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Abstract

In this article, we propose a numerically computable utility function that can apply to

inferior goods. The implicit function and its optimization technique are fully used. Since the

implicit function is carefully formulated, it works well as a standard utility function. This

technique ensures tractability and extendability. We propose the following: (1) a simple utility

function of an inferior good which contains only two parameters; (2) a total cost function and

its extension to the Cobb-Douglas production function with an inferior input; (3) a generalized

utility function whose Engel-curve always stems from the origin.

Keywords: inferior goods, utility function, production function, implicit function

JEL Classification Codes: D01, D11, D21

I. Introduction

Inferior goods are widely observed in an economy. It is natural for consumers to upgrade

or downgrade their purchases according to their budget. However, a numerically computable

utility function for inferior goods has not been fully developed yet and has been studied by

researchers. Epstein and Spiegel (2000) found a simple production function for an inferior

input, which has only two parameters in the minimum setting, although it does not explain why

the input is inferior or how to extend their two-variable model to n-variables. Moffatt (2002)

uses a hyperbola to avoid intersection of the indifference curves and succeeds in dealing with

Giffen goods. Doi, Iwasa, and Shinomura (2006) use the logarithmic function in their

formulation.

In this study, we propose the implicit function approach to deal with inferior goods.
1
The

utility function, u(x, y), is given by U(u, x, y)=0, which is unsolvable for u . At first glance,

this function appears awkward and difficult to use or incompatible with the economic theory.
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1 We focus on the two-goods case in this study. However, this two-goods model is extended to the n-goods case. The

n-goods case will be presented in another paper.



However, we find that our implicit utility function gives all types of tractable functions such as

the compensated demand, normal demand, and total cost functions. These are compatible with

the economic theory.

The remainder of the paper consists of three parts. First, Sections 2 and 3 illustrate the

structure of our implicit function using the simplest model, which contains only two

parameters, a and c. Second, Section 4 discusses the production function which contains full

parameters.
2

Furthermore, we show the addition of an inferior good to the Cobb-Douglas

production function. Third, the generalized utility function is presented in Section 5, where both

goods are normal when income is low; however, either can change from a normal to an inferior

good as income increases.

II. Illustration

Let us denote utility by u, and the quantities of the two goods by x and y. If the utility

function is

u(x, y)=xa+y, (0<a<1),

then x would never be an inferior good. For x to be an inferior good, its marginal utility must

gradually reduce with an increase in overall utility u, since x is less favored by high-utility

individuals. Therefore, we place a decreasing function,
1

uc , (c>0) before xa, and reformulate

u=xa+y into

u=
1

ucx
a+y. (1)

Thus, u(x, y) is given by the implicit function,

U(u, x, y)≡
1

ucx
a+y−u=0.

One of the solvable cases for u is when c=1. When c=1, (1) is given by

u=
1

u
xa+y,

which gives u2−uy−xa=0. Therefore, this can be solved as

u(x, y)=
y+ y2+4xa

2
. (2)

Equation (2) resembles the quadratic formula in mathematics.
3
If we solve the problem of

minimizing the expenditure px+y, where p denotes the relative price, subject to

HITOTSUBASHI JOURNAL OF ECONOMICS [June80

2 Sections 4 and 5 are independent of the earlier sections. The reader can begin to read from Section 4 or 5.
3 The production function of Epstein and Spiegel (2000) resembles (2). It can be expressed as u=(y+x)


−βx,

(0<α<1, β<1 and ν>0).



u0−(y+ y2+4xa )/2=0 for a fixed u0, then we get x(p, u0)=(a/(u0p))
1

1a as the compensated

demand function, which is decreasing in u. Thus, we can confirm that (2) is the utility function

of an inferior good.

We must note that although (1) is unsolvable for u in general, it can give the utility level.

This is explained as follows. Let us decompose (1) into two functions: LHS(u)=u and

RHS(u)=ucxa+y . The former is the 45-degree line in Figure 1. The latter is the downward

sloping curve. These always intersect, in this case at point A, where LHS(u)=RHS(u) . Then,

(1) always gives u as a real and unique number.

Let us consider the case where c=1. The indifference curves of u=u1xa+y are illustrated

in Figure 2(i). The indifference curves for u=1 and u=2 are given by

1=xa+y, and

2=(1/2)xa+y,

respectively, where the latter equation has the larger constant term and smaller coefficient of x

than the former. Therefore, the two indifference curves never intersect for non-negative x and y.

The simplest case is that of perfect substitutes (a=1),

u=u1x+y.

The indifference curves for u=1, 2, 3,..., are given by 1=x+y, 2=(1/2)x+y, 3=(1/3)x+y,...,

respectively. These equations are illustrated in Figure 2 (ii). The gradient of the indifference
curves decreases with an increase in u.
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The LHS curve is on the left-hand side of u=ucxa+y and the RHS curve on the right-hand side. They always

have a single intersection point, point A. The projection of point A on the x-axis represents the real value s that we use

as the utility level. An increase in x or y shifts the RHS curve upward. Therefore, marginal utility is always positive.

FIGURE 1. UTILITY LEVEL



III. Consumer’s Demand Function with Inferior Goods

Let m=px+y be the budget constraint, where m is an income level, and p is the relative

price. For a given m, the problem faced by a consumer is

max x, y u

s.t ucxa+y−u=0, and m−px−y=0.

To solve this problem, we use the Lagrange function
4

L=u+μ(ucxa+y−u)+λ(m−px−y) .

From this, we obtain

Lx=μaucxa1−λp=0 (3)

Ly=μ−λ=0 (4)

Lu=1+μ(−cuc1xa)=0

L=m−px−y=0 (5)

L =ucxa+y−u=0. (6)
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4 An alternative method for solving this problem is available in Appendix A. In Appendix A, we use the optimization

technique for an implicit function to derive (7) and (12).
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(i): The indifference curve (IC) of u = 1 on (x, y) is given by 1=xa+y. If u increases to u = 2, the IC of u = 2

becomes 2=(1/2)xa+y. Therefore, the two ICs never intersect each other. This IC of u = 1 is represented by the xa

curve, being given by y=1−xa. The IC of u = 2 is represented by (1/2)xa. (ii): In the perfect substitute case, the

ICs are straight lines.

(i) Substitutes Case (ii) Perfect Substitutes Case

FIGURE 2. INDIFFERENCE CURVES



From (3) and (4) we obtain “the law of weighted equi-marginal utility” (auc
x
a1)/p=1,

from which we can also derive the compensated demands, x(p, u) and y(p, u) . Then, prior to

deriving the normal demand, x(p, m) and y(p, m), we derive x(p, u) and y(p, u).

From (3) and (4), we obtain

x(p, u)=
a

u
c
p 

1

1a

. (7)

From (6) and (7), we obtain

y(p, u)=u−
1

u
c 

a

u
c
p 

a

1a

for u≥
a

p 
a

1ac

, (8)

y(p, u)=0 for u≤
a

p 
a

1ac

. (9)

From (6) and (9), we obtain

x(p, u)=u
1c

a for u≤
a

p 
a

1ac

. (10)

The interior case given by (7) and (8) is shown as point A in Figure 3. The exterior case given

by (9) and (10) is shown as point C in Figure 3. Although (7) gives point B, it is negative in y,

therefore, point C given by (10) and (9) is the optimal point.

Summing (7), (8), (9), and (10), we obtain Proposition 1.

Proposition 1 (Compensated Demand Function)

Let u denote the threshold of u, which is
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u ≥ (a/p)1－a＋c
a

u < (a/p)1－a＋c
a

O x

y

A

B

C
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b

Point A is the interior solution. However, the IC of our function intersects the x-axis. For a utility level below

(a/p)
a

1ac, the FOC yields point B. In this case, point C is the optimal point to avoid a negative demand for y.

FIGURE 3. INTERIOR AND EXTERIOR SOLUTIONS



u(p)≡
a

p 
a

1ac

.

(i) For u≥u, the compensated demands are

x(p, u)=
a

ucp 
1

1a

,

y(p, u)=u−
1

uc 
a

ucp 
a

1a

.

where the utility and price elasticity of x(p, u) are constant

∂x

∂u

u

x
=

−c

1−a
<0,

−
∂x

∂p

p

x
=

1

1−a
>1.

(iii) For 0≤u≤u, the compensated demands are

x(p, u)=u
1c

a .

y(p, u)=0.

Proposition 1(i) gives x(p, u) and y(p, u) for the interior solution. xʼs elasticity with respect to u

is a negative constant (i.e., −c/(1−a)<0). Thus, we confirm that x is an inferior good.

However, the price elasticity is constant and larger than 1 (i.e., 1/(1−a)>1). This means that
our inferior good is very elastic in price. Proposition 1(ii) shows the corner solution, where the

demand for y is zero.

Next, we derive the normal demand function. From (3) and (4), we obtain

u=
a

px1a 
1

c

for u≥
a

p 
a

1ac

. (11)

From (5), (6), and (11), we obtain

m=
a

px1a 
1

c

−
1−a

a px for u≥
a

p 
a

1ac

. (12)

When u=(a/p)
a

1ac, the demand functions are x=m/p and y((a/p)
a

1ac)=0. Therefore, equation

(1) with u=(a/p)
a

1ac is given by u=uc(m/p)
a
+0, which gives

u=
m

p 
a

c1

. (13)

From (12) and (13), we obtain
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m=
a

px1a 
1

c

−
1−a

a px for m≥
1

p 
a

p 
1c

1ca

. (15)

From (15), we obtain Proposition 2.

Proposition 2 (Demand Function)

Let m denote the threshold of m, which is

m(p)≡
1

p 
a

p 
1c

1ca

.

(i) For m≥m(p), the normal demand x(p, m) is given implicitly by

m=
a

px1a 
1

c

−
1−a

a px.
(ii) For 0<m≤m(p), the normal demand x(p, m) is given by

x(p, m)=
m

p
.

(iii) For m≥m(p),
dx

dm
<0

From Propositions 2 (i), and 2 (iii), dx/dm<0 since 0<a<1 and c>0 . Therefore, our utility
function successfully exhibits the property of an inferior good. However, despite the existence

of an inferior good, it yields dx/dp<0 . Therefore, our utility function does not exhibit the
property of a Giffen good, even if the parameter c is very large.

The income-consumption curve obtained from Propositions 2(i) and 2(ii) is illustrated in

Figure 4. Line AB is the income-consumption path for m≥m, while line OA is that for m≤m.

IV. Factor Demand Functions with Inferior Inputs

1. The Total Cost Function

In this section, we examine the total cost function. We use Q instead of u to discuss the

cost function. Let C=pxx+pyy be the total cost, where px and py denote the prices of x and y,

respectively. Input x is inferior, such as a compact machine, which is convenient and handy for

small-scale production, but is unsuitable for large-scale production.

The production function Q=f(x, y) is given by

Q=Qcxa+y.

which is the same as (1). The firm solves the minimization problem with a given Q,

min x, y pxx+pyy

s.t. Qcxa+y−Q=0.
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The Lagrange function is

ℒ=pxx+pyy+λ(Qcxa+y−Q).

Let x(px, py, Q) and y(px, py, Q) denote the factor demand functions (with a given Q)

obtained by solving this problem. We do not discuss factor demand in detail, since these are the

same as the compensated demands shown in Proposition 1. If we replace (p, u) in Proposition 1

with (px/py, Q), then we obtain the factor demand functions x(px, py, Q) and y(px, py, Q).
5

The total cost function is given by C(Q)=pxx(px, py, Q)+pyy(px, py, Q) . By using these,

we obtain Proposition 3 for the total cost function.

Proposition 3 (Total Cost Function)

Let Q denote the threshold of Q, which is

Q(px, py)≡
apy

px 
a

1ac

.

(i) For Q≤Q, both x and y are used in production and C(Q) is given by

C(Q)=pyQ−(a
a

1a−a
1

1a)⋅px

a

1a⋅py

1

1a⋅Q
c

1a . (17)

(ii) For 0≤Q≤Q, the factor demand y(px, py,Q) is zero. Then C(Q) is given by

C(Q)=pxQ
1c

a . (16)
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Q=Qcbxa+β, (b>0, β>0) is discussed for further extensions.

A

x

y

O

B

C

Consumption (x, y) moves from point O to point A and then point B when increasing in m or u. OA is given by

Proposition 1(iii) and AB by Proposition 1(i).

FIGURE 4. INCOME-CONSUMPTION CURVE



(iii) The limit of the second term of (17) is zero, since

limu−(a
a

1a−a
1

1a)⋅px
a
1a⋅py

1

1a⋅Q
c
1a→0.

Then, the total cost curve converges to the straight line C=pyQ as q increases. Therefore,

the total cost curve is spoon-shaped and shown as TC in Figure 5.

Proposition 2(iii) means that although marginal cost is not constant, it converges to the constant

py . In this sense, C(Q) is a quasi-constant marginal cost. The reason is that when Q is

sufficiently large, the need for an inferior good almost vanishes. Production is carried out using

normal goods. In Q=Qcxa+y, the term y denotes the normal good and is the constant

marginal cost. The inferior good is used only when its marginal product per price is higher than

or equal to that of the normal good. If the inferior good is not available, we must only use the

normal good, which gives the total cost curve C=pyQ in Figure 5. Therefore, the depth of the

spoon represents the savings from the inferior good.

2. Extension to the Cobb-Douglas Production Function

In Q=Qcxa+y, the variable y is the simplest homothetic of degree 1 functions. Then, we

can replace y with y=βKzL1z, where K is capital, and L is labor. Furthermore, we add a

parameter, b. The production function Q(x, y) is given by

Q=
b

Qcx
a+βKzL1z (18)
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The dotted straight line represents the TC curve when the inferior input is unavailable, and the spoon-shape TC curve

represents total cost when the inferior input is available. By using the inferior input, cost is reduced for a small

production level. The length of ab represents this cost saving.

FIGURE 5. TOTAL COST CURVE



where 0<b, 0<β, and 0<z<1.
6

Total cost is pxx+rK+wL, where r is the rental rate, and w is wage. The firm solves the

minimization problem:

min x, K, L pxx+rK+wL

s.t Qcbxa+βYzL1z−Q=0.

The Lagrange function is

ℒ=pxx+rK+wL−λ
b

Qcx
a+βKzL1z−Q.

Then, the first order conditions (FOC) are:

ℒ x=px−λa
b

Qcx
a1=0

ℒK=r−λβzKz1=0

ℒL=w−λβ(1−z)Lz=0

ℒ=
b

Qcx
a+βKzL1z−q=0.

From these FOCs, we obtain Proposition 4 and Proposition 5.
7

Proposition 4 (Factor Demand)

Let Q denote the threshold of Q, which is given by

Q=Q(px, r, w)≡
ab

1

a

βpx 
r

z 
z


w

1−z 
1z


a

1ac

. (19)

(i) For Q≤Q, the factor demand functions are given by

x(px, r, w, Q)=
ab

βpxQ
c⋅

r

z 
z

⋅
w

1−z 
1z


1

1a

, (20)

K(px, r, w, Q)=
1

β 
z

r

w

1−z 
1z

Q−
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

, and (21)

L(px, r, w, Q)=
1

β 
1−z

w

r

z 
z

Q−
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

. (22)
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input. For example, labor is an inferior input if it is used in the old production system that is harmful to the body, or

that is slavish. These old systems work well in the poor circumstance. However, these dangerous systems lose their

efficiency in large-scale production.
7 The proofs of Proposition 4 and Proposition 5 are given in Appendix C.



(ii) For 0≤Q≤Q, the factor demand functions are given by

x(px, r, w, Q)=b
1

a Q
1c
a ,

K(px, r, w, Q)=0, and

L(px, r, w, Q)=0.

Proposition 4(i) shows the interior solution. Proposition 4(ii) shows the corner solution. From

(20), we obtain ∂x/∂Q<0. Therefore, we can confirm that x is an inferior input. From (20)-

(22), we also obtain derivatives such as ∂x/∂r>0, ∂x/∂w>0, ∂L/∂w<0, and ∂K/∂r<0, which

are standard results due to a price change. However, ∂K/∂w and ∂L/∂r vary according to Q.

Proposition 5 (Cross-Price Effect)

(i) For Q≤Q<
1

1−a 
1a

1ac

⋅Q,

∂K(px, r, w, Q)

∂w
<0 and

∂L(px, r, w, Q)

∂r
<0

(ii) For 
1

1−a 
1a

1ac

⋅Q≤Q,

∂K(px, r, w, Q)

∂w
≥0 and

∂L(px, r, w, Q)

∂r
≥0.

Proposition 5 (i) implies that if Q is so small that Q≤Q≤
1

1−a 
1a

1ac

⋅Q, then capital

demand is decreasing in wage. Similarly, labor demand is decreasing in rental rate. The inferior

input is more suitable for production than the production system using K and L.

Yet, Proposition 5(ii) means that if Q is so large that (1/(1−a))
1a

1ac⋅Q≤Q, then the cross

factor-price effects are negative and labor and capital are substitutes.
Figure 6 shows the Q-K graph of K(px, r, w, Q). Let w1 and w2, (w1<w2), denote wages.

K1 shows the graph of K(px, r, w, Q). Point A1 represents Q(px, r, w1), and point B represents

(1/(1−a))
1a

1ac⋅Q(px, r, w1).

If wage rises from w1 to w2, then A1 moves to A2, which represents Q(px, r, w2). Point A1

is located to the left of A2 since ∂Q(px, r, w)/∂w>0.

Proposition 5(i) means that K2 is drawn below K1 and to the left of point B. Proposition 5

(ii) means that K2 is drawn above K1 to the right of point B. K0 represents K(⋅, r, w, Q), the
original Cobb-Douglas function, where the inferior input is not available to the firm.
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V. General Model

1. Formulation of the General Case

In this section, we examine the general model. Utility u(x, y) is now given by

u=b1u
c1x1

a1+b2u
c2x2

a2, (23)

with the budget constraint m=px1+x2, where 0<ai<1, 0<bi, 0<ci, 0<p, and m>0,

(i=1, 2). The net-utility function is

g(x1, u, m)=b1u
c1x1

a1+b2u
c2(m−px1)

a2
−u=0. (24)

Let u be a constant. The partial derivative, ∂g/∂x1, is

g1(x1, u, m)=a1b1u
c1x1

a11+a2b2u
c2(m−px1)

a21
(−p)=0 (25)

for 0≤x1≤m/p. In addition, we can confirm that

gu(x1, u, m)=−b1c1u
c11x1

a1−b2c2u
c21(m−px1)

a2
−1<0,

gm(x1, u, m)=a2b2u
c2(m−px1)

a21
>0, and

g11(x1, u, m)=a1(a1−1)b1u
c1x1

a12+a2(a2−1)b2u
c2(m−px1)

a22
(−p)

2
<0.
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Capital Demand

K(Q)

The K0 straight line represents the factor demand curve with K (FDK) when the inferior input is not available for the

firm. If the firm uses the inferior input, then FDK shifts downward from K0 to K1. If the wage increases, K1 shifts to

K2. When Q is small, both K and L are substituted by x, rather than K substituting L. Therefore, FDK shift downward

to K2 for production range A1-B.

FIGURE 6. CROSS-PRICE EFFECT TO K



2. Compensated Demand

Let x1 minimize the expenditure m subject to g(x1, u, m)=0 with a fixed u . Since u is a

constant, the two equations


g(x1, u, m)=0

g1(x1, u, m)=0.

give the solution (x1
*(u), m*(u)). Mathematically, if gm>0, then the solution x1

*(u) minimizes m,

and the other solution m*(u) is its minimized value. Therefore, from (24) and (25), we obtain

the compensated demand function, x1(p, u).
8

Proposition 6 (Compensated demand)

(i) The compensated demand, x1(p, u), is given implicitly by

F(x1, u)≡b1u
c1x1

a1+b2
a2b2p

a1b1 
a2

1a2

u
c1a2c2

1a2 x1
(1a1)

a2

1a2−u=0. (26)

(ii) x1(p, u)>0 for p>0 and u>0.

(iii) limu0 x1(p, u)→0.

(iv) If
c1a2−c2

1−a2

>1, then limu x1(p, u)→0.

(v) If
c1a2−c2

1−a2

≤1, then limu x1(p, u)→∞.

Property (ii) means that the solution is always interior for p>0 and u>0 . Thus, our

compensated demand function F(xi, u)=0 never yields a corner solution. Property (iii) means

that the income-consumption curve always stems from the origin. Property (iv) states that a

good with a large c1 is inferior when u is sufficiently large, but (iii) implies that it is a normal

good when u is small. The OA curve in Figure 7 is the income-consumption curve of case (iv).

Property (v) states that a good with a small c1 is a normal good for all levels of u . The OB

curve in Figure 7 is the income-consumption curve of case (v).

3. Normal Demand

Let x1 maximize u with a given m. Since m is a constant, (24) and (25),


g(x1, u, m)=0

g1(x1, u, m)=0,

gives the solution (x1
*, u*) . Mathematically, if gu<0 holds, then the solution x1

* maximizes u,

and the other solution u* is its maximized value. Therefore, from (24) and (25), we obtain the

normal demand function x1(p, m).

Proposition 7 (Normal demand)
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the net-utility function (24).



(i) Normal demand x1(p, m) is given implicitly by

D(x1, m)≡

b1 x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
c1

c1c2

x1
a1+b2 x1

1a1

(m−px1)
1a2

a2b2p

a1b1 
c2

c1c2

(m−px1)
a2

− x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
1

c1c2

=0. (27)

(ii) x1(p, m)>0 for p>0, and m>0.

Proposition 7(ii) means that our function always yields an interior solution.

4. A numerical Example for the Two-goods Model

In this subsection, we provide a numerical example for the two-good model.

Case. 1: Normal good case

Consider the following parameters:

c1=0.2, c2=0.1, a1=a2=0.9, and b1=b2=p=1.

The utility equation and budget constraint are

u=u0.2x1
0.9+u0.1x2

0.9 and (28)

m=x1+x2,

respectively. From (26), the compensated demand equation is given by:
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x1

B

x2

O

A

The income-consumption Curve (ICC) is always positive both for x1 and x2. Additionally, it always starts from origin

point O. The OA curve is the ICC of Proposition 6 (iv). Both x1 and x2 are normal goods when income is low.

However, x1 changes into an inferior good as income increases. Curve OB is the ICC of Proposition 6(v). This shape of

the ICC is that of the normal model.

FIGURE 7. INCOME-CONSUMPTION CURVE



F(x1, u)=u
0.2x1

0.9+u0.8x1
0.9−u=0,

which is solvable for u. The compensated demand for the good 1 is

x1(1, u)=
u

u0.2+u0.9 
1

0.9

,

which is a normal good because
dx1(u)

du
>0.

From (27), we obtain the normal demand, x1(1, m), as


x1

m−x1 
0.2

x1
0.9+

x1

m−x1 
0.1

(m−x1)
0.9
−

x1

m−x1 
1

=0. (29)

Table 1 shows the values of x1(1, m) calculated using a computer.
9
For m=5 and m=10 in

Table 1, the income elasticity is
Δx

Δm

m

x
=

1.31−1.05

10−5

5

1.05
≑0.25<1. Thus, x1 is a necessary

good.

Case 2: Inferior good case

Consider the following parameters:

c1=0.3, c2=0.1, a1=a2=0.9, and b1=b2=p=1.

The utility equation and the budget constraint are

u=u0.3x1
0.9+u0.1x2

0.9 and (30)

m−x1−x2=0,

respectively. From (26), we have

F(x1, u)=u
0.3x1

0.9+u1.7x1
0.9−u=0. (31)

Here, we can solve (31) for x1. Thus, we derive the compensated demand function as

x1(1, u)=
u

u0.3+u1.7 
1

0.9

. (33)

From (33), we have limu x1(1, u)→0. Therefore, x1 is an inferior good for large a u, as

discussed in Proposition 6(iv).

From (27), the normal demand function, x1(1, m) is implicitly given by
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0.490.44 0.72 0.85 1.05
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TABLE 1. THE TWO-GOODS MODEL (NORMAL GOODS)
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D(x1, m)=
x1

m−x1 
0.15

x1
0.9+

x1

m−x1 
0.05

(m−x1)
0.9
−

x1

m−x1 
0.5

=0. (34)

Table 5 shows the values of x1(m) calculated from (34).

From Table 2, we draw the Engel curve shown in Figure 8.

Figure 8 shows that good 1 is a normal good when m is small. However, as income

increases, demand stagnates, eventually decreasing to almost zero.

VI. Conclusion

Our function is so flexible that it can generate very various income-consumption curves as

shown in Figure 7. This flexibility is useful for analyzing the consumerʼs data. This paper

concentrates on the two-variable model. However, this function can be extended to the multi-

variable model. Using fully the implicit function may improve the researches in this fields

including Giffen Case in future, since the approach we use in this paper make the function

tractable and simple.

APPENDIX

A. Alternative Derivation of (7) and (15)

We derive x(p, u) and x(p, m) using the optimization technique of the implicit function. This
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0 Income  (:m)

B: case 2

Demand

x1
A: case 1

Curve A is the Engel curve of the necessary good given by Eq (29), and curve B the Engel curve of an inferior good

given by Eq (34).

FIGURE 8. ENGEL CURVE

0.490.45 0.5 0.43 0.34

0.3

0.23

0.8

0.14

1 2 3 5 10 20m
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TABLE 2. THE TWO-GOODS MODEL (INFERIOR GOODS)

x1



technique is an alternative to the Lagrange method for optimization of the implicit function.

Let the utility function and the budget constraint be10

u=bucxa+β, (A.1)

m=px+. (A.2)

From (A.1) and (A.2), by removing y, we obtain the in-budget utility as

g(x, u, m)≡bucxa+β(m−px)−u=0. (A.3)

Derivation of (7)

The expenditure m(x, u) is implicitly given by

g(x, u, m(x, u))=0

for a constant u.

Mathematically, m(x, u) is minimized if g(x, u, m)=0, gx=0, and gm≠0(>0). That is, the condition for

the minimization is:

g(x, u, m)=bucxa+β(m−px)−u=0, (A.4)

gx=abu
cxa1−βp=0, (A.5)

gm=β≠0(>0). (A.6)

From (A.4), we successfully obtain

x(u)= abβpuc 
1a

. (A.7)

By removing the bar from u and setting β, b=1, (A.7) becomes (7).

Q.E.D.

Derivation of (15)

The utility u(x, m) is implicitly given by

g(x, u(x, m), m)=0

for a constant m.

Mathematically, the utility u(x, m) is maximized if g(x, u, m)=0, gx=0, and gu≠0(<0) . That is, the

condition for the maximization is:

g(x, u, m)=bucxa+β(m−px)−u=0, (A.8)

gx=abu
cxa1−βp=0, (A.9)

gu=−bcuc1xa−1≠0 (<0). (A.10)
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From (A.9), we obtain

u=
ab

βpx1a 
1

c

. (A.11)

From (A.8) and (A.11), we obtain

b
ab

βpx1a 
1

c


c

xa+β(m−px)−
ab

βpx1a 
1

c

=0

→m+
1

a
−1px−

ab

βpx1a 
1

c

=0. (A.12)

By removing the bar from m and setting β, b=1, (A.12) becomes (12).

Q.E.D.

B. Proof of Proposition 3

Proof of Proposition 3(i) and (ii)

(a) Factor demand function

The firmʼs optimization problem is

min x, y pxx+pyy

s.t Qcbxa+β−Q=0.

The Lagrange function is

ℒ=pxx+pyy−λ
b

Qcx
a+β−Q. (B.1)

The first order condition is as follows:

ℒ x=px−λa
b

Qcx
a1=0 (B.2)

ℒ y=py−λβ=0 (B.3)

ℒ=Q−
b

Qcx
a+β=0. (B.4)

From (B.2) and (B.3), we obtain

abQcxa1

px
=

β

py

→xa1=
β

abQc⋅
px

py

→x=
ab

βQc⋅
py

px 
1

1a

. (B.5)
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From (B.4) and (B.5), the demand for y is

y=
1

β Q−
b

Qc 
ab

βQc⋅
py

px 
a

1a

 . (B.6)

In (B.6), y(Q) is positive only if

Q−
b

Qc 
ab

βQc⋅
py

px 
a

1a

≥0

→Q≥
b

Qc 
ab

βQc⋅
py

px 
a

1a

→Q⋅Qc⋅Qc
a

1a ≥b
ab

β
⋅
py

px 
a

1a

→Q
1ac
1a ≥b

ab

β
⋅
py

px 
a

1a

→Q
1ac
1a ≥

ab
1

a

β
⋅
py

px 
a

1a

→Q≥
ab

β
⋅
py

px 
1a

1ac

≡Q(px, py). (B.7)

The formula Q≥Q(px, py) is the interior condition for y. From (B.5), (B.6), and (B.7), if Q≤Q(px, py),

then

y=0. (B.8)

Therefore, from (B.4) and (B.8), we obtain

Q−bQcxa+β⋅0=0

→x=b
1

a Q
c1

a . (B.9)

Summing up (B.5) and (B.9), we obtain the full statement of the factor demand function of

Q=Qcbxa+β as follows.

Factor Demand Function

The threshold level for the interior solution is

Q(px, py)≡
ab

β
⋅
py

px 
1a

1ac

. (B.10)

For Q≥Q(px, py),

x(px, py,Q)=
ab

βQc⋅
py

px 
1

1a

, (B.11)
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y(px, py,Q)=
1

β Q−
b

Qc 
ab

βQc⋅
py

px 
a

1a

. (B.12)

For Q≤Q(px, py),

x(px, py,Q)=b
1

a Q
c1

a , (B.13)

y(px, py,Q)=0. (B.14)

(b) Total cost function

The total cost function for Q≥Q(px, py) is given by

C=px⋅x(px, py, Q)+py⋅y(px, py, Q)

→C=px
ab

βQc⋅
py

px 
1

1a

+py
1

β Q−
b

Qc 
ab

βQc⋅
py

px 
a

1a



→C=px
ab

βQc⋅
py

px 
1

1a

+py
1

β
Q−py

1

β 
b

Qc 
ab

βQc⋅
py

px 
a

1a



→C=pxa
1

1a
b

βQc 
1

1a

py
1

1apx
1

1a+py
1

β
Q−py

1

β

b

Qc 
ab

βQc⋅
py

px 
a

1a

→C=pxa
1

1a
b

βQc 
1

1a

py
1

1apx
1

1a+py
1

β
Q−py

1

β

b

Qc 
ab

βQc 
a

1a

py
a

1apx
a
1a

→C=a
1

1a
b

βQc 
1

1a

py
1

1apx
a
1a+py

1

β
Q−

1

β

b

Qc 
ab

βQc 
a

1a

py
1

1apx
a
1a

→C=a
1

1a
b

βQc 
1

1a

py
1

1apx
a
1a+py

1

β
Q−a

a

1a
1

β

b

Qc 
b

βQc 
a

1a

py
1

1apx
a
1a

→C=a
1

1a
b

βQc 
1

1a

py
1

1apx
a
1a+py

1

β
Q−a

a

1a
b

βQc 
1

1a

py
1

1apx
a
1a

→C=py
1

β
Q−a

a

1a−a
1

1a
b

βQc 
1

1a

py
1

1apx
a
1a (B.15)

The total cost function for Q≤Q(px, py) is given by

C=px⋅x(px, py,Q)+py⋅y(px, py,Q)

→C=pxb


1

aQ
c1

a +py⋅0

→C=pxb
1

a Q
c1

a . (B.16)

Summing up (B.15) and (B.16), we obtain the full description of C(Q) as Q=Qcbxa+β, as follows.
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Total Cost Function

For Q≥Q(px, py),

C(Q, px, py)=py
1

β
Q−a

a

1a−a
1

1a
b

βQc 
1

1a

py
1

1apx
a
1a. (B.17)

For Q≥Q(px, py),

C(Q, px, py)=pxb
1

a Q
c1

a . (B.18)

If b=1 and β=1, then (B.17) and (B.18) give (16) and (17).

Q.E.D.

Proof of Proposition 3(iii)

The term a
a

1a−a
1

1a⋅px
a
1a⋅py

1

1a⋅Q
c
1a in (A6) is positive since 0<a<1.

The limit of this term is

limua
a

1a−a
1

1a⋅px
a
1a⋅py

1

1a⋅Q
c
1a→0.

Then, the total cost curve must be approaching the straight line C=pyQ as Q increases. Thus, the TC

curve is drawn below the dotted straight line labelled C=pyQ in Figure 5. The TC curve O-A-TC in

Figure 5 takes a spoon shape.

Q.E.D.

C. Proofs of Proposition 4 and Proposition 5

Proofs of Proposition 4(i)–(iii)

The Lagrange function is

ℒ=pxx+rK+wL−λ
b

Qcx
a+βKzL1z−Q. (C.1)

The FOC is

ℒ x=px−λa
b

Qcx
a1=0, (C.2)

ℒK=r−λβzKz1=0, (C.3)

ℒL=w−λβ(1−z)Lz=0, (C.4)

ℒ=Q−
b

Qcx
a+βKzL1z=0. (C.5)

From (C.3) and (C.4), we obtain

K=
z

r

w

1−z
L (C.6a)

or
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L=
r

z

1−z

w
K. (C.6b)

From (C.2) and (C.3) we obtain

ab

pxQ
cx

a1=
(1−z)

w
βKzLz. (C.7)

From (C.6a) and (C.7), we obtain

ab

pxQ
cx

a1=
(1−z)

w
β
z

r

w

1−z
L

z

Lz. (C.8)

By solving (C.8) for x, we obtain

x(px, r, w, Q)=
ab

βpxQ
c⋅

r

z 
z

⋅
w

1−z 
1z


1

1a

. (C.9)

From (C.5), (C.6b), and (C.9), we obtain

K(px, r, w, Q)=
1

β 
z

r

w

1−z 
1z

Q−
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

. (C.10)

From (C.5), (D6a), and (C.9),

L(px, r, w, Q)=
1

β 
1−z

w

r

z 
z

Q−
b

Q c 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

. (C.11)

(C.9)‒(C.11) give (20)‒(22), respectively.

The value of K(px, r, w, Q) and L(px, r, w, Q) shown in (C.10) and (C.11) must be non-negative for

Q≥0. From (C.10), K(px, r, w, Q)≥0 if

0≤Q−
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

→b
1a
a ⋅

ab

βpx 
r

z 
z


w

1−z 
1z

≤Q (c1)
1a
a

c

→Q(px, r, w)≡ab
1

a

βpx 
r

z 
z


w

1−z 
1z


c

1ac

≤Q. (C.12)

The LHS of (C.12) is denoted as Q(px, r, w) in (19). Therefore, we obtain the interior condition of K as

Q(px, r, w)≤Q. (C.13)

Similar calculation to (C11)‒(C.13) gives L(px, r, w, Q)≥0 for (C.13).

(C.13) is used in Proposition 4(i).

Q.E.D.
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Proof of Proposition 4(ii)

If 0≤Q≤Q, K(px, r, w, Q)=0, and L(px, r, w, Q)=0, then the production function is simply the single

variable function Q=bQcxa. Solving this for u, we obtain x(px, r, w, Q)=b
1

a Q
1c
a . Therefore, we obtain

(ii).

Q.E.D.

Proof of Proposition 5(i)

By removing the curly braces from (C.10), for Q<Q, we obtain

K(px, r, w, Q)=
1

β 
z

r

w

1−z 
1z

Q−
1

β 
z

r

w

1−z 
1z

⋅
b

Q c 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

. (C.14)

The differentiation of (C.14) for w is negative if

∂K

∂w
=

1

β 
z

r

w

1−z 
1z

Q(1−z)w1−
1

β 
z

r

w

1−z 
1z
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

(1−z)
1

1−a
w1<0,

which is rewritten as

1

β 
z

r

w

1−z 
1z

Q(1−z)w1<
1

β 
z

r

w

1−z 
1z
b

Yc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a

(1−z)
1

1−a
w1.

(C.15)

In the variables of (C.15), three terms
1

β 
z

r

w

1−z 
1z

, (1−z), and w1 appear on both the LHS and RHS.

Thus, we can remove these from (C.15). Therefore, (C.15) is now

Q<
b

Qc 
ab

βpxQ
c 
r

z 
z


w

1−z 
1z


a

1a 1

1−a
(C.16)

→Q<
1

Qc 
1

Qc 
a

1a

b
ab

βpx 
r

z 
z


w

1−z 
1z


a

1a 1

1−a

→Q1c
ca

1a<b
ab

βpx 
r

z 
z


w

1−z 
1z


a

1a 1

1−a

→Q<ab
1

a

βpx 
r

z 
z


w

1−z 
1z


a

1ac


1

1−a 
1a

1ac

→Q<Q⋅
1

1−a 
1a

1ac

. (C.17)

From (C.14)‒(C.17), we successfully obtain

∂K(px, r, w, Q)

∂w
<0 for Q≤Q<

1

1−a 
1a

1ac

⋅Q. (C.18)
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A similar calculation to (C.14)‒(C.17) gives

∂L(px, r, w, Q)

∂r
<0 for Q≤Q<

1

1−a 
1a

1ac

⋅Q. (C.19)

Q.E.D.

Proof of Proposition 5(ii)

By changing the inequality “<” of (C.14)‒(C.17) by “≥,” we obtain

∂K(px, r, w, Q)

∂w
≥0 for 

1

1−a 
1a

1ac

⋅Q≤Q.

A similar calculation to (C.14)‒(C.17) gives

∂L(px, r, w, Q)

∂r
≥0 for 

1

1−a 
1a

1ac

⋅Q≤Q.

Q.E.D.

D. Proof of Proposition 6

Proof of Proposition 6(i)

From (25), we obtain

g1(x1, u, m)=a1b1u
c1x1

a11+a2b2u
c2(m−px1)

a21
(−p)=0

→a1b1u
c1x1

a11+a2b2u
c2(m−px1)

a21
(−p)=0

→m−px1=
a1b1u

c1

a2b2pu
c2
x1
a11

1

a21

. (D.1)

From (24) and (D.1), we obtain

g(x1, u, m)=b1u
c1x1

a1+b2u
c2(m−px1)

a2
−u=0

→b1u
c1x1

a1+b2u
c2

a1b1u
c1x1

a11

a2b2pu
c2 

a2

a21

−u=0

→F(x1, u)≡b1u
c1x1

a1+b2
a2b2p

a1b1 
a2

1a2

u
c1a2c2
1a2 x1

(1a1)
a2

1a2−u=0. (D.2)

(D.2) is (26).

Proof of Proposition 6(ii)

We must prove that x1(p, u)>0 for p>0 and u>0.

Let us decompose (D.2) into two functions, LHS and RHS, where

LHS(x1, u)=b1u
c1x1

a1+b2
a2b2p

a1b1 
a2

1a2

u
c1a2c2
1a2 x1

(1a1)
a2

1a2, and
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RHS(x1, u)=u.

For a given fixed u, the graph of LHS and RHS is shown in Figure 8. The curve of LHS is upward-

sloping with the origin zero.

In Figure 9, two curves always have a single intersection (Point A). This point gives b1u
c1x1

a1+

b2
a2b2p

a1b1 
a2

1a2

u
c1a2c2
1a2 x1

(1a1)
a2

1a2−u=0. Point A gives the compensated demand x1(p, u). Q.E.D.

Proof of Proposition 6(iii)

For three terms that contain u in (D.2), the limit of these are

limu0 u
c1→∞,

limu0 u
c1a2c2
1a2 →0, and

limu0 u→0.

Therefore, from these and (D.2), we obtain limu0 x1(p, u)→0. Q.E.D.

Proof of Proposition 6(iv)

We must show that, if
c1a2−c2
1−a2

>1, then limu x1(p, u)→0.

Dividing (D.2) by u, we rewrite (D.2) as

b1u
c11x1

a1+b2
a2b2p

a1b1 
a2

1a2

u
c1a2c2
1a2

1x1
(1a1)

a2

1a2−1=0. (D.3)

For two terms that contain u in (D.3), we obtain

limu u
c11→0, and
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0                x1(p,u)

u
RHS

LHS
A

LHS, RHS, u

x1

The compensated demand function given by (D.2) is also unsolvable for x. However, (D.2) gives the unique and real

demand value. The RHS curve on (x1, u) is given by the right-hand side of (D.2), which is always monotonically

increasing in x1. RHS is a horizontal line, since RHS = u. Therefore, the two curves have a unique intersection (point

A). Point A gives the compensated demand x1(p,u).

FIGURE 9. EXISTENCE OF x1(p,u)



limu u
c1a2c2

1a2
1→∞ ∵

c1a2−c2

1−a2

>1 .
Therefore, from these and (D.3), we obtain limu x1(p, u)→0 Q.E.D.

Proof of Proposition 6(v)

We must show that, if
c1a2−c2

1−a2

≤1, then limu x1(p, u)→∞.

The compensated demand x1 must hold (D.3). For the two terms that contain u in (D.3), we obtain

lim uc11→0, and

limu u
c1a2c2

1a2
1→0 ∵

c1a2−c2

1−a2

<1 .
Therefore, from these and (D.3), x1 must be an infinite. Then, we obtain limu xi(p, u)→∞. Q.E.D.

E. Proof of Proposition 7

Proof of Proposition 7(i)

From (25), for c1≠c2, we obtain


aibi

a2b2p
ucic2x1

ai1
1

a21

=m−px1 (E.1)

→u=
x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
1

c1c2

. (E.2)

By substituting (E.2) into (24), we obtain

b1
x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
c1

c1c2

x1
a1+b2

x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
c2

c1c2

(m−px1)
a2
−

x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
1

c1c2

=0

(E.3)

Equation (E.3) is (27). Q.E.D.

Proof of Proposition 7(ii)

We must show that (E.3) always gives x1(p, m) as a positive real number.

We rewrite (E.3) as

b1
x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
c1

c1c2

x1
a1+b2

x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
c2

c1c2

(m−px1)
a2
=

x1
1a1

(m−px1)
1a2

a2b2p

a1b1 
1

c1c2

.

(E.4)

Figure 10 shows the case of c1<c2. This implies
−c1

−c1+c2

<0,
−c2

−c1+c2

<0, and
1

−c1+c2

>0. In Figure

10, the R curve represents the RHS of (E.4). On the other hand, the L1+2 curve represents the LHS of

(E.4).11 At point E, the RHS is equal to the LHS. Then, both x1
* and u* are given by E. If m increases,

then point A moves to the right. Thus, point E moves either left or right. Q.E.D.
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11 The L2 curve in Figure 10 represents the second term of the LHS. Although L2 is drawn as a concave curve, it is

not always like this. Depending on a1, a2, c1, and c2, the L2 curve can be an upward-sloping curve. However, regardless

of whether it is concave or upward-sloping, L1+2 remains an upward-sloping curve.

x1

L, R

x1
*

E

A

L1+2

R

0

p
m

The L1+2 curve represents the sum of the first and second terms of the left-hand side of (E.4), whose value is [0, ∞).

The R curve represents the right-hand side of (E.4), whose value is [0, ∞) and is increasing in x1. Point E gives the

demand for x1. If m increases, then point A shifts to the right.

FIGURE 10. NORMAL DEMAND


