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Abstract	
This	paper	 evaluates	 an	 approach	 to	 shed	 light	 on	 capital	markets	using	 grain	prices,	 since	 stored	 grain	

incurs	 interest	 costs	 as	part	of	 the	 storage	 costs.	Though	 this	 storage	 cost	 approach	has	been	applied	 in	

McCloskey	and	Nash	(1984)	and	has	potentially	wide	applicability	in	situations	where	interest	rate	data	is	

not	available,	this	paper	provides	the	first	analysis	of	how	well	the	storage	cost	approach	captures	actual	

capital	 market	 developments.	 Using	 matched	 data	 on	 bank	 interest	 rates	 and	 grain	 prices	 for	 early	

19th	century	U.S.	regions,	we	find	that	the	storage	cost	approach	is	useful	for	quantifying	the	performance	

of	capital	markets.	While	the	estimation	of	region-	and	year-specific	interest	rates	can	be	challenging,	the	

approach	grain	price	approach	accurately	reflects	differences	in	capital	market	development.	Furthermore,	

the	 approach	 is	 robust	 to	 employing	 time	 series	 filtering	 techniques	 as	well	 as	dealing	with	 unavailable	

information	on	harvest	times,	outliers,	and	a	range	of	other	factors.	
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1.	Introduction	

Capital	markets	play	a	major	role	in	the	economy	because	they	channel	income	that	is	not	

currently	spent	to	projects	that	pay	off	their	returns	in	the	future.	Interest	rates	are	important	

indicators	of	both	the	scarcity	of	capital	and	the	riskiness	of	transactions	in	the	capital	market.	

And	yet,	in	many	historical	contexts	it	is	difficult	to	quantify	the	development	of	capital	markets	in	

an	economy	because	there	are	no	interest	rate	records	for	a	sufficiently	large	number	of	

transactions	that	would	allow	computing	comparable	averages.5	Before	that	already,	farmers	

traded	grain	for	cash	back	and	forth	inter-temporally	implying	that	grain	prices	might	shed	light	

on	interest	rates,	the	basis	of	McCloskey	and	Nash’s	(1984)	analysis	of	English	Medieval	interest	

rates.6	This	paper	assesses	the	validity	of	the	approach	of	employing	grain	prices	to	examine	

capital	market	development—storage	cost	approach	for	short--	by	asking	how	close	it	comes	to	

actual	capital	development	in	the	early	19th	century	United	States.	

The	storage	cost	approach	relies	on	the	notion	that	in	equilibrium	holding	grain	in	storage	

to	sell	it	at	a	later	point	will	be	no	more	or	less	profitable	than	selling	grain	immediately	for	

money,	so	that	the	rate	of	grain	price	appreciation	is	a	good	approximation	of	the	interest	rate	

(plus	other	storage	costs).	While	in	principle	applicable	to	any	storable	commodity,	market	prices	

for	grain	are	relatively	often	available	for	historical	economies,	and	furthermore,	agriculture	is	a	

large	fraction	of	such	economies,	with	a	large	number	of	market	participants,	making	it	unlikely	

that	idiosyncratic	factors	introduce	biases	into	the	analysis.	Although	the	storage	cost	approach	is	

theoretically	well-founded	both	in	terms	of	asset	pricing	(Working	1933,	1949,	Kaldor	1939,	

Samuelson	1957)	and	in	the	analysis	of	commodity	storage	behavior	(e.g.,	Williams	and	Wright	

																																																								
5	Interest	rate	quotes	for	pre-modern	economies	cannot	be	used	for	systematic	comparisons	because	they	omit	

information	on	borrower	identity,	security,	and	other	determinants,	and	there	are	typically	too	few	that	are	strictly	

comparable;	e.g.,	Pomeranz	(1993),	p.32. 
6	For	example,	on	Chinese	farmers	trading	grain	back	and	forth	see	the	memorial	from	Tang	Pin	for	the	case	of	18th	

century	China,	Da	Qing	li	chao	shilu,	Gaozong	reign,	286:	24b-25a	(4154-55);	Pomeranz	(1993),	p.32. The link between 
the intertemporal market in agriculture and other parts of the economy is also confirmed in the description of Chen’s (2010) 
description of the Xu family in Fujian (Chen 2010, p. 433, based on Lin and Liu 2006). Also see Zhang (1996), Pan (1996) 
on rural borrowing and merchant credit. Outside of China, we know that intertemporal trade in agriculture was prevalent at 
English town markets and fairs that had been in operation already over the 16th and 17th centuries (Everitt 1967). There, 
travelling merchants and salesmen purchased in advance grains and other goods, connecting the village peasant to capital 
markets. Additional anecdotal evidence on the connection between grain prices and capital markets in England is given in 
Brunt and Cannon (2009, pp. 34-35). 
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1991),	to	date	it	has	not	been	established	how	accurately	the	storage	cost	approach	describes	

various	aspects	of	capital	market	development.	This	paper	fills	this	gap.	

	

	 By	employing	regional	data	for	an	economy	in	which	comparable	interest	data	is	still	

limited	and	capital	markets	still	developing,	the	early	19th	century	US,	this	paper	assesses	the	

storage	cost	approach	in	a	setting	where	it	has	bite.7	We	find	that	although	it	can	be	difficult	to	

estimate	interest	rates	specific	to	a	particular	time	and	place,	provided	one	uses	a	sizable	amount	

of	data	the	storage	cost	approach	produces	a	reasonable	estimate	of	broad	interest	rate	levels.	

Furthermore,	the	storage	cost	approach	captures	well	differences	in	the	capital	development	of	

regions,	be	it	in	terms	of	their	interest	rate	levels	or	their	integration	of	capital	markets.	The	paper	

also	finds	that	the	storage	cost	approach	is	quite	robust	to	the	limitations	that	are	often	present	

when	using	historical	data,	and	identifies	a	number	of	factors	where	the	availability	of	data	is	most	

beneficial.	

This	paper	makes	two	contributions.	First,	by	evaluating	a	method	to	assess	capital	market	

development	prior	to	the	availability	of	comparable	interest	rates	this	paper	potentially	pushes	

back	the	quantitative	study	of	capital	markets	to	a	time	for	which	there	are	systematic	records	of	

prices	on	storable	commodities	at	a	high	frequency,	perhaps	the	Middle	Ages	or	earlier.	In	

contrast,	high-quality	regional	bank	interest	rate	data	becomes	typically	available	only	in	the	late	

19th	century	(e.g.	Mitchener	and	Ohnuki	2007,	2009	on	Japan	in	the	late	19th	century).8	Because	of	

its	promise	the	storage	cost	approach	has	attracted	much	interest	in	the	literature	(McCloskey	and	

Nash	1984,	Taub	1987,	Pomeranz	1993,	Brunt	and	Cannon	1999,	2009,	Clark	2001,	and	Shiue	

2002),	however,	until	now	an	empirical	validation	of	the	approach	has	been	lacking.	Furthermore,	

the	storage	cost	approach	has	to	potential	to	be	applied	in	today’s	less	developed	countries	for	

which	comparable	interest	rates	are	absent.		

Second,	the	paper	sheds	new	light	on	the	extent	to	which	in	historical	contexts	individual	

behavior	is	driven	by	incentives	in	line	with	economic	optimization.		Put	simply,	if	in	the	historical	

context	the	storage	cost	approach	is	misspecified,	be	it	because	farmers	do	not	store	grain	as	an	

																																																								
7	For	example,	the	number	of	banks	quadrupled	in	the	US	from	1820	to	1855	(Bodenhorn	(n.d.)).	Once	the	banking	

system	has	fully	matured,	interest	rates	comparable	across	time	and	space	are	typically	available.	
8	An	alternative	is	to	use	proxies	other	than	interest	rates	to	study	capital	market	development.	Outside	of	London,	

e.g.,	Buchinsky	and	Polak	(1993)	employ	the	quantity	of	property	transactions	to	study	the	emergence	of	a	national	

capital	market	in	England.	
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asset,	because	high	frictions	in	the	capital	market	prevent	arbitrage,	or	because	the	farmer	in	the	

historical	context	for	other	reasons	does	not	act	as	homo	oeconomicus,	the	storage	cost	approach	

will	fail	to	yield	results	comparable	to	those	based	on	bank	interest	rates.9	Along	these	lines	our	

paper	quantifies	the	size	of	the	barriers	that	stand	in	the	way	of	frictionless	economically	rational	

behavior	from	the	viewpoint	of	prices	in	an	optimal	storage	model.10	

2.	Intertemporal	arbitrage	and	the	costs	of	storage	

This	section	formalizes	our	approach	by	establishing	the	relationship	between	grain	prices	and	

interest	rates	as	one	element	of	storage	costs.	Consider	a	farmer	in	region	!	who	must	decide	
between	selling	a	unit	of	grain	in	period	!	for	the	current	market	price	!!" ,	or	storing	the	same	unit	
and	selling	it	at	! + 1,	for	forward	price	!!",!!!! .	Selling	in	period	t	would	give	the	farmer	revenue	
that	could	be	used	to	buy	consumption	goods,	for	example.	In	equilibrium,	the	following	no	

arbitrage	condition	must	hold	for	any	forward	contract	!	
	

(1) !!",!!!! = !!" 1+ !!" +  !!"! + !!" − !!" + !!" 	

	

where	!!"	is	the	risk-free	interest	rate	in	region	i	and	period	t,	!!"! 	is	transaction-specific	
risk,	!!"	denotes	physical	storage	cost,	and	!!"	denotes	the	convenience	yield.		The	term	!!"	is	a	
wedge	that	captures	potential	barriers	between	the	intertemporal	agricultural	and	other	parts	of	

the	region’s	capital	market.	Furthermore,	in	this	simple	framework	we	abstract	from	inter-

regional	trade.	Allowing	for	grain	markets	to	be	linked	across	regions	would	lead	to	additional	no-

arbitrage	equations,	as	discussed,	for	example,	in	Shiue	(2002).	The	next	step	is	to	take	the	

average	over	all	transactions	k	and	substitute	the	future	spot	price,	!!"!!,	for	the	average	of	the	
forward	prices	!!",!!!!

,	which	are	unobserved.	Given	these	assumptions,	we	see	that	the	simple	

intertemporal	no-arbitrage	condition	(1)	implies	that	

	

																																																								
9	Komlos	and	Landes	(1991,	p.43),	for	example,	criticize	McCloskey	and	Nash’s	(1984)	application	of	the	grain	price	

approach	as	anachronistic	and	forgetting	the	“social,	cultural,	intellectual,	and	institutional	realities	of	the	past.” 
10	The	analysis	below	will	also	consider	the	possibility	of	false	positives,	that	the	storage	cost	approach	yields	results	

similar	to	those	using	bank	interest	rates	for	spurious	reasons.	
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(2) !!"!!
!!"

= 1+ !!" +  !!" + !!" , 	

	

that	is,	the	price	gradient	Pit+1/Pit	is	an	increasing	function	of	the	risk-inclusive	interest	rate		

(!!" +  !!" )	plus	other	factors	(!!" = !!" − !!" + !!").		
	

This	intertemporal	no-arbitrage	relationship	is	at	the	center	of	models	of	optimal	storage.	

The	following	presents	simulations	of	a	simple	competitive	storage	model	along	the	lines	of	

Williams	and	Wright	(1991).	To	further	simplify	we	assume	that	agents	have	perfect	foresight	and	

the	world	is	deterministic.11		Figure	1a	depicts	the	equilibrium	sequence	of	prices	and	storage	

levels	in	each	period,	given	other	parameters	such	as	physical	storage	costs,	storage	capacity,	the	

cost	of	injection	(harvest),	and	withdrawal,	as	well	as	the	implied	return	holding	inventories.	

Notice	that	both	prices	and	storage	levels	follow	a	cyclical	pattern.12	Prices	are	at	their	low	point	

once	the	harvest	has	come	in,	and	they	rise	during	the	period	between	harvests.	Prices	must	rise	

during	this	time	because	holding	grain	means	not	to	have	the	cash	the	grain	is	worth,	and	the	

grain	price	increase	has	to	be	in	line	with	the	return	to	postponing	consumption	(or,	capital).13		

Figure	1b	compares	the	price	pattern	of	two	economies,	one	with	a	higher	and	one	with	a	

lower	interest	rate.	We	see	that	the	price	gradient	in	the	high-interest	rate	economy	is	steeper	

than	in	the	low-interest	rate	economy.	This	confirms	equation	(2)	and	shows	that	optimal	storage	

behavior	implies	that	all	else	equal	the	steepness	of	the	price	gradient	is	increasing	in	the	

economy’s	interest	rate.	In	the	benchmark	analysis	below,	we	will	capture	this	price	gradient	by	

the	average	price	change	from	August	to	December,	for	a	given	region	and	year.	The	intuition	is	

that	when	the	interest	rate	is	higher,	the	value	of	grain	between	two	harvests	must	rise	faster	

because	the	opportunity	cost	of	tying	up	resources	is	higher.		

	 	

																																																								
11	The	framework	can	be	extended	to	include	expectation	formation	and	stochastic	shocks	without	altering	key	

relationships.	
12	The	exact	shape	of	the	cyclical	price	pattern	is	determined	by	the	parameters	of	the	model.	

13	Storage	levels	hit	zero	when	prices	reach	their	maximum,	indicating	that	storage	takes	place	to	reduce	price	

fluctuations.	
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Figure	1a:	Storage	model	with	low	interest	rate	

	 	

Note:	Prices	are	on	the	left	axis,	storage	levels	on	the	right.	

	

Figure	1b:	Storage	model	with	high	interest	rate	

	

	

	 Taking	the	model	to	data,	one	would	not	expect	that	the	relationship	between	grain	prices	

and	interest	rates	is	exactly	as	shown	in	Figure	1b.	First,	this	is	due	to	the	influence	of	factors	such	

as	changes	in	storage	cost,	transaction	specific	risk,	or	capital	market	imperfections,	as	it	can	be	

seen	in	equation	(1).	In	the	empirical	analysis,	ideally	those	variables	should	be	explicitly	modeled	
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to	bring	the	framework	closer	to	the	real	world	setting.	However,	because	many	of	these	factors	

essentially	unobservable	in	the	historical	period	that	we	consider,	to	be	able	to	empirically	assess	

the	storage	cost	approach	we	make	certain	assumptions	about	them.	In	particular,	for	our	

benchmark	analysis	we	allow	!!" ,!!" ,!!"! , !!"	and	!!"	to	vary	between	regions	and	over	time,	but	we	
assume	that	those	variations	are	uncorrelated,	i.e.	they	are	white	noise.	Following	the	benchmark	

analysis	we	will	conduct	additional	analyses	in	which	these	influences	are	allowed	to	vary	

systematically.		

	 Second,	we	recognize	that	grain	prices	are	affected	by	factors	outside	of	our	storage	cost	

model,	such	as	weather	or	demand	shocks	for	example.	There	could	also	be	systematic	variation	in	

the	relationship	between	interest	rates	and	grain	prices	due	to	political	reasons,	or	endogenous	

default.	The	analysis	below	will	address	these	potential	factors	by	conducting	a	number	of	

important	extensions.	

3.	Data	

Central	to	our	assessment	is	to	see	how	well	the	information	from	monthly	grain	price	data	

together	with	the	storage	model	matches	up	with	information	on	capital	markets	based	on	more	

directly	measured	or	estimated	interest	rates.	Bank	interest	rates	provide	a	relatively	good	

measure	of	prevailing	rates	against	which	we	assess	the	interest	inferred	from	the	storage	cost	

approach.	The	latter	is	most	valuable	in	relatively	early	times,	when	comparable	directly	observed	

interest	rate	data	is	not	yet	broadly	available.	We	therefore	pick	for	our	assessment	the	earliest	

possible	setting	for	which	we	are	able	to	collect	both	high-frequency	grain	prices	and	interest	

rates	for	the	same	regions,	which	turns	out	to	be	for	parts	of	the	U.S.	during	the	years	1815	to	

1855.		

3.1	U.S.	Early	Regional	Capital	Markets	Data	

For	our	regional	bank	interest	rate	data	we	rely	on	the	pioneering	work	by	Bodenhorn	

(2000)	and	Bodenhorn	and	Rokoff	(1992).	These	authors	have	estimated	annual	interest	rates	for	

a	number	of	U.S.	cities	and	states	during	the	earlier	part	of	the	19th	century.	The	series	are	for	the	

following	regions:	Philadelphia,	New	York	City,	Indiana,	South	Carolina,	Virginia,	and	New	Orleans.	

It	is	apparent	that	some	of	these	regions	are	cities	and	others	are	U.S.	states,	which	means	that	
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there	is	a	mix	of	regions	in	terms	of	size	in	the	sample.	This	will	typically	be	the	case	in	actual	

applications.	In	the	following	we	will	typically	refer	to	a	series	by	the	name	of	the	corresponding	

city	for	which	we	have	grain	price	information.14	Figure	2	shows	the	bank	data	that	we	employ,	

with	the	actual	values	tabulated	in	Table	A.1	in	the	Appendix.	

Another	caveat	is	that	at	this	relatively	early	stage	the	US	banking	system	was	far	from	

perfectly	competitive,	there	were	wildcat	banks,	and	the	period	was	characterized	by	the	

occasional	crisis,	such	as	the	Panic	of	1837.	Furthermore,	our	banks	did	not	necessarily	account	

for	the	majority	of	all	investments	that	were	being	made.15	

	

Figure	2:	Bank	interest	rates,	1815	-	1855	

	

Notes:	The	source	of	the	data	is	Bodenhorn	and	Rokoff	(1992),	Table	5.2.	

	

Overall	the	interest	rate	on	average	in	our	sample	has	been	equal	to	5.7	percent,	with	a	

standard	deviation	of	1.68	percent	(see	Table	A.1).	The	average	across	all	years	ranges	on	the	low	

side	from	4.82%	and	5.00%	(for	Alexandria	and	Philadelphia,	respectively),	and	on	the	high	side	

																																																								
14	Indianapolis	in	the	state	of	Indiana,	Alexandria	in	the	state	of	Virginia,	and	Charleston	in	the	state	of	South	Carolina.	

15	In	addition	to	Bodenhorn	(2000)	and	Bodenhorn	and	Rokoff	(1992),	see	also	Hammond	(1957)	and	Bodenhorn	

(n.d.)	for	more	details	and	additional	references	on	US	banking	during	this	period.	
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from	7.35%	and	8.33%	(for	Indianapolis	and	New	Orleans,	respectively).16	There	is	also	

substantial	year-to-year	variation;	for	example,	the	interest	rate	in	New	York	City	moved	from	

5.32%	in	year	1848	to	7.17%	and	then	5.62%	in	the	two	following	years.	The	data	availability	

varies,	ranging	from	a	minimum	of	21	to	a	maximum	of	41	annual	observations.	

Note	that	these	bank	interest	rates	are	not	based	on	actual	transactions	at	these	banks	but	

they	are	rather	based	on	the	bank’s	balance	sheets	and	dividend	data.	Furthermore,	due	to	missing	

data,	Bodenhorn	and	Rokoff	(1992)	have	to	make	a	number	of	simplifying	assumptions	in	their	

estimation	of	interest	rates,	such	as	holding	taxes	constant	and	assuming	that	no	interest	

payments	are	withdrawn.		For	this	reason	the	bank	rates	are	likely	to	contain	measurement	error.	

If	the	measurement	error	were	not	systematic	(classical)	it	would	tend	to	lower	the	correlation	of	

bank	rates	and	storage	cost	rates.	However,	the	mismeasurement	in	the	bank	rates	could	also	be	

systematically	related	to	the	grain	prices,	for	example	in	periods	with	high	inflation.	In	the	

benchmark	analysis	we	abstract	from	bank	rate	mismeasurement.		To	the	extent	that	the	potential	

biases	stemming	from	bank	rate	estimation	are	similar	for	all	regions,	mismeasurement	will	not	

affect	the	part	of	our	assessment	that	is	based	on	comparing	the	pattern	of	bank	and	grain	rate	

correlations.	The	implications	of	mismeasurement	in	the	bank	rates,	both	classical	and	systematic,	

are	examined	in	sections	5.2	and	5.3.		

	

3.2	Grain	Price	Data	

We	have	obtained	observations	on	monthly	grain	prices	for	six	U.S.	markets	during	the	

sample	period:	Philadelphia,	New	York	City,	Alexandria,	New	Orleans,	Indianapolis	and	

Charleston.	The	grain	is	wheat	except	for	Charleston	for	which	rice	prices	are	employed.17	Recall	

that	in	principle	the	approach	should	work	with	any	storable	commodity.18	Due	to	lack	of	detailed	

information,	we	assume	that	all	non-interest	factors	influencing	storage	decisions	were	the	same	

for	wheat	and	rice.		All	of	the	series	are	considered	market	prices	for	grain.	Wheat	prices	come	

from	Jacks	(2005,	2006)	while	the	Charleston	prices	are	from	Shiue	and	Keller	(2007).	Additional	

detail	on	the	characteristics	of	these	price	series	is	given	in	these	papers.	

																																																								
16	One	might	be	concerned	that	the	coverage	in	terms	of	years	varies	across	cities,	but	in	fact	the	correlation	of	the	

average	rates	for	all	years	and	for	common	years	is	high	(99.5%). 
17	Dropping	Charleston	would	increase	the	homogeneity	of	the	analysis,	at	the	cost	of	reducing	the	sample	size.	We	

show	in	Table	2	how	the	results	change	as	we	drop	the	rice	series	from	the	sample.	

18	Several	authors	before	us	have	considered	more	than	one	commodity	(McCloskey	and	Nash	1984,	Taub	1987).		
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Grain	prices	reflect	no	doubt	more	than	the	movements	implied	by	storage	shown	in	

Figures	1a	and	1b.	Nevertheless,	it	is	interesting	to	see	whether	there	is	any	evidence	for	a	cyclical	

pattern	in	the	raw	data.	Figure	2	shows	monthly	prices	for	New	York	City	for	the	years	1815	to	

1861.	Upon	closer	inspection	there	seem	to	periods	in	which	prices	move	cyclically	up	and	down,	

but	there	are	also	secular	trends	over	several	years	as	well	as	a	considerable	amount	of	noise.	To	

see	the	pattern	more	clearly,	we	average	the	monthly	prices	for	the	decade	highlighted	in	Figure	2	

(years	1825-34).	The	result	of	this	is	shown	in	Figure	3.	A	cyclical	pattern	emerges,	not	unlike	the	

price	dynamics	implied	by	the	storage	cost	approach	(see	Figures	1a	and	1b).	This	provides	some	

initial	evidence	that	the	storage	cost	approach	might	provide	information	on	interest	rate	levels.	

	

Figure	2-	Monthly	wheat	prices	in	New	York	City,	1815	to	1861	

	

Notes:	The	price	is	in	US	dollar	per	100kg	of	wheat.	
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Figure	3-	Average	monthly	wheat	price	in	New	York	City,	1825	to	1834	

	

Notes:	The	price	is	in	US	dollar	per	100kg	of	wheat.,	averaged	over	10	years.		

	

Thus,	in	our	benchmark	analysis	we	compute	our	interest	rate	in	region	i	and	year	t	based	on	the	

storage	cost	approach	as	the	average	of	all	grain	price	changes	from	August	to	December	of	year	t	

in	region	i.	Alternative	approaches	are	considered	in	section	4.3.2	(Table	6).		

4.	Empirical	Results	

4.1	Criteria	for	Assessing	Capital	Market	Performance	

Given	our	goal	of	comparing	the	performance	of	capital	markets	as	implied	by	the	bank	

rates	versus	as	implied	by	the	storage	cost-rates,	the	first	question	is	which	criteria	of	capital	

market	performance	should	be	adopted?	Interest	rate	levels	provide	information	on	both	capital	

scarcity	and	transactional	risk,	and	time-series	variation	in	interest	rates	sheds	light	on	how	this	

varies	from	year	to	year.	Additionally,	comparing	interest	rate	levels	across	regions	reveals	

whether	the	storage	cost	approach	correctly	identifies	differences	in	capital	scarcity	and	risk.	

Furthermore,	because	regional	interest	rate	averages	are	affected	by	the	composition	of	
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transactions	in	a	particular	location—varying,	e.g.,	with	industry,	maturity,	borrower,	and	

lender—much	emphasis	is	placed	on	the	degree	to	which	regional	markets	co-move	with	each	

other,	that	is,	the	integration	of	capital	markets.		

While	we	could	assess	the	storage	cost	approach	by	the	best	of	these	criteria,	the	difficulty	

with	this	is	that	it	is	unknown	which	of	these	approaches	is	best	suited	for	our	purposes.	In	part	

this	is	due	to	the	fact	that	the	present	paper	is	the	first	to	empirically	assess	the	storage	cost	

approach.	Another	consideration	is	that	data	availability	in	historical	contexts	tends	to	be	more	

limited	than	in	other	contexts,	which	affects,	for	example,	the	length	of	the	time	series,	T.	For	these	

reasons,	we	think	it	to	be	prudent	to	at	least	initially	consider	several	criteria.	

Recall	that	the	main	goal	is	to	compare	capital	market	development	as	implied	by	the	bank	

rates	with	that	implied	by	the	storage-cost	rates.	Thus	any	criteria	will	involve	comparing	some	

aspect	(or,	technically,	some	moment)	of	the	distribution	of	bank	rates	with	the	same	moment	of	

the	distribution	of	storage	cost-rates.	Importantly,	an	implication	of	that	is	that	while	the	moment	

in	itself	matters,	it	matters	less	than	the	comparison	of	the	same	moment	between	bank	rate	and	

storage-cost	rate	distributions.	To	take	a	purely	hypothetical	example,	we	could	assess	the	validity	

of	the	storage-cost	approach	simply	by	whether	it	predicts	well	the	interest	rate	in	Philadelphia	in	

the	year	1834.	It	turns	out	that	according	to	the	bank	rates	estimated	by	Bodenhorn	and	Rokoff	

(1992),	in	that	year	the	interest	rate	in	Philadelphia	was	3.41%	(see	Table	A.1).	One	may	actually	

believe	that	this	figure	may	be	somewhat	off.	In	1833,	the	year	before,	the	Philadelphia	bank	rate	

was	6.54%	according	to	Table	A.1,	and	in	the	year	after,	1835,	the	Philadelphia	bank	rate	was	

6.12%,	and	one	might	argue	that	such	large	year-to-year	swings	are	implausible.	And	yet,	these	

bank	rates	are	among	the	best	evidence	that	we	have	for	this	era.	Arguably,	none	of	the	figures	in	

Table	A.1	are	obviously	wrong.	Thus,	key	to	our	assessment	would	be	to	see	how	similar	to	3.41%	

is	the	storage-cost	rate	for	Philadelphia	in	1834.	

Naturally,	estimating	interest	rates	that	are	specific	to	a	particular	year	and	region	is	a	

challenge.	For	some	perspective,	McCloskey	and	Nash	(1984)	employed	the	approach	to	get	an	

idea	of	the	general	interest	rate	level	in	Medieval	England	(a	relatively	large	region	and	many	

years).	Thus	we	adopt	criteria	that	are	both	less	stringent	but	at	the	same	time	more	general	than	

the	interest	rate	in	a	particular	year	and	region	(such	as	Philadelphia	in	1834).	Broadly	speaking,	

our	criteria	can	be	divided	into	two	sets.	The	first	is	simply	based	on	the	overall	characteristics	of	

all	regions,	while	the	second	exploits	differences	between	some	versus	other	regions.	
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	 Formally,	let	the	bank	interest	rate	in	region	i	and	year	t	be	denoted	by	!!" ,	with	i	=	1,…,6,	
and	t	=	1815,…,1855.	The	corresponding	storage	cost-rates	are	denoted	by	!!! .	Further,	let	the	
average	bank	rate	across	all	years	be	denoted	by	!! ,	and,	correspondingly,	!! 	is	the	average	
storage-cost	rate	of	region	i	across	all	years.	Our	first	criterion	giving	an	overall	measure	is	the	

average	interest	rate	across	all	regions	and	years.	These	interest	rate	means	give	an	overall	sense	

of	capital	scarcity	and	transactional	risk	in	these	areas	during	the	sample	period.	For	reference,	

the	overall	bank	interest	rate	average	is	equal	to	5.7%	in	our	sample.	

	 The	second	criterion	examines	how	strongly	bank	rates	and	storage-cost	rates	correlate	

from	year	to	year.	We	employ	OLS	regressions	to	estimate	this	correlation.	The	presence	of	

stochastic	shocks	and	other	influences	will	prevent	that	the	storage	cost	model	will	fit	exactly	

(coefficient	equal	to	one).		We	stack	observations	of	all	six	regions	and	report	the	t-statistic	of	the	

slope	coefficient	from	running	an	OLS	regression	of	storage-cost	rates	on	bank	rates	from	all	

observations.	The	higher	the	t-statistic,	the	stronger	do	storage-cost	rates	reflect	year-to-year	

changes	in	bank	interest	rates.		

Our	next	criterion	examines	the	pattern	of	interest	rates	across	regions.	For	example,	recall	

that	bank	interest	rates	in	Philadelphia	were	on	average	lower	than	in	New	Orleans	(Table	A.1,	

bottom),	and	an	important	question	is	whether	this	is	also	the	case	for	storage-cost	rates.	More	

generally,	our	criterion	is	the	strength	of	the	correlation	between	average	bank	and	storage-cost	

rates,	denoted	by	!"## !! ,!! .		Instead	of	time	series	fluctuations	this	measure	captures	broad	

differences	in	interest	rate	levels	across	regions.19		

The	integration	of	capital	markets	is	also	a	frequently	employed	measure	of	capital	market	

development.	One	influential	measure	is	the	extent	to	which	interest	rates	co-vary	across	regions,	

and	how	strongly	they	respond	to	shocks	in	other	markets.	The	higher	the	co-variance	and	the	

stronger	the	reaction	to	shocks	elsewhere,	the	more	strongly	are	capital	markets	integrated.	A	

very	simple	integration	measure	is	the	bilateral	correlation	of	interest	rates	across	two	regions	i	

and	j.	Table	1	shows	these	bilateral	correlations	based	on	Bodenhorn	and	Rokoff’s	(1992)	bank	

interest	rates.	The	bilateral	correlations	range	between	0.68	and	-0.30.	The	average	of	the	bilateral	

																																																								
19	For	example,	if	bank	rate	averages	would	vary	across	regions	and	storage	cost-rates	would	always	underestimate	

these	means	by	10%	in	one	year	and	overestimate	these	means	by	20%	in	the	next,	plus	some	noise,	the	time	series	

correlation	between	bank	rates	and	storage	cost	rates	would	be	low	but	the	cross-sectional	correlation	between	bank	

rate	and	storage-cost	averages	may	well	be	quite	high.	
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correlations	of	bank	interest	rates	is	around	0.13,	and	typically	the	correlation	is	not	significant	at	

standard	levels.	According	to	these	figures,	the	integration	of	capital	markets	between	

Philadelphia	and	New	York,	as	well	as	Philadelphia	and	Indianapolis	is	quite	high,	while	the	

integration	of	New	Orleans	and	Philadelphia’s	capital	markets	is	substantially	lower.	

	

Table	1:	Bilateral	correlations	between	regional	U.S.	bank	interest	rates	

	

	 Philadelphia	 New	York	City	 Alexandria	 Indianapolis	 Charleston	

New	York	City	

0.65	 	 	 	 	

Alexandria	

0.24	 0.51	 	 	 	

Indianapolis	

0.68	 0.29	 0.18	 	 	

Charleston	

-0.00	 0.07	 -0.27	 -0.04	 	

New	Orleans	

-0.30	 -0.30	 0.26	 0.27	 0.02	

Notes:	Shown	is	bilateral	correlation	between	two	log	series	for	the	period	1835-55	(n=21).	PHI	is	Philadelphia,	NYC	
is	New	York	City,	ALEX	is	Alexandria,	IND	is	Indianapolis,	CHA	is	Charleston,	and	NO	is	New	Orleans.	Bold:	OLS	

coefficient	is	significant	at	a	5%	level.	

	

For	the	storage	cost	approach	to	capture	this	difference	in	capital	market	integration,	it	

would	have	to	be	the	case	that	the	correlation	of	storage-cost	rates	between	Philadelphia	and	New	

Orleans	is	substantially	lower	than	the	correlation	of	storage-cost	rates	between	Philadelphia	and	

New	York	City.	More	generally,	analogous	to	Table	1	we	compute	all	fifteen	bilateral	correlations	

between	storage	cost-rates.	Our	fourth	criterion	to	assess	the	storage	cost	approach	is	then	how	

strong	the	correlation	between	the	bilateral	correlations	implied	by	bank	rates	and	implied	by	

storage-cost	rates	is;	we	refer	to	this	criterion	as	the	correlation	of	bilateral	correlations.	It	is	

bounded	between	minus	one	and	plus	one.	Positive	values	that	are	relatively	close	to	zero	indicate	

that	the	extent	of	regional	integration	assessed	by	either	using	bank	rates	or	storage	cost	rates	is	

similar.	This	would	mean	that	the	storage	cost	approach	captures	differences	in	the	degree	of	

capital	market	integration.	

A	powerful	extension	of	the	bilateral	correlation	approach	is	to	examine	evidence	for	

cointegration	between	two	series	using	the	autoregressive,	distributed	lag	(ARDL)	error-



	 15	

correction	framework	introduced	by	Pesaran	and	co-authors	(Pesaran	and	Shin	1999,	Pesaran,	

Shin,	and	Smith	2001).	One	attractive	feature	of	the	ARDL	cointegration	framework	is	that	it	can	

be	applied	to	variables	regardless	of	their	underlying	stationary	properties,	that	is,	they	could	be	

either	integrated	of	order	zero	(I	(0);	stationary)	or	integrated	of	order	one	(I	(1);	non-stationary).	

In	contrast,	other	co-integration	approaches	require	all	variables	to	be	integrated	of	order	one.	

This	limits	their	applicability	in	many	settings	because	unit	root	tests	for	determining	the	order	of	

integration	of	at	times	series	often	produce	mixed	results,	with	some	variables	stationary	while	

others	are	non-stationary.		

As	an	example	of	the	ARDL	approach	the	following	sketches	the	analysis	in	an	ARDL(1,1)	

framework,		where	both	the	dependent	and	the	independent	variable	(the	interest	rate	in	one	

regions,	and	the	interest	rate	in	the	other	region,	respectively)	enter	with	one	lag.	The	specific	

form	of	the	ARDL	framework	actually	applied	for	a	given	pair	depends	on	the	optimal	number	of	

lags	which	we	choose	using	information	criteria.20		The	regression	equation	for	the	case	of	an	

ARDL	(1,1)	process,	can	be	written	as	

	

(3) !! = ! + !!!!!! + !!!! + !!!!!! + !! 	

	

The	long-run	equilibrium	relationship	is	obtained	when	!!!! = !! ,∀!,	and	!!!! = !! ,∀!.	The	long-
run	coefficient	is	equal	to		

(4) !! =
!! + !!
1− !!

!! ,∀!. 	

A	reparameterization	that	substitutes	!!	with	!!!! + ∆!!	and	!!	with	!!!! + ∆!!	yields	the	error-
correction	model	(ECM)	representation:	

(5) ∆!! = ! − 1− !! × !!!! −
!! + !!
1− !!

!! − !!∆!! + !! , 	

where	the	short-run	adjustment	coefficient	equals	(!! − 1).		Key	to	testing	for	cointegration	in	this	
framework	is	the	ARDL	bounds	test.	It	is	so	called	because	one	compares	the	F-statistic	of	a	joint	

cointegration	test	with	not	one	but	two	critical	values,	a	lower	one	for	the	case	that	all	variables	

are	stationary	and	a	higher	for	the	case	that	all	variables	are	non-stationary.	If	the	F	test	statistic	is	

either	below	the	lower	critical	value	or	above	the	higher	critical	value,	the	cointegration	test	

																																																								
20	The	specific	form	of	the	deterministic	component	is	also	chosen	using	information	criteria.	
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produces	an	unambiguous	result:	no	cointegration	in	the	former	and	cointegration	in	the	latter	

case.	In	our	application	of	this	framework,	the	fact	that	the	test	might	not	give	an	unambiguous	

answer	plays	only	a	minor	role.	

			

4.2	Main	Results	

	 We	begin	with	the	benchmark	case,	where	the	storage	cost	rates	are	computed	as	the	

average	of	the	first-differences	of	log	grain	prices	from	August	to	December.	Results	are	given	in	

Table	2.	The	storage	cost	rates	yield	an	overall	average	of	7.25%,	see	column	(1).21	Storage	cost	

rates	are	on	average	1.55	percentage	points	higher	than	bank	rates.	There	is	a	substantially	

greater	difference	in	the	degree	to	which	bank	and	grain-based	interest	rates	vary,	as	seen	from	

the	standard	deviations	in	brackets.	One	reason	for	that	may	be	shocks	and	stochastic	trends	

affecting	the	grain	prices.	Bank	rates,	in	contrast,	are	computed	from	bank	balance	sheet	

information	(not	individual	transactions),	which	appears	to	be	relatively	stable	from	year	to	year.		

With	the	next	criterion	we	shed	light	on	the	extent	to	which	the	storage	cost	approach	

captures	the	time	series	variation	in	regional	bank	interest	rates.	The	t-statistic	for	the	regression	

of	storage	cost-rates	on	bank	rates	(and	a	constant)	is	1.86.	While	this	means	that	the	correlation	

is	weakly	significant,	it	also	suggests	that	other	temporary	influences	make	it	difficult	for	the	

storage	cost	rates	to	closely	track	the	year-to-year	variation	in	bank	interest	rates.22	

We	now	turn	to	comparing	bank	rates	and	storage	cost	rates	in	terms	of	criteria	that	are	

based	on	regional	capital	market	differences.	The	first	of	these	compares	the	regional	averages	of	

storage	cost	and	bank	rates.	As	shown	in	column	(3),	the	correlation	between	these	two	sets	of	

region	averages	is	with	0.79	quite	high.	On	the	right	side	of	Table	2	in	row	II,	we	see	that	storage	

cost	rates	imply	differences	in	bilateral	interest	correlations	that	are	positively	correlated,	with	a	

value	of	0.64,	with	the	bilateral	interest	rate	correlations	based	on	bank	rates.	Figure	4	gives	a	

scatter	plot	of	the	relationship	between	correlations	implied	by	the	bank	rates	and	correlations	

implied	by	the	storage	cost	rates.		

	 	

																																																								
21	We	compute	the	grain-based	rates	as	12	times	the	average	monthly	rate.	

22	Running	this	regression	with	fixed	effects	for	each	region	yields	with	a	t-statistic	of	1.83	to	similar	results.	
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Table	2:	Storage	Cost	Approach	and	Capital	Markets	–	Main	Findings	
	
	 (1)	

Interest	

Rate	

Average	

[s.d.]	

(2)	

T-statistic	of		

time	series	

regression 	

(3)	

Correlation	

Of	Average	

Rates	

Across	

Regions	

(4)	

Correlation	of	

Bilateral	

Correlations	

	

(I)	Bank	Rates		

5.70	

[1.68]	

	 	 	

(II)	Storage	Cost	Rates	Benchmark	

7.25	

[46.12]	

1.86	 0.79	 0.64	

(III)	Storage	Cost	Rates	Years	1835-1855		

9.77	

[48.46]	

1.64	 0.77	 0.64	

(IV)	Storage	Cost	Rates	Years	1835-55,	

Wheat	

12.19	

[48.83]	

1.75	 0.80	 0.69	

Notes:	Storage	Cost	Rates	are	computed	as	the	average	of	the	first-differences	of	log	grain	prices	from	August	to	
December.	The	Benchmark	(II)	employs	all	years	(1815-1855)	and	all	regions	(PHI,	NYC,	ALEX,	IND,	NO,	and	CHA;	

n=181);	Years	1835-55	(III)	employs	data	only	for	the	years	1835-55	(n=109);	Years	1835-55,	Wheat	(IV)	uses	data	

only	for	years	1835-55	for	the	five	wheat	series	(PHI,	NYC,	ALEX,	IND,	and	NO;	n	=	88).	PHI	is	Philadelphia,	NYC	is	New	

York	City,	ALEX	is	Alexandria,	IND	is	Indianapolis,	CHA	is	Charleston,	and	NO	is	New	Orleans.	Colum	(1)	reports	

average	and	standard	deviation	of	bank	and	storage	cost	rates	across	all	regions	and	years;	column	(2)	reports	t-

statistic	of	slope	coefficient	from	a	stacked	OLS	regression	of	storage	cost	rates	on	log	17bank	rates;	column	(3)	

reports	the	correlation	of	average	bank	rates	with	average	storage	cost	rates	across	regions;	and	column	(4)	shows	

the	correlation	of	bilateral	interest	rate	correlations	implied	by	bank	rates	with	the	bilateral	interest	rate	correlations	

implied	by	storage	cost	rates.	See	text	for	further	details.		

	

The	two	right-most	columns	of	Table	2	(and	row	II)	suggest	that	the	storage	cost	approach	

captures	the	main	differences	in	the	development	of	regional	capital	markets.	

We	have	also	employed	the	ARDL	cointegration	approach	in	this	context,	beginning	with	all	

bilateral	pairs	of	the	bank	rates.	Employing	the	ARDL	approach	has	a	number	of	limitations	in	our	

context.	First,	as	detailed	in	Appendix	A.3,	the	ARDL	approach	is	relatively	indiscriminate,	as	we	

find	that	only	20%	of	the	bank	region	pairs	are	not	cointegrated.	Furthermore,	the	result	of	

pervasive	cointegration	of	bank	rates	is	surprising	in	the	light	of	the	average	of	the	bilateral	bank	

rate	correlations,	which	is	with	0.15	not	far	from	zero	(see	Table	1	above).		
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We	also	find	that	across	different	pairs	the	strength	of	the	evidence	for	cointegration	is	increasing	

with	the	data’s	time	series	length.23	Part	of	the	explanation	for	these	findings	surely	is	the	

relatively	short	time	series	length	in	many	of	our	pairs.	Accounting	for	the	optimally	chosen	

number	of	lags,	we	have	18	observations	or	less	in	60%	of	the	bilateral	pairs,	at	the	same	time	

when	statistics	for	the	ARDL	small-sample	case	apply	in	the	case	of	30	to	80	observations	

(Narayan	2005).	When	we	focus	on	the	three	bilateral	pairs	for	which	there	are	more	than	thirty	

bank	rate	observations	(Philadelphia-Charleston,	Philadelphia-Alexandria,	and	Alexandria-

Charleston),	the	rank	correlation	between	the	cointegration	F	statistics	for	the	bank	rates	and	the	

storage	cost	rates	is	0.71;	however,	employing	the	ARDL	criterion	on	the	basis	of	such	a	small	

sample	(three	bilateral	pairs)	cannot	support	strong	inferences.	All	in	all,	there	is	too	little	data	in	

the	time	series	dimension	for	employing	the	ARDL	approach,	and	the	analysis	will	focus	on	our	

other	criteria	for	this	assessment.	

	

Table	2	also	reports	two	other	sets	of	results	in	rows	(III)	and	(IV).	First,	during	the	later	

part	of	the	sample	period	there	is	generally	more	data	available.	For	example,	during	the	years	

1835	to	1855	there	is	data	on	about	87%	of	all	possible	bank	interest	rates	for	these	six	regions.	

To	examine	the	influence	of	this	change	in	data	availability	we	focus	the	attention	on	the	years	

1835	to	1855.	Another	advantage	is	that	the	analysis	gives	more	uniform	weight	across	regions.	

The	average	interest	rate	is	now	9.8%,	see	row	(III),	which	is	higher	than	the	average	bank	rate	for	

1835	to	1855	(6.1%;	not	shown).	Further,	the	t-statistic	of	the	regression	of	storage	cost	rates	on	

bank	rates	is	somewhat	lower.	In	contrast,	the	correlation	of	average	interest	rates	across	regions	

and	the	correlation	of	bilateral	correlations	are	both	very	similar	to	before.	Overall,	changes	in	the	

availability	of	data	and	sample	composition	have	a	limited	impact	on	the	results.	

	 We	reduce	the	sample	size	further	by	dropping	Charleston	(South	Carolina),	for	which	the	

storage	cost	approach	employs	rice	and	not	wheat	prices.		As	shown	in	row	(IV)	this	raises	the	

average	rate	while	the	t-statistic	of	the	OLS	regression	of	storage	cost	on	bank	rates	is	similar	to	

before.	The	correlation	of	the	regional	averages	is	now	0.80,	and	also	the	correlation	between	

bilateral	correlations	based	on	bank	rates	and	storage	cost	rates	is	slightly	higher	than	before.	

This	suggests	that	while	employing	price	data	for	the	same	grain	is	helpful	our	results	for	criteria	

																																																								
23	For	every	10	more	observations,	on	average	the	F-statistic	of	the	ARDL	bounds	test	increases	by	about	4,	when	the	

critical	value	is	between	4	and	5	in	our	case;	see	Appendix	A.3	and	Narayan	(2005).	
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that	capture	differences	in	regional	capital	market	development	(columns	(3)	and	(4))	are	not	

much	affected.		

To	summarize,	this	analysis	of	the	benchmark	as	well	as	the	two	extensions	suggests	that	

the	storage	cost	approach	works	quite	well.	While	it	can	be	challenging	to	estimate	region-by-year	

specific	interest	rates,	capital	development	differences	across	regions	are	captured	fairly	

accurately,	both	in	terms	of	average	interest	rates	and	in	terms	of	capital	market	integration.	In	

the	next	section	we	analyze	the	robustness	of	these	results	in	a	number	of	important	dimensions.	

	
Figure	4:	Capital	Market	Integration	with	Bank	vs.	Storage	Cost	Rates	

	

4.3	Robustness	of	the	Storage	Cost	Approach	

Our	robustness	checks	can	roughly	be	divided	into	two	categories:	those	that	deal	with	

issues	concerning	the	bank	interest	rates,	such	as	endogeneity	and	measurement	error,	and	those	

that	address	potential	problems	with	storage	cost	rates,	such	as	the	timing	of	the	harvest	or	the	

treatment	of	outliers.		
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4.3.1	Bank	Interest	Rates:	Measurement	Error	and	Endogeneity	

	

In	our	benchmark	analysis,	we	make	use	of	bank	interest	rate	data	provided	by	Bodenhorn	

and	Rock	off	(1992).	Since	these	authors	have	not	all	the	relevant	information,	Bodenhorn	and	

Rokoff	(1992)	have	to	make	a	number	of	simplifying	assumptions.	For	our	empirical	analysis	this	

means	that	the	bank	rates	are	measured	with	error.	Ideally	we	would	un-do	their	assumptions	one	

by	one,	however,	apart	from	the	fact	that	we	do	not	have	better	information	than	Bodenhorn-

Rokoff	at	our	disposal,	the	primary	focus	of	this	paper	is	to	assess	the	storage	cost	approach,	not	to	

improve	on	Bodenhorn	and	Rokoff’s	(1992)	estimation	of	bank	interest	rates.		Consequently,	we	

thus	take	a	different	approach.	

	Note	that	to	the	extent	that	measurement	error	is	unsystematic	(“classical”),	this	would	

bias	us	against	finding	a	strong	correlation	between	bank	rates	and	storage	cost	rates,	and	

similarly,	against	a	strong	correlation	of	measures	derived	from	bank	rates	and	storage	cost	rates,	

respectively.	While	we	cannot	un-do	the	measurement	error	that	is	in	the	bank	rates	we	can	

examine	to	what	extent	the	storage	cost	approach	yields	results	in	line	with	the	bank	rates	as	we	

increase	the	amount	of	classical	measurement	error	in	the	bank	rates.	Further	below	we	address	

the	possibility	that	there	are	systematic	biases	in	the	bank	rates,	which	can	be	seen	as	a	form	of	

non-classical	measurement	error.	

	

Table	3:	Measurement	Error	in	Bank	Rates	
	
	 (1)	

Bank	Interest	

Rate	

Average	

	

(2)	

T-statistic	of		

time	series	

regression 	

(3)	

Correlation	

of	Average	

Rates	Across	

Regions	

(4)	

Correlation	of	

Bilateral	Correlations	

	

(I)	Bank	Rates		 5.70	 1.86	 0.79	 0.64	

(II)	Error	(0,0.5)	 5.72	 1.44	 0.78	 0.51	

(III)	Error	(0,1)	 5.71	 1.70	 0.78	 0.31	

Notes:		Column	(1)	reports	the	average	of	bank	rates	across	all	years	and	regions.	Columns	(2),	(3),	and	(4)	report	
statistics	comparing	(results	based	on)	bank	rates	with	storage	cost	rates.	Row	(II)	adds	a	normally	distributed	error	
term	with	mean	0	and	standard	deviation	0.5	to	the	bank	rates,	and	reports	the	average	values	of	100	simulations.	

Row	(III)	is	analogous	except	with	a	standard	deviation	of	1.	
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Table	3	shows	the	results.	First,	we	see	that	classical	measurement	error	does	essentially	

not	affect	the	correlation	of	average	bank	and	storage	cost	rates,	see	column	(3).	This	makes	sense	

because	since	the	measurement	error	is	classical,	as	long	as	the	sample	size	is	large	enough	(and	

we	report	average	results	from	100	simulations)	the	averages	of	the	bank	rates	are	not	affected.	

The	time	series	regression	with	measurement	error	yields	somewhat	weaker	results,	see	column	

(2),	and	the	fit	for	our	correlation	of	bilateral	correlation	criterion	worsens,	as	one	would	expect	

from	the	least	squares	result	that	classical	measurement	error	biases	the	coefficient	towards	zero.	

Non-classical	measurement	error	may	arise	in	a	number	of	ways.	An	important	possibility	

has	to	do	with	the	potential	endogeneity	of	bank	interest	rates	because	some	of	the	regional	banks	

were	state	banks	that	might	be	more	prone	to	political	influence	than	other	banks.	To	evaluate	this	

possibility,	we	exclude	data	from	state-owned	banks	in	Indiana	and	South	Carolina.	In	addition,	we	

simulate	stronger	endogeneity	by	increasing	the	estimated	bank	rates	in	years	with	relatively	high	

grain	prices	or	high	changes	in	grain	prices	to	see	how	this	affects	the	match	between	bank	

interest	rates	and	storage	cost	rates.			

	

While	we	have	taken	the	bank	interest	rates	as	exogenous	so	far,	there	are	several	reasons	

why	they	may	in	fact	be	endogenous	in	our	analysis.	One	potential	source	of	endogeneity	might	be	

the	influence	of	state-owned	banks	on	the	calculated	bank	rates.	In	particular,	the	data	from	

Bodenhorn	and	Rokoff	(1992)	includes	interest	rates	from	the	state	Bank	of	Indiana	(established	

in	1833)	and	the	Bank	of	the	State	of	South	Carolina	(established	in	1812).	Since	it	is	possible	that	

those	banks	adjusted	interest	rates	in	response	to	changes	in	grain	prices	for	political	reasons,	

including	to	keep	rates	low	when	grain	prices	spiked	up-	this	could	lead	to	an	endogeneity	bias.	To	

examine	the	influence	of	this	on	the	results,	in	Table	4	we	repeat	the	benchmark	analysis	after	

excluding	either	Charleston	(row	II),	or	Indianapolis	(row	III),	or	both	from	the	analysis	(row	IV).		

In	general,	the	results	are	quite	robust	to	those	changes,	and	there	is	no	obvious	pattern	in	

how	the	results	change.	The	overall	average	storage	cost	rate	can	be	higher	or	lower	when	state	

banks	are	excluded,	see	column	(1),	and	the	same	is	true	for	the	t-statistic	in	the	time	series	

regression	and	the	correlation	of	the	bilateral	interest	rate	correlations	(columns	(2)	and	(4)).		In	

contrast,	the	correlation	of	storage	cost	averages	with	bank	rate	averages	is	higher	once	the	state	

banks	are	excluded	from	the	analysis	(column	(3)).	Overall,	this	indicates	that	any	endogeneity	in	
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the	analysis	that	might	be	arising	through	state	bank	behavior	is	not	qualitatively	affecting	our	

results.		

	

Table	4:	State	Banks	and	Endogeneity	
	
	 (1)	

Storage	

Cost	Rate	

Average	

	

(2)	

T-statistic	of		

time	series	

regression 	

(3)	

Correlation	

Of	Average	

Rates	

Across	

Regions	

(4)	

Correlation	of	

Bilateral	Correlations	

	

(I)	Benchmark		 7.25	 1.86	 0.79	 0.64	

(II)	Excluding	Charleston	 9.82	 1.97	 0.87	 0.69	

(III)	Excluding	Indianapolis	 6.96	 1.82	 0.84	 0.35	

(IV)	Excluding	Charleston	&	

Indianapolis	

9.71	 2.09	 0.99	 0.50	

Notes:	The	average	bank	rate	across	all	regions	and	years	is	5.70.	

		

Another	potential	endogeneity	concern	might	be	due	to	omitted	variables	that	affect	both	

bank	rates	and	grain	price	changes	at	the	same	time.	For	example,	a	bad	crop	year	might	lead	to	a	

flat	grain	price	gradient	while	at	the	same	time	depressing	effective	bank	interest	rates,	due	to	a	

rise	in	loan	default	rates.	As	a	second	example,	general	inflation	within	the	harvest	year	could	lead	

to	overstated	growth	in	storage	costs	as	well	as	larger	changes	in	crop	prices.	Both	of	these	

omitted	variables	might	increase	the	correlation	between	bank	rates	and	grain	prices,	but	for	a	

reason	other	than	that	the	storage	approach	performs	well.		

To	assess	how	important	such	issues	might	be	for	our	comparison	of	bank	and	storage	cost	

rates,	we	simulate	this	source	of	endogeneity	using	data	in	which	the	correlation	between	bank	

rates	and	grain	prices	has	been	systematically	increased;	see	Table	5	for	the	results.	In	particular,	

for	each	market	we	increase	bank	rates	by	10	percent	for	years	in	which	the	average	grain	price	or	

the	change	in	grain	prices	was	relatively	high	(rows	II	and	III).	Increasing	bank	rates	by	10	percent	

at	times	of	high	grain	price	changes	increases	the	t-statistic	in	the	time	series	regression	(column	

2,	row	III),	which	may	not	be	too	surprising	given	picking	up	common	year-to-year	changes	of	

storage	cost	and	bank	interest	rates	is	what	this	measure	is	designed	for.	At	the	same	time,	even	
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though	we	have	deliberately	increased	these	co-movements,	there	is	little	change	in	our	

correlation	of	correlation	measure	(column	(4)),	and	the	correlation	of	average	bank	and	average	

storage	cost	rates	actually	falls	slightly	(column	(3)).	Based	on	these	results	it	does	not	appear	that	

endogeneity	due	to	omit	variables	is	an	important	driver	of	our	results.	

In	a	related	analysis	we	split	the	sample	into	years	with	above-average	inflation	and	below-

average	inflation	(as	measured	by	grain	price	changes),	and	repeat	the	benchmark	analysis	(row	

IV).		As	should	be	expected,	the	average	bank	rate	is	higher	in	the	high-inflation	sample	(5.82	vs	

5.59),	confirming	the	main	premise	of	the	storage	cost	approach.	The	correlation	of	average	

storage	cost	with	interest	rates	is	relatively	high	for	both	high-	and	low-inflations	samples	

(column	(3)),	while	the	time	series	correlation	as	well	as	the	correlation	of	bilateral	correlations	is	

higher	for	the	low-inflations	sample	(columns	(2)	and	(4),	respectively).24	Generally,	these	results	

do	not	suggest	that	inflation	is	important	in	bringing	about	the	relation	between	storage	cost	and	

bank	interest	rates	that	we	find.		Analogously	to	the	high-	versus	low	inflation	analysis,	row	V	

reports	results	for	high	versus	low	grain	price	levels.25	The	lower	time	series	length	affects	some	

of	our	results	(especially	columns	(2)	and	(4)),	however	there	is	little	indication	that	either	

relatively	high	or	relatively	low	prices	are	very	important	for	our	results.	Overall,	our	analyses	so	

far	have	shown	that	the	possible	endogeneity	of	bank	rates	due	to	a	number	of	reasons	does	not	

seem	to	be	affecting	our	results	in	a	major	way.	

	 	

																																																								
24	The	generally	lower	values	in	row	IV,	column	(4)	also	suggest	that	market	integration	analysis	with	the	storage	cost	
approach	performs	better	when	the	time	series	is	longer;	this	confirms	to	some	extent	our	findings	with	the	ARDL	

cointegration	approach.	

25	Furthermore,	periods	of	high	grain	prices	tend	to	be	periods	of	high	convenience	yields	(bit	in	equation	(1),	because	

if	grain	prices	are	high	inventories	tend	to	be	low	so	that	the	benefit	of	holding	grain	is	relatively	high.	Thus,	rows	II	

and	V	shed	also	light	on	the	influence	of	time-varying	convenience	yields.	
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Table	5:	Endogeneity	through	Omitted	Variables	
	
	 (1)	

Bank	Rate	

Average	

	

(2)	

T-statistic	of		

time	series	

regression 	

(3)	

Correlation	

Of	Average	

Rates	Across	

Regions	

(4)	

Correlation	of	

Bilateral	

Correlations	

	

(I)	Benchmark	 5.70	 1.86	 0.79	 0.64	

(II)	↑	10%	if	price	is	high	 5.91	 1.82	 0.76	 0.66	

(III)	↑	10%	if	price	change	is	

high	

5.91	 3.15	 0.77	 0.67	

(III)	High	inflation	sample	

Low	inflation	sample	

5.82	

5.59	

0.41	

2.41	

0.83	

0.89	

0.17	

0.27	

(IV)	High	grain	price	sample	

Low	grain	price	sample	

5.93	

5.50	

1.24	

1.37	

0.68	

0.77	

0.38	

0.31	

Notes:	In	all	rows,	storage	cost	rates	are	computed	as	the	average	of	first-differences	of	log	grain	prices	in	August	to	
December.		Row	II	increases	the	bank	rate	by	10%	whenever	the	yearly	average	grain	price	is	above	the	median	grain	
price.	Row	III	increases	the	bank	rate	by	10%	whenever	the	yearly	change	in	grain	prices	is	above	the	median	grain	
price	change.	Row	IV,	High	inflation	sample	only	uses	observations	from	years	in	which	the	average	grain	price	change	
was	above	the	median,	and	vice	versa	below	the	median	grain	price	change	for	Low	inflation	sample.	Row	V,	High	grain	
price	sample	only	uses	observations	from	years	in	which	the	average	grain	price	was	above	the	median	grain	price,	
and	vice	versa	for	the	Low	grain	price	sample.	

	

4.3.2	Storage	Cost	Rates:	Storage	Months,	Outliers,	and	Measurement	Error	

The	storage	cost	rates	have	been	calculated	as	the	average	of	changes	in	grain	prices	from	

August	to	December,	for	a	given	region	and	year.	It	is	likely,	however,	that	price	gradients	are	

affected	by	factors	that	are	unobserved	to	us,	for	example	year-to-year	variation	in	the	timing	of	

the	harvest	or	changes	in	the	cost	of	storage	through	weather	shocks.	In	terms	of	our	theoretical	

framework	of	section	2,	such	shocks	would	induce	time-variation	in	sit	around	the	regional	

average	physical	storage	cost.	Table	6	shows	the	results.	We	begin	by	computing	the	price	

gradient	by	taking	the	median	instead	of	the	average	of	the	monthly	price	changes.	In	this	case,	the	

storage	cost	rates	do	not	replicate	the	behavior	of	the	bank	rates	as	well	(compare	rows	II	and	III	

of	Table	6),	although	the	extent	of	this	is	smaller	when	criteria	are	employed	that	consider	

differences	in	regional	capital	market	performance	(columns	(3)	and	(4)).	In	many	empirical	

applications	there	may	be	uncertainty	with	regards	to	the	harvest	time	in	a	given	region	and	year.	
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We	therefore	consider	adding	another	month	to	the	period	from	which	the	price	gradient	is	

computed.	As	Table	6	shows,	this	raises	somewhat	the	average	rate,	while	the	time	series	t-

statistic	falls	(columns	1	and	2,	Row	IV,	respectively).	In	contrast,	adding	another	storage	month	

does	not	worsen	the	fit	in	the	case	of	our	market	integration	criterion	(column	4).			

While	we	have	seen	that,	in	general,	the	variation	in	storage	cost	rate	estimates	is	greater	

than	for	bank	rates	(Table	2,	column	1),	generally	it	is	important	to	see	whether	the	correlations	

we	find	are	mostly	due	to	a	number	of	extreme	observations	or	whether	they	reflect	a	broader	

pattern.		Winsorizing	our	benchmark	storage	cost	rates	at	the	1st	and	99th	percentile,	we	see	that	

in	terms	of	most	criteria	the	storage	cost	approach	performs	somewhat	better	than	before	

(compare	rows	V	and	II,	respectively).	This	indicates	that	extreme	values	do	not	drive	our	results.	

Discarding	additional	information	does	not	necessarily	improve	the	performance	of	the	storage	

cost	approach,	as	shown	in	row	VI.	

Another	question	is	whether	one	should	focus	the	analysis	on	positive	price	changes,	given	

that	interest	rates	are	typically	greater	than	zero.		Our	results	indicate	that	this	does	not	seem	to	

be	a	good	idea	(row	VII).	While	it	is	clear	that	dropping	negative	price	changes	will	increase	the	

overall	interest	rate	average	(column	1),	it	also	lowers	the	t-statistic	of	the	time	series	regression	

as	well	as	the	correlation	between	bank	rate	and	storage	cost	rate	averages	(columns	2	and	3,	

respectively).	Furthermore,	when	only	using	positive	price	changes	the	storage	cost	approach	

does	not	capture	differences	in	regional	market	integration	anymore	(see	column	4).		Thus,	when	

applying	the	storage	cost	approach	it	is	important	to	preserve	the	symmetry	of	the	analysis,	using	

the	full	distribution	of	storage	cost	rate	estimates.		

The	last	row	of	Table	6	shows	results	for	applying	a	particular	threshold	for	the	price	

gradient	calculation.	Specifically,	for	computing	the	region-by-year	specific	price	gradient	we	only	

include	months	for	which	typically	there	is	a	one-month	price	change	of	0.4%	or	more.	In	

empirical	applications,	it	might	be	difficult	at	time	to	distinguish	low	interest	rates	from	noise,	and	

applying	a	threshold	can	be	beneficial	in	these	cases.	Given	that	in	a	particular	month	the	price	

change	is	above	the	threshold,	we	use	all	data	to	include	both	high	and	low	values	in	the	

calculation	of	the	average	price	gradient.	We	see	that	while	applying	the	threshold	lowers	the	t-

statistic	in	the	time	series	regression,	differences	in	regional	market	performance	continue	to	be	

captured	as	they	were	before	(see	row	VIII,	columns	3	and	4).		
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Table	6:	Alternative	Storage	Cost	Rate	Estimates	
	
	 (1)	

Storage	Cost	

Rate	Average	

	

(2)	

T-statistic	of	

time	series	

regression 	

(3)	

Correlation	of	

Average	

Rates	Across	

Regions	

(4)	

Correlation	of	

Bilateral	Correlations	

	

(I)	Benchmark		 7.25	 1.86	 0.79	 0.64	

(II)	Median	 10.12	 0.98	 0.77	 0.54	

(III)	Storage	Months	 7.67	 1.29	 0.62	 0.65	

(IV)	Winsorize	1/99	 7.40	 1.96	 0.86	 0.62	

(V)	Winsorize	5/95	 7.43	 1.46	 0.89	 0.53	

(VI)	Positive	 60.86	 0.71	 0.53	 0.06	

(VII)	Exceeds	4.8%	 25.02	 0.65	 0.77	 0.62	

Notes:	Average	bank	rates	are	5.70	across	all	regions	and	years.	Row	II	computes	price	gradient	as	median	instead	of	
the	average	off	August	to	December	one-period	log	price	differences;	Row	III		changes	the	period	from	which	price	
gradients	are	computed	from	August	to	December	to	August	to	January;	in	Row	IV	price	changes	below	1st	percentile	
are	replaced	by	1st	percentile,	price	changes	above	99th	percentile	are	replaced	by	99th	percentile;	in	Row	V	price	
changes	below	5th	percentile	are	replaced	by	5th	percentile,	price	changes	above	95th	percentile	are	replaced	by	95th	

percentile;	Row	VI	drops	non-positive	price	changes	in	gradient	calculation;	in	Row	VII	to	compute	the	price	gradient	
we	use	only	months	that	on	average	have	monthly	price	changes	of	or	above	0.4%.		

	

4.3.3	Time	Series	Filtering	and	Storage	Cost	Rates	

	

Usually	employed	in	business	cycle	analysis,	time	series	filtering	techniques	are	designed	

to	separate	the	trend	from	cyclical	components	in	time	series	behavior.	See	Hamilton	(1994)	and	

Wei	(2006)	for	a	discussion	of	time	series	filtering	techniques.	In	the	context	of	the	storage	cost	

approach	they	might	be	helpful	to	suppress	stochastic	shocks	and	trends	other	than	the	cyclical	

harvest	pattern	of	Figure	1.26		We	have	employed	a	number	of	them	to	the	logged	price	data	before	

calculating	storage	cost	rates	as	the	average	of	log	price	differences	in	August	to	December	for	a	

given	region	and	year,	as	before.	Table	7	shows	results	for	the	Christiano-Fitzgerald	(2003)	and	

the	Butterworth	(1930)	filters;	additional	details	are	given	in	Appendix	A.2.		

	

																																																								
26	For	example,	the	Butterworth	(1930)	filter	reweights	frequencies	so	as	to	bring	out	the	desired	cyclical	properties	

in	the	data	both	at	the	low-frequency	and	the	high-frequency	end,	making	it	a	“bandpass”	filter.	The	assumptions	

underlying	any	of	these	time	series	filters	make	them	more	or	less	well	suited	to	approximate	the	cyclical	price	

pattern	of	Figure	1	depending	on	parameters	of	the	storage	model.	
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Table	7:	The	Storage	Cost	Approach	and	Time	Series	Filtering	
	
	 (1)	

Number	of		

Parameter	Settings	

(2)	

Storage	Cost	

Rate	Average	

	

(3)	

T-statistic	of	

time	series	

regression 	

(4)	

Correlation	of	

Average	

Rates	Across	

Regions	

(5)	

Correlation	of	

Bilateral	

Correlations	

	

(I)	Benchmark		 1	 7.25	 1.86	 0.79	 0.64	

(II)	Christiano-	

Fitzgerald	

(Central	90%	

range)	

100	 5.74	

(2.23-8.34)	

1.88	

(1.26-2.53)	

0.23	

(-0.67-0.80)	

0.60	

(0.56-0.67)	

(III)	Butterworth	

(Central	90%	

range)	

96	 5.08	

(2.79-6.72)	

1.77	

(1.08-2.55)	

0.48	

(0.22-0.70)	

0.65	

(0.57-0.70)	

Notes:	Average	of	the	bank	rates	is	5.70.	Column	(1)	shows	for	each	time	series	filter	the	number	of	different	
parameter	settings	we	have	employed.	Full	results	are	given	in	Appendix	A.2.		

	

As	seen	in	row	II,	the	Christiano-Fitzgerald	filtered	data	produces	good	results	in	a	number	

of	dimensions,	including	the	overall	average	(column	2)	and	the	correlation	of	bilateral	

correlations	(column	4).	In	parentheses,	the	table	shows	the	lower	5th	and	upper	95th	percentile	of	

our	results	across	different	parameter	settings,	to	provide	information	on	how	widely	the	results	

vary.	The	main	exception	to	the	good	performance	of	the	Christiano-Fitzgerald	filter	is	that	

storage	rates	based	on	it	often	do	not	pick	up	the	correlation	of	bank	rates	across	regions	(column	

4).	This	is	important	because	optimal	parameter	settings	of	the	filter	are	typically	unknown.	In	

this	respect	the	Butterworth	filter	is	more	robust	because	even	when	the	parameter	settings	of	the	

filter	are	off	it	tends	to	produce	at	least	acceptable	results	according	to	all	criteria	(the	lowest	

correlation	of	average	bank	and	storage	rates	is	0.22,	see	column	4	of	row	III).	

Overall,	these	results	indicate	that	our	findings	are	generally	robust	to	filtering	the	grain	

price	data	using	well-known	time	series	techniques.	At	the	same	time,	we	note	that	the	benchmark	

storage	cost	approach,	without	any	filtering,	appears	to	work	quite	well.27	This	is	encouraging	

																																																								
27	The	full	results	in	Appendix	A.2	show	that	most	other	filtering	techniques	perform	no	better	than	the	two	filters	

considered	so	far.	
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because	it	shows	that	the	results	are	not	predominantly	driven	by	common	shocks	that	are	left	in	

the	unfiltered	data	series,	which	further	increases	our	confidence	in	the	robustness	of	our	results.	

5.	Conclusions	

This	paper	has	employed	regional	bank	rates	and	matching	grain	prices	for	the	early	19th	

century	in	the	United	States	to	investigate	how	well	the	storage	cost	approach	captures	the	actual	

level	of	capital	market	development	using	a	number	of	different	criteria.	The	analysis	has	shown	

that	the	storage	cost	approach	is	useful	for	quantifying	the	performance	of	capital	markets.	While	

the	estimation	of	region-	and	year-specific	interest	rates	can	be	challenging,	the	approach	reflects	

differences	in	capital	market	development	quite	well.		

This	may	not	be	too	surprising	after	all.	While	there	are	important	differences	in	grain	

price	determinants--	including	storage	technology,	data	collection,	and	institutions--,	and	explicitly	

modeling	all	of	these	is	often	impossible	due	to	lack	of	data,	it	is	also	often	the	case	that	many	

determinants	are	common	to	larger	regional	areas	and	change	only	slowly	over	time.	It	is	then	the	

case	that	spurious	influences	can	often	be	eliminated	by	a	comparison	across	regions,	and	as	a	

consequence	the	storage	cost	approach	to	capital	markets	works	well	when	taking	a	comparative	

approach.	We	conclude	that	the	storage	cost	approach	is	a	useful	tool	in	contexts	when	other	

reliable	capital	market	information	is	not	available.	
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Appendix	
	

Table	A.1:	Regional	U.S.	bank	interest	rates,	1815-1855	



	 34	

Year	 New	York	City	 Philadelphia	 New	Orleans	 Indiana	 South	

Carolina	

Virginia	

1815	
	

4.62	

	 	

8.55	

	

1816	
	

5.70	

	 	

5.55	

	

1817	
	

3.69	

	 	

5.45	

	

1818	
	

5.55	

	 	

8.35	

	

1819	
	

3.84	

	 	

4.23	

	

1820	
	

5.60	

	 	

4.36	

	

1821	
	

4.78	

	 	

4.34	

	

1822	
	

5.65	

	 	

5.77	 4.08	

1823	
	

3.42	

	 	

4.86	 3.81	

1824	
	

5.21	

	 	

4.62	 4.14	

1825	
	

4.24	

	 	

4.15	 4.61	

1826	
	

5.86	

	 	

2.53	 3.97	

1827	
	

4.95	

	 	

7.81	 4.97	

1828	
	

5.82	

	 	 4.50	

3.97	

1829	
	

4.58	

	 	

4.09	 4.23	

1830	
	

4.97	

	 	

4.14	 4.45	

1831	
	

5.15	

	 	

4.49	 4.84	

1832	
	

4.48	

	 	

4.24	 6.28	

1833	 5.03	 6.54	

	 	

4.37	

8.02	

1834	 5.69	 3.41	 6.82	

	

3.54	 3.75	

1835	
5.11	

6.12	 7.54	 7.97	 4.12	 4.43	

1836	 6.82	 5.74	

7.16	

7.60	 4.37	 7.22	

1837	 5.91	 4.75	 11.28	 8.50	 6.11	 5.70	

1838	 5.33	 5.47	 7.68	 8.35	 6.00	 4.41	

1839	 4.24	 3.44	 10.15	

	

5.11	 6.78	

1840	 5.57	 5.73	 9.01	 	 3.10	 5.43	

1841	
5.27	 4.41	 8.86	

7.65	
5.75	 4.21	



	 35	

1842	 3.95	 2.50	 8.85	 5.05	 5.97	

4.20	

1843	 5.37	 3.72	

	

2.85	 6.2	 4.12	

1844	
5.80	

5.18	

	

5.74	 6.03	 4.15	

1845	 5.21	 4.20	

	

7.86	 5.76	

5.10	

1846	 4.69	 6.39	

	 	

5.42	

3.95	

1847	
5.04	 5.21	

	

6.32	 7.11	 4.99	

1848	 5.32	 4.83	 7.73	 8.36	 5.07	 4.43	

1849	 7.17	 6.35	 4.84	 7.77	 6.03	 4.19	

1850	 5.62	 6.47	 7.42	 9.45	 9.28	 4.53	

1851	 6.32	 4.69	 7.79	 5.95	 7.67	 4.72	

1852	 7.23	 5.56	 7.91	 6.81	 6.38	 5.53	

1853	 4.99	 5.10	 7.38	

6.37	

6.71	 4.46	

1854	 4.98	 5.31	 8.50	 7.70	 5.57	

5.04	

1855	
5.87	 5.70	 12.81	 10.89	 6.03	 5.18	

	 	 	 	 	 	 	

Mean	 5.50	 5.00	 8.34	 7.29	 5.46	 4.82	

Std.Dev.	 0.82	 0.94	 1.81	 1.78	 1.47	 0.99	

P-value	
for	test	
of	equal	
mean	

<	0.001	 <	0.001	 n/a	 0.30	 <	0.001	 <	0.001	

Notes:	Source	is	Bodenhorn	and	Rokoff	(1992).	P-value	for	test	of	equal	mean	is	compared	to	New	Orleans.		
For	the	co-integration	analysis,	missing	values	for	New	Orleans	and	Indiana	during	the	years	1835	to	1855	are	

linearly	interpolated.	
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A.2	Extended	Results	for	Filtered	Grain	Price	Data	
	
The	following	presents	results	for	each	individual	parameter	setting	for	the	Christiano-Fitzgerald,	

Baxter-King,	Butterworth,	and	Moving-Average	filtering	techniques.	Detailed	results	for	the	

Hodrik-Prescott,	Non-linear,	and	Exponential	filters	are	available	upon	request.	

	

We	begin	by	eliminating	stochastic	shocks	and	trends	that	may	overlap	the	see-saw	pattern	of	

Figure	1	by	applying	a	number	of	standard	time	series	filtering	techniques,	namely	the	following:	

(i)	Christiano-Fitzgerald	(2003),	(ii)	Butterworth	(1930),	(iii)	Baxter-King	(1999),	and	(iv)	Moving	

average	filters.	In	each	case,	we	feed	the	log	monthly	grain	prices	through	one	of	the	filters	before	

calculating	the	within-harvest	year	price	gradient,	as	before.	As	an	extension	we	will	also	show	

results	based	on	(a)	Hodrick-Prescott,	(b)	Exponential,	and	(c)	Nonlinear	time	series	filtering	

techniques.	The	filters	(i)	to	(iv)	have	the	advantage	that	the	degree	of	smoothing	depends	on	one	

(or	a	small	number)	of	parameters	that	substantially	change	the	time	series	properties	of	the	

series,	which	allows	for	an	expanded	robustness	analysis.	This	is	not	the	case	for	the	filters	(a)	to	

(c).	

Table	A.2.1	shows	the	average	results	for	each	filtering	technique,	together	with	results	

based	on	the	benchmark	grain	rates	as	well	as	the	bank	rates.	
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Table	A.2.1:	The	Grain	Price	Approach	and	Time	Series	Filtering	
	
	 (1)	

Number	of		

Parameter	

Settings	

(2)	

Storage	Cost	

Rate	Average	

	

(3)	

T-statistic	of	

time	series	

regression 	

(4)	

Correlation	of	

Average	

Rates	Across	

Regions	

(5)	

Correlation	of	

Bilateral	Correlations	

	

Storage	Cost	

Rate	Benchmark		

	 7.25	 1.86	 0.79	 0.64	

Christiano-	

Fitzgerald	

100	 5.74	 1.88	 0.23	 0.60	

Butterworth	 96	 5.08	 1.77	 0.48	 0.65	

Baxter-	

King	

144	 5.56	 1.53	 0.61	 0.57	

Moving-	

Average	

72	 0.94	 0.58	 0.24	 0.44	

Hodrik-	

Prescott	

4	 6.27	 1.61	 0.70	 0.65	

Exponential	 18	 -0.36	 0.78	 -0.36	 0.41	

Nonlinear	 5	 5.03	 1.33	 0.65	 0.58	

Notes:	The	average	bank	rate	across	all	regions	and	years	is	5.70.	

	

Column	1	in	Table	A.2.1	shows,	for	each	filter,	the	number	of	methods	(corresponding	to	

parameter	settings)	for	which	the	reported	means	are	based	(for	Bank	rates	and	Benchmark,	N	=	

1).	From	these	results	we	conclude,	first,	that	across	the	board,	filtering	typically	lowers	the	grain-

price	based	interest	rate	estimate;	the	means	in	column	(2)	are	all	below	those	for	both	the	bank	

rates	and	the	benchmark	method	(unfiltered	first-difference).		

Second,	exponential	and	moving-average	smoothed	data	does	not	do	well	capturing	year-

to-year	changes	in	interest	rates,	as	indicated	in	column	(3),	in	contrast	to	some	of	the	filters	

which	have	a	mean	t-statistics	of	closer	to	2.		We	also	see	that	cross-regional	interest	rate	

differences	are	often	not	captured	very	well	using	exponential	and	moving-average	smoothers	

(column	4),	however	it	should	be	noted	that	Table	A.2.1	reports	averages;	below	we	will	see	that	

filtering	techniques	can	‘work’	when	the	appropriate	degree	of	smoothing	is	applied.		
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Column	(5)	confirms	that	bilateral	correlations	of	grain-price	based	interest	rates	are	

higher	than	among	bank	rates	on	average,	likely	the	result	of	common	high-frequency	shocks	that	

affect	grain-based	rates	but	not	bank	rates.	Compared	to	the	mean	level	of	bilateral	correlation,	

the	pattern	of	bilateral	correlations	is	picked	up	better	using	some	filtering	techniques,	with	mean	

correlations	as	high	as	0.65	for	the	Hodrick-Prescott	and	Butterworth	filters	(see	column	5),	

except	for	moving	average	and	exponential	filters.	

Of	course,	the	optimal	setting	of	smoothing	parameters	for	a	filtering	technique	is	unknown	

in	a	specific	empirical	application.	Given	that,	Table	A.2.2	shows	the	full	range	of	outcomes,	using	

all	parameter	values	that	we	have	considered,	for	a	subset	of	filtering	techniques,	those	with	a	N	

(the	number	of	different	smoothing	parameter	combinations)	higher	than	50.		In	particular,	it	is	

useful	to	examine	the	worst-case	scenario,	when	the	researcher	errs	in	setting	the	smoothing	

parameters.	We	see	that	both	the	Butterworth	and	the	Christiano-Fitzgerald	filters	never	go	much	

below	a	correlation	of	0.6	in	accounting	for	the	pattern	of	bilateral	interest	rate	correlations	(see	

table	A.2.2,	column	(5)),	and	of	the	two	filters,	the	Butterworth	filter	performs	considerably	better	

in	terms	of	accounting	for	cross-regional	variation	in	mean	interest	rates	(see	column	3)).		
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Table	A.2.2:	Time	series	filtering	and	robustness	to	parameter	settings	
	 (1)	

Storage	

Cost	Rate	

Average	

	

(2)	

T-statistic	of	

time	series	

regression 	

(3)	

Correlation	of	

Average	

Rates	Across	

Regions	

(4)	

Correlation	of	

Bilateral	Correlations	

	

Storage	Cost	Rate	Benchmark	 7.25	 1.86	 0.79	 0.64	

Christiano-	Fitzgerald	 2.23-	

8.34	

1.26-	

2.53	

-0.67-	

0.80	

0.56-	

0.67	

Butterworth	 2.79-	

6.72	

1.08-	

2.55	

0.22-	

0.70	

0.57-	

0.70	

Baxter-	King	 3.06-	

7.56	

0.78-	

2.88	

0.28-	

0.80	

0.25-	

0.67	

Moving-	Average	 -1.21-	

4.09	

-0.65-	

2.19	

-0.57-	

0.82	

0.30-	

0.59	

Notes:	The	average	bank	rate	across	all	regions	and	years	is	5.70.	For	each	filtering	technique,	reported	is	the	range	of	
the	central	90%	of	the	results	for	different	smoothing	parameter	combinations.	The	different	combinations	of	

smoothing	parameters	are:	N	=	100	for	Christiano-Fitzgerald,	N	=	96	for	Butterworth,	N	=	144	for	Baxter-King,	and	N	

=	72	for	Moving	Average	filter.		

	 	



	 40	

	

A.2.3	Christiano-Fitzgerald	(2003)	filter	
Parameter	choices	are	as	follows:	

[2]	Max:	filters	out	stochastic	cycles	at	periods	larger	than	#	

[3]	Min:	filters	out	stochastic	cycles	at	periods	smaller	than	#	

[4]	Order:	Number	of	observations	in	each	direction	that	contribute	to	each	filtered	value	

Columns	[5]	to	[8]	as	in	Tables	2	to	5	
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No	
Max	 Min	 Order	

Overall	
Mean	

T-stat	
Corr	of	
Means	

Pattern	of	
Bilat	Correlation	

[1]	 [2]	 [3]	 [4]	 [5]	 [6]	
[7]	

[8]	

1	
12	 2	 1	 1.155	 2.612	 0.886	 0.540	

2	
12	 2	 2	 3.320	 2.247	 -0.702	 0.543	

3	
12	 2	 3	 3.377	 2.313	 -0.668	 0.544	

4	
12	 2	 4	 1.152	 2.610	 0.885	 0.540	

5	
12	 3	 1	 0.717	 1.933	 0.797	 0.600	

6	
12	 3	 2	 4.835	 1.227	 -0.836	 0.609	

7	
12	 3	 3	 4.847	 1.256	 -0.825	 0.609	

8	
12	 3	 4	 0.714	 1.931	 0.796	 0.600	

9	
12	 4	 1	 2.347	 2.246	 0.746	 0.577	

10	
12	 4	 2	 4.641	 1.757	 -0.475	 0.577	

11	
12	 4	 3	 4.590	 1.800	 -0.407	 0.577	

12	
12	 4	 4	 2.344	 2.243	 0.745	 0.577	

13	
12	 5	 1	 3.238	 2.474	 0.802	 0.558	

14	
12	 5	 2	 7.319	 1.965	 -0.344	 0.560	

15	
12	 5	 3	 7.374	 2.037	 -0.270	 0.560	

16	
12	 5	 4	 3.236	 2.472	 0.801	 0.558	

17	
12	 6	 1	 2.230	 2.600	 0.796	 0.574	

18	
12	 6	 2	 7.117	 1.973	 -0.511	 0.574	

19	
12	 6	 3	 7.084	 2.022	 -0.446	 0.574	

20	
12	 6	 4	 2.228	 2.598	 0.795	 0.575	

21	
15	 2	 1	 6.256	 2.536	 0.661	 0.594	

22	
15	 2	 2	 3.303	 2.476	 -0.611	 0.585	

23	
15	 2	 3	 3.312	 2.460	 -0.615	 0.587	

24	
15	 2	 4	 6.253	 2.534	 0.660	 0.594	

25	
15	 3	 1	 5.818	 1.894	 0.507	 0.653	

26	
15	 3	 2	 4.818	 1.513	 -0.719	 0.650	

27	
15	 3	 3	 4.783	 1.457	 -0.742	 0.652	
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28	
15	 3	 4	 5.815	 1.892	 0.506	 0.653	

29	
15	 4	 1	 7.448	 2.105	 0.474	 0.612	

30	
15	 4	 2	 4.624	 1.984	 0.144	 0.608	

31	
15	 4	 3	 4.525	 1.935	 0.128	 0.609	

32	
15	 4	 4	 7.445	 2.103	 0.473	 0.612	

33	
15	 5	 1	 8.339	 2.332	 0.547	 0.603	

34	
15	 5	 2	 7.302	 2.203	 0.235	 0.597	

35	
15	 5	 3	 7.309	 2.181	 0.231	 0.597	

36	
15	 5	 4	 8.337	 2.330	 0.546	 0.603	

37	
15	 6	 1	 7.331	 2.450	 0.497	 0.621	

38	
15	 6	 2	 7.100	 2.234	 0.106	 0.603	

39	
15	 6	 3	 7.020	 2.185	 0.090	 0.603	

40	
15	 6	 4	 7.328	 2.448	 0.496	 0.621	

41	
18	 2	 1	 6.500	 2.199	 0.651	 0.621	

42	
18	 2	 2	 3.538	 2.263	 -0.498	 0.603	

43	
18	 2	 3	 3.534	 2.278	 -0.493	 0.606	

44	
18	 2	 4	 6.496	 2.197	 0.649	 0.621	

45	 18	 3	 1	 6.062	 1.598	 0.493	 0.670	

46	
18	 3	 2	 5.052	 1.387	 -0.607	 0.656	

47	
18	 3	 3	 5.004	 1.369	 -0.630	 0.659	

48	
18	 3	 4	 6.058	 1.596	 0.492	 0.670	

49	
18	 4	 1	 7.691	 1.735	 0.460	 0.596	

50	
18	 4	 2	 4.858	 1.770	 0.292	 0.585	

51	
18	 4	 3	 4.747	 1.762	 0.283	 0.588	

52	
18	 4	 4	 7.688	 1.733	 0.459	 0.596	

53	 18	 5	 1	 8.583	 1.935	 0.535	 0.603	
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54	
18	 5	 2	 7.537	 1.988	 0.371	 0.585	

55	
18	 5	 3	 7.531	 2.003	 0.373	 0.588	

56	
18	 5	 4	 8.580	 1.933	 0.534	 0.603	

57	
18	 6	 1	 7.574	 2.006	 0.484	 0.622	

58	
18	 6	 2	 7.335	 2.004	 0.282	 0.592	

59	
18	 6	 3	 7.241	 1.998	 0.272	 0.595	

60	
18	 6	 4	 7.571	 2.004	 0.483	 0.622	

61	 21	 2	 1	 6.395	 2.054	 0.674	 0.628	

62	
21	 2	 2	 3.301	 2.062	 -0.399	 0.639	

63	
21	 2	 3	 3.313	 2.078	 -0.401	 0.639	

64	
21	 2	 4	 6.391	 2.053	 0.673	 0.628	

65	
21	 3	 1	 5.957	 1.480	 0.518	 0.671	

66	
21	 3	 2	 4.816	 1.238	 -0.543	 0.680	

67	
21	 3	 3	 4.783	 1.222	 -0.579	 0.680	

68	
21	 3	 4	 5.953	 1.478	 0.517	 0.671	

69	 21	 4	 1	 7.586	 1.549	 0.483	 0.574	

70	
21	 4	 2	 4.622	 1.529	 0.381	 0.587	

71	
21	 4	 3	 4.526	 1.524	 0.368	 0.590	

72	
21	 4	 4	 7.583	 1.548	 0.482	 0.574	

73	
21	 5	 1	 8.478	 1.724	 0.557	 0.583	

74	
21	 5	 2	 7.301	 1.733	 0.453	 0.588	

75	
21	 5	 3	 7.310	 1.750	 0.452	 0.590	

76	
21	 5	 4	 8.475	 1.723	 0.556	 0.584	

77	 21	 6	 1	 7.469	 1.772	 0.509	 0.595	
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78	
21	 6	 2	 7.098	 1.735	 0.381	 0.591	

79	
21	 6	 3	 7.020	 1.732	 0.367	 0.593	

80	
21	 6	 4	 7.466	 1.771	 0.508	 0.595	

81	
24	 2	 1	 6.166	 1.876	 0.684	 0.629	

82	
24	 2	 2	 3.055	 1.981	 -0.358	 0.618	

83	
24	 2	 3	 3.054	 1.966	 -0.349	 0.617	

84	
24	 2	 4	 6.162	 1.875	 0.683	 0.629	

85	 24	 3	 1	 5.728	 1.293	 0.525	 0.672	

86	
24	 3	 2	 4.569	 1.174	 -0.525	 0.658	

87	
24	 3	 3	 4.525	 1.132	 -0.554	 0.657	

88	
24	 3	 4	 5.724	 1.291	 0.524	 0.672	

89	
24	 4	 1	 7.358	 1.355	 0.489	 0.577	

90	
24	 4	 2	 4.375	 1.439	 0.414	 0.566	

91	
24	 4	 3	 4.268	 1.405	 0.406	 0.565	

92	
24	 4	 4	 7.354	 1.353	 0.488	 0.578	

93	 24	 5	 1	 8.249	 1.523	 0.564	 0.588	

94	
24	 5	 2	 7.054	 1.633	 0.481	 0.566	

95	
24	 5	 3	 7.051	 1.618	 0.484	 0.566	

96	
24	 5	 4	 8.245	 1.521	 0.563	 0.588	

97	
24	 6	 1	 7.241	 1.564	 0.516	 0.601	

98	
24	 6	 2	 6.851	 1.631	 0.414	 0.568	

99	
24	 6	 3	 6.762	 1.598	 0.405	 0.567	

100	
24	 6	 4	 7.237	 1.563	 0.514	 0.601	
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A.2.4	Baxter-King	(1999)	filter	
Parameter	choices	are	as	follows:	

[2]	Max:	filters	out	stochastic	cycles	at	periods	larger	than	#	

[3]	Min:	filters	out	stochastic	cycles	at	periods	smaller	than	#	

[4]	Order:	Number	of	observations	in	each	direction	that	contribute	to	each	filtered	value	

[5]	Stationarity	assumption:	1	=	nonstationary,	2	=	stationary	

Columns	[6]	to	[9]	as	in	Tables	2	to	5	

	

No	 Max	 Min	 Order	 Version	 Overall	Mean	 T-stat	
Corr	of		

Means	

Pattern	of		

Bilat	Corr	

[1]	 [2]	 [3]	 [4]	 [5]	 [6]	 [7]	 [8]	 [9]	

1	 12	 3	 6	 1	 3.336	 1.746	 0.673	 0.720	

2	
12	

3	 6	 2	 3.120	 1.681	 0.637	 0.709	

3	 12	 3	 12	 1	 3.659	 2.340	 0.827	 0.609	

4	 12	 3	 12	 2	 3.728	

2.410	

0.834	 0.605	

5	 12	 3	 18	 1	 3.408	

2.503	

0.788	 0.691	

6	 12	 3	 18	 2	 3.342	 2.447	 0.775	 0.689	

7	 12	 3	 24	 1	 4.431	 2.276	 0.790	

0.596	

8	 12	 3	 24	 2	 4.450	 2.299	 0.794	 0.595	

9	 12	 3	 30	 1	 4.489	 2.139	

0.798	

0.498	

10	 12	 3	 30	

2	

4.463	 2.110	 0.795	 0.498	

11	 12	 3	 36	 1	

4.582	

2.120	 0.786	 0.480	

12	 12	 3	 36	 2	 4.601	 2.135	 0.787	

0.479	

13	 12	 6	

6	

1	 5.326	 2.180	 0.575	 0.644	

14	 12	 6	 6	 2	 5.050	 2.119	 0.535	 0.640	

15	 12	 6	 12	 1	 3.746	

2.522	

0.774	 0.614	

16	 12	

6	

12	 2	 3.789	 2.577	 0.785	 0.611	

17	 12	 6	 18	

1	

4.353	 2.894	 0.679	 0.661	

18	 12	 6	 18	 2	 4.269	 2.808	

0.658	

0.660	

19	 12	

6	

24	 1	 4.545	 2.885	 0.663	 0.650	

20	 12	 6	 24	 2	 4.557	 2.902	 0.670	 0.649	

21	
12	 6	 30	 1	

5.184	

2.583	 0.795	 0.608	
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22	 12	 6	 30	 2	 5.152	 2.536	 0.787	 0.608	

23	 12	 6	

36	

1	 5.109	 2.498	 0.825	 0.585	

24	 12	 6	 36	 2	

5.121	

2.509	 0.827	 0.585	

25	
12	

9	 6	 1	 1.937	 1.648	 0.322	 0.650	

26	 12	 9	 6	 2	 1.803	 1.683	 0.281	 0.676	

27	 12	 9	 12	 1	 2.927	 2.968	 0.496	 0.637	

28	 12	 9	 12	 2	 3.054	 3.174	 0.558	 0.624	

29	 12	 9	 18	 1	 3.446	 3.163	 0.618	 0.623	

30	 12	 9	 18	 2	 3.346	 3.011	 0.584	 0.615	

31	 12	 9	 24	 1	 3.185	 2.844	 0.599	 0.596	

32	 12	 9	 24	 2	 3.211	 2.895	 0.620	 0.596	

33	 12	 9	 30	 1	 2.914	 2.762	 0.748	 0.598	

34	 12	 9	 30	 2	 2.904	 2.745	 0.744	 0.598	

35	 12	 9	 36	 1	 2.981	 2.685	 0.779	 0.567	

36	 12	 9	 36	 2	 2.987	 2.691	 0.780	 0.567	

37	 24	 3	 6	 1	 5.095	 1.689	 0.490	 0.713	

38	 24	 3	 6	 2	 5.143	 1.685	 0.497	 0.713	

39	 24	 3	 12	 1	 6.683	 1.789	 0.616	 0.700	

40	 24	 3	 12	 2	 6.516	 1.673	 0.573	 0.705	

41	 24	 3	 18	 1	 6.616	 1.662	 0.654	 0.716	

42	 24	 3	 18	 2	 6.601	 1.654	 0.651	 0.715	

43	 24	 3	 24	 1	 6.086	 1.516	 0.733	 0.699	

44	 24	 3	 24	 2	 6.127	 1.549	 0.745	 0.699	

45	 24	 3	 30	 1	 6.308	 1.324	 0.787	 0.515	

46	 24	 3	 30	 2	 6.304	 1.321	 0.786	 0.515	

47	 24	 3	 36	 1	 7.411	 1.251	 0.803	 0.487	

48	 24	 3	 36	 2	 7.362	 1.224	 0.798	 0.487	

49	 24	 6	 6	 1	 7.086	 1.886	 0.439	 0.655	

50	 24	 6	 6	 2	 7.073	 1.888	 0.437	 0.655	
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51	 24	 6	 12	 1	 6.770	 1.703	 0.513	 0.654	

52	 24	 6	 12	 2	 6.577	 1.558	 0.462	 0.657	

53	 24	 6	 18	 1	 7.560	 1.657	 0.572	 0.650	

54	 24	 6	 18	 2	 7.528	 1.640	 0.566	 0.651	

55	 24	 6	 24	 1	 6.201	 1.671	 0.600	 0.652	

56	 24	 6	 24	 2	 6.235	 1.699	 0.614	 0.652	

57	 24	 6	 30	 1	 7.003	 1.387	 0.713	 0.540	

58	 24	 6	 30	 2	 6.992	 1.378	 0.711	 0.539	

59	 24	 6	 36	 1	 7.938	 1.278	 0.730	 0.518	

60	 24	 6	 36	 2	 7.882	 1.245	 0.721	 0.518	

61	 24	 9	 6	 1	 3.696	 1.453	 0.237	 0.640	

62	 24	 9	 6	 2	 3.827	 1.399	 0.256	 0.619	

63	 24	 9	 12	 1	 5.952	 1.451	 0.338	 0.529	

64	 24	 9	 12	 2	 5.842	 1.366	 0.309	 0.527	

65	 24	 9	 18	 1	 6.653	 1.418	 0.516	 0.396	

66	 24	 9	 18	 2	 6.605	 1.390	 0.505	 0.391	

67	 24	 9	 24	 1	 4.840	 1.393	 0.555	 0.479	

68	 24	 9	 24	 2	 4.888	 1.438	 0.577	 0.490	

69	 24	 9	 30	 1	 4.732	 1.262	 0.653	 0.324	

70	 24	 9	 30	 2	 4.744	 1.272	 0.657	 0.327	

71	 24	 9	 36	 1	 5.810	 1.129	 0.661	 0.336	

72	 24	 9	 36	 2	 5.747	 1.089	 0.646	 0.336	

73	 36	 3	 6	 1	 5.313	 1.670	 0.468	 0.712	

74	 36	 3	 6	 2	 5.627	 1.618	 0.506	 0.705	

75	 36	 3	 12	 1	 6.336	 1.291	 0.559	 0.716	

76	 36	 3	 12	 2	 6.262	 1.245	 0.537	 0.718	

77	 36	 3	 18	 1	 6.414	 1.253	 0.686	 0.717	

78	 36	 3	 18	 2	 6.247	 1.167	 0.653	 0.711	

79	 36	 3	 24	 1	 6.019	 1.081	 0.764	 0.687	
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80	 36	 3	 24	 2	 5.977	 1.047	 0.753	 0.686	

81	 36	 3	 30	 1	 6.114	 1.048	 0.763	 0.596	

82	 36	 3	 30	 2	 6.138	 1.065	 0.768	 0.597	

83	 36	 3	 36	 1	 7.062	 0.955	 0.781	 0.570	

84	 36	 3	 36	 2	 7.126	 0.988	 0.789	 0.570	

85	 36	 6	 6	 1	 7.303	 1.850	 0.422	 0.655	

86	 36	 6	 6	 2	 7.556	 1.780	 0.447	 0.639	

87	 36	 6	 12	 1	 6.423	 1.160	 0.453	 0.631	

88	 36	 6	 12	 2	 6.323	 1.094	 0.425	 0.631	

89	 36	 6	 18	 1	 7.359	 1.210	 0.601	 0.628	

90	 36	 6	 18	 2	 7.174	 1.113	 0.565	 0.624	

91	 36	 6	 24	 1	 6.134	 1.203	 0.642	 0.617	

92	 36	 6	 24	 2	 6.085	 1.163	 0.624	 0.616	

93	 36	 6	 30	 1	 6.809	 1.094	 0.676	 0.563	

94	 36	 6	 30	 2	 6.826	 1.107	 0.680	 0.564	

95	 36	 6	 36	 1	 7.589	 0.961	 0.695	 0.545	

96	 36	 6	 36	 2	 7.646	 0.993	 0.705	 0.545	

97	 36	 9	 6	 1	 3.914	 1.428	 0.227	 0.638	

98	 36	 9	 6	 2	 4.310	 1.251	 0.279	 0.576	

99	 36	 9	 12	 1	 5.605	 0.882	 0.273	 0.468	

100	 36	 9	 12	 2	 5.588	 0.871	 0.269	 0.468	

101	 36	 9	 18	 1	 6.451	 0.915	 0.547	 0.273	

102	 36	 9	 18	 2	 6.251	 0.801	 0.500	 0.239	

103	 36	 9	 24	 1	 4.773	 0.859	 0.604	 0.256	

104	 36	 9	 24	 2	 4.739	 0.828	 0.590	 0.248	

105	 36	 9	 30	 1	 4.538	 0.899	 0.603	 0.277	

106	 36	 9	 30	 2	 4.578	 0.929	 0.615	 0.286	

107	 36	 9	 36	 1	 5.461	 0.753	 0.608	 0.273	

108	 36	 9	 36	 2	 5.512	 0.782	 0.622	 0.274	
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109	 48	 3	 6	 1	 5.368	 1.665	 0.463	 0.712	

110	 48	 3	 6	 2	 5.843	 1.567	 0.520	 0.698	

111	 48	 3	 12	 1	 6.161	 1.132	 0.539	 0.719	

112	 48	 3	 12	 2	 6.236	 1.176	 0.561	 0.717	

113	 48	 3	 18	 1	 6.391	 1.129	 0.694	 0.722	

114	 48	 3	 18	 2	 6.276	 1.072	 0.672	 0.718	

115	 48	 3	 24	 1	 6.012	 1.006	 0.778	 0.712	

116	 48	 3	 24	 2	 5.927	 0.940	 0.755	 0.711	

117	 48	 3	 30	 1	 5.965	 1.010	 0.779	 0.657	

118	 48	 3	 30	 2	 5.895	 0.961	 0.766	 0.657	

119	 48	 3	 36	 1	 7.062	 0.905	 0.786	 0.622	

120	 48	 3	 36	 2	 7.048	 0.897	 0.784	 0.622	

121	 48	 6	 6	 1	 7.359	 1.841	 0.418	 0.655	

122	 48	 6	 6	 2	 7.772	 1.710	 0.458	 0.627	

123	 48	 6	 12	 1	 6.248	 0.994	 0.432	 0.622	

124	 48	 6	 12	 2	 6.297	 1.024	 0.445	 0.622	

125	 48	 6	 18	 1	 7.336	 1.081	 0.609	 0.625	

126	 48	 6	 18	 2	 7.203	 1.013	 0.584	 0.622	

127	 48	 6	 24	 1	 6.127	 1.120	 0.658	 0.621	

128	 48	 6	 24	 2	 6.034	 1.047	 0.625	 0.619	

129	 48	 6	 30	 1	 6.661	 1.050	 0.692	 0.592	

130	 48	 6	 30	 2	 6.583	 0.995	 0.675	 0.588	

131	 48	 6	 36	 1	 7.590	 0.904	 0.703	 0.551	

132	 48	 6	 36	 2	 7.569	 0.893	 0.699	 0.551	

133	 48	 9	 6	 1	 3.969	 1.422	 0.224	 0.638	

134	 48	 9	 6	 2	 4.526	 1.167	 0.297	 0.553	

135	 48	 9	 12	 1	 5.430	 0.716	 0.250	 0.451	

136	 48	 9	 12	 2	 5.562	 0.800	 0.286	 0.457	

137	 48	 9	 18	 1	 6.428	 0.780	 0.555	 0.300	
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138	 48	 9	 18	 2	 6.280	 0.700	 0.522	 0.281	

139	 48	 9	 24	 1	 4.766	 0.778	 0.623	 0.299	

140	 48	 9	 24	 2	 4.688	 0.711	 0.591	 0.287	

141	 48	 9	 30	 1	 4.390	 0.854	 0.625	 0.331	

142	 48	 9	 30	 2	 4.336	 0.813	 0.608	 0.323	

143	 48	 9	 36	 1	 5.461	 0.700	 0.624	 0.272	

144	 48	 9	 36	 2	 5.434	 0.685	 0.617	 0.272	
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A.2.5	Butterworth	(1930)	filter	
The	Butterworth	filter	is	a	bandpass	filter	in	which	the	smoothing	is	performed	in	two	steps.	Max1	

and	Order1	govern	the	filtering	in	step	1,	while	Max2	and	Order2	control	the	filtering	in	step	2.	

[2]	Max1:	filters	out	stochastic	cycles	at	periods	larger	than	#	

[3]	Order1:	Number	of	observations	in	each	direction	that	contribute	to	each	filtered	value	

[4]	Max2:	filters	out	stochastic	cycles	at	periods	larger	than	#	

[5]	Order2:	Number	of	observations	in	each	direction	that	contribute	to	each	filtered	value	

Columns	[6]	to	[9]	as	in	Tables	2	to	5	
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No	 Max1	 Order1	 Max2	 Order2	
Overall		

Mean	
T-stat	

Corr	of		

Means	

Pattern	of		

Bilat	Corr	

[1]	 [2]	 [3]	 [4]	 [5]	 [6]	 [7]	 [8]	 [9]	

1	 12	 2	 3	 2	 3.068	 1.743	 0.596	 0.709	

2	 12	 2	 3	 4	 2.878	 1.645	

0.577	

0.713	

3	 12	 2	 3	 6	

2.872	

1.621	 0.569	 0.711	

4	 12	 2	 3	 8	 2.799	 1.581	 0.564	 0.708	

5	 12	 2	 6	 2	 3.598	 2.176	 0.517	 0.658	

6	 12	 2	 6	 4	 3.944	 2.227	 0.536	 0.659	

7	 12	 2	 6	 6	 3.947	 2.206	 0.540	 0.659	

8	 12	 2	 6	 8	 3.935	 2.179	 0.545	 0.658	

9	 12	 4	 3	 2	 3.065	 1.938	 0.641	 0.687	

10	 12	 4	 3	 4	 2.876	 1.841	 0.625	 0.690	

11	 12	 4	 3	 6	 2.870	 1.816	 0.618	 0.688	

12	 12	 4	 3	 8	 2.797	 1.777	 0.613	 0.685	

13	 12	 4	 6	 2	 3.529	 2.396	 0.556	 0.643	

14	 12	 4	 6	 4	 3.897	 2.437	 0.581	 0.643	

15	 12	 4	

6	

6	 3.900	 2.408	 0.585	 0.642	

16	 12	 4	 6	 8	 3.889	 2.380	 0.590	 0.641	

17	 12	 6	 3	 2	 3.001	 2.103	 0.702	

0.671	

18	 12	 6	

3	

4	 2.812	 2.006	 0.691	 0.675	

19	 12	 6	 3	 6	 2.807	 1.980	 0.685	 0.672	

20	 12	 6	 3	

8	

2.733	 1.941	 0.681	

0.670	

21	 12	 6	 6	 2	 3.456	 2.566	 0.624	 0.624	

22	 12	 6	 6	 4	 3.830	 2.614	 0.651	 0.620	

23	 12	 6	 6	 6	 3.834	 2.584	 0.655	 0.619	

24	 12	

6	

6	 8	 3.823	 2.555	 0.659	 0.618	

25	
12	 8	 3	 2	 2.851	 2.088	 0.737	 0.654	
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26	 12	 8	 3	 4	 2.656	 1.989	 0.726	 0.658	

27	 12	 8	 3	 6	 2.651	 1.964	 0.721	 0.655	

28	
12	 8	 3	 8	 2.577	 1.927	 0.717	 0.652	

29	 12	 8	 6	 2	 3.336	 2.555	 0.688	 0.602	

30	 12	 8	 6	 4	 3.672	

2.579	

0.697	 0.602	

31	 12	 8	 6	

6	

3.678	 2.551	 0.697	 0.602	

32	 12	 8	 6	 8	 3.667	 2.521	 0.700	 0.601	

33	 18	 2	 3	 2	 5.190	 1.816	 0.564	 0.698	

34	 18	 2	 3	 4	 5.001	 1.755	 0.552	 0.704	

35	 18	 2	 3	 6	 4.996	 1.741	 0.546	 0.704	

36	 18	 2	 3	 8	 4.922	 1.715	 0.543	 0.703	

37	 18	 2	

6	

2	 5.603	 1.994	 0.507	 0.640	

38	 18	 2	 6	 4	 6.025	 2.067	 0.518	 0.647	

39	 18	 2	 6	 6	 6.032	 2.065	 0.521	

0.650	

40	 18	 2	

6	

8	 6.021	 2.051	 0.524	 0.650	

41	 18	 4	 3	 2	 5.551	 1.590	 0.352	 0.672	

42	 18	 4	 3	

4	

5.362	 1.537	 0.338	

0.678	

43	 18	 4	 3	 6	 5.356	 1.525	 0.332	 0.678	

44	 18	 4	 3	 8	 5.283	 1.501	 0.330	 0.677	

45	 18	 4	 6	 2	 5.946	 1.731	 0.309	 0.622	

46	 18	

4	

6	 4	 6.375	 1.787	 0.322	 0.633	

47	
18	 4	 6	 6	 6.383	 1.788	 0.325	 0.636	

48	 18	 4	 6	 8	 6.372	 1.778	 0.330	 0.637	

49	 18	 6	 3	 2	 5.899	 1.777	 0.442	 0.674	

50	
18	 6	 3	 4	 5.712	 1.723	 0.430	 0.680	
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51	 18	 6	 3	 6	 5.706	 1.710	 0.425	 0.680	

52	 18	 6	 3	 8	 5.632	

1.686	

0.422	 0.679	

53	 18	 6	 6	

2	

6.248	 1.918	 0.388	 0.634	

54	 18	 6	 6	 4	 6.725	 1.989	 0.406	 0.642	

55	 18	 6	 6	 6	 6.732	 1.987	 0.409	 0.645	

56	 18	 6	 6	 8	 6.722	 1.977	 0.413	 0.645	

57	 18	 8	 3	 2	 6.218	 1.937	 0.538	 0.676	

58	 18	 8	 3	 4	 6.034	 1.884	 0.529	 0.681	

59	 18	 8	

3	

6	 6.029	 1.870	 0.524	 0.681	

60	 18	 8	 3	 8	 5.955	 1.846	 0.521	 0.680	

61	 18	 8	 6	 2	 6.516	 2.058	 0.471	

0.639	

62	 18	 8	

6	

4	 7.050	 2.157	 0.497	 0.645	

63	 18	 8	 6	 6	 7.055	 2.155	 0.501	 0.646	

64	 18	 8	 6	

8	

7.045	 2.143	 0.504	

0.646	

65	 24	 2	 3	 2	 5.857	 1.646	 0.590	 0.691	

66	 24	 2	 3	 4	 5.668	 1.602	 0.580	 0.699	

67	 24	 2	 3	 6	 5.663	 1.594	 0.575	 0.701	

68	 24	

2	

3	 8	 5.589	 1.573	 0.572	 0.700	

69	
24	 2	 6	 2	 6.238	 1.712	 0.540	 0.603	

70	 24	 2	 6	 4	 6.684	 1.802	 0.547	 0.615	

71	 24	 2	 6	 6	 6.692	 1.808	 0.549	 0.621	

72	
24	 2	 6	 8	 6.682	 1.799	 0.553	 0.623	
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73	 24	 4	 3	 2	 5.741	 1.338	 0.398	 0.685	

74	 24	 4	 3	 4	 5.552	

1.298	

0.384	 0.693	

75	 24	 4	 3	

6	

5.546	 1.291	 0.379	 0.694	

76	 24	 4	 3	 8	 5.472	 1.272	 0.377	 0.694	

77	 24	 4	 6	 2	 6.128	 1.381	 0.354	 0.614	

78	 24	 4	 6	 4	 6.564	 1.461	 0.365	 0.629	

79	 24	 4	 6	 6	 6.572	 1.469	 0.368	 0.634	

80	 24	 4	 6	 8	 6.562	 1.461	 0.372	 0.635	

81	 24	 6	

3	

2	 5.445	 1.017	 0.240	 0.628	

82	 24	 6	 3	 4	 5.255	 0.982	 0.225	 0.638	

83	 24	 6	 3	 6	 5.250	 0.976	 0.220	

0.641	

84	 24	 6	

3	

8	 5.176	 0.958	 0.219	 0.639	

85	 24	 6	 6	 2	 5.854	 1.039	 0.208	 0.511	

86	 24	 6	 6	

4	

6.268	 1.108	 0.220	

0.529	

87	 24	 6	 6	 6	 6.276	 1.117	 0.224	 0.537	

88	 24	 6	 6	 8	 6.266	 1.112	 0.228	 0.540	

89	 24	 8	 3	 2	 5.669	 1.150	 0.323	 0.651	

90	 24	

8	

3	 4	 5.481	 1.115	 0.309	 0.659	

91	
24	 8	 3	 6	 5.475	 1.109	 0.304	 0.661	

92	 24	 8	 3	 8	 5.402	 1.091	 0.302	 0.659	

93	 24	 8	 6	 2	 6.043	 1.160	 0.278	 0.555	

94	
24	 8	 6	 4	 6.493	 1.247	 0.296	 0.577	

95	 24	 8	 6	 6	 6.501	 1.256	 0.299	 0.584	

96	 24	 8	 6	 8	 6.491	

1.250	

0.304	 0.586	
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A.2.6	Moving-Average	filter	
Parameter	settings	are	as	follows.		

[2]	Lag:	Number	of	past	terms	used	to	filter	

[3]	Forward:	Number	of	future	terms	used	to	filter	

[4]	Current:	Whether	current	period	is	used	or	not;	0	=	exclusion,	1	=	inclusion	

Columns	[5]	to	[8]	as	in	Tables	2	to	5	

	

	

No	 Lag	 Forward	 Current	

Overall	

Mean	
T-stat	

Corr	of	

Means	

Pattern	of	

Bilat	Corr	

[1]	
[2]	

[3]	 [4]	 [5]	 [6]	 [7]	 [8]	

1	 2	 2	 0	 5.936	 1.067	 0.560	 0.368	

2	 2	 2	 1	 6.181	 1.281	 0.625	 0.484	

3	
2	 4	 0	 4.440	 0.734	 0.795	 0.283	

4	 2	 4	 1	 4.812	 0.975	 0.789	 0.436	

5	
2	

6	 0	 3.398	 -0.105	 0.818	 0.168	

6	 2	
6	

1	 3.795	 0.215	 0.827	 0.330	

7	 2	
8	

0	 0.837	 -0.757	 0.690	 0.484	

8	 2	 8	
1	

1.385	 -0.391	 0.813	 0.560	

9	 2	 10	
0	

-0.594	 -0.560	 0.037	 0.654	

10	 2	 10	 1	
-0.026	

-0.235	 0.477	 0.686	

11	 2	 12	 0	
-0.065	

-0.124	 0.065	 0.613	

12	 2	 12	 1	 0.391	 0.142	 0.442	 0.619	

13	 4	 2	 0	 1.069	
0.412	

-0.634	 0.371	

14	 4	 2	 1	 1.939	 0.689	
-0.457	

0.440	

15	 4	 4	 0	 1.135	 0.250	
0.360	

0.309	

16	 4	 4	 1	 1.792	 0.514	 0.653	 0.403	

17	 4	 6	 0	 0.948	 -0.397	 0.525	 0.255	

18	
4	 6	 1	 1.495	 -0.092	 0.846	 0.344	
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19	 4	 8	 0	 -0.787	 -0.981	 -0.452	 0.445	

20	
4	

8	 1	 -0.199	 -0.638	 -0.348	 0.482	

21	 4	 10	 0	 -1.782	 -0.819	 -0.592	 0.548	

22	 4	
10	

1	 -1.211	 -0.509	 -0.563	 0.566	

23	 4	 12	 0	 -1.168	 -0.408	 -0.597	 0.492	

24	 4	 12	
1	

-0.701	 -0.151	 -0.553	 0.489	

25	 6	 2	 0	 0.571	 0.658	 -0.575	 0.487	

26	 6	 2	 1	
1.303	

0.887	 -0.488	 0.483	

27	 6	 4	 0	
0.718	

0.497	 0.068	 0.422	

28	 6	 4	 1	 1.291	
0.714	

0.475	 0.437	

29	 6	 6	 0	 0.628	
-0.099	

0.153	 0.382	

30	 6	 6	 1	 1.113	 0.153	
0.373	

0.392	

31	 6	 8	 0	 -0.830	 -0.662	
-0.319	

0.494	

32	 6	 8	 1	 -0.319	 -0.374	 -0.237	 0.487	

33	 6	 10	 0	 -1.709	 -0.553	 -0.509	 0.537	

34	
6	 10	 1	 -1.211	 -0.282	 -0.482	 0.527	
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35	 6	 12	 0	 -1.177	 -0.203	 -0.545	 0.491	

36	
6	

12	 1	 -0.760	 0.030	 -0.515	 0.452	

37	 8	 2	 0	 0.525	 1.191	 -0.188	 0.514	

38	 8	
2	

1	 1.110	 1.360	 0.032	 0.523	

39	 8	 4	 0	 0.594	 0.961	 0.389	 0.467	

40	 8	 4	
1	

1.079	 1.129	 0.578	 0.485	

41	 8	 6	 0	 0.504	 0.354	 0.339	 0.422	

42	 8	 6	 1	
0.927	

0.563	 0.474	 0.438	

43	 8	 8	 0	
-0.783	

-0.221	 -0.075	 0.514	

44	 8	 8	 1	 -0.339	
0.032	

0.033	 0.520	

45	 8	 10	 0	 -1.586	
-0.150	

-0.355	 0.539	

46	 8	 10	 1	 -1.149	 0.098	
-0.302	

0.538	

47	 8	 12	 0	 -1.138	 0.151	
-0.411	

0.471	

48	 8	 12	 1	 -0.763	 0.366	 -0.356	 0.448	

49	 10	 2	 0	 2.130	 2.095	 0.603	 0.476	

50	
10	 2	 1	 2.486	 2.171	 0.729	 0.500	



	 59	

51	 10	 4	 0	 1.907	 1.748	 0.718	 0.418	

52	
10	

4	 1	 2.232	 1.842	 0.774	 0.460	

53	 10	 6	 0	 1.638	 1.108	 0.634	 0.331	

54	 10	
6	

1	 1.940	 1.255	 0.697	 0.381	

55	 10	 8	 0	 0.344	 0.561	 0.386	 0.389	

56	 10	 8	
1	

0.679	 0.760	 0.500	 0.441	

57	 10	 10	 0	 -0.507	 0.612	 0.084	 0.395	

58	 10	 10	 1	 -0.164	 0.816	 0.239	 0.425	

59	 10	 12	 0	 -0.215	 0.828	 0.115	 0.341	

60	 10	 12	 1	 0.087	 1.008	 0.352	 0.351	

61	 12	 2	 0	 3.326	 2.637	 0.780	 0.423	

62	 12	 2	 1	 3.545	 2.654	 0.817	 0.452	

63	 12	 4	 0	 2.941	 2.213	 0.783	 0.363	

64	 12	 4	 1	 3.163	 2.262	 0.808	 0.412	

65	 12	 6	 0	 2.569	 1.544	 0.726	 0.264	

66	 12	 6	 1	 2.788	 1.653	 0.761	 0.324	

67	 12	 8	 0	 1.300	 1.021	 0.610	 0.343	

68	 12	 8	 1	 1.556	 1.181	 0.683	 0.394	

69	
12	 10	 0	 0.432	 1.065	 0.508	 0.329	

70	 12	 10	 1	 0.703	 1.235	 0.659	 0.350	

71	
12	

12	 0	 0.612	 1.234	 0.728	 0.316	

72	 12	
12	

1	 0.856	 1.389	 0.877	 0.311	
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A.3	ARDL	Cointegration	Test	Results	
 
 
	 Long	

Run	
		T-stat	
(Long	Run)	

Short	Run	
Adj	

		T-stat	(Short	
Run)	

ARDL	Bounds	
F-test	

#	of	
Lags	
(y)	

#	of		
Lags	
(x)	

N	

NYC/NO	 -0.777	 [-7.65]	 -1.843	 [-8.68]	 37.84	 2	 3	 18	

PHI/CHA	 0.021	 [0.17]	 -1.183	 [-7.19]	 27.20	 1	 0	 41	

PHI/ALEX	 0.100	 [0.57]	 -1.145	 [-6.11]	 19.78	 1	 0	 34	

PHI/NYC	 0.801	 [2.23]	 -0.999	 [-5.12]	 15.52	 1	 0	 23	

CHA/PHI	 0.523	 [1.26]	 -0.712	 [-4.77]	 12.99	 1	 1	 41	

ALEX/CHA	 -0.015	 [-0.10]	 -0.915	 [-4.74]	 12.40	 1	 0	 34	

NYC/ALEX	 -0.380	 [-1.25]	 -0.982	 [-4.78]	 12.03	 1	 3	 23	

CHA/NO	 -1.184	 [-4.67]	 -1.51	 [-4.61]	 10.84	 2	 3	 18	

ALEX/NO	 0.308	 [1.74]	 -1.015	 [-4.48]	 10.78	 1	 0	 18	

CHA/NYC	 0.825	 [1.90]	 -0.8	 [-4.32]	 10.41	 1	 1	 23	

ALEX/NYC	 -0.061	 [-0.19]	 -0.89	 [-4.22]	 9.83	 1	 0	 23	

NYC/PHI	 0.396	 [2.69]	 -1.249	 [-4.33]	 9.36	 2	 2	 23	

CHA/ALEX	 -0.541	 [-1.24]	 -0.69	 [-4.17]	 8.90	 1	 1	 34	

NO/NYC	 -0.603	 [-1.93]	 -1.38	 [-3.52]	 7.07	 2	 3	 18	

NO/ALEX	 0.822	 [1.57]	 -0.726	 [-2.93]	 6.71	 1	 0	 18	

PHI/NO	 -0.475	 [-1.25]	 -0.86	 [-3.50]	 6.61	 1	 0	 18	

NYC/CHA	 0.297	 [1.54]	 -1.017	 [-3.56]	 6.45	 2	 3	 23	

ALEX/PHI	 0.710	 [1.39]	 -0.698	 [-2.34]	 6.34	 3	 1	 34	

IND/CHA	 0.915	 [1.21]	 -0.638	 [-3.12]	 5.89	 1	 3	 18	

IND/NYC	 1.058	 [1.39]	 -0.827	 [3.39]	 5.78	 2	 3	 18	

NYC/IND	 0.079	 [0.51]	 -0.894	 [-3.20]	 5.46	 1	 0	 18	

IND/ALEX	 0.809	 [1.40]	 -0.829	 [-3.00]	 4.88	 2	 0	 18	

NO/PHI	 -0.265	 [-1.19]	 -0.838	 [-3.08]	 4.87	 1	 0	 18	

CHA/IND	 -0.057	 [-0.23]	 -0.743	 [-2.96]	 4.38	 1	 0	 18	

IND/NO	 -0.327	 [0.585]	 -0.875	 [-2.88]	 4.15	 2	 1	 17	

NO/CHA	 -0.171	 [-0.64]	 -0.884	 [-2.55]	 4.07	 1	 0	 18	

ALEX/IND	 0.253	 [1.52]	 -0.754	 [-2.16]	 2.96	 3	 0	 18	

IND/PHI	 1.619	 [2.21]	 -0.556	 [-2.14]	 2.81	 1	 4	 18	

PHI/IND	 -5.04	 [-0.19]	 -0.113	 [-0.22]	 2.57	 3	 3	 18	

NO/IND	 0.264	 [0.68]	 -0.546	 [-1.68]	 2.46	 1	 0	 17	

Notes:	Results	are	for	linearly	interpolated	bank	interest	rates	(see	Table	A1).	The	optimal	lag	structure	has	been	
determined	using	the	Akaike	Information	Criterion	(AIC),	with	the	maximum	number	of	lags	(dependent	and	

independent	variables)	equal	to	4.	The	10%	critical	values	for	the	Bounds	test	are	4.29	(I(0))	and	5.08	(I(1))	for	n=	30,	

4.23	(I(0))	and	5.05	I(1))for	n=35,	and	5.24	(I(0))	and	5	(I(1))	for	n=40	(Narayan	2005,	p.1988).	Critical	values	for	

n<30	are	not	available.	

	


