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Abstract

I propose a flexible nonlinear method for studying the time series properties of

macroeconomic variables. In particular, I focus on a class of Artificial Neural

Networks (ANN) called the Radial Basis Functions (RBF). To assess the valid-

ity of the RBF approach in the macroeconomic time series analysis, I conduct a

Monte Carlo experiment using the data generated from a nonlinear New Key-

nesian (NK) model. I find that the RBF estimator can uncover the structure

of the nonlinear NK model from the simulated data whose length is as small

as 300 periods. Finally, I apply the RBF estimator to the quarterly US data

and show that the response of the macroeconomic variables to a positive supply

shock exhibits a substantial time variation. In particular, the positive supply

shocks are found to have significantly weaker expansionary e↵ects during the

zero lower bound periods as well as periods between 2003 and 2004. The find-

ing is consistent with a basic NK model, which predicts that the higher real

interest rate due to the monetary policy inaction weakens the e↵ects of supply

shocks.
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1 Introduction

In this paper, I propose an Artificial Neural Network (ANN)-based nonlinear VAR

estimator with a particular focus on the class of network called the Radial Basis Func-

tions (RBF). The use of RBF is motivated by its ability to flexibly estimate a complex

function. Despite its flexibility, however, the RBF can be e�ciently estimated as if

it is a linear estimator by following a simple two-step estimation procedure that is

commonly adopted in the neural network community.

The RBF has been studied extensively in the field of computer science and neu-

ral networks, and it has been shown that the RBF can approximate any continuous

functions on a compact domain (known as the Universal Approximation Property).1

Unlike typical regime-switching VARs, the network-based model can flexibly estimate

a potentially state-dependent and nonlinear data-generating process as a whole, mak-

ing it possible to produce nonlinear impulse responses without specifying potentially

large and unknown number of state. This feature is especially useful when econome-

tricians do not have a clear understanding of the underlying data-generating process.

The strengths of the RBF time series are similar to the models that admit time vari-

ation in multivariate linear structures or the Time-Varying Coe�cient VARs (TVC-

VAR).2 Both RBF and TVC-VAR estimators are capable of capturing very general

nonlinear dynamics without specifying the state of an economy. An additional ben-

efit of the RBF estimator, however, is its low computational costs. As pointed out

by Kilian and Lütkepohl (2017), the Bayesian estimation of the TVC-VAR is only

possible, in practice, for small dimensional models with a small number of lags due

to its high computational costs. The curse of dimensionality is greatly reduced for

the RBF estimator because its estimation is conducted by the two-step procedure

that essentially breaks down a costly nonlinear estimation into (1) a fast clustering

method and (2) a linear estimation.3 The benefit of low computational costs allows

researchers to estimate nonlinear models that can produce time-varying impulse re-

sponse functions with a number of dimension as large as what is typically used in a

linear VAR estimation.

In order to validate the use of the RBF estimator in the macroeconomic analysis,

1See Hartman et al. (1990) and Park and Sandberg (1991).
2Examples include Primiceri (2005), Canova (1993), Sims (1993), Stock and Watson (1996) and

Cogley and Sargent (2001)
3This procedure is called the ‘unsupervised learning’ in the neural nets field.
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one needs to test if the estimator can correctly capture the structure of aggregate econ-

omy with the number of observations that is usually available to a macroeconomist.

This is because, despite the universal approximation property of the RBF, the rate of

convergence generally depends on the smoothness of the function to be approximated

and the number of available observations. To this end, I conduct a Monte-Carlo exper-

iment using the simulated time series data generated from a medium-scale, nonlinear

New Keynesian (NK) model, which is frequently viewed as a representation of aggre-

gate economy among economists and policy makers. Nonlinearity in this NK model

comes from a kink in the central bank’s monetary policy rule where the interest

rates is bounded below at 0%. I then calculate the within-sample Mean-Squared-

Errors (MSEs) as defined by the distance between the true impulse responses from

the model and the impulse responses estimated by the RBF estimator. For com-

parison, I also conduct the same exercise using the linear VARs. I found that the

RBF estimator outperforms the linear VARs even when the sample size is limited to

as small as 300 periods. The result suggests that the RBF time series can correctly

capture the nonlinear structure of the medium-scale NK model and that the use of

the RBF estimator for macroeconomic time series analysis may be appropriate.

Finally, I apply the RBF estimator to the US quarterly data from 1978 to 2016.

Using Fernald (2014)’s utilization-adjusted TFP shocks, I estimate impulse responses

of the output, consumption, investment, hours worked, expected inflation rate, and

nominal interest rate. The aim of this exercise is to test the prediction of the textbook

NK model, which states that the expansionary e↵ects of a positive supply shock is

weaker under the passive monetary policy regimes such as the zero lower bound (zlb)

periods. Consistent with the NK model’s prediction, I found that the e↵ects of the

positive TFP shock is significantly weaker during the periods of zlb.

Furthermore, the output responses to the supply shocks are found to be similarly

small between 2003 and 2004. During these periods, the federal funds rate was very

low at around 1%. In fact, the estimated nominal interest rate response suggests that

the Fed was not responding actively to the supply shocks during these periods. As

a consequence of the unresponsive nominal interest rate and the deflationary e↵ects,

the supply shocks are estimated to raise the real interest rate during these periods,

which discourages consumption, investment, and output. The finding highlights the

critical role that the response of real interest rate plays in shaping the responses of

other macroeconomic variables. The study also suggests that the estimated responses

of macroeconomic variables around 2003-2004 is remarkably similar to the responses
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during the zlb periods around 2008-2015.

These results are in contrast with the existing studies (Gaŕın et al. (2016) and

Wieland (2016)) that found the strong expansionary e↵ects of a positive supply shock

during the periods of zlb. I briefly discuss potential explanations for the di↵erence

in the findings between the current paper and the existing studies and show that

it is likely to be a consequence of di↵erent data specifications rather than the dif-

ferent methodologies. Specifically, I estimated the output response using the state-

dependent local projection method and show that the e↵ects of the supply shocks

are significantly weaker during the zlb periods once the growth rate specifications is

used and an outlier (2008Q4) is excluded. The exercise reiterates the point that the

macroeconomic dynamics during the passive monetary policy regimes are markedly

di↵erent from the usual macroeconomic dynamics under the active monetary policy

regimes as prescribed by the basic NK model.

The rest of the paper is organized as follows: Section 2 reviews literature on

the Radial Basis Functions. Section 3 goes over literature on time series analysis.

Section 4 describes the Monte Carlo simulation exercise, Section 5 illustrates empirical

application to the U.S. data, Section 6 briefly discusses the results, and Section 7

concludes.

2 Radial Basis Functions

In this paper, I focus on a particular class of the ANN called the Radial Basis Func-

tions. The ANN typically consists of several layers between input and output vari-

ables. Each layer is made of multiple units, and a unit in one layer receives inputs

from the preceding layers and produces outputs for the succeeding layer. The RBF

consists of three layers with a single hidden layer between the input and output lay-

ers.4 Figure 1 shows the graphical description of the RBF. The three layers depicted

in the figure are: (1) an input layer, where the independent variables enter the sys-

tem; (2) a hidden layer, where the independent variables are transformed; and (3) a

linear output layer, where the dependent variables are predicted.

The RBF was first introduced as a solution technique for interpolation problems,

and in the late 1980s, the RBF formulation was extended to perform more general

4The word “hidden” is used to distinguish the layer in the middle from the input and output
layers
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Figure 1: Graphical description of RBF

task of approximation.5 Since then, a number of researchers including Park and

Sandberg (1991), Xu et al. (1994), and Girosi and Poggio (1990) showed that any

continuous function on a compact domain can be approximated arbitrarily well by

the RBF, making the RBF one of the popular choices among various ANNs.

Consider some unknown function y = f(x), which is to be approximated given a

dataset (xt, yt). f(·) is a nonlinear function or the conditional expectation of yt given

xt, hence:

yt = f(xt) + ✏t, E[✏t|xt] = 0 (1)

In the case of the RBF, f(xt) takes the following functional form:

5See Broomhead and Lowe (1988), Moody and Darken (1989), and Poggio and Girosi (1990).
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f(xt) =
MX

j=1

K�(⇠j, xt)�j (2)

=
MX

j=1

D
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||xt � ⇠j||

�
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�j

where each basis element is indexed by a location parameter or a centroid, ⇠j, and

a scale parameter �. M is the number of centroids in the model, and � has the

same number of dimension as the input, x. I choose the gaussian density function

for the kernel, D, since it is the most popular choice of the base function for the

RBF. Roughly speaking, when a new input enters the system, the RBF computes

the Euclidean distance between the input and each of the centroids, ⇠j, and assigns

densities using the gaussian density function. The RBF then computes the predicted

value, byt, based on linear combinations of the densities and the weights, which is given

by �j. I estimate the three sets of parameters, ⇠j, �, and �j by solving the following

minimization problem:

min
{�,⇠j ,�j}M1

TX

t=1

 
yt � �0 �

MX

j=1

�j exp

⇢
�(xt � ⇠j)0(xt � ⇠j)

�

2

�!2

(3)

The weights between the input layer and the hidden layer in Figure 1 is represented

as �

0
s, the units in the hidden layer are represented by ⇠j, and the linear weights

between the hidden layer and the output layer is represented as �0
s in the equation

3. The problem looks complex and highly nonlinear at first. However, I show in

Section 2.1 that this minimization problem can be solved quickly as if it is a linear

optimization problem.

Extending the RBF formulation to a lag-dependent model is straightforward by

augmenting the RBF model with lags, denoted by p. Thus, the lag-dependent RBF

model is as follows:

yt =
MX

j=1

K�

⇣
⇠j, {yt�p}Pp=1

⌘
�j + ✏t (4)

where ✏t is a vector of error terms, and the independent variables are now the lagged

dependent variables.
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2.1 Parameter Estimation Methods and Renormalization

As specified in Section 2, there are three types of parameters to estimate: centroids

⇠j, scale parameters �, and weights �j. Rate of convergence and accuracy of solution

generally depend on the method of estimation. Since this paper is not intended

for finding the optimal method of estimation, I simply choose one of the popular

estimation methods that breaks down the complex nonlinear minimization problem

into two simple steps.6 In other words, the parameters in the hidden layer and the

weights (�) are estimated separately. Some argue that the global solution method7

is ideal in order to ensure that the equation 2 is globally minimized. However, such

a method exponentially increases the computational costs, and, consequently, the

global solution method is rarely used in practice. The two-step estimation procedure

is as follows. First, I employ a clustering method to fix the value of centroids, ⇠j.

A common choice is the K-means clustering method, in which n observations are

assigned into k clusters with each observation belonging to the cluster with nearest

mean. The “mean” of each cluster constitutes a prototype of that cluster, and for this

reason, I set the centroids to be the “means” of the clusters. Figure 2 illustrates the K-

means clustering method. In this illustration, 1000 observations are partitioned into

four clusters, with yellow stars representing the “means” of each cluster. Essentially,

the RBF estimator constructs kernels (the gaussian density functions) centering these

centriods, and, therefore, the centroids need to be a good representation of the entire

sample so that the RBF kernels have a comprehensive coverage over the sample.

In general, centroids determined by the K-means clustering are not unique, and

the location of centriods depends on the initial values. For this reason, I conduct a

primitive, random search optimization by simply repeating the K-means clustering

algorithm with 1,000 di↵erent initial values and select centroids that minimize the er-

ror. Other centroid-selection methods were also considered including the Orthogonal

Least Square Algorithm by Chen et al. (1991). However, the crude optimization of

the random search over di↵erent initial values repeatedly produced lower error and

was more stable.

In addition to determining the centroids, the scale parameters, �, need to be

estimated as well. I fix � to be the standard deviation of x so that the kernel of
6This method of training is also called the “unsupervised training,”
7Or, in the language of neural networks literature, “supervised training,” in which the back-

propagation is activated
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Figure 2: Illustration of K-means clustering

(a) Observations and “Means” (b) Clusters

the RBF in equation (2) is akin to the standard normal density function. Fixing �

is convienient for computational e�ciency, but it has a side-e↵ect of leaving hole-

regions in the input space where no kernel has appreciable support. For illustration,

the hole-regions as well as the support from the RBF kernels are depicted in the top

panel of Figure 3. With kernel’s width being fixed, there is a region where no kernel

support can be reached. To avoid this problem, Friedman et al. (2008) suggested to

use the normalized RBF, which is specified as follows:

y =
MX

j=1

hj(x)�j + ✏ (5)

where

hj(x) =
D(||x� ⇠j||)PM
k=1 D(||x� ⇠k||)

(6)

The bottom panel of Figure 3 illustrates the kernel support using the normalized

RBF, which is now extended to cover the entire region. I use the normalized RBF in

the remainder of the paper.

A convenient property of the RBF is that once ⇠j and � are fixed, the function

is linear in �’s. Thus, �j can be estimated in the usual OLS manner. I choose the
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Figure 3: Top panel: Radial Basis Functions. Bottom panel: Nomalized RBF

(Reprinted from Friedman et al. (2008)).

targeted number of centroids, M , by the Bayesian Information Criteria (BIC).8

3 Literature Review

This paper is related to the literature on nonlinear time series analysis. The literature

can be generally classified into three.

The first approach to capture nonlinearities relies on the use of regime-switching

VAR models including the threshold VARs (e.g., Hubrich and Teräsvirta (2013)) and

the Markov-switching VARs (Hamilton (1989)). One caveat of this approach is that,

while regime-switching VARs can capture state dependence of macroeconomic vari-

ables, it assumes that the economy can be described by a finite number of regimes,

within which the structures of the economy are assumed to be the same. This ap-

proach becomes computationally challenging as the number of regimes increases or if

the true data generating process features asymmetric impulse responses within each

state. In such a case, a new set of VAR coe�cients need to be estimated for each

new regime. In contrast, the RBF estimator can e�ciently estimate a possibly state-

8I also compute the Akaike Information Criteria, but BIC gives a clearer indication of the optimal
number of centroids.
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dependent and asymmetric structure of the economy as a whole without actually

specifying the state or the structure of the economy.

The second approach consists of directly estimating the impulse response func-

tions. This strand of approach was pioneered by Jordà (2005) who proposed the

Local Projection method. While Jorda’s method can easily capture nonlinearities in

the response functions, his method poses serious di�culty when its e�ciency is con-

sidered as pointed out by Barnichon and Matthes (2016). Indeed, drawing inferences

on a rich set of nonlinearities including sign- and state-dependence using the local

projection method is often di�cult.

Relatedly, new approach is recently proposed by Barnichon and Matthes (2016)

who uses few numbers of gaussian functions to approximate the impulse functions.

Like Jordà (2005), this approach is robust to a functional-form assumtion error but has

a great advantage of reduced e�ciency costs because, instead of model-free estimation

of Jordà (2005), Barnichon and Matthes (2016) imposes a flexible parametric assump-

tion based on the mixture of gaussian base functions. The current paper is similar

to Barnichon and Matthes (2016)’s in that both papers utilize the gaussian functions

to approximate macroeconomic dynamics. However, our papers are di↵erent in the

sense that the current paper employs the neural network structure that makes use of

the hidden layer. This multiple-layer structure of the RBF provides extra flexibility,

which makes it possible to estimate a nonlinear VAR system without specifying the

state of an economy. In contrast, estimating asymmetric or state-dependent impulse

responses using Barnichon and Matthes (2016)’s method still requires researchers to

specify the states of the economy often in the form of indicator variables. Thus, the

RBF method can be an useful alternative when there is little information about the

states or the structure of the true data-generating process. At the same time, one

caveat for using the RBF estimator is that researchers need to assume the existence of

a VAR representation in the form of the equation 4. This assumption is not neccesary

for Barnichon and Matthes (2016) and Jordà (2005) because they directly estimate

the impulse response functions.

The third approach is the TVC-VAR models (e.g. Primiceri (2005)). As suggested

by Kilian and Lütkepohl (2017), even though the TVC-VAR can capture very general

nonlinear dynamics without specifying the states of an economy, its expensive com-

putational cost often prohibits researchers from estimating large dimensional models

and, thus, limiting the use of TVC-VAR in practice. Unlike the TVC-VAR, the RBF
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estimator can be estimated with a relatively low computational cost. Therefore, esti-

mation of a larger dimensional model with a larger number of autoregressive lags can

be relatively easily handled by the RBF.9

In addition to the nonlinear time series literature listed above, the current paper

is obviously related to the literature that employs the ANN in economic and financial

time series analysis. The majority of the research that applied the ANN in economics

so far has been focused on forecasting the financial variables. In those studies, the

ANN models are often found to outperform the traditional time series models.10. Few

studies tested the ANN’s ability to forecast macroeconomic variables. Swanson and

White (1997) applied ANN models to forecast nine US macroeconomic series and

concluded that even though their results were mixed, the ANN models were promis-

ing even when no explicit nonlinearity was found in the macroeconomic dynamics.

Moshiri and Cameron (1999) investigated if the ANN can correctly forecast inflation

and Tkacz (2001) used the ANN for forecasting the Canadian GDP. An extensive

review of the use of the ANN in the context of economic analysis was written by

Kuan and White (1994).

4 Monte Carlo simulation

To study the validity of the RBF estimator in the macroeconomic time series anal-

ysis, I conduct the Monte Carlo simulation in this section. I ask: “if the true data-

generating process of an economy was a medium-sized nonlinear New Keynesian (NK)

model, can the RBF networks uncover the structure of the NK model from the simu-

lated dataset?” To answer this question, I first solve a nonlinear NK model globally,

and simulate data using this NK model. The nonlinearity in this NK model stems

from the kink in the central bank’s Taylor rule, in which the central bank cannot

lower the interest rate below zero. Except for the habit persistence in the household

sector, the NK model is standard. In Appendix 8.1, I describe the NK model used

for simulation in detail. After I solved the model, I simulated time series data for 1

million periods. The nominal interest rate hits zero for about 1.85% of the simulated

periods.

9In comparing with the TVC-VAR, one limitation of the RBF estimator is that it does not admit
time-varying variance covariance matrix.

10See Hutchinson et al. (1994), Lachtermacher and Fuller (1995), Zhang and Wan (2007), Zhang
and Hu (1998), and Guresen et al. (2011)
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4.1 Mean Squared Error Comparison

Using the time series data generated by the NK model, I calculate the within-sample

MSEs of the impulse responses estimated by the RBF estimator and linear VARs.

The MSEs are measured by the deviation of the estimated impulse responses from the

true impulse responses. I present the MSEs under two di↵erent scenarios. In the first

scenario, the economy is in the “normal” state, in which the nominal interest rates

is strictly positive. I make sure that the economy is far away from the zlb state by

ensuring that the nominal interest rates is greater than 1% for at least five consecutive

periods prior to and after the shock hits the economy. The second scenario considers

the economy under the “zlb” state, in which the nominal interest rate is binding at

zero. To ensure that the economy is distinctively di↵erent from the normal state,

I define the zlb state as the periods where the nominal interest rate is zero for at

least three consecutive periods. When calculating the MSEs, I produce the impulse

responses by giving the shock to the second of the three consecutive zlb periods.

The exogenous state variable for the NK economy is the productivity shock, at,

and the endogenous state variables are (1) price dispersion, (2) consumption, and

(3) interest rates. Since econometricians typically do not have a good measure of

price dispersion, I instead assume that I observe the inflation rate instead of the price

dispersion.

Let Xt = [⇡t+1, Ct, Rt]. Our RBF estimator can be written as follows:

Xt = RBF

⇣
at, {at�p, Xt�p}Pp=1

⌘
+ ✏t (7)

Since at is orthogonal to the other variables, I impose the assumption that the

productivity shock can a↵ect the macroeconomic variables contemporaneously, but

not vice versa. I impose the same assumption when I estimate the VAR model by

ordering at at the very first.11

One complication arises as I estimate nonlinear impulse response functions, which

generally depend on future shocks and current state of the economy (history) as well

as the sign and magnitude of the current shock. To accomodate the impulse responses

to various future shocks, I use the generalized impulse response functions following

11I also added the measurement error to the simulated inflation. The error follows the normal
distribution with standard deviation equal to the 3% of the standard deviation of ⇡.
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Koop et al. (1996).12 Let GI denote a generalized impulse response function. Then,

the impulse response of a variable, Yt+n, in n-period ahead is:

GI(n, vt,!t�1) = E[Yt+n|vt,!t�1]� E[Yt+n|!t�1] for n = 0, 1, . . . (8)

where vt is current shock and !t�1 is the history.

Examples of the generalized impulse responses are illustrated in Figure 5. For

this illustration, I selected a sample of 300 consecutive periods from the simulated

data and estimated the VAR(4) and RBF(1). To draw impulse responses, I pick two

random histories, !t�1, from the sample and ensure that one of the selected histories

satisfies the criterion for the normal state and the other satisfies the criterion for the

zlb state. I then calculate the impulse responses with the shock occurring at these

two histories.

In Figure 5, the blue solid line shows the true impulse response under the normal

state, and the red solid line shows the true impulse response under the zlb state.

Together with the true impulse responses, the left panels show the estimated responses

from the RBF(1) estimator under the normal state in the blue dotted line and under

the zlb state in the red dotted line. Shaded bands represent the 2.5th and 97.5th

percentiles.13 The right panels show the estimated impulse responses from the linear

VAR(4) with 95 percent confidence bands in black lines.

The top panels of Figure 5 show the responses of inflation rate following a positive

productivity shock. The positive productivity shock is deflationary. The figure shows

that the initial impact of the shock is slightly larger in magnitude during the normal

state, reducing the inflation rate by 0.7% on impact. The inflation rate under the

normal state then quickly returns to zero after three periods. The decline of the

inflation rate is smaller under the zlb. The inflation rate goes down by 0.42% on

12Some earlier work includes Beaudry and Koop (1993), Potter (1995), Pesaran and Shin (1996),
and Potter (2000). In the generalized impulse response framework, the problem of future shock-
dependence is handled by averaging out the impulse responses with many di↵erent future shocks. I
compute the conditional expectation by the Monte Carlo integration, and the expectation is calcu-
lated by averaging out 1,000 di↵erent paths of simulated future shocks. See Koop et al. (1996) for
more detail.

13The confidence bands are estimated by the residual-based block bootstrap method. When
I conduct the bootstrap, the centroids and scaling parameters are re-estimated by repeating the
K-means cluster method for 50 times with di↵erent initial values and by selecting the centroids
that minimize the errors. My baseline preference is block bootstrap method rather than the wild
bootstrap because the residuals exhibit auto-correlation. The results are almost identical when the
wild bootstrap is employed.
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impact, and the response is slightly more persistent under the zlb. The RBF(1)

estimator appears to be generally successful at capturing the di↵erent responses of

the inflation rate under the two di↵erent states. In addition, the confidence bands

are reasonably narrow even compared with the linear VAR(4) model. As expected,

the linear VAR(4) only captures the response during the normal state.

The next panels in Figure 5 show the responses of interest rate. When the positive

productivity shock creates a deflationary pressure in the economy, the central bank

lowers the nominal interest rate during the normal state following the Taylor rule. The

response of the interest rate is smaller during the zlb periods because of the central

bank’s inability to push down the interest rate any further.14 The left panel shows

that the RBF(1) estimator is, again, successful at capturing the di↵erent interest

rates responses under the two di↵erent regimes. Furthermore, the RBF(1) estimator

is able to distinguish the two di↵erent interest rate responses under the zlb state and

normal state in a statistically significant manner.

Finally, the last panels show the responses of consumption. Due to the positive

productivity shock, the consumption goes up in both normal and zlb states. The

consumption responses peak at the third quarter, reaching at 1.2% in the normal

state and 1% in the zlb state. The weak response during the zlb periods stems from

the higher real interest rate, which is caused by the absence of central bank’s reaction

to the deflationary pressure. As the real interest rate goes up during the zlb periods,

the consumption is discouraged. The RBF(1) estimator seems to perform reasonably

well at capturing the di↵erent consumption dynamics following the positive supply

shock. In addition, the responses under the two regimes can be distinguished in a

statistically significant manner.

The examples above demonstrate the potential usefulness of the RBF estimator in

uncovering the nonlinear structure of the NK economy. However, since the generalized

impulse responses are history-dependent, the performance of the RBF estimator could

be history-dependent as well. In order to assess the overall performance and accuracy

of the RBF estimator, I present below the within-sample MSEs with various histories.

The MSEs are computed based on 1,000 Monte Carlo simulations. For each Monte

Carlo simulation, I take the following procedures: (1) randomly pick a new sample of

14The nominal interest rates still appears to go down in the figure, but the responses shown here
are relative to the counterfactual where the shock did not occur. Thus, the negative interest rates
response during the zlb state is indicative that the interest rates would have increased from zero
faster if the shock did not arrive.
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300 observations, (2) estimate the RBF and linear VARs, (3) select a history within

that sample, (4) give a shock, and (5) compute the MSEs of the impulse responses.

In Table 1, I present the sum of the MSEs over horizons from 1 to 30 for the normal

state and zlb state, which are classified based on the level of interest rate when the

shock hits the economy. In addition, I also present the MSEs for the general case

where I simply calculate the MSEs from the randomly picked histories, paying no

attention to whether or not the history belongs to the normal or zlb state. Top row

in Table 1 shows the MSEs for the normal state, the middle row shows the MSEs for

the zlb state, and the bottom row presents the MSEs for the general case.

Table 1: Average MSE Performance (estimation periods = 300)

Inflation Consumption Interest rates
VAR(4) RBF(1) VAR(4) RBF(1) VAR(4) RBF(1)

Normal state 18.5690 15.2598 30.0534 17.5437 6.1412 3.5549
ZLB state 15.5559 10.4868 37.0743 20.9026 10.2899 4.4261

General case 18.4277 15.4047 30.8573 18.6588 6.7014 3.9047

Notes: Summary statistics over 1000 Monte-Carlo replications. MSE is the mean-
squared error of the estimated impulse response function over horizons 1 to 30.

Surprisingly, the top row of Table 1 indicates that the MSEs are smaller for the

RBF(1) estimator for all the variables even under the normal state. This result is

striking given that the NK model can be well approximated by linear functions in

the normal state, and it confirms the prediction from the earlier impulse response

illustrations that the RBF estimator can identify nonlinear- and history-dependent

dynamic responses of the macroeconomic variables from a small sample of simulated

data. Furthermore, the di↵erence in the MSEs between the RBF(1) and VAR(4)

becomes even larger for the zlb case, with errors from the RBF(1) as small as two-

third of the MSEs of the VAR(4) at maximum. The result in this section indicates that

the RBF estimator can be a useful alternative to the traditional linear VAR model

when the form of underlying data generating process is unknown to econometricians

or when it is possibly nonlinear. The result also suggests that the use of the RBF

estimator for macroeconomic time series analysis may be appropriate.
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5 Application to the US Data

Finally, I apply the RBF estimator to the quarterly US data. Following Wieland

(2016) and Gaŕın et al. (2016), I ask if a positive supply shock is less expansionary

when the nominal interest rates is at the zlb. The question is motivated by the

textbook NK model that predicts a possibility of contractionary supply shock at

the zlb. This somewhat counter-intuitive prediction is the extreme version of the

responses studied in the previous section. I assume that a positive supply shock to

be an increase in neutral productivity. An increase in productivity decreases inflation

rate and the equilibrium real interest rate. When such a shock hits the economy, the

central bank would react by lowering nominal interest rates according to the Taylor

rule in the normal state. However, if the economy is at the zlb, the central bank is

unable to push down the nominal interest rate any further. Consequently, the real

interest rate will go up and the demand will su↵er. In the extreme case where the

zlb is expected to last for a long period, the increase in the real interest rate can be

potentially so large that the negative demand response dominates the positive e↵ect

of the productivity shock. When that happens, the GDP decreases.

In contrast to the predictions of the NK model, Wieland (2016) found that the ef-

fects of a supply shock remain the same at the zlb by examining the experiences of the

Great East Japan Earthquakes and the oil-supply shocks.15 Gaŕın et al. (2016) used

the utilization-adjusted TFP shock estimated by Fernald (2014) and found that a pos-

itive supply shock is even more expansionary at the zlb. As their findings potentially

cast doubts on the assumptions that underlie the DSGE models, I also investigate

this important question by employing the RBF estimator with the utilization-adjusted

TFP shock estimated by Fernald (2014). Unlike the previous studies, I found some

evidence of weaker expansionary e↵ects during the passive monetary policy regimes.

5.1 Data

The dataset includes the following six variables: the log di↵erence of (1) real GDP,

� lnYt, (2) personal consumption, � lnCt, (3) private investment, � ln It, as well

as (4) log of hours worked, lnNt (5) expected inflation rate from the University of

15Wieland (2016) also suggested that the expansionary e↵ects of a supply shock may be even
larger at the zlb.
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Michigan’s Survey of Consumers, ⇡e
t , and (6) the e↵ective federal funds rate, rt.16 In

addition to these variables, I use the utilization-adjusted TFP process estimated by

Fernald (2014).

Gaŕın et al. (2016) illustrated that the utilization-adjusted TFP series by Fernald

(2014) can be considered an exogenous shock process. Gaŕın et al. (2016) used four

popular measures of exogenous macroeconomic shocks17 and showed that these four

measures do not Granger cause the utilization-adjusted TFP shock. They, therefore,

argued that the evidence is suggestive that the utilization-adjusted TFP process be

treated as an exogenous shock process. Based on their evidence, I also treat the

utilization-adjusted TFP process as an exogenous shock process.

The dataset begins in 1978Q1, when the quarterly data of inflation expectation

became available, and ends in 2016Q4. The US economy was in the “zlb state” from

the last quarter of 2008 to the last quarter of 2015.

5.2 Generalized Impulse Responses

I estimate the generalized impulse responses to a positive TFP shock. The estimated

model is as follows:

Xt = RBF

⇣
� lnAt, {� lnAt�p, Xt�p}Pp=1

⌘
+ ut

whereXt = [� lnYt,� lnCt,� ln It, lnNt, ⇡
e
t , rt]. I assume that the utilization-adjusted

TFP shock can a↵ect the other variables within the same period, but not vice versa.

I set the lags to be four.

As in Section 4.1, I define generalized impulse response of a variable, Yt+n, in

n-period ahead to be:

GI(n, vt,!t�1) = E[Yt+n|vt,!t�1]� E[Yt+n|!t�1] for n = 0, 1, . . . (9)

16Real GDP (GDPC09), personal consumption (PCEC), private investment (FPI) are from the
NIPA table. Hours are obtained by multiplying civilian employment (CE16OV) and average weekly
hours duration (PRS85006023). The GDP, consuption, investment, and hours are expressed as per
capita by dividing the variables by civilian noninstitutional population (CNP16OV).

17The four measures are Romer and Romer (2004)’s monetary policy shocks, Romer and Romer
(2010)’s tax shocks, Ramey (2011)’s defense news shock, and Kilian (2008)’s exogenous oil price
shock.
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where vt is current shock, !t�1 is the history, and t spans from 1978Q1 to 2016Q4.

I fix vt to be the standard deviation of � lnAt for all t. Since � lnAt exhibits a

strong fluctuation and because the estimated impulse responses depend on the current

value of � lnAt, the resulting impulse responses also exhibit significant fluctuations.

To avoid this issue, the impulse responses shown below are averaged out over [t �
2, . . . , t+ 2] for all t whenever possible.

5.3 Results

Figures 7-8 plot the point estimates of the responses after 1 quarter, 3 quarters and 10

quarters between 1980 and 2016. In Figures 10-16, the impulse responses are shown

with confidence bands for the horizons of (1) 1st quarter, (2) 2nd quarter, (3) 5th

quarter, and (4) 9th quarter. In those figures, the point estimates are drawn in blue

solid lines, and the 68 percent confidence bands are expressed as red dotted lines.

In general, the impulse responses from the RBF estimator look reasonably sensible.

The positive supply shocks have positive and persistent e↵ects on output, consump-

tion, and investment. Expected inflation declines immediately after the shock, but

the e↵ect is short-lived. The Fed funds rate also decreases after the shock in most

periods, which is consistent with the Taylor rule. Hour worked goes down in the

first few quarters in most periods, but it rises in the longer horizon. Overall, these

responses are consistent with previous studies that investigated the e↵ects of supply

shocks on macroeconomic variables. Yet, the figures also illustrate that there are

substantial time-variations in the responses of the macroeconomic variables.

Figure 7(a) show the response of the cumulative GDP. 18 As summarized above,

the TFP shock is expansionary in all periods but exhibits a substantial time-variation

in terms of the magnitude of its e↵ects. The supply shock’s after-10-quarters-e↵ects

varies from approximately 0% to 0.7% depending on the timing of the shock. The

figure also suggests that the e↵ect of productivity shock is procyclical. The 2008

Financial Crisis had a particularly powerful impact of weakening the e↵ects of the

productivity shock, reducing its after-10-quarters-e↵ects from 0.57% in 2007Q2 to

0.05% in 2009Q4.

Surprisingly, the expansionary e↵ects of the productivity shocks are considerably

18The result shown here is not GDP di↵erence as I calculated the cumulative sum of the estimated
impulse responses.

18



weaker during the zlb periods even after the recession from the 2008 Financial Crisis

was over. These weak expansionary e↵ects are characterized by the weak on-impact

e↵ects as well as the lack of persistence. Interestingly, the similarly weak output

responses are observed between 2003 and 2004, in which the persistence of the e↵ects

is also absent. The decline of the output responses is unlikely to be explained by the

procyclical e↵ects of the supply shocks since these periods do not correspond to the

recessionary periods. Rather, they correspond to the recovery phase from the 2001

recession when the fed funds rate was kept very low at around 1% and also to the

periods right before the rate started to rise successively in 2005 and 2006.19

Figure 7(c) plots the estimated response of the fed funds rate. While the interest

rate is estimated to go down in most periods (consistent with the Taylor rule), it is

estimated to either go up or stay the same between 2003 and 2004 and after the 2008

Financial Crisis.20 Furthermore, Figure 7(d) shows the response of real interest rate

calculated from the simple Fisher equation21, which indicates that the real interest

rate would have been higher in response to the supply shock around 2003-2004 and

after 2008. The results suggest that the response of real interest rate plays a crucial

role in forming the responses of output. The fact that the supply shocks are found

to have weaker expansionary e↵ects not only during the zlb periods but also between

2003 and 2004 makes the prediction of the NK model, in which the monetary policy

impotency reduce the e↵ects of supply shocks, more convincing.

Figure 7(e) shows the response of cumulative consumption. Similar to the output

response, the consumption also tend to increase in response to the positive productiv-

ity shock throughout the sample. However, the response is particularly weak during

2003-2004 periods and after the 2008 Financial Crisis. Moreover, the cumulative

investment response shown in Figure 7(g) also exhibits particularly weak responses

during 2003-2004 and after 2008 periods. To reiterate, these findings are in accor-

dance with the textbook NK model and the findings from the output and interest

rates responses above. The decline of inflation expectation, combined with the unre-

sponsive monetary policy, raises the real interest rate and discourages consumption

and investment.
19see Figure 9.
20The responses during these periods are not statistically di↵erent from zero.
21The real interest rate = nominal interest rate - expected inflation. Negative real interest rate

response means that the fed funds rate decreased for more than one-for-one in response the the
decline in the expected inflation.
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Finally, Figure 7(f) plots the response of the hours worked. The previous literature

found that the hours worked decreases in the short-run in response to a positive

productivity shock, which is often referred to as the evidence for price-stickiness in the

macro models. My finding is consistent with the existing literature: the hours worked

decreases in the short-run, but it rises in the longer horizon. This pattern is stable

for majority of the sample periods, with the exception of the recessionary periods in

the early 1980s, 2001-2005 periods, and after 2008. These periods correspond to the

periods of a large slack in the labor market as well as the periods of relatively small

or positive real interest rate responses. Peculiarly, the positive productivity shocks

are estimated to increase the hours worked both in the short horizon and in the long

horizon after 2008.

In summary, the estimated impulse responses from the RBF estimator suggest

that the response of macroeconomic variables to a positive supply shock is substan-

tially time varying. It also hints at the fact that the e↵ects of productivity shocks

might be quantitatively and qualitatively di↵erent after the recent Financial Crisis

as well as 2003-2004 periods when the monetary policy is possibly less sensitive to

the deflationary pressure caused by the supply shocks. In particular, the e↵ects of

the supply shocks during the periods of monetary policy inaction are found to be

considerably less expansionary, which is consistent with the textbook NK model but

is inconsistent with what Wieland (2016) and Gaŕın et al. (2016) reported. The find-

ings indicate that the economic responses to the supply shocks around 2003-2004 is

markedly similar to the responses during the zlb periods and highlight the critical

role that the response of real interest rate plays in determining the responses of other

macroeconomic variables. Importantly, all of the findings above are based on the RBF

estimator that was estimated without imposing a priori- functional form assumption.

6 Discussion

Why is the estimates in Section 5 starkly di↵erent from the existing literature that

concludes that the supply shocks are even more expansionary under the zlb? Is the

di↵erence an artefact of the untraditional methodology of the current paper? To

answer these questions, I briefly investigate the relationship between the TFP shocks

and the output using the state-dependent local projection method of Jordà (2005).

Using the same data that I used in Section 5, I estimated the following regression:
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hX

j=0

� ln(Yt+j) =(1� Zt) (↵
n
h + �

n
h � lnAt + �

n
h(L)xt�1) (10)

+ Zt (↵
z
h + �

z
h � lnAt + �

z
h(L)xt�1) + ut+h

where Zt is the indicator variable for the zlb periods and xt is the control variables.

Following Gaŕın et al. (2016), I define the zlb as the periods between 2008Q4 and

2015Q4. The control variables are lagged � ln Yt and � lnAt. The number of lags are

four. Since I do not need to use the expected inflation, I now extend the dataset to

periods between 1948Q1 and 2016Q4. Additionally, I excluded the 2008Q4 because it

nontrivially a↵ects the estimated on-impact response of output during the zlb periods,

which is likely due to the large impact of the Lehman failure and not driven by the

movement in the TFP.

Figure 17 shows the estimated output responses during the normal periods in the

blue line and during the zlb periods in the red line. The shaded bands represent the

90 percent confidence interval. The output response during the normal periods is

initially small but grows larger over time, culminating at around 0.2% in the 10th

quarter. In contrast, the estimated response is weaker during the zlb periods and is

not statistically di↵erent from zero for all horizons. The result is consistent with the

finding from Section 5 that found the weaker output response when the monetary

policy is not reacting actively to the shocks. As a robustness check, I also regressed

the equation 10 with the dependent variable specified as (lnYt+h � lnYt�1). The result

is shown in Figure 18, and the main conclusion stays the same.

In contrast to the previous literature that concluded that the expansionary e↵ects

of the supply shocks are even larger at the zlb, I found that the supply shocks become

less expansionary during the periods of zlb. The di↵erence is likely to be a product

of di↵erent data specifications rather than the methodologies. In particular, while

Gaŕın et al. (2016) used aggregate GDP and log-level specification, I used the GDP

per capita and the growth rate specification. In addition, I also excluded the outlier

(2008Q4). Once I treated the data as described, the supply shocks are found to have

weaker expansionary e↵ects during the passive monetary regimes even when I use the

state-dependent local projection method.
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7 Conclusion

In this paper, I investigated the applicability of the Radial Basis Functions to the

macroeconomic time series analysis. The RBF estimator can be a useful alternative

to traditional estimators because of its low computational costs that allow researchers

to flexibly estimate the time-varying response functions using relatively large dimen-

sional models.

Based on a medium-scale nonlinear New Keynesian model, I performed a series of

Monte Carlo experiments to study the small sample properties of the proposed RBF

estimator. I found that the RBF estimator outperforms the linear VARs in terms of

the within-sample MSEs. The generalized impulse responses from the RBF estimator

suggests that it can learn the structure of the nonlinear New Keynesian model from

the sample of simulate data whose length is as small as 300 periods.

Finally, I applied the RBF estimator to the quarterly US data and found that the

responses of macroeconomic variables to a positive supply shock exhibit substantial

time variations. The result also suggests that the expansionary e↵ects of a supply

shock became significantly weaker during the periods of monetary policy inaction,

which is consistent with the prediction of a textbook NK model.

The results shown in this paper highlights the potential benefit and validity of

the RBF estimator in analyzing the macroeconomic time series data. The estimator

is especially useful when econometricians do not have a clear understanding of the

underlying data-generating process.
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8 Appendix

8.1 NK Model for Monte Carlo simulation

The economy is inhabited by four types of agents: Households, Final good producer,

Intermediate goods producers, and Monetary authority. Except for the habit persis-

tence in the household sector, the following NK economy is standard.

8.1.1 Households with Habit Persistence

There is a continuum of households who consume a composite good, Ct, supply labor,

Nt, and purchase bond Bt. The representative household maximizes the expected

lifetime utility given by:

Et

" 1X

t=1

�

t�1

⇢
(Ct � �Ct�1)1��

1� �

+
(1�Nt)1�

1� 

�#
(11)

where � controls the degree of habit persistence, and � is the discount factor.

The household is subject to the following budget constraint each period:

PtCt +
1

Rt
Bt = WtNt +Bt�1 + Pt⇧t (12)

where Pt,Wt, and Rt are commodity good price, nominal wage, and nominal interest

rates, respectively. In addition, ⇧t is the profit from the intermediate-good firms.

We can maximize utility subject to the budget constraint to obtain the optimal

allocation of consumption across time:

�t = �Et[�t+1Rt/⇡t+1]

where ⇡t+1 = Pt+1/Pt and �t = (Ct � �Ct�1)��.

The first order condition concerning labor supply decision is

Wt = ((1�Nt)
�

/�t)
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8.1.2 Final Good Producer

There are perfectly competitive final good producers who use intermediate goods,

Yt(i), for i 2 [0, 1] as inputs and produce final good, Yt, at a price Pt to maximize the

profit given by:

max
Yt(i)

PtYt �
Z 1

0

Pt(i)Yt(i)di (13)

The technology of the final good producer is given by the following CES aggregator:

Yt =

✓Z 1

0

Yt(i)
(⌘�1)

⌘
di

◆ ⌘
(⌘�1)

(14)

where Yt(i) and Pt(i) are quantity and price of an intermediate good i, respectively.

8.1.3 Intermediate Goods Producers

There is a continuum of monopolistically competitive intermediate goods producers

who uses labor, Nt(i), as an input and solve the following cost minimization problem:

min
Nt(i)

TC(Yt(i)) = WtNt(i) (15)

where TC is nominal total cost. The production technology of the intermediate goods

producers are the following:

Yt(i) = AtNt(i) (16)

where At is a productivity shock that follows the AR(1) process given by:

log(At) = ⇢a log(At�1) + ✏

a
t , ✏

a
t v N(0, �2

a) (17)

The cost minimization problem of firm i implies

mct =
Wt

PtAt

where mct is the Lagrange multiplier and also the real marginal cost of production.

The intermediate goods producers are subject to Calvo-type price setting friction.

In this environment, only a 1�⇠ fraction of the firms set prices optimally each period:

Pt(i) = P

⇤
t , and the remaining fraction ⇠ of the firms are not allowed to change the
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price, Pt(i) = Pt�1(i). The profit maximization problem of a re-optimizing firm i, who

takes into account the probability of adjusting its price next period and onwards, is

given by the following:

P

⇤
t

1X

j=0

�

j
⇠

j
Et {⇤t+j [P

⇤
t Yt+j(i)� Pt+jmct+jYt+j(i)]} (18)

where ⇤t is the household’s marginal utility of wealth at period t. I assume that

the intermediate good producers are owned by the household, and all the profits are

transferred to the households. The intermediate goods producers solve the optimiza-

tion problem described above subject to the demand curve for their own goods, which

is given by the following:

Yt(i) = Yt

✓
Pt(i)

Pt

◆�⌘

(19)

8.1.4 Monetary Authority

Lastly, a monetary authority sets nominal interest rate according to the Taylor rule

as follows:

Rt = max

2

4 ⇡̄
�

✓
Rt�1

⇡̄/�

◆�R
 ⇣

⇡t

⇡̄

⌘�⇡
✓
Yt

Ȳ

◆�y
!1��R

, 1

3

5 (20)

where ⇡̄ is inflation target, ⇡t is inflation rate between t�1 and t, and Ȳ is the output

target. This monetary authority is subject to the zero lower bound, meaning that

the monetary authority cannot set nominal interest rate below zero (or equivalently,

R � 1).

8.1.5 Aggregate conditions

The aggregate resource constraint is simply given by

Ct = Yt

In the Calvo pricing setting, firms that change prices in di↵erent periods will have

di↵erent prices. Therefore, the economy needs to track price dispersion. When firms

have di↵erent relative prices, there are distortions that create a wedge between the ag-

gregate output measured in terms of production factor inputs and aggregate demand
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measured in terms of composite goods. Specifically,

AtNt(i) = Yt(i) =

✓
Pt(i)

Pt

◆�⌘

Yt

which implies, in aggregate,

Nt =

Z 1

0

Nt(i)di =
Yt

At

Z 1

0

✓
Pt(i)

Pt

◆�⌘

di =
Ytvt

At

where price dispersion, vt, can be described as:

vt ⌘
Z 1

0

✓
Pt(i)

Pt

◆�⌘

di = ⇠⇡

⌘
t vt�1 + (1� ⇠)

✓
P

⇤
t

Pt

◆�⌘

8.2 Equilibrium conditions

I summarize below the first order conditions that characterize the equilibrium of our

economy. Let p⇤t = P

⇤
t /Pt and at = log(At). Then:

�t =(Ct � �Ct�1)
�� (21)

�t =�Et[�t+1Rt/(⇡t+1)] (22)

vtYt =atNt (23)

mct =((1�Nt)
�

/�t)/at (24)

Ct =Yt (25)

Rt =max

2

4 ⇡̄
�

✓
Rt�1

⇡̄/�

◆�R
 ⇣

⇡t

⇡̄

⌘�⇡
✓
Yt

Ȳ

◆�y
!1��R

, 1

3

5 (26)

p

⇤
t =((1� ⇠⇡

⌘�1)/(1� ⇠))1/(1�⌘) (27)

vt =⇠⇡

⌘
t vt�1 + (1� ⇠)p⇤t

�⌘ (28)

St =�tmctYt + �⇠Et[⇡
⌘
t+1St+1] (29)

Ft =�tYt + �⇠Et[⇡
⌘�1
t+1 Ft+1] (30)

p

⇤
t =St/Ft (31)
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8.3 Numerical solution of nonlinear NK model

The zero lower bound in the Taylor rule introduces the nonlinearity in the NK model.

Thus, the solution to the equilibrium condition must be obtained using a global

solution method. I use the projection method. Let S = [vt, Ct�1, Rt�1, at] be the state

variables of the model. There are three future variables, [⇡t+1(S), Yt+1(S), Ft+1(S)],

that need to be interpolated. I approximate each of future variables with the Radial

Basis Functions, [⇡t+1(S̃), Yt+1(S̃), Ft+1(S̃)], in such a way that equilibrium conditions

of the model are satisfied at a set of collocation points, S̃. These collocation points,

S̃, are selected based on the Maliar and Maliar (2015)’s Epsilon-Distinguishable Set

algorithm. The solution’s accuracy is presented in the Appendix 8.5. The model is

calibrated to a set of standard parameter values in the NK literature. The calibrated

parameter values are listed in the Appendix 8.4.

The algorithm for the numerical solution of the model is given below. There are

two loops in the algorithm. The outer loop iterates over the grid, and the inner loop

iterates over policy functions.

Step 0a: Solve the log-linear version of the model and simulate data. This initial step is

required for the clustering methods in Step 1.

Step 0b: Defining the grid and the polynomials of the RBF. Given the simulated

data, construct a grid following Maliar and Maliar (2015) and estimate the

RBF coe�cients for the policy functions.

Step 1: Computing integrals. Compute the integrals using the Maliar and Maliar

(2015)

Step 2: Equilibrium conditions. For each grid points, use the polynomials obtained

in Step 1 to compute the values of future variables, [⇡t+1(S̃), Yt+1(S̃), Ft+1(S̃)].

Given the future variables, solve for the endogenous state variables next period

using the model’s equilibrium conditions.

Step 3: Evaluate conditional expectations. Using the integrals computed in Step 1,

evaluate the conditional expectations in equations 23, 29, 30.

Step 4: Evaluate new policy functions. Given the conditional expectations, obtain

new values of future variables in the current period, [⇡0
t(S̃), Y

0
t (S̃), F

0
t (S̃)], using

equations 23, 29, 30. Given these new values, compute the new policy functions,
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and compute the di↵erence between the polynomials of newly obtained policy

functions and those of old policy functions. Denote the percentage di↵erence as

r.

Step 5: Iteration. If r < 10�8, go to Step 6. Otherwise, update the guess and repeat

Step 1-5.

Step 6: Compute new grid. Using the solution obtained in the previous steps, sim-

ulate new data. Using these simulated data, choose a new grid using Maliar

and Maliar (2015). Compute the di↵erence between the old grid and the new

grid. Specifically, for each newly computed grid point, find the nearest point in

the old grid and compute the Euclidean distance. This forms a vector, D, that

contains the distances between each new grid point to its nearest point in the

old grid. Find the maximum of D and call it rg.

Step 7: Iteration for grid. If rg is smaller than the Euclidean distance between the

farthest two points in the old grid, stop the algorithm. Otherwise, go back to

Step 2 with the new grid obtained in Step 6.
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8.4 Calibration

The parameter values for calibration of the New Keynesian model are summarized as

follows:

Table 2: Calibration

parameter value description

� 0.5 Habit Persistence
� 0.99 Discount factor
� 1 Utility Curvature: Consumption
 2.65 Utility Curvature: Leisure
⇠ 0.60 Calvo: (1� ⇠)% adjust prices each period
⌘ 9 Price Elasticity of Demand
⇡̄ 1 Inflation Target
�⇡ 2.21 Taylor Rule inflation coe�cient
�y 0.07 Taylor Rule output gap coe�cient
�R 0.82 Interest Rate Smoothing
⇢a 0.80 Prod. shock persistence
�a 0.019 Prod. shock std.

8.5 Accuracy of numerical solution

I check the accuracy of the numerical solution by computing the errors of the residual

equations. Specifically, I proceed as follows. First, I simulate the model forward for

10,000 periods. This gives a simulation for both the state and control variables of

the model for 10,000 periods. Second, compute the residuals from the intertemporal

equations 23, 29, 30 for the 10,000 periods. I report the decimal log of the absolute

value of these residual errors.

On average, residual equation errors are on order of -3.53 for equation 23, -4.94

for equation 29, and -2.58 for equation 30. These numbers are comparable to the

other studies whose models have similar degrees of complexity.
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Òscar Jordà. Estimation and inference of impulse responses by local projections. The

American Economic Review, 95(1):161–182, 2005. 10, 20

Lutz Kilian. Exogenous oil supply shocks: how big are they and how much do they

matter for the us economy? The Review of Economics and Statistics, 90(2):216–

240, 2008. 17

Lutz Kilian and Helmut Lütkepohl. Structural vector autoregressive analysis. Cam-

bridge University Press, 2017. 2, 10

Gary Koop, M Hashem Pesaran, and Simon M Potter. Impulse response analysis in

nonlinear multivariate models. Journal of econometrics, 74(1):119–147, 1996. 13

Chung-Ming Kuan and Halbert White. Artificial neural networks: An econometric

perspective. Econometric reviews, 13(1):1–91, 1994. 11

Gerson Lachtermacher and J David Fuller. Back propagation in time-series forecast-

ing. Journal of forecasting, 14(4):381–393, 1995. 11

Lilia Maliar and Serguei Maliar. Merging simulation and projection approaches to

solve high-dimensional problems with an application to a new keynesian model.

Quantitative Economics, 6(1):1–47, 2015. 27, 28

31



John Moody and Christian J Darken. Fast learning in networks of locally-tuned

processing units. Neural computation, 1(2):281–294, 1989. 5

Saeed Moshiri and Norman Cameron. Neural network versus econometric models in

forecasting inflation. 1999. 11

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-

function networks. Neural computation, 3(2):246–257, 1991. 2, 5

M Hashem Pesaran and Yongcheol Shin. Cointegration and speed of convergence to

equilibrium. Journal of econometrics, 71(1):117–143, 1996. 13

Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Pro-

ceedings of the IEEE, 78(9):1481–1497, 1990. 5

Simon M Potter. A nonlinear approach to us gnp. Journal of applied econometrics,

10(2):109–125, 1995. 13

Simon M Potter. Nonlinear impulse response functions. Journal of Economic Dy-

namics and Control, 24(10):1425–1446, 2000. 13

Giorgio E Primiceri. Time varying structural vector autoregressions and monetary

policy. The Review of Economic Studies, 72(3):821–852, 2005. 2, 10

Valerie A Ramey. Identifying government spending shocks: it’s all in the timing. The

Quarterly Journal of Economics, 126(1):1–50, 2011. 17

Christina D Romer and David H Romer. A new measure of monetary shocks: Deriva-

tion and implications. American Economic Review, pages 1055–1084, 2004. 17

Christina D Romer and David H Romer. The macroeconomic e↵ects of tax changes:

Estimates based on a new measure of fiscal shocks. American Economic Review,

100:763–801, 2010. 17

Christopher A Sims. A nine-variable probabilistic macroeconomic forecasting model.

In Business Cycles, Indicators and Forecasting, pages 179–212. University of

Chicago Press, 1993. 2

James H Stock and Mark W Watson. Evidence on structural instability in macroe-

conomic time series relations. Journal of Business & Economic Statistics, 14(1):

11–30, 1996. 2

32



Norman R Swanson and Halbert White. A model selection approach to real-time

macroeconomic forecasting using linear models and artificial neural networks. Re-

view of Economics and Statistics, 79(4):540–550, 1997. 11

Greg Tkacz. Neural network forecasting of canadian gdp growth. International Jour-

nal of Forecasting, 17(1):57–69, 2001. 11

Johannes Wieland. Are negative supply shocks expansionary at the zero lower bound?

2016. 4, 16, 20
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Figure 5: Examples of Generalized Impulse Responses

Inflation: RBF(1) Inflation: VAR(4)

Interest Rate: RBF(1) Interest Rate: VAR(4)
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Figure 6: Examples of Generalized Impulse Responses

Consumption: RBF(1) Consumption: VAR(4)

Notes: Impulse response functions of the inflation rate, interest rate, and consumption (in percent)
to a one standard-deviation positive productivity shock. True structural impulse responses from the
NK model in normal state (blue solid line) or zlb state (red solid line). Estimation from a RBF(1)
in normal state (blue dashed line) or zlb state (red dashed line). Estimated impulse response from
a VAR(4) (black dashed line). Shaded bands denote the 2.5th and 97.5th percentiles estimated by
the residual-based block bootstrap method.
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Figure 7: Responses at di↵erent horizons

(a) cumulative GDP (b) Expected Inflation

(c) Fed funds rate (d) real interest rate

Notes: Impulse response functions (in percent) to a one standard-deviation positive TFP shock
after 1st, 3rd, and 10th quarters. Black shaded areas corresponds to NBER-recession dates. Red
shaded areas represent the periods of weak output responses outside the recession dates.
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Figure 8: Responses at di↵erent horizons

(e) cumulative Consumption (f) Hours worked

(g) cumulative Investment

Notes: Impulse response functions (in percent) to a one standard-deviation positive TFP shock
after 1st, 3rd, and 10th quarters. Black shaded areas corresponds to NBER-recession dates. Red
shaded areas represent the periods of weak output responses outside the recession dates.
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Figure 9: Federal funds rate

Notes: Federal funds rate between 1980 and 2016. Red shaded areas represent the periods of weak
output responses outside the recession dates.
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Figure 10: Responses of cumulative GDP

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the cumulative real GDP (in percent) to a one standard-
deviation positive TFP shock. Shaded bands denote the 68% confidence interval estimated by the
residual-based block bootstrap method.
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Figure 11: Responses of Expected Inflation

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the expected inflation (in percent) to a one standard-deviation
positive TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based
block bootstrap method.
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Figure 12: Responses of Fed Funds rate

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the fed funds rate (in percent) to a one standard-deviation
positive TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based
block bootstrap method.
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Figure 13: Responses of real interest rate

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of real interest rate (in percent) to a one standard-deviation
positive TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based
block bootstrap method.
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Figure 14: Responses of cumulative Consumption

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of consumption (in percent) to a one standard-deviation positive
TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block
bootstrap method.
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Figure 15: Responses of Hours Worked

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of hours worked (in percent) to a one standard-deviation positive
TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block
bootstrap method.
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Figure 16: Responses of cumulative Investment

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of investment (in percent) to a one standard-deviation positive
TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block
bootstrap method.
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Figure 17: Response of cumulative GDP using Local Projection method

Dependent variable:
Ph

j=0� lnYt+j

Notes: Estimated impulse response of output to a one unit TFP shock at various horizons. The
solid blue line shows the response under the normal periods (i.e. when Zt = 0). The solid red line is
the response when the ZLB binds (Zt = 1). The shaded bands represent the 90 percent confidence
interval.
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Figure 18: Response of GDP using Local Projection method

Dependent variable: lnYt+h � lnYt�1

Notes: Estimated impulse response of output to a one unit TFP shock at various horizons. The
solid blue line shows the response under the normal periods (i.e. when Zt = 0). The solid red line is
the response when the ZLB binds (Zt = 1). The shaded bands represent the 90 percent confidence
interval.
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Figure 19: Residual equation errors

(a) Equation 23 (b) Equation 29

(c) Equation 30

Notes: The histograms report the residual equation errors in decimal log basis. The dotted red lines
mark the mean residual equation errors.
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