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Fair Cake-Cutting among Families

Erel Segal-Halevi - Shmuel Nitzan

Abstract We study the fair division of a continuous resource, such as a land-
estate or a time-interval, among pre-specified groups of agents, such as families.
Each family is given a piece of the resource and this piece is used simultane-
ously by all family members, while different members may have different value
functions. Three ways to assess the fairness of such a division are examined.
(a) *Average fairness* means that each family’s share is fair according to the
?family value function”, defined as the arithmetic mean of the value functions
of the family members. (b) *Unanimous fairness* means that all members
in all families feel that their family received a fair share according to their
personal value function. (¢) *Democratic fairness* means that in each family,
at least half the members feel that their family’s share is fair. We compare
these criteria based on the number of connected components in the resulting
division, and based on their compatibility with Pareto-efficiency.
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1 Introduction

Fair division of heterogeneous resources among agents with different prefer-
ences has been an important issue since Biblical times. Today it is an active
area of research in the interface of computer science (Robertson and Webb
1998; Procaccia 2015) and economics (Moulin 2004). Its applications range
from politics (Brams and Taylor 1996) to multi-agent systems (Chevaleyre
et al 2006).

In most fair division problems, the resource is divided among n individual
agents, and the fairness of a division is assessed based on their individual
preferences. A common fairness criterion is the fair share (FS). It requires
that each agent receives a share that is at least as good as 1/n of the total
endowment, according to the agent’s individual preferences.!

In practice, however, goods are often owned and used by groups. As an
example, consider a land-estate inherited by k families, a river that has to
be divided among k states, or the usage-time of a conference room that has
to be divided among k meeting groups. The resource (whether land or time)
should be divided to k pieces, one piece per group. Each group’s share is then
used by all its members simultaneously. The land-plot allotted to a family
is inhabited by the entire family. The share of the river allotted to a state
becomes a national park open to all its citizens. In the time-slot allotted to a
group, the conference room is used by all group members.?

The happiness of each group member depends on his/her valuation of the
entire share of the group. But, in each group there are different members with
different valuations. The group’s share can be valued by some of its members
as at least 1/k of the total and by others as less than 1/k of the total. How,
then, should the fairness of a division be assessed?

The present paper studies this question in the classic setting of cake-cutting,
introduced by Steinhaus (1948). In this setting, there is a measurable space
(e.g. an interval or a polygon) called the cake. The preferences of each agent
are represented by a value-measure on the cake. We study three ways to assess
the fairness of a division.

First, it is possible to aggregate the valuations in each family to a sin-
gle family valuation. Following the utilitarian tradition (Bentham 1789), the
family-valuation can be defined as the sum or (equivalently) the arithmetic
average of the valuations of all family members. We call a division average-
fair if it is fair according to these family valuations. In particular, a division
is average-FS if every family receives a share with an average value (averaged

1 The condition of receiving at least 1/n of the total endowment was introduced by Stein-
haus (1948). Economists often call it fair-share guarantee (Bogomolnaia et al 2017). Com-
puter scientists often call it proportionality (Robertson and Webb 1998).

2 In economic terms, the allotted piece becomes a ”club good” (Buchanan 1965).
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over all family members) of at least 1/k of its average value of the entire
endowment.

By this definition, the family-division problem is easy to solve. Since the
average of measures is itself a measure, each family can be represented by a
single agent, and the problem reduces to fair division among the k represen-
tatives. Classic results imply that average-FS allocations exist (Section 3).

Average fairness makes sense only when the numeric values of the agents’
valuations are meaningful and they are all measured in the same units, e.g.
in dollars (see chapter 3 of Moulin (2004) for some real-life examples of such
situations). However, if the valuations represent individual happiness measures
that cannot be put on a common scale, then their sum is meaningless, and
other fairness criteria should be used.

A second option is to require that all members of every family agree that
the division is fair. We call a division unanimous fair if it is fair according to
every individual valuation. In particular, a division is unanimous-FS if every
agent values his/her family’s share as at least 1/k of the total value. The ad-
vantage of this definition is that it does not need to assume that all valuations
share a common scale. Even though it is a very strong requirement, we prove
that unanimous-FS allocations exist (Section 4).

A disadvantage of unanimous fairness, compared to average fairness, is
that unanimously-fair divisions might be highly fractioned. As an illustration,
when an interval is divided, there always exists an average-F'S division that
is also connected — the share of each family is a single interval (Section 3).
However, we prove that there might not exist connected unanimous-FS divi-
sions. Moreover, in some cases, the number of intervals in any unanimous-FS
division might be at least n — the number of individual agents (Section 4).
When the number of agents is large, as in the case of dividing land among
states, such divisions might be impractical.

In democratic societies, decisions are almost never accepted unanimously.
In fact, when the number of citizens is large, it may be impossible to attain
unanimity on even the most trivial issue. The simplest decision rule in such
societies is the majority rule. Inspired by this rule, we suggest a third fairness
criterion. We call a division democratic fair if at least half the citizens in
each family consider it fair. In particular, a division is democratic-FS if at
least half the agents in each family value their family’s share as at least 1/k
of the total.

Democratic fairness can be justified by the following process. After a di-
vision is proposed, each group conducts a referendum in which each citizen
approves the division if he/she feels that the division is fair. The division is
implemented only if, in every group, at least half of its members approve it.

Democratic-fairness combines some advantages of average-fairness and unan-
imous-fairness. It is similar to unanimous-fairness in that it does not need to
assume that all valuations share a common scale. When there are k = 2 fami-
lies, it is similar to average-fairness in that it can be satisfied with connected
pieces — there always exists a democratic-FS division in which each family re-
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ceives a single connected piece. An additional advantage of democratic fairness
in this case is that it can be computed efficiently (Section 5).

Although democratic-fairness might leave up to half the citizens unhappy,
this may be unavoidable in real-life situations. This is understandable in light
of Winston Churchil’s dictum: “democracy is the worst form of government,
except all the others that have been tried”.*

While the geometric requirement of having a connected division is practi-
cally important, an even more important requirement from an economic per-
spective is Pareto-efficiency. We prove that all three variants of fair-share are
compatible with Pareto-efficiency (Section 6).

A second fairness criterion that is very common in economics is no envy
(NE). In the context of individual agents, it means that each agent receives a
share that is at least as good as the share of any other agent, according to the
first agent’s individual valuation.® In the context of families, three variants of
NE can be defined analogously to the three variants of fair-share: average-NE,
unanimous-NE and democratic-NE (Section 7).

From a geometric perspective, these three variants behave similarly to their
FS counterparts, that is:

— Connected average-NE allocations always exist;

— Connected unanimous-NE allocations are not guaranteed to exist even for
two families;

— Connected democratic-NE allocations are guaranteed to exist for two but
not for three or more families.

However, from an economic perspective, NE behaves differently:

— Pareto-efficient average-NE allocations always exist;

— Pareto-efficient unanimous-NE allocations are guaranteed to exist for two
but not for three or more families;

— Pareto-efficient democratic-NE allocations are guaranteed to exist for two
but not for five or more families (we do not know whether they always
exist with three or four families).

3 In contrast, average-fair and unanimous-fair allocations cannot be computed by any
finite protocol. See Remark 1.

4 A fourth fairness criterion that could be considered is individual fairness. In particu-
lar, an allocation is individually-FS if the allocation X = (X1, ..., X)) admits a refinement
Y = (Y1,...,Yn), where for each family Fj, Uieiji = X}, such that for each agent i,
Vi(Y;) > 1/n. Individually-fair allocations always exist and can be found by using any clas-
sic fair division procedure on the individual agents, disregarding their families. Individual-
fairness makes sense if, after the division of the land among the families, each family intends
to further divide its share among its members. However, often this is not the case. When an
inherited land-estate is divided between two families, the members of each family intend to
live and use their entire share together, rather than dividing it among them. Therefore, the
happiness of each family member depends on the entire value of his family’s share, rather
than on the value of a potential private share he would get in a hypothetic sub-division.

5 The condition of receiving at least as much as any other agent was introduced by Gamow
and Stern (1958) and Foley (1967). Economists often call it no envy (Bogomolnaia et al
2017). Computer scientists often call it envy-freeness (Robertson and Webb 1998).



Fair Cake-Cutting among Families 5

The paper is organized as follows. Most of the paper focuses on the fair-
share criterion. Section 2 formally presents the model. Sections 3, 4 and 5 study
average, unanimous and democratic fair-share divisions respectively. We study
this criterion both for families with equal entitlements and for families that
have different entitlements to the resource.

Section 6 studies the three variants of fair-share in combination with Pareto-
efficiency. Section 7 studies family fairness based on the no-envy criterion,
explaining the differences between the results for fair-share and for no-envy.
Finally, Section 8 compares our work to previous and ongoing related work.

2 Model and Notation
2.1 Resource and agents

In the usual cake-cutting setting, there is a resource C' (“cake”) that has to
be divided. For simplicity it is assumed that C is an interval in R. A realistic
example of such a resource is time: consider a conference room that can host
a single meeting at a time. It is active between 8:00 and 20:00, and this time-
interval must be divided among all those who want to use the room. Another
realistic example is the shoreline of a sea or a river: while usually not a straight
line, it can be easily mapped to an interval.

There is a set of agents N = {1,...,n}. Each agent ¢ € N has a value
measure V;, defined on the Borel subsets of C. The V; are assumed to be
nonatomic, so that all singular points have a value of 0 to all agents. As the
term measure implies, the V; are additive — the value of a union of two disjoint
pieces is the sum of the values of the pieces. Such value functions can be viewed
as having a ”constant marginal utility” property (Chambers 2005). The value
measures are normalized such that Vi : V;(0) =0, V;(C) = 1.

2.2 Families and entitlements

In our setting, there is a set of families ' = {F1,..., Fr}. We use the term
“family” to emphasize that the partition of agents to groups is fixed in advance
and cannot be modified during the division process.

The number of agents in Fj is denoted n;. Each agent ¢+ € N is a member
of exactly one family F; € F', son = Zl;zl n;.

For each family F}, there is a positive weight w; representing the entitle-
ment of this family. The sum of all weights is one: 1 = Z§:1 w;.

In the simplest setting, the families have equal entitlements, i.e, for each
je{l,...,k}: w; = 1/k. Equal entitlements make sense, for example, when
k siblings inherit their parents’ estate. While an heir will probably like to
take his family’s preferences into account when selecting a share, each heir is
entitled to 1/k of the estate regardless of the size of his/her family.
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In general, each family may have a different entitlement. The entitlement
of a family may depend on its size but may also depend on other factors. For
example, consider several families who jointly buy a vacation apartment. The
apartment can host one family at a time, so the families have to divide the
year (a time-interval) among them. The entitlement of each family naturally
depends on the amount of money it contributed to the purchase, rather than
on the family’s size.%

2.3 Allocations and components

An allocation is a vector of k pieces, X = (X1,..., X)), one piece per family,
such that the X; are pairwise-disjoint and U; X; = C.

Each piece is a finite union of intervals. We denote by ComP(X;) the
number of connected components (intervals) in the piece X, and by Comp(X)
the total number of components in the allocation X, i.e:

k
Comp(X) =Y Comp(X;)

Ideally, we would like that each piece be connected, i.e, Vi : CoMpP(X;) =
1 and ComP(X) = k. This requirement is especially meaningful when the
divided resource is a time-interval or a land-resource (e.g. a river-bank), since
a contiguous piece of time or land is much easier to use than a collection of
disconnected patches.

However, we will show that a fair division with connected pieces is not
always possible.” In case a division with connected pieces is not possible, it
is still desirable that the number of connectivity components — ComMP(X) —
be as small as possible. When dividing an interval, the components are sub-
intervals and their number is one plus the number of cuts. Hence, the number
of components is minimized by minimizing the number of cuts (Robertson
and Webb 1995; Webb 1997; Shishido and Zeng 1999; Barbanel and Brams
2004, 2014). In a realistic, 3-dimensional world, the additional dimensions can
be used to connect the components, e.g, by bridges or tunnels. Still, it is

6 See Cseh and Fleiner (2017) for a recent account of fair division among individual agents
with different entitlements.

7 This impossibility appears not only in our one-dimensional theoretic model but also
in practical, two-dimensional land division situations. A striking example was the India-
Bangladesh border. According to Wikipedia page India—Bangladesh enclaves, up to 2015,
“Within the main body of Bangladesh were 102 enclaves of Indian territory, which in
turn contained 21 Bangladeshi counter-enclaves, one of which contained an Indian counter-
counter-enclave... within the Indian mainland were 71 Bangladeshi enclaves, containing 3
Indian counter-enclaves”. Another example is Baarle- Hertog — a Belgian municipality made
of 24 separate parcels of land, most of which are exclaves in the Netherlands. For more de-
tails and examples see the Wikipedia page List of enclaves and exclaves. We are grateful to
Tan Turton for the references.
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desirable to minimize the number of components in the original division in
order to reduce the number of required bridges/tunnels.
2.4 Fairness criteria

We first define the family-valuation functions:

Zie F; Vi (Xj)

WE(X;) = > for j € {1,....k}.
Now, an allocation X is called:
average-FS ifvje{l,... . k}: WVe(X;5) > wy;
unanimous-F'S itvje{l,...,k}: Vi e Fj: Vi(X;) > wj;
democratic-FS itvjie{l,... k},

for at least half the members i € Fj : V;(X;) > w;.

A property of an allocation is called feasible if for every k families and n agents
there exists an allocation satisfying this property. Otherwise, the property is
called infeasible. In the following sections we will study the feasibility of the
above fairness criteria.

Note that unanimous-FS obviously implies both average-FS and demo-
cratic-FS. The other two do not imply each other, as shown in the following
example.

Example 1 Consider an interval consisting of four sub-intervals. It has to be di-
vided between two families: (1) {Alice,Bob,Chana} and (2) {David,Esther,Frank}.
The families have equal entitlements, i.e, w3 = wy = 1/2. Each member’s val-
uation of each sub-interval is shown in the table below:

Alice [ 60130 3 | 3
Bob 50140 3 | 3
Chana | 10 [ 80 [ 3 | 3

David | 3 3 | 60 | 30
Esther | 3 3 160 |30
Frank 3 3 0 ]9

Note that the value of the entire interval is 96 according to all agents. There-
fore, F'S implies that each family should get a value of at least 48.

If the two leftmost subintervals are given to family 1 and the two rightmost
subintervals are given to family 2, then the division is unanimous-FS, since
each member of each family feels that his family’s share is worth 90. This
division is also, of course, average-FS and democratic-FS.

8 The goal of minimizing the number of components is pursued not only in cake-cutting
papers but also in real-life politics. Going back to India and Bangladesh, after many years
of negotiations they finally started to exchange most of their enclaves during the years
2015-2016. This reduced the number of components from 200 to a more reasonable number.
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If only the single leftmost subinterval is given to family 1 and the other
three are given to family 2, then the division is still democratic-FS, since
Alice and Bob feel that their family received more than 48. However, Chana
feels that her family received only 10, so the division is not unanimous-FS.
Moreover, the division is not average-FS since the average valuation of family
1 is only (60+50+10)/3=40.

If the three leftmost subintervals are given to family 1 and only the right-
most one is given to family 2, then the division is average-FS, since family 2’s
average valuation of its share is (30430490)/3=50. However, it is not unani-
mous-FS nor even democratic-FS, since David and Esther feel that their share
is worth only 30. a

3 Average fairness

With average fairness, the family cake-cutting problem can be reduced to the
classic problem of cake-cutting among individuals. This gives the following
results.

Theorem 1 (a) When families have equal entitlements, average-FS with con-
nected pieces (and k components) is feasible.

(b) When families have different entitlements, average-FS with connected
pieces is infeasible. Moreover, at least 2k — 1 components may be required for
an average-FS allocation.

(¢) When families have different entitlements, average-FS with at most
2k[log, &1+ 3 components is feasible.

Proof The positive results — parts (a) and (c) — are based on the following
reduction. For each family Fj, define a representative agent A; whose valuation
is the function W;™* defined in Subsection 2.4 above. Note that, since the V; are
all nonatomic measures, the k family-valuations W3>'® are nonatomic measures
too. By classic results (Steinhaus 1948; Even and Paz 1984), when there are
k agents with equal entitlements, there always exists a connected FS division.
As shown in a recent technical report (Segal-Halevi 2018), when there are k
agents with different entitlements, there always exists a I'S allocation with at
most 2k logy k — 2k +2 cuts, where k := 2182 %1 = k rounded up to the nearest
power of two. These cuts create 2k log, k—2k+3 components. By definition,
such a division is an average-FS division among the families.

The negative result (b) follows immediately from an identical negative
result for individual agents (Segal-Halevi 2018), by considering &k one-member
families. a

Remark 1 Fairness for individuals and average-fairness for families are equiv-
alent only from an existential perspective; from a computational perspective
they are quite different. FS division among k individual agents with equal
entitlements can be found by asking the agents O(klogk) queries (Even and
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Paz 1984). However, average-FS division cannot be found using a finite num-
ber of queries even when there are k = 2 families. To see this, suppose there
are two identical families, each of which has two different members with val-
uations vy and vp. Then, a division (X7, X3) is average-FS if and only if
[va(X1) +vp(X1)]/2 = 1/2. Therefore, finding an average-FS allocation is
equivalent to finding a subset Xy C C for which the sum v4(X;) + vp(Xy)
equals 1. However, queries can only be sent to individual agents, and it might
be impossible to find such a subset X; using a finite number of queries to the
agents. We omit the details here since our focus is on existence. See the ac-
companying technical report (Segal-Halevi and Nitzan 2016) for more details.

4 Unanimous fairness

Before presenting our results, we note that unanimous-FS, like average-FS,
can also be defined using family-valuation functions. Define:

W) = minVi(X;) - for j € {1, k).

Then, a division is unanimous-FS if and only if:
Vi WX > v
However, in contrast to the functions W?2V€ defined in Section 3, the functions

W™ are in general not additive. For example, suppose C is an interval with
three subintervals and a family has the following valuations:

Ci | Cy | C3 | CtuCyuCy

Alice 1 1 1 3=14+1+4+1

Bob 0 2 1 3=0+2+1

Chana | 0 1 2 |3=04+1+2
(W= [0 1] [3-07171)

While the individual valuations are additive, W™ is not additive (it is not
even subadditive). Therefore, the classic results we used in Theorem 1 are
inapplicable here, and different techniques are needed.

4.1 Exact division

Initially, we assume that the entitlements are equal, i.e: w; = 1/k for all j. We

relate unanimous-FS to the problem of finding an ezact division:°.

Definition 1 Exact(N, K) is the following problem. Given N agents and an
integer K, divide C to K pieces, such that each of the N agents assigns exactly
the same value to all pieces:

Vi=1,.,K:Vi=1.,N: Vi(X,)=1/K.

9 The definition uses capital N and K to distinguish the parameters of exact division
from the parameters of unanimous-fair division.
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From an economic perspective, there is little intrinsic value in the concept of
exact division. However, in this section we will prove that it is closely linked
to the concept of unanimously-fair division. In fact, we will prove that the
existence a solution to each of these problems implies a solution to the other
problem.

Denote by UnanimousFS(n, k) the problem of finding a unanimous-FS di-
vision when there are n agents grouped in k families with equal entitlements.

4.2 UnanimousFS — Exact

Lemma 1 For every pair of integers N > 1, K > 1, a solution to Unani-
mousF'S (N(K — 1)+ 1, K) implies a solution to Ezact (N, K).

Proof Given an instance of Exact(N, K) (N agents and a number K of re-
quired pieces), create K families. Each of the first K — 1 families contains N
agents with the same valuations as the given agents. The K-th family contains
a single agent whose valuation is the average of the N given valuations:

The total number of agents in all K families is N(KX — 1) 4+ 1. Use Unani-
mousFS (N(K —1)+1, K) to find a unanimous-FS division, X. By definition
of unanimous fairness, for each agent ¢ in family j: V;(X;) > 1/K.

By construction, each of the first K —1 families has an agent with valuation
V;. Hence, all N agents value each of the first K — 1 pieces as at least 1/K
and:

Vi=1,..,N: Vi(X,) > ——.

Hence, by additivity, every agent values the K-th piece as at most 1/K:

Vi=1,..,N: Vi(Xg)<1/K.

The piece Xk is given to the agent with value measure V*, so by fair-share:
V*(Xk) > 1/K. By construction, V*(Xg) is the average of the V;(Xk).
Hence:

Vi=1,..N: Vi(Xg)=1/K.
Again by additivity:

K-1
K-1
Vi=1,..,N: Vi(X;) = —.
? ’ ’ Z (]) K

Jj=1
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Hence, necessarily:

Vi=1,.,N, Vj=1.,K—-1: Vi(X;)=1/K.
So we have found an exact division and solved Exact(N, K) as required. O

Alon (1987) proved that for every N and K, an Exact(N, K) division might
require at least N(K — 1) + 1 components. Combining this result with the
above lemma implies the following negative result:

Theorem 2 For every N, K, let n = N(K —1)41. A unanimous-FS division
for n agents grouped into K families might require at least n components.

In particular, unanimous-FS with connected pieces is infeasible.

4.3 Exact = UnanimousFS

Lemma 2 For every pair of integers n > 2,k > 1, a solution to Ezact (n —
1, k) implies a solution to UnanimousFS (n, k) for any grouping of the n agents
to k families.

Proof Suppose we are given an instance of UnanimousFS(n, k), i.e, n agents in
k families. Select n—1 agents arbitrarily. Use Exact(n—1, k) to find a partition
of C' to k pieces, such that each of the n — 1 agents values each of these pieces
as exactly 1/k. Ask the n-th agent to choose a favorite piece; by the pigeonhole
principle, this value is worth at least 1/k for that agent. Give that piece to
the family of the n-th agent. Give the other k — 1 pieces arbitrarily to the
remaining k — 1 families. The resulting division is unanimous-FS. O

Alon (1987) proved that for every N and K, Exact(N, K) has a solution with
at most N (K — 1)+ 1 components (at most N(K — 1) cuts). Combining this
result with the above lemma implies the following positive result:

Theorem 3 Given n agents in k families with equal entitlements, a unani-
mous-FS division with (n — 1) - (k — 1) + 1 components is feasible.

For £ = 2 families, the number of components in Theorem 3 is n, which
matches the lower bound of Theorem 2. For k& > 2 families, the number of
components can be made smaller, as explained below.

4.4 Less components: equal entitlements

The purpose of this subsection is to find a unanimous-FS allocation with less
components than the guarantee of Theorem 3, when all families have equal
entitlements.

We start with an example. Assume there are k = 4 families. By Theorem
3, using 3(n — 1) cuts, C' can be divided to 4 subsets which are considered
equal by all n members. But for a unanimous-FS division, it is not required
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that all members think that all pieces are equal, it is only required that all
members believe that their family’s share is worth at least 1/4. This can be
achieved as follows:

— Divide C to two subsets which all n agents value as exactly 1/2. This is
equivalent to solving Exact(n, 2), which by Alon (1987), can be done with
at most n cuts. Call the two resulting subsets West and East.

— Assign arbitrary two families to West and the other two families to East.
Mark by ny the total number of members in the families assigned to West
and by ng the total number of members assigned to East.

— Divide the West to two pieces which all ny agents value as exactly 1/4;
this can be done with ny cuts. Give a piece to each family. Divide the
East similarly using ng cuts.

The first step requires n cuts and the second step requires ny + ng = n cuts
too. Hence the total number of cuts required is only 2n, rather than 3n — 1.

In fact, two cuts can be saved in each step by excluding two members
(from two different families) from the exact division. These members will not
think that the division is equal, but they will be allowed to choose the favorite
piece for their family. Thus only 2(n — 2) cuts are required. A simple inductive
argument shows that whenever k is a power of 2, (logs k) - (n — k/2) cuts are
required.

When k is not a power of 2, a result by Stromquist and Woodall (1985)
can be used. They prove that, for every fraction r € [0, 1], it is possible to cut
a piece of C such that all n agents agree that its value is exactly r using at
most 2n — 2 cuts.!? This can be used as follows:

— Select integers Iy, lo € {1,...,k — 1} such that l; + Il = k.

— Apply Stromquist and Woodall (1985) with r = I /k: using 2n — 4 cuts,
cut a piece Xy that n — 1 agents value as exactly l1/k. This means that
these n — 1 agents value the other piece, X, as exactly I /k.

Let the n-th agent choose a piece for his family; assign the other families
arbitrarily such that [; families are assigned to piece X; and the other I
families to piece Xo.

— Recursively divide piece X7 to its {; families and piece X5 to its I families.

After a finite number of recursion steps, the number of families assigned to
each piece becomes 1 and the procedure ends. The number of cuts in each level
of the recursion is at most (2n — 4). The depth of recursion can be bounded
by [logs, k] by dividing k to halves (if it is even) or to almost-halves (if it is
odd; i.e. take [y = (k —1)/2 and I = (k + 1)/2). Hence:

Theorem 4 Given n agents in k families with equal entitlements, a unani-
mous-FS division with [log, k7 - (2n — 4) + 1 components is feasible.

10 They prove that, if C is a circle, the number of connected components is n — 1. Hence,
the number of cuts is 2n — 2. This is also true when C is an interval, although the number
of connected components in this case is n.
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Note that Theorem 3 and Theorem 4 both give upper bounds on the number of
components required for unanimous-FS. The bound of Theorem 3 is stronger
when k is small and the bound of Theorem 4 is stronger when k is large.

4.5 Less components: different entitlements

The purpose of this subsection is to find a unanimous-FS allocation with less
components than the guarantee of Theorem 3, when families may have different
entitlements.

When families have different entitlements, the procedure of the previous
subsection cannot be used. We cannot let the n-th agent select a piece for
his family, since the pieces are different. For example, suppose there are two
families with entitlements w; = 1/3,we = 2/3. We can divide C' to two pieces
X1, X5 such that n — 1 agents value X; as 1/3 and X5 as 2/3. So all of them
agree that X7 should be given to family 1 and X5 should be given to family
2. But, the n-th agent might select the wrong piece for his family. Therefore,
the procedure should be modified as follows.

— Select an integer [ € {1,...,k}.
— Divide the families to two subsets: Fy,..., F; and Fi4q,..., F.
Apply Stromquist and Woodall (1985) with r = 23:1 wj: using 2n — 2

cuts, cut a piece X; which all n agents value as exactly 22:1 w;. This

means that all n agents value the other piece, X, as exactly Z?:Hl wj.
Recursively divide piece X; to Fi,..., F; and piece Xo to Fi41,..., F.

Here, the number of cuts in each level of the recursion is at most (2n — 2).
The depth of recursion can be bounded by [log, k] by choosing | = k/2 (if k
is even) or [ = (k —1)/2 (if k is odd). Hence:

Theorem 5 Given n agents in k families with different entitlements, a unan-
imous-F'S division with [logy k| - (2n — 2) + 1 components is feasible.

In concluding the analysis of unanimous-FS, recall that, even for £ = 2
families, unanimous-FS is as difficult as exact division and might require the
same number of components — n. In the worst case, we might need to give
a disjoint component to each member, which negates the concept of division
to families. Therefore we now turn to the analysis of an alternative fairness
criterion that yields more useful results.

5 Democratic fairness

Like unanimous-FS (Section 4), democratic-F'S can also be defined using family-
valuation functions. Define:
medianiepj ‘/7. (X])

wred(X;) = oy for j € {1,....k}.
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A division is democratic-F'S if and only if:
Vi Wed(X;) > w,

However, the W™ed functions are not additive,!! so again the classic results
referred to in Theorem 1 are inapplicable.

5.1 Two families: a division procedure

We start with a positive result for two families with equal entitlements, which
shows that democratic-F'S is substantially easier than unanimous-FS.

Theorem 6 When there are k = 2 families with equal entitlements, demo-
cratic-FS with connected pieces is feasible. Moreover, it can be found by an
efficient algorithm.

Proof The proof is given by Algorithm 1. It finds a democratic-FS division
between two families. For each family, a location M; is calculated such that, if
C'is cut at M, half the members value the interval [0, M;] as at least 1/2 and
the other half value the interval [Mj, 1] as at least 1/2. Then, C'is cut between
the two family medians, and each family receives the piece containing its own
median. By construction, at least half the members in each family value their
family’s share as at least 1/2, so the division is democratic-FS. Each family
receives a single connected piece.

Algorithm 1 Finding a democratic-NE division for two families
INPUT:

- C, which is assumed to be the unit interval [0, 1].

- n additive agents, all of whom value C as 1.

- A grouping of the agents to 2 families, F}, Fb.

OUTPUT:

A democratic-NE division of C to 2 pieces.

ALGORITHM:

- Each agent ¢ = 1,...,n marks an z; € [0, 1] such that V;([0, z;]) = V;([zs,1]) = 1/2.

- For each family j = 1,2, find the median of its members’ marks: M; = median;e F,; ;.

Find the median of the family medians: M* = (M + M3)/2.
- If My < Ms then give [0, M*] to F} and [M*,1] to F5.
Otherwise give [0, M*] to F» and [M*,1] to Fy.

Unfortunately, this positive result is not applicable when there are more
than two families, as shown in the following subsection.

11 See the example in the beginning of Section 4. In that example W™ed is identical to
Wmin.
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5.2 Three or more families: an impossibility result

This subsection presents a lower bound on the number of components required
for a democratic-fair division. The lower bound holds not only for F'S but even
for a much weaker fairness notion called positivity.

Given a specific division of C' among families, define a zero agent as an
agent who values his family’s share as 0 and a positive agent as an agent
who believes his family received a share with a positive value. Note that FS
implies positivity but not vice-versa. The following lower bound holds even for
positivity, hence it also holds for FS.

Lemma 3 Assume there are n = mk agents, divided into k families with m
members in each family. To guarantee that at least ¢ members in each family
are positive, the total number of components may need to be at least:

kqg—m

k
k-1

Proof Number the families by j =0, ...,k — 1 and the members in each family
by i =0,...,m—1. Assume that C'is the interval [0, mk]. In each family j, each
member ¢ wants only the following interval: (ik+j, ik+j+1). Thus there is no
overlap between desired intervals of different members. The table below illus-
trates the construction for k = 2, m = 3. The families are {Alice,Bob,Chana}
and {David,Esther Frank}:

Alice
Bob
Chana
David
Esther
Frank

[en] Ren] BEd | Ren) Nen) Fan)
[«=) Bo] Ren] | Ran] Nen) Fan)
=l =] k=] | k=] =] Jan}

[e=] Ren] Nan) | B Naw) Jam)

[en] Reu] Nan] | Rawl B o Haw)

[en] Ren] Ban] | Reo] Neo) §g

Suppose the piece X; (the piece given to family j) is made of [ > 1 com-
ponents. We can make [ members of F; positive using [ intervals of positive
length inside their desired areas. However, if ¢ > [, we also have to make the
remaining ¢ — [ members positive. For this, we have to extend g —1[ intervals to
length k. Each such extension totally covers the desired area of one member
in each of the other families. Overall, each family creates ¢ — [ zero members
in each of the other families. The number of zero members in each family is
thus (k — 1)(¢ — 1). Adding the ¢ members which must be positive in each
family, we get the following necessary condition: (k — 1)(q — 1) + ¢ < m. This
is equivalent to:

The total number of components is k-1, which is at least equal to the expression
stated in the Lemma. a
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In other words, if we want at least a fraction h of the members in each family
to have a non-zero utility, the number of components might have to be at least:

khm —m hk —1

T T T

In a unanimous-FS division A = 1, so the number of components is at least
n, which coincides with the lower bound of Theorem 2. In a democratic-FS
h > 1/2 so we get the following negative result:

Theorem 7 In a democratic-FS division with n agents grouped into k fami-
lies, the number of components may need to be at least

k/2—1
k—1

Note that for k£ = 2 the lower bound is 0, and indeed we already saw that
in this case a connected allocation is feasible.

Lemma 3 has another interesting corollary. Suppose we have k& > 3 but
still insist that the division be connected. We already know that we cannot
guarantee that 1/2 the agents in each group be positive. But there is an even
stronger impossibility result.

Theorem 8 When dividing a cake among k families, for every constant frac-
tion h > 1/k, it may be impossible to find a connected division where at least
a fraction h of the agents in each group are positive.

Proof By Lemma 3 the number of components should be at least n - ﬁk}i—’f
Since h > 1/k, for sufficiently large n the number of components is larger than
k, so the division cannot be connected. a

The fraction 1/k in Theorem 8 is tight:

Theorem 9 For every integer k > 2, there exists a connected division among
k families, that is FS for at least 1/k of the members in each family.

Proof The Dubins-Spanier moving-knife protocol (Dubins and Spanier 1961)
can be adapted to families as follows. A knife moves continuously over the cake
from left to right. Whenever in a certain family at least 1/k of its members
believe that the cake to the left of the knife is worth at least 1/k, they shout
“stop”, the cake is cut at the knife location, and the shouting family receives
the cake to its left (the division is now FS for 1/k the members in this family).
In the other k — 1 families, at least (k — 1)/k of the members believe the
remaining cake is worth at least (k—1)/k of its original value; by dividing the
remaining cake recursively using the same procedure, they division is FS for
1/k of their members too. O
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5.3 Three or more families: positive results

Suppose we do want a democratic-FS division for three or more families. How
many components are sufficient?

As a first positive result, we can use Theorem 5, substituting n/2 instead
of n: select half of the members in each family arbitrarily, then find a division
which is unanimous-FS for them while ignoring all other members. This leads
to:

Theorem 10 Given n agents in k families with different entitlements, demo-
cratic-FS with [logy k] - (n —2) + 1 components is feasible.

However, for families with equal entitlements we can do much better. Al-
gorithm 2 generalizes Algorithm 1 for any number of families:

Algorithm 2 Finding a democratic-FS division for k > 2 families.
INPUT:

- C, which is assumed to be the unit interval [0, 1].

- n additive agents, all of whom value C as 1.

- A grouping of the agents to k families, F1, ..., Fi.

OUTPUT:
A democratic-FS division of C to k pieces.

ALGORITHM:

Step 1: Halving

- Each agent ¢ = 1,...,n selects an x; € [0, 1] such that V;([0,z;]) = &kﬂ' (this means % if
k is even and k—;’;—l if k is odd). Note: V;([z;,1]) = -Iikﬁl-

- For each family j = 1, ..., k, find the median of its members’ selections: M; = medianieFj ;.
- Order the families in increasing order of their medians. Find the median of the family-
medians: M* = My /01. Cut C at x = M*.

Step 2: Sub-division

- Define the western families as the F; with j = 1,...,[k/2]. Let ny be the total number
of members in these families. Divide the interval [0, M*] among the western families using
UnanimousFS(nw /2, [k/2]).

- Similarly, define the eastern families as the F; with j = [k/2] + 1,..., k. There are |k/2]
such families. Let ng be their total number of members. Divide the interval (M*,1] among
the eastern families using UnanimousFS(ng/2, |k/2]).

The algorithm works in two steps.

Step 1: Halving. For each family, a location M is calculated such that,
if C'is cut at Mj, half the family members value the interval [0, M;] as at least
Iﬁk&l and the other half value the interval [M;, 1] as at least lﬁkﬁl Then, C is
cut in M* — the median of the family medians. The [k/2] “western families”
— for which M; < M* — are assigned to the western interval of C' — [0, M*].
By construction, at least half the members in each of the western families value
[0, M*] as at least Iﬁkﬁ- We say that these members are “happy”. Similarly,
the |k/2] eastern families — for which M; > M* — are assigned to the
eastern interval (M*, 1]; at least half the members in each of these families are
“happy”, i.e, value the interval (M*, 1] as at least Jﬁk&l
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If there are only two families (k = 2), then we are done: there is exactly
one western family and one eastern family ([k/2] = |k/2] = 1 ). For each
family j € {1, 2}, at least half the members of each family value their family’s
share as at least 1/2. Hence, the allocation of X; to family j is democratic-
FS.

If there are more than two families (k > 2), an additional step is required.

Step 2: Sub-division. Each of the two sub-intervals should be further
divided to the families assigned to it. In each family F}, at least n;/2 members
are happy. So for each Fj, select exactly n;/2 members who are happy. Our
goal now is to make sure that these agents remain happy. This can be done
using a unanimous-F§ allocation, where only 7n;/2 happy members in each
family (hence n/2 members overall) are counted.

The unanimous-F'S allocation guarantees that every western-happy-member
believes that his family’s share is worth at least &kﬂ . TWl?T = % Similarly,
every eastern-happy-member believes that his family’s share is worth at least
Lﬁkﬂl . 'Wlﬂ = % Hence, the resulting division is democratic-F'S.

We now calculate the number of components in the resulting division.
One cut is required for the halving step. For the unanimous-FS division of the
western interval, the number of required cuts is at most ([k/2]—1)-(nw/2—1)
by Theorem 3, and at most [log,[k/2]] - (nw — 4) by Theorem 4. Similarly,
for the eastern interval the number of required cuts is at most the minimum
of (|k/2] —1)-(ng/2—1) and [logy|k/2]]: (ng —4). The total number of cuts
is thus at most 14 ([k/2] —1) - (n/2 —2) and at most 1+ [log,[k/2]] - (n—8).
The total number of components is larger by one. To conclude:

Theorem 11 Given n agents in k families with equal entitlements, demo-
cratic-FS is feasible, and the number of required components is at most:

min (2+ ([k/2] = 1) - (n/2—2) , 2+ [logy[k/2]] - (n 78)).

5.4 Comparison and Open Questions

Table 1 compares the three variants of FS, focusing on families with equal
entitlements. Recall that n is the total number of agents in all families.

The case of k = 2 families is well-understood. The results for all fairness
criteria are tight: by all fairness definitions, we know that a fair division exists
with the smallest possible number of connectivity components.

The case of k > 2 families opens some questions:

— Is unanimous-FS with n components feasible for all k7 (particularly, with
k = 3 families, is the number of required components n as in the lower
bound, or 2n — 1 as in the upper bound?).

— Is democratic-F'S with n- % components feasible for all £? (particularly,
with k = 3 families, is the number of required components n/4 as in the
lower bound, or n/2 as in the upper bound?).
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K #Families #Connectivity Components
Fairness
(k) Lower | Upper
average-FS (Sec. 3) k k k (connected)
unanimous-FS 2 n n
3 n 2n —1
4 n 2n — 3

min(l + [log, k| - (2n — 4),

(Sec. 4) k n (k—=1)-(n—=1)41)
democratic-FS 2 2 2 (connected)
3 n/4 n/2
4 n/3 n/2
(2 T TTog, ] K721 (7~ 8);
(Sec. 5) k n- B2 | 24 ([k/2] - 1) (n/2 - 2))

Table 1: Number of components required for a fair-share division in various situations.

The case of different entitlements is much less understood even for individual
agents (Segal-Halevi, 2018), let alone for families.

What fairness notion is the most practical? The table shows that it depends
on the total number of agents (n). When n is small (as is common when
dividing an estate among heirs), it is reasonable to try to attain a unanimously-
fair division. However, when n is large (as is common when dividing disputed
lands among states), unanimous fairness quickly becomes impractical, as the
number of components might grow linearly with n. In this case, we must settle
for a weaker fairness criterion. When k = 2, we can find a democratically-fair
allocation that is also connected. When k > 2, democratic fairness too might
be impractical, and we may have to settle for average-fairness.

6 Pareto-efficiency

So far, we studied the compatibility of fairness criteria with a geometric re-
quirement — reducing the number of connectivity components. In this section
we replace the geometric requirement with an economic requirement — Pareto
efficiency. An allocation is called Pareto-efficient (PE) if no other allocation is
weakly better for all individual agents and strictly better for some individual
agents. Fortunately, PE is compatible even with the strongest variant of the
fair-share criterion:

Theorem 12 There always exists an allocation that is both PE and unani-
mous-FS (hence also average-F'S and democratic-FS).

Proof We use a famous theorem of Dubins and Spanier (1961), which is a
special case of a measure-theoretic theorem by Dvoretzky et al (1951).

For every partition X of C to k pieces, let M(X) be its value-matriz —
an n-by-k matrix M where Vi € {1,...,n},Vj € {1,...,k} : M, ; = Vi(X;).
Let M be the set of all matrices that correspond to such partitions:

Me := {M(X)|X is a partition of C to k pieces}
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Theorem 1 of Dubins and Spanier (1961) implies that the set M is compact.
Define a second set of matrices representing the unanimous-FS condition:

Mpg :={M is an n x k matrix|Vj € {1,...,k} : Vi€ F; : M, ; > 1/k}

Finally, define Mcpgs := Mo N Mpg. This set represents all value-matrices of

allocations of C' that are unanimous-FS. By Theorem 3, Mcrg is non-empty.

Since Mg is compact and Mpgg is closed, their intersection Mo gg is compact.
Define the following function U : Mgrg — R:

k
uM) =[] I M,

j=1ieF;

This is a continuous function, so it has a maximum point in Mgpg; let’s
call it M*. This matrix corresponds to an allocation X* that maximizes,
among all unanimous-FS allocations, the product of valuations of all agents:
H§:1 [L;cr, Vi(X;). This product is strictly increasing with the value of each
agent i € N , so the allocation X* is Pareto-efficient in the set Mcprg. Since
every Pareto-improvement of an allocation in Mcpg is also in Mopg, the al-
location X* is also Pareto-efficient in general. O

7 No Envy

So far, we used fair-share (FS) as our individual fairness criterion. Another
criterion that is very common in economics is no-envy (NE). We study this
criterion for families with equal entitlements.

Analogously to the definitions in subsection 2.4, we call an allocation X:

average-NE  if Vj,5' € {1,... k}: WiVe(X5) > Wi (X0 );
unanimous-NE  if V5,5 € {1,...,k}: Vi€ F;: Vi(X;) > Vi(Xy);
democratic-NE  if V5,5 € {1,...,k},
for at least half the members i € Fj : V;(X;) > Vi(Xj/).

With individual agents, it is well known that NE implies FS (with equal enti-
tlements). With two individual agents, NE and FS are equivalent. The same
implications are true with families. Each variant of NE implies the corre-
sponding variant of FS.'? When there are k = 2 families, each variant of NE
is equivalent to the corresponding variant of FS. 13

12 Suppose an agent i € F; thinks the division is not FS. This means that V;(X;) < 1/k.
But, the sum of all weights equals 1 which equals the sum of the values of all pieces. Therefore
there must be some j’ # j for which: V;(X;s) > 1/k. Hence, V;(X;) < V;(X;/), so agent i
thinks the division is not NE.

13 Suppose an agent i € F; thinks the division is FS. This means that V;(X;) > 1/2. By
additivity, for the other family j' # j, Vi(X;7) < 1/2. Hence V;(X;) > V;(X,/), so agent i
thinks the division is NE.
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Most of our results for F'S with equal entitlements are also valid for NE. For
average-NE, we can use classic results proving the existence of NE allocations
with connected pieces among individual agents (Stromquist 1980; Su 1999).
Applying the same reduction as in Theorem 1 we get:

Theorem 1° For any k families, average-NE with connected pieces is feasible.
Since NE implies F'S, the negative results are still valid:

Theorem 2’ For every N, K, letn = N(K—1)+1. A unanimous-NE division
for n agents grouped into K families might require at least n components.

Some positive results remain valid too. Lemma 2 is based on an exact
division. Therefore it holds, with the same proof, even if we replace unanimous-
FS with unanimous-NE. Therefore:

Theorem 3’ Given n agents in k families, a unanimous-NE division with
(n—1)-(k—1)+1 components is feasible.

However, the recursive-halving procedure of Theorem 4 cannot be used
here. Suppose we divide C' to two subsets, West and East, which all n agents
value as exactly 1/2. Then, we assign arbitrary k/2 families to West and the
other families to East. We find an exact division of the West among the western
families and an exact division of the East among the eastern families. While
this division satisfies F'S, it does not satisfy NE, since the agents in the west
might envy families in the east and vice versa. Therefore, while the number of
components required for unanimous-FS division is in O(nlogk), the best we
can currently say about the number of components required for unanimous-
NE is that it is in O(nk).

With two families FS implies NE, so the following positive result holds:

Theorem 6’ When there are k = 2 families, democratic-NE with connected
pieces is feasible. Moreover, it can be found by an efficient algorithm.

Similarly, the negative results for democratic-F'S in Theorems 7 and 8 are
equally valid for democratic-NE. The positive result of Theorem 9 holds for
NE too:

Theorem 9’ For every integer k > 2, there exists a connected division among
k families, that is NE for at least 1/k of the members in each family.

Proof Su (1999) presents a procedure (attributed to Simmons) for finding a
connected NE division among k individual agents. It is based on presenting
various connected partitions to the agents, and asking each agent which of the
k pieces is the best. He proves that there exists a partition in which each agent
gives a different answer; that partition corresponds to a no-envy allocation.
He also shows a procedure for finding a sequence of partitions that converges
(after possibly infinitely many steps) to that no-envy allocation.

The Simmons-Su procedure can be adapted to families in the following
way. Whenever a family is asked “which of the k pieces is better?”, it answers
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. o Il #Connectivity Components
Fairness #Families (k) I Lower bound | Upper bound
average-NE Any Il k k (connected)
2 Il n n
unanimous-NE 3 | n 2n — 1
(Sec. 4) 4 Il n 3n —2
Any Il n (E—=1)-(n—1)+1
2 Il 2 2 (connected)
democratic-NE 3 | n/4 n/2+42
(Sec. 5) 4 Il n/3 n+1
Any " n- Kk_;l n-(k—2)/2+2

Table 2: Number of components required for a no-envy division in various situations.

by doing a plurality voting among its members. Then, in the final division,
each family receives a piece that is considered the best by a plurality of its
members, which is at least a fraction 1/k of its members. Therefore, at least
1/k of each family’s members feel that the allocation has no envy. O

Theorem 11 about democratic-FS does not hold as-is for democratic-NE,
but it can be adapted by adapting Algorithm 2. Step 1 — the halving step —
remains the same. Step 2 — the subdivision step — should be modified to use
an exact division, as follows:

- Using Exact(n/2, [k/2]) , find an exact division of the interval [0, M*]
into [k/2] pieces, such that all n/2 happy agents find the pieces equal.
Assign these pieces to the western families — the F; with j = 1,..., [k/2].
- Using Exact(n/2, |k/2]) , find an exact division of the interval (M*, 1]
into | k/2] pieces, such that all n/2 happy agents find the pieces equal.
Assign the pieces to the eastern families — Fj with j = [k/2]+1, ..., k.

The halving step requires a single cut. The two exact divisions require
(n/2)-(k—2) cuts. Therefore the total number of components is n(k—2)/2+2:

Theorem 11° Given n agents in k families with equal entitlements, demo-
cratic-NE with at most n(k — 2)/2 4+ 2 components is feasible.

Table 2 summarizes our results for no-envy division and shows some re-
maining gaps.

We now consider the combination of no-envy with Pareto-efficiency. Some
of our positive results from Section 6 are still valid:

Theorem 12’ (a) With k = 2 families, there always exists an allocation that
is both PE and unanimous-NE (hence also average-NE and democratic-NE).

(b) With any number of families, there always exists an allocation that is
PFE and average-NE.

Proof (a) With k = 2 families, NE and FS are equivalent, so this follows
directly from Theorem 12.
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(b) We use the same reduction as in Theorem 1 and the same compactness
argument as in Theorem 12. For each family F}, define a representative agent
A; whose valuation is W;Wg. There exists an allocation X* that maximizes the

product of valuations of the representatives: H§:1 W;-Wg(X i)

Segal-Halevi and Sziklai (2018, Section 5) prove, in the setting of cake-
cutting among individuals, that every allocation maximizing the product of
values has no envy. Therefore, in the allocation X*, there is no envy among the
representatives. By definition of average-NE, X* is an average-NE allocation
among the families.

The product H§:1 W8(X;) is strictly increasing with the value of each
individual agent i € N. Therefore, the allocation X* maximizing this product
is Pareto-efficient. O

In contrast to these positive results, Pareto-efficiency is incompatible with
unanimous-NE and democratic-NE.

The incompatibility between PE and unanimous-NE appears even when
we take a minimal step forward from the case of two families: there are three
families, only one of which is a couple and the other two are singles.

Theorem 13 With three or more families, there might be no allocation that
is both PE and unanimous-NE.

Proof The proof is based on an example used by Bade and Segal-Halevi (2018)
in the context of fair division of homogeneous goods. C'is an interval composed
of two sub-intervals Y and Z of length 1. C has to be divided among three
families — a couple and two singles — with the following valuations:

| [Y[Z]
Alice 111
George | 7 | 1

[ Bob [ 2[1]

[ Esther [ 5 [ 1]

Suppose that we have a unanimous-NE allocation of C' among the three fam-
ilies. Denote by Yag, Zag the lengths of Y, Z given to Alice+George, and
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similarly Yg, Zp, Yg, Zg are the lengths given to Bob and Esther. Then:

Yac+Zag > 7Y+ Zp (George does not envy Bob)
2Yp +7Zp > 2Yaq + Zaa (Bob does not envy George)
(7T—2)Yag > (7T—2)Yp (from the above inequalities)

(*) Yac > Y
1WYag + Zag > 1Yp + Zp (Alice does not envy Bob)
2Yp +Zp > 2Yaq + Zac (Bob does not envy Alice)
(1-2)Yae > (1-2)Yp (from the above inequalities)

() Yac < Yp
(3 % %) Yac =Y5 (from * and **)

= Zac =72 (Bob and Alice+George do not envy)

We proved that, in any unanimous-NE allocation, the share given to Al-
ice+George is identical to the share given to Bob (i.e, the same lengths of
both subintervals). The proof does not depend on the exact valuation func-
tions — it only depends on the fact that 1 < 2 < 7, i.e, Bob’s valuation of Y
is strictly between Alice’s and George’s valuations. Hence, exactly the same
proof works for Esther, i.e: Yaq = Yg and Zag = Zg. Therefore, the shares
given to all three families are identical.

We now prove that this allocation cannot be PE. We consider three cases.

— Case 1: Yg = 0. Then also Yg = Y4¢ = 0 so Y remains unallocated and
the allocation is not PE.

— Case 2: Zg = 0. Then also Zg = Z4¢ = 0 so Z remains unallocated and
the allocation is not PE.

— Case 3: Yp and Z are positive. Let ¢ = min(Yp, Zg/3). Suppose that Bob
gives € of his Y to Esther, and gets in exchange 3¢ of her Z. Then, Bob’s
value increases by 3e — 2¢; Esther’s value increases by 5e — 3¢; and the
values of Alice and George are unchanged. This means that the original
allocation was not Pareto-efficient. a

Weakening unanimous-NE to democratic-NE does not help when there are
5 or more families.

Theorem 14 With five or more families, there might be no allocation that is
both PE and democratic-NE.

Proof The proof is based on an extension of the example of Theorem 13, where
there are five families — one triplet and four singles — with the valuations:
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| | Y [Z]
Alice [ 1/4 |1
Dina 1 1
George | 4 1

[ Bob | 1/2]1]

[ Chana | 1/3 [ 1 |

| Esther | 2 | 1 |

| Frank [ 3 [ 1]

Suppose that we have a democratic-NE allocation of C' among the families.
By definition of democratic-NE, all singles must not feel any envy. Moreover,
in the first family, at least two members must not feel any envy. There are
three options for the identity of these non-envious members.

Option A: Alice and Dina feel no envy. We consider Bob and Chana. The
value of Y for each of them is strictly between the value of Y for Alice and the
value of Y for Dina. Therefore, similar arguments as in the proof of Theorem
13 imply that the three allocations of Chana, Bob, and Alice+Dina+George
are identical. Now there are three cases:

— Case Al: Yo = 0. Then also Yz = Yapg = 0. Each of Chana, Bob, and
Alice+Dina+George receive at most 1/3 of Z, so Dina’s value is at most
1/3. Since Dina does not envy Esther and Frank, each of them must receive
at most 1/3 of Y. This means that at least 1/3 of ¥ remains unallocated,
so the allocation is not PE.

— Case A2: Zg = 0. Then also Z¢ = Zapg = 0. Again Dina’s value is at
most 1/3, so Esther and Frank must receive at most 1/3 of Z, so at least
1/3 of Z remains unallocated, so the allocation is not PE.

— Case A3: Yo and Zp are positive. Then, Bob can give €/2.5 of his Z to
Chana in exchange for € of her Y (for some small ¢ > 0) and attain a
Pareto improvement, so the original allocation is not PE.

Option B: George and Dina feel no envy. We consider Esther and Frank.
The value of Y for each of them is strictly between the value of Y for George
and the value of Y for Dina. Therefore the three allocations of Esther, Frank,
and Alice+Dina+George are identical. The rest of the proof is analogous to
Option A.

Option C: Alice and George feel no envy. The value of Y for all the
singles is strictly between the value of Y for Alice and the value of Y for
George. Therefore, the allocations of all five families must be identical. The
rest of the proof is analogous to Theorem 13. a

An interesting question that is left open by Theorems 12’ and 14 is what
happens when there are 3 or 4 families — does there always exist an allocation
that is both PE and democratic-NE?
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8 Related Work

There are numerous papers about fair division in general and fair cake-cutting
in particular. We mentioned some of them in the introduction. Here we survey
some work that is more closely related to family-based fairness.

8.1 Dividing indivisible items among groups

In a contemporaneous and independent work, Manurangsi and Suksompong
(2017) and Suksompong (2018) have studied the problem of fairly dividing
discrete items among groups of agents. They focused on unanimous fairness.
They proved that, in many cases, unanimously-fair allocations do not exist.
These results complement our impossibility results for unanimous fairness in
dividing a continuous resource. After the publication of their work and our
working paper, we joined forces to study democratic-fair allocation of indivis-
ible goods (Segal-Halevi and Suksompong 2018).

8.2 Group-envy-freeness and on-the-fly coalitions

Berliant et al (1992); Hiisseinov (2011); Todo et al (2011) study the concept of
group-envy-freeness. They assume the standard model of fair division among
individuals (and not among families). They define a group-envy-free division as
a division in which no coalition of individuals can take the pieces allocated to
another coalition with the same number of individuals and re-divide the pieces
among its members such that all members are weakly better-off. Coalitions in
cake-cutting are also studied by Dall’Aglio et al (2009); Dall’Aglio and Di Luca
(2014).

In our setting, the families are pre-determined and the agents do not form
coalitions on-the-fly. In an alternative model, in which agents are allowed
to form coalitions based on their preferences, the family-fair-division problem
becomes easier. For instance, it is easy to achieve a unanimous-FS division with
connected pieces between two coalitions: ask each agent to mark its median
line, find the median of all medians, then divide the agents to two coalitions
according to whether their median line is to the left or to the right of the
median-of-medians.

8.3 Fair division with public goods

In our setting, the piece given to each family is considered a ”public good”
in this specific family. The existence of fair allocations of homogeneous goods
when some of the goods are public has been studied e.g. by Diamantaras
(1992); Diamantaras and Wilkie (1994, 1996); Guth and Kliemt (2002). In
these studies, each good is either private (consumed by a single agent) or
public (consumed by all agents). In the present paper, each piece of land
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is consumed by all agents in a single family — a situation not captured by
existing public-good models.

8.4 Non-additive utilities

As explained in Sections 4 and 5, the difficulty with unanimous-FS and demo-
cratic-FS is that the associated family-valuation functions are not additive. It
is therefore interesting to compare our work to other works on cake-cutting
with non-additive valuations.

Berliant et al (1992); Maccheroni and Marinacci (2003); Dall’Aglio and
Maccheroni (2005) focus on sub-additive, or concave, valuations, in which the
sum of the values of the parts is more than the value of the whole. These
works are not applicable to our setting, because the family-valuations are not
necessarily sub-additive — the sum of values of the parts might be less than
the value of the whole (see the example in the beginning of Section 4).

Sagara and Vlach (2005); Dall’Aglio and Maccheroni (2009); Hiisseinov
and Sagara (2013) consider general non-additive value functions. They provide
pure existence proofs and do not say much about the nature of the resulting
divisions (e.g, the number of connectivity components), which we believe is
important in practical division applications.

Su (1999) presents a protocol for envy-free division with connected pieces
which does not assume additivity of valuations. However, when the valuations
are non-additive, there are no guarantees about the value per agent. In par-
ticular, with non-additive valuations, the resulting division is not necessarily
FS.

Mirchandani (2013) suggests a division protocol for non-additive valuations
using non-linear programming. However, the protocol is practical only when
the resource to divide is a collection of a small number of homogeneous com-
ponents, where the only thing that matters is what fraction of each component
is allocated to each agent. In contrast, in our model the resource is a single
heterogeneous good.

Finally, Berliant and Dunz (2004); Caragiannis et al (2011); Segal-Halevi
et al (2015) study specific non-additive value functions which are motivated
by geometric considerations (location, size and shape). The present paper con-
tributes to this line of work by studying specific non-additive value functions
which are motivated by a different consideration: handling the different prefer-
ences of family members. A possible future research topic is to find fair division
rules that handle these considerations simultaneously, as both of them are im-
portant for fair division of land.
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