−hSρ−a A
2

h2
S

−1  1−ρ2 σV,
hS=

μS−rf
σS

, hV=
μV−rf
σV

, ρ=
σB
σV

, A2=
1+h2

(1+rf)
2 ,

(7)

a=+1 for the upper bound and a=−1 for the lower bound; see Cochrane and Saá-Requejo

(2000) for more details. Note that the larger the term h is (i.e., more “unbelievably good deals”

are assumed to survive in markets), the wider the good-deal bounds appear.

2. An Empirical Study on the TAIEX

As an empirical example, we consider a European call option whose underlying asset is

the TAIEX, where the TAIEX is a stock market index for over 700 listed companies traded on

the Taiwan Stock Exchange (TSE). Because the TAIEX is not a traded asset, we employed the

TWETF as an approximate hedge. It must be noted that there is an unavoidable basis risk

between the TAIEX call option and the security TWETF because TWETF only tracks the

Taiwan 50 index, which comprises the top 50 companies traded on the TSE.
4
We used the one-

year certificate of deposit interest rate reported by the Bank of Taiwan as the risk-free rate and

collected all the data needed for the period July 1, 2003 ‒ December 28, 2012 from the Taiwan

Economic Journal database. To ease exposition, the TWETF is represented by St and the

TAIEX is represented by Vt. By applying the maximum likelihood method, we recursively

estimated the parameters in (2) and (3). For example, we used the sample period of July 1,

2003 ‒ January 2, 2006 to estimate the parameters in January 3, 2006 and obtained the

estimated parameters for the subsequent period by using the sample period of July 1, 2003 ‒

January 3, 2006. Employing these estimated parameters, we calculated the market Sharpe ratios

and estimated good-deal bounds in (6) and (7) based on the near-maturity and at-the-money

TAIEX call options. Finally, we calculated the price-to-bounds ratio (hereafter referred to as the

PB ratio) that is defined as

PB ratio=
number of actual option prices that stay within the bounds

number of observations
.

We used this PB ratio to assess the empirical relevance of the good-deal bounds in (6) and (7).

We summarize the PB ratios in Table 1.

It is evident from Table 1 that the PB ratios vary over time. In addition, the PB ratios

increase when the term h increases. For example, conditional on h2=2×SR (i.e., twice the

estimated market Sharpe ratio), the largest PB ratio is approximately 52.59% in 2010, while the

PB ratio is 40.16% in 2008. Further, the PB ratio for the entire sample period is only

approximately 46.84%. In particular, we found that only 27.03% of the option prices remained
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within the good-deal bounds during the financial crisis in late 2008. Even when h increased to

h4=4×SR (i.e., four-times the estimated Sharpe ratio), the PB ratio was still below 53% during

the 2008 financial crisis. In other words, even if “unbelievably good deals” are assumed to

survive in the markets, the derived good-deal bounds are not sufficiently large to cover the

actual option prices. These results suggest that the good-deal bounds are not sufficiently

appropriate to evaluate derivatives whose underlying asset is the TAIEX. These results also

indicate that the good-deal bounds should be used with caution. For example, when banks use

these good-deal bounds as bid and ask prices, very often they will find that the option prices do

not lie within the bidask quotes. Such bid-ask quotes may cause great losses because when the

option prices lie outside the bid-ask quotes, it implies that banks bid higher than actual prices

(or offer lower than actual prices). Moreover, these results imply that the tightening of good-

deal bounds, such as by using the approach of Pyo (2011), may not perform better unless there

is perfect knowledge that the actual prices will remain within the pricing bounds. This is

because when actual prices fall outside good-deal bounds, further tightening the good-deal

bounds may lead to a worse performance.

The finding that the good-deal bounds do not contain sufficient amounts of option prices

can be caused by the methods of estimating parameters, the assumptions of constant parameters,

and the number of extra driving forces in dVt. Another possible cause of this finding is the

assumption that investors have perfect knowledge of the true probability law governing the

stochastic processes of asset prices. As suggested by Uppal and Wang (2003), Anderson et al.

(2003), and Maenhout (2004), among many others, this assumption is too restrictive because in

many situations investors are uncertain of the asset price processes. Therefore, it is desirable to

take model uncertainty into account when studying asset pricing bounds in incomplete markets.

III. Robust Good-Deal Asset Pricing Bounds

1. Robust Good-Deal Bounds

Here, we follow Anderson et al. (2003), Maenhout (2004), Lai (2014) and Hansen and

Sargent (2008) and take model uncertainty into consideration. To incorporate uncertainty into
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45.42%40.16% 52.59%

h3=3×SR
40.49%

2006

52.40%

2008 2009 2010

h4=4×SR

h4=4×SR

2011

Note: SR denotes the estimated market Sharpe ratio. The PB ratios of the 2008 Financial Crisis are calculated from

Sept. 15, 2008 to Feb. 28, 2009.

2012

49.80% 83.27%75.81% 65.99%63.05% 64.80%

47.81%64.92% 72.11%51.81% 51.01% 60.40%

50.00%

39.64%

69.02%

59.37%h3=3×SR

80.74%

67.62%

46.72%

2007

52.25%

2008 Financial Crisis2006〜2012

27.03%46.84%

TABLE 1. THE PB RATIOS OF GOOD-DEAL BOUNDS

h2=2×SR

h2=2×SR



investorsʼ decisions, we extend the equations (2) and (3) by allowing some perturbation

parameters:

dSt

St
=(μS+λ1σS)dt+σSdBt,

dVt

Vt

=(μV+λ1σB+λ2σW)dt+σBdBt+σWdWt,

(8)

where λ1 and λ2 are unknown perturbation parameters. Note that, compared with equations (2)

and (3), some extra drift terms are added in model (8). The intuition behind model (8) can be

described in the following manner. Let P denote the probability measure of investorsʼ

knowledge of price processes. It is often the case that the knowledge of P is based on some

estimation results or prior beliefs. Because investors are not sure if P is the right model, it is

natural that they would consider some alternative probability measures, Q1,Q2,..., to allow for

the possibility of model misspecification. Consider a possible alternative measure Q , which is

given by

dP=ξdQ ,

where ξ is a density function and can be regarded as a Radon-Nikodym derivative. According

to Girsanovʼs theorem, considering this alternative measure is equivalent to shifting the drift

terms in (8). Thus, model (8) can be used to describe the notion that investors are uncertain

regarding the true price processes and thus consider numerous alternative models.

Of course, not all alternative measures should be considered in our framework; alternative

measures that are too far away from the reference (or benchmark) measure, that is, P, could be

ignored. To illustrate this, we impose the following restriction:

λ2
1+λ2

2≤κ 2, (9)

to exclude some alternative measures, where κ is a pre-specified value. The larger κ 2 is, the

more alternative measures that are far away from P are included. When κ=0, it implies that

investors have perfect knowledge of the true probability law governing the stochastic processes

of asset prices. The advantages of this constraint are twofold. First, if the notion of distance

between measures is measured by the Kullback-Leibler divergence, equation (9) implies

DKL(St St(λ1))≤κ 2
1 and DKL(Vt Vt(λ1,λ2))≤κ 2

2 , (10)

where DKL(St St(λ1)) denotes the Kullback-Leibler divergence of St in (8) from St in (2), and

DKL(Vt Vt(λ1,λ2)) measures the discrepancy or divergence of Vt in (8) from Vt in (3).
5
That is,

in the sense of the Kullback-Leibler information criterion, a broad range of alternative models

is considered by imposing the restriction in (9). Second, Ben-Tal and Nemirovski (1999) have

shown that the robust solution of a linear programming problem with an ellipsoidal uncertainty

set (that is, λ2
1+λ2

2≤κ 2) is mathematically tractable.

Given the framework in (8) that investors are uncertain regarding the true processes of

asset prices, we now discuss the optimization problem encountered by investors. Intuitively,
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when investors are concerned about model uncertainty and disfavour model misspecification,

they entertain more conservative and pessimistic views regarding their decisions. This concern

keeps the investors from choosing the most pessimistic or the worst-case scenario. Thus, instead

of the constrained optimal decision problem in (4), the investorsʼ optimization problem

involving uncertainty regarding the true processes are given by

Ct=min
1,2

min
Λ≥0,t≤≤T

t
T

t

Λ

Λ t

 c(V)dτ+ tΛT

Λ t

 c(VT),
s.t. λ2

1+λ2
2≤κ 2, tdΛ

2
t

Λ2
t ≤A2dt,

(11)

and subject to the constraint that the selected stochastic discount factor should correctly price

basis assets, where Ct denotes the lower robust pricing bound. Note that the first minimization

(i.e., min1,2 ) in (11) describes the worst-case scenario considered by investors. Again, the

dynamics of upper bound Ct follow from replacing min with max in the above optimization.

In general, the robust pricing bounds in (11) can be approximated by using numerical

methods. However, in certain special cases, such as the European call option discussed in

section II.1, closed-form solutions can be obtained. As shown in the Appendix A, the robust

good-deal bounds for European call options are given by

Ct or Ct=V0e
TΦ(d+0.5σV T )−Ke

rfTΦ(d−0.5σV T ), (12)

where σ 2
V=σ 2

B+σ 2
W,

d=
ln (V0K)+(η+rf)T

σV T
,

η=gV−gSρ−a A
2

g2
S

−1  1−ρ2 σV,
gS=

μS+λ＊
1 σS−rf
σS

, gV=
μV+λ＊

1 σB+λ＊
2 σW−rf

σV
, ρ=

σB
σV

,

λ＊
1 =−

κhS
κ+A

, λ＊
2 =a

κ (κ+A)
2
−h2

S

κ+A
, hS=

μS−rf
σS

, A2=
1+h2

(1+rf)
2 ,

(13)

a=+1 for the upper bound and a=−1 for the lower bound. With reference to the robust

good-deal bounds in (12), some standard Greeks are also presented in the Appendix A (see

Table 3). Interestingly, the main result in (13) is equal to that of Cochrane and Saá-Requejo

(2000), with A replaced by A+κ; see the proof in the Appendix B.
6

Several novel features are evident from (12) and (13). First, when markets are complete

and the processes dSt and dVt are correctly specified, equations (12) and (13) are reduced to the

Black-Scholes formula. To see this, let Vt=St and κ=0. The former represents the situation

that the payoff of Vt can be perfectly replicated by the basis asset St, while the latter implies

that investors have perfect knowledge of the true DGPs of asset prices. In this case, ρ=1,
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λ＊
1 =λ＊

2 =0 and η in (12) becomes zero. Substituting

these results into equation (12), the Black-Scholes formula appears as a special case.

Second, when markets are incomplete and dSt and dVt are correctly specified, equations (12)

and (13) become the pricing bounds proposed by Cochrane and Saá-Requejo (2000). This is

simply because κ=0, and hence λ＊
1 =λ＊

2 =0.

Third and more importantly, when markets are incomplete and investors worry about the

worst-case scenario that involves model uncertainty regarding the true price processes, the

robust good-deal bounds are wider than those discussed in Cochrane and Saá-Requejo (2000).

The greater the uncertainty about the asset processes (i.e., κ increases), the wider the robust

pricing bounds appear. Such wider pricing bounds are mainly attributed to the conservative and

pessimistic decisions of investors in (11), not relaxing the assumption of no-arbitrage or

allowing the existence of “unbelievably good deals.” The intuition of the result is clear. For

example, if banks are not sure whether their asset processes are correctly specified, they may

express reservations regarding the pricing models and widen bid-ask quote prices. The only

difference is that equation (12) provides closed-form solutions to optimally widen bid-ask

quotes. To illustrate, Figure 1 presents the lower and upper good-deal bounds (the dashed lines)

based on equation (6) and the following parameter values:

μS=0.13, σS=0.14, μV=0.11, σB=0.13, σW=0.06,

V0=80, rf=0.05, K=100, T=14, h2=0.8382,

where h2=2×(0.11−0.05) 0.132+0.062≈0.8382. For comparison, Figure 1 also plots the

European call option price derived by the Black-Scholes formula (the dotted line). Given the

same parameter values, Figure 1 also shows the lower and upper robust good-deal bounds (the

solid lines) according to equation (12), with κ=1. As can be seen in this figure, the robust

good-deal bounds are wider than the pricing bounds discussed in Cochrane and Saá-Requejo

(2000), conditional on the same discount factor volatility constraint, h=0.8382.

2. Re-examining the TAIEX with Robust Good-Deal Bounds

In this subsection, we re-examine the empirical study in the TAIEX by applying the robust

good-deal bounds. Using the same procedure that was discussed in section II.2,

we calculate the PB ratios for the robust good-deal bounds in (12) and (13); we summarize

these PB ratios in Table 2. To rule out “good deals” with high Sharpe ratios, in this table we

only present the results of h=h2 and κ=1, 1.5. For comparison purposes, we also present the

PB ratios of the good-deal bounds of Cochrane and Saá-Requejo (2000) in this table (i.e., h2

and κ=0).

Several features emerge in Table 2. First, the PB ratios of the robust good-deal bounds

vary over different time periods. For example, given that κ=1, the largest PB ratio was 85.66%

in 2010, while the PB ratio was 65.06% in 2008; the PB ratio was approximately 71.79% for

the entire sample period. In addition, the PB ratios increase when the level of model uncertainty

(i.e., κ) increases.
7
Second, compared with the results of the good-deal bounds (i.e., κ=0), the

PB ratios of the robust good-deal bounds rise substantially, particularly during the 2008
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financial crisis. For example, during the times of financial crisis in late 2008, the PB ratio

increases from 27.03% (κ=0) to 65.77% (κ=1.5). This result suggests that to obtain a

reasonable PB ratio, the possibility of model misspecification should be taken into account.

Third, compared with other time periods, the PB ratios during the 2008 financial crisis are the

smallest values, regardless of the values of κ. That is, to sustain the same PB ratio, the value of

κ during the 2008 financial crisis should be larger than these values in other periods. For

example, to sustain the PB ratio at 68.55%, the value of κ was equal to 1 in 2006, while the

value of κ should be larger than 1.5 during the financial crisis. This result implies that the

investors entertain more conservative and pessimistic views regarding their decisions during the

2008 financial crisis.

To check the robustness of our empirical findings, we also extend our data to June 30,

2014. Similar results are obtained. We find that approximately 47.5% of the option prices fall

outside the good-deal bounds during Jan 1, 2013 - June 30, 2014. We still find that the good-

deal bounds are not sufficiently wide to cover the actual prices of the options, even after the
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κ=0).

2012

75.30% 89.64%74.19% 80.16%73.09% 73.60%

66.93%68.55% 85.66%65.06% 72.47%

h=h2

68.80%

50.00%

56.76%

78.16%

71.79%κ=1

81.15%

75.00%

46.72%

2007

65.77%

2008 Financial Crisis2006〜2012h=h2

27.03%46.84%

TABLE 2. THE PB RATIOS OF ROBUST GOOD-DEAL BOUNDS

κ=0

κ=0



2008 financial crisis. This, again, indicates that the good-deal bounds may cause some problems

when we use them for pricing derivatives in incomplete markets in Taiwan. Details of these

results are omitted to save space, but are available from the authors upon request.

IV. Conclusion

In this study, we developed a framework that formalizes the problem of investors who are

concerned about model uncertainty and seek robust pricing decisions in incomplete markets.

Intuitively, because investors disfavour model misspecification and understand that the

distributions of asset prices are not estimated with perfect precision, they are more conservative

regarding their decisions. This concern may keep investors from choosing the worst-case

scenario and leads to wider pricing bounds as compared to Cochrane and Saá-Requejoʼs (2000)

good-deal bounds. In addition, when the degree of model uncertainty is high, investors are less

confident regarding their asset price processes, which may widen the pricing bounds.

For the application, we first assumed that asset prices are driven by geometric Brownian

motion processes and then we derived closed-form solutions for the robust pricing bounds of

the European option. By applying the proposed pricing bounds (and the good-deal bounds) to

evaluate a European option whose underlying asset is a non-traded TAIEX, we found several

interesting results. First, we found that the good-deal bounds of Cochrane and Saá-Requejo

(2000) are not sufficiently wide to cover the actual prices of the options. This result suggests

that the good-deal bounds may be not applicable for evaluating these derivatives. More

importantly, it implies that tightening the pricing bounds may not be of significance, unless the

actual prices are guaranteed to stay within the pricing bounds. Second, we find that, under

certain circumstances of model uncertainty, the proposed pricing bounds can include the actual

prices of the options. Third, compared to other time periods, we found that investors were less

confident regarding the price processes when faced with the recent financial crisis. This result

provides a possible explanation for the contention that the PB ratios of good-deal bounds tend

to be low during the times of financial crisis in late 2008. Finally, the proof in the Appendix B

is simple and interesting. It may be developed as a potential research topic for the general case.

APPENDIX A

Recall that our objective is to price a European option under the conditions that markets are

incomplete and price processes may be misspecified. Along the lines of Cochrane and Saá-Requejo (2000)

and Hansen and Sargent (2001), our objective is to solve the following constrained optimization problem

for the lower pricing bounds on date t=0:

min
1,2

min
Λ≥0,t≤≤T

t
T

t

Λ

Λ t

 c(V)dτ+ tΛT

Λ t

 c(VT),
s.t. λ2

1+λ2
2≤κ 2, 0dΛ

2
t

Λ2
t ≤A2dt,

where κ 2 and A2 are pre-specified values and dSt and dVt are given in (8). We adopt a two-step approach
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to solve this constrained optimization. In the first step, we solve the second minimization (i.e., minΛT≥0),

provided that λ1 and λ2 are fixed. According to the proposition 5 of Cochrane and Saá-Requejo (2000), we

know that the solution is given by:

dΛ＊
t

Λ＊
t

=−rfdt−gSdBt− A2−g2
SdWt,

where gS=(μS+λ1σS−rf)σS. Thus, together with the specifications of dSt and dVt in (8), we know that

ST, VT and ΛT are jointly lognormally distributed:

ST=S0exp(μS+λ1σS−0.5σ 2
S)T+σS T εB,

VT=V0exp(μV+λ1σB+λ2σW−0.5σ 2
V)T+σB T εB+σW T εW,

Λ＊
T=Λ

＊
0 exp(−rf−0.5A2)T−gS T εB− A2−g2S  T εW,

(14)

where εB and εW are independent N(0,1) random variables and σ 2
V=σ 2

B+σ 2
W. Now we want to evaluate a

European call option with payoff  c(VT)=max0,VT−K and  c(Vt)=0,∀t<T. Substituting VT in (14)

into (VT>K), we find that the option is in the money only when

δ1>
ln (KV0)−(μV+λ1σB+λ2σW−0.5σ 2

V)T

σV T
≡b0,

where δ1=(σBεB+σWεW)σV. For ease of exposition, we let

δ2=
(σBεW−σWεB)

σV
, b1=

−gSσB− A2−g2SσW
σV

, b2=
gSσW− A2−g2SσB

σV
.

Expressing the expected payoff of the call option in terms of these new variables, we obtain

0Λ
＊
T

Λ＊
0

max(VT−K,0)=2
1b0

(V0e
(V1B2W0.5 2

V)TV T1−K)×

e (rf0.5 2
V)T×eb1 T1b2 T2×

1

 2π
e0.521×

1

 2π
e0.522dδ1dδ2.

Rearranging these terms, we obtain

V0e
TΦ(d+0.5σV T )−Ke

rfTΦ(d−0.5σV T ), (15)

where

d=
ln (V0K)+(η+rf)T

σV T
, η=gV−gS(ρ+1

A2

g2S
−1  1−ρ2 )σV,

gV=
μV+λ1σB+λ2σW−rf

σV
,

(16)

and ρ=σBσV.

Given the previous result in (15), in the second step the optimization problem becomes

min
1,2

V0e
TΦ(d+0.5σV T )−Ke

rfTΦ(d−0.5σV T ),

s.t.λ2
1+λ2

2≤κ 2.
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Let

=V0e
TΦ(d+0.5σV T )−Ke

rfTΦ(d−0.5σV T )−0.5ℓ(λ2
1+λ2

2−κ 2)

be the objective function of this optimization problem, where ℓ is the Lagrange multiplier. The first order

conditions of this minimization are

∂

∂λ1

=V0

∂η

∂λ1

eTTΦ(d+0.5σV T )+V0e
T ∂

∂λ1

Φ(d+0.5σV T )

−KerfT
∂

∂λ1

Φ(d−0.5σV T )−ℓλ1=0,

∂

∂λ2

=V0

∂η

∂λ2

eTTΦ(d+0.5σV T )+V0e
T ∂

∂λ2

Φ(d+0.5σV T )

−KerfT
∂

∂λ2

Φ(d−0.5σV T )−ℓλ2=0,

∂

∂ℓ
=λ2

1+λ2
2−κ 2=0,

(17)

where

∂η

∂λ1

=
−σV 1−ρ2

 A2g2S−1
,

∂η

∂λ2

= 1−ρ2σV,

∂

∂λ1

Φ(d±0.5σV T )=
1

 2π
exp− (d±0.5σV T )

2

2 − T  1−ρ2

 A2g2S−1
,

∂

∂λ2

Φ(d±0.5σV T )=
1

 2π
exp− (d±0.5σV T )

2

2 ( T  1−ρ2 ).

Rearranging the first two equations in (17), we obtain

 1λ2

−
−1

λ1 A
2g2S−1 V0σVTΦ(d+0.5σV T )+

V0 T

2π
exp− (d+0.5σV T )

2

2 
−
K T

 2π
exp −(rf+η)T−

(d−0.5σV T )
2

2 =0.

Note that the equality holds only when the value within the square brackets is zero:

1

λ2

−
−1

λ1 A
2g2S−1

=0. (18)

Thus, equation (18), together with the third equation in (17), implies that

λ＊
1 =−

κhS
κ+A

, λ＊
2 =−

κ (κ+A)
2
−h2

S

κ+A
,

where hS=(μS−rf)σS. Thus, substituting λ＊
1 and λ＊

2 into (15) and (16), we obtain the analytic-form

solution of the lower robust good-deal pricing bound. By replacing min with max in the above

optimization, we can obtain the upper robust good-deal pricing bound. For ease in application, we also

present some standard Greeks of robust good-deal bounds in Table 3.
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APPENDIX B

The main result in (13) is equal to that of Cochrane and Saá-Requejo (2000), with A replaced by

A+κ. To see this, note that ρ=σBσV,  1−ρ2=σWσV,

gV=hV+λ＊
1

σB
σV
+λ＊

2

σW
σV

,

gS=hS+λ＊
1 .

In equation (7), the result in Cochrane and Saá-Requejo (2000) is

η=hV−hSρ−a A
2

h2
S

−1  1−ρ2 σV.
With A replaced with A+κ, it follows that

η=hV−hSσBσV−a
(A+κ)

2

h2
S

−1
σW
σV σV

=hV−hSσBσV+a (A+κ)
2
−h2

S

σW
σV σV

=hV−hSσBσV+
A+κ

A+κ
a (A+κ)

2
−h2

S

σW
σV σV

=hV−hSσBσV+a
κ (A+κ)

2
−h2

S

A+κ

σW
σV
+a

A (A+κ)
2
−h2

S

κ+A

σW
σV σV

=hV−hSσBσV+a
κ (A+κ)

2
−h2

S

A+κ

σW
σV
+a A

2−(
AhS

A+κ
)
2 σW
σV σV

=hV−hSσBσV+λ＊
2

σW
σV
+a A2−(hS+λ＊

1 )
2 σW
σV σV

=hV−hSσBσV+λ＊
2

σW
σV
+a A2−(hS+λ＊

1 )
2 σW
σV
+λ＊

1

σB
σV
−λ＊

1

σB
σV σV

=(hV+λ＊
1

σB
σV
+λ＊

2

σW
σV

)−(hS+λ＊
1 )σBσV−a

A2

(hS+λ＊
1 )

2−1
σW
σV σV
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gamma

−V0σVTe
T1−ρ+a

 1−ρ2

 A2−g2
S

(
σVA

2

1+rf
−1)Φ(d+0.5σV T )+TKe

rfTΦ(d−0.5σV T )

−V0ηe
TΦ(d+0.5σV T )−rfKe

rfTΦ(d−0.5σV T )−
KσV

2 T
erfTϕ(d−0.5σV T )

V0 Te
Ta  A

2−g2
S

 1−ρ2
 TΦ(d+0.5σV T )+ϕ(d+0.5σV T )

eT

V0σV T
ϕ(d+0.5σV T )

theta

rho

eTΦ(d+0.5σV T )

Note: The term ϕ(⋅) denotes the standard normal density function.

vega

Greeks

TABLE 3. GREEKS OF ROBUST GOOD-DEAL BOUNDS

delta



=gV−gSρ−a A
2

g2
S

−1  1−ρ2 σV,
which is the result in (13). For the general case in (11), the same result might be true, which is a potential

topic for further research. The intuition of this result is that if investorsʼ decision-making problems

involving uncertainty regarding the market Sharpe ratio (hence A+κ), they may face the robust pricing

bounds.
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