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FORWARD VARIABLE SELECTION

FOR SPARSE ULTRA-HIGH DIMENSIONAL

GENERALIZED VARYING COEFFICIENT MODELS

Toshio Honda1 and Chien-Tong Lin2

Hitotsubashi University1 and National Tsing Hua University2

Abstract: In this paper we propose forward variable selection procedures for fea-

ture screening in ultra-high dimensional generalized varying coefficient models.

We employ regression spline to approximate coefficient functions and then max-

imize the log-likelihood to select an additional relevant covariate sequentially. If

we decide we do not significantly improve the log-likelihood any more by selecting

any new covariates from our stopping rule, we terminate the forward procedures

and give our estimates of relevant covariates. The effect of the size of the cur-

rent model has been overlooked in stopping rules for sequential procedures for

high-dimensional models. Our stopping rule takes into account the size of the

current model suitably. Our forward procedures have screening consistency and

some other desirable properties under regularity conditions. We also present the

results of numerical studies to show their good finite sample performances.

Key words and phrases: B-spline basis, forward procedure, maximum likelihood,

screening consistency, stopping rule, varying coefficient model.
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1. Introduction

Suppose we have n i.i.d. observations (Yi,Xi, Zi), i = 1, . . . , n, where

Yi is a real response variable and (Xi, Zi) is a covariate vector such that

Xi = (Xi1, . . . , Xip)
T ∈ Rp, Xi1 ≡ 1, and Zi is an index variable satisfying

Zi ∈ [0, 1]. Here we assume Yi follows a high-dimensional sparse generalized

varying coefficient model (GVCM) : the conditional density on (Xi, Zi)

w.r.t. some known σ-finite measure ν is given by

f(y|x, z) = exp{yxTg∗(z)− b(xTg∗(z)) + c(y)}, (1.1)

where b(θ) and c(y) are known functions and

g∗(z) = (g∗1(z), . . . , g∗p(z))T = (g∗j (z))j∈{1,...,p}

is a vector of p unknown smooth functions. We consider the setup where

p is extremely large compared to n, but g∗(z) is sparse, i.e. most of g∗j (z)

are irrelevant. We denote the set of relevant indecies by M and |M| is

very small compared to p, where |S| is the number of the elements of S ⊂

{1, . . . , p}.

In such high-dimensional settings, even if the dimension of Xi, p, is

very large compared to the sample size n, the number of active or relevant

covariates are usually much smaller than p and then we need some variable

selection procedures for such high-dimensional datasets like the Lasso (e.g.
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Tibshirani (1996)), the SCAD (e.g. Fan and Li (2001)), feature screening

procedures based on marginal models or some association measure between

the dependent variable and individual covariates (e.g. Fan and Lv (2008)

and Zheng, Peng and He (2015)), and forward variable selection proce-

dures (e.g. Wang (2009), Ing and Lai (2011), and Luo and Chen (2014)).

Liu, Zhong and Li (2015) is an excellent review paper of feature screening

procedures. Feature screening procedures are also called just screening pro-

cedures. When we use procedures with oracle properties like the SCAD,

screening procedures are also necessary because the SCAD does not work

for very large p due to its non-convex penalty. If p is extremely large, even

the Lasso will not work and these kinds of screening procedures are still

necessary. See Bühlmann and van de Geer (2011) and Hastie, Tibshirani

and Wainwright (2015) for standard procedures and recent developments

on high-dimensional issues.

In this paper, we deal with the ultra-high dimensional generalized vary-

ing coefficient model defined in (1.1), propose forward variable selection

procedures for feature screening with a stopping rule, establish their desir-

able properties, and present the results of numerical studies to support the

usefulness and significance of the proposed procedures. As far as we know,

there is no forward selection screening procedure for generalized varying
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coefficient models and our stopping rule has also independent significance.

Sure independence screening (SIS) and nonparametric independence

screening (NIS) procedures (e.g. Fan and Lv (2008), Fan, Feng and Song

(2011), and Fan, Ma and Dai (2014)) assume that marginal models reflect

the true model faithfully. Model-free screening procedures choose an asso-

ciation measure between the response variable and covariates and assume

that the association measure reflects the true model faithfully. Those pro-

cedures are very easy to understand and implement. However, they often

miss relevant covariates and researchers usually employ those procedures

iteratively without theory.

On the other hand, model-based forward selection procedures (e.g.

Wang (2009), Ing and Lai (2011), Luo and Chen (2014), Cheng, Honda,

and Zhang (2016), and Zheng, Hong and Li (2020)) are iterative proce-

dures by nature and have desirable theoretical properties such as model-

based assumptions and screening consistency. Especially, Zheng, Hong and

Li (2020) deals with generalized linear models and is related to this paper.

However, the authors considered only a sequentially conditional approach,

not full maximization of the log-likelihood with respect to submodels, and

they did not deal with generalized varying coefficient models. We deal with

both ML-type and sequentially conditional procedures in a unified and much
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simpler way in a more complicated, but still very important setup.

The varying coefficient model is one of the popular and useful struc-

tured nonparametric regression models and Fan and Zhang (2008) is an

excellent review paper. There are many important papers on screening

procedures for high-dimensional varying coefficient models. Fan, Ma and

Dai (2014) and Cheng, Honda, and Zhang (2016) considered the NIS and

forward screening procedures, respectively. Both of them deal with mean

regression models. Xia, Yang and Li (2016) applied NIS to generalized

varying coefficient models. Yang, Yang and Li (2020) proposed an ap-

proximated log-likelihood method as in their (2.8) for generalized varying

coefficient models. The procedure can improve the log-likelihood function

when their conditions on the observed high-dimensional Fisher information

matrix are satisfied. However, there seems to be no result on how much

the log-likelihood function is improved. Their procedure is not forward

procedures and we do not rely on such approximations.

Information criteria are very important for variable selection in high-

dimensional settings. In addition information criteria are often used as

stopping rules as in Ing and Lai (2011), Luo and Chen (2014), Cheng,

Honda, and Zhang (2016), and Zheng, Hong and Li (2020). EBIC is pro-

posed in Chen and Chen (2008) and Chen and Chen (2012). The latter deals
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with generalized linear models. The authors of Chen and Chen (2008) and

Chen and Chen (2012) established model selection consistency among the

models whose dimension is bounded. Hence the theory in Chen and Chen

(2008) and Chen and Chen (2012) cannot be applied when the true model

dimension increases to infinity. Kim and Jeon (2016) considers more gen-

eral setups for parametric models and Lee, Noh and Park (2014) deals with

varying coefficient quantile regression models.

When we consider information criteria for linear regression models, we

have explicit expressions of the LS estimators and theoretical analysis is

much easier than for our present model. However, there are some challenges

for generalized linear models such as uniformity of estimators in wrong or

misspecified models as seen in the proof of Lemma 2. Besides, the model

dimension at the current step have critical effects on the asymptotics and

we have to take the model dimension at the current step into consideration

as in our stopping rule given in (2.2). This means that our information

criterion and stopping rule have independent significance.

This paper is organized as follows. In Section 2, we present our forward

screening procedures together with critical assumptions and main theoret-

ical results. Then the results of our numerical studies are presented in

Section 3. In Section 4, we describe technical assumptions and give the
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proofs of the main theoretical results. We conclude this paper with Sec-

tion 5. The proofs of technical lemmas and additional numerical results are

given in the supplementary material.

We end this section with general notation used throughout the paper.

In this paper, C, C1, C2, . . ., are generic positive constants and their values

may change from line to line. Note that an ∼ bn means C1 < an/bn < C2

and that a ∨ b and a ∧ b stand for the maximum and the minimum of a

and b, respectively. For a index set S ⊂ {1, . . . , p}, Sc and |S| stand for the

complement and the number of the elements, respectively. For a vector a,

‖a‖ and ‖a‖1 are the Euclidean and L1 norms, respectively. We denote the

maximum and minimum eigenvalues of a symmetric matrix A by λmax(A)

and λmin(A), respectively. For a matrix A and a vector a, AT and aT are

their transposes.

2. Forward selection procedure

We begin with notation related to observations and our model. Then we

describe our procedures, critical assumptions, and main theoretical results.

We treat our ML-type and sequentially conditional procedures in a unified

way.
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2.1 Notation

Set pn = p ∨ n and write µ(θ) = b′(θ) and σ(θ) = b
′′
(θ).

Let (Y,X, Z) have the same distribution as (Yi,Xi, Zi) and write

g(z) = (g1(z), . . . , gp(z))T = (gj(z))j∈{1,...,p},

X = (X1, . . . , Xp)
T = (Xj)j∈{1,...,p}, and Xi = (Xi1, . . . , Xip)

T = (Xij)j∈{1,...,p}.

We take E{Xj} = 0 and E{X2
j } = 1 for j = 2, . . . , p.

For S ⊂ {1, . . . , p}, we write

gS(z) = (gj(z))j∈S, XS = (Xj)j∈S, and XiS = (Xij)j∈S.

Define `(y, θ) by

`(y, θ) = yθ − b(θ).

Then by sight abuse of notation, we denote the log-likelihood function for

S ⊂ {1, . . . , p} by

`n(XT
S gS(Z)) =

1

n

n∑
i=1

`(Yi,X
T
iSgS(Zi)).

Note that we omit Y on the LHS.

Next we define the quasi true coefficient function for S ⊂ {1, . . . , p} by

g∗S(z) = arg max
gS(z)

E{`(Y,XT
S gS(Z))},
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where g∗S(z) = (g∗jS(z))j∈S and we assume that g∗S(z) has desirable prop-

erties as specified in Section 4. As for the definition of g∗S(z), note that

E{`(Y,XT
S gS(Z))|Z = z} (2.1)

depends on a |S|-dimensional vector and g∗S(z) is just the parameter maxi-

mizing (2.1) for that z. Hereafter we assume the model for S and g∗S(z) are

well defined.

We also define h∗jS(z) by

h∗jS(z) = arg max
hjS(z)

E{`(Y,XT
S g
∗
S(Z) +XjhjS(Z))}

for j 6∈ S.

We employ regression spline to estimate g∗S(z) and replace XT
S gS(Z)

and XT
iSgS(Z) with W T

S βS and W T
iSβS, where WS = XS ⊗ B(Z) ∈

R|S|L, WiS = XiS ⊗ B(Zi) ∈ R|S|L, and βS = (βj)j∈S with βj ∈ RL.

Note that⊗means the Kronecker product and thatB(z) = (B1(z), . . . , BL(z))T ∈

RL is a suitable L-dimensional spline basis, e.g. the equispaced B-spline

basis on [0, 1]. In this paper we use the linear or smoother B-spline basis.

Schumaker (2007) is an excellent reference on spline functions.

We also write

W = X ⊗B(Z) ∈ RpL, Wi = Xi ⊗B(Zi) ∈ RpL, and β = (βj)j∈{1,...,p}.
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Then we assume that we can approximate h∗jS(z), g∗S(z) = (g∗kS(z))k∈S,

and g∗(z) = (g∗k(z))k∈{1,...,p} by using suitable η∗jS, β∗S = (β∗kS)k∈S, and

β∗ = (β∗k)k∈{1,...,p}, respectively as

h∗jS(z) ≈ η∗TjSB(z), g∗kS(z) ≈ β∗TkSB(z) and g∗k(z) ≈ β∗Tk B(z), respectively.

We explain the meaning of ≈ in more detail in Section 4.

Our procedure is based on the maximization of the log-likelihood func-

tion for S ⊂ {1, . . . , p}. Thus we need to define relevant notation here.

Let ĝS(z) be the quasi ML estimator of g∗S(z) as given in

ĝS(z) = I|S| ⊗B(z)T β̂S,

where β̂S = arg max
βS∈R|S|L

`n(W T
S βS). The uniform properties of ĝS(z) are im-

portant and will be investigated in Lemma 2 in Section 4.

As for h∗jS(z),

ĥjS(z) = B(z)T η̂jS,

where η̂jS = arg max
ηjS∈RL

`n(W T
S β̂S + W T

j ηjS). The convergence rate of this

ĥjS(z) is given in Lemma 5 in Section S3 in the supplementary material.

This ĥjS(z) is just an auxiliary technical tool for the ML-type forward

regression procedure and does not appear in its algorithm. Very interest-

ingly, we do not need the theoretical properties of ĥjS(z) at all in deriving
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the theoretical properties of both of our procedures, even for the sequen-

tially conditional screening procedure.

2.2 Forward selection procedures

We state our two forward variable selection procedures, the ML-type and

sequentially conditional ones. We present their desirable properties later in

Theorems 1-3.

First we take S0 = {1} and begin with k = 1.

(1) Put S = Sk−1. Then

jk = arg max
j∈Sc

max
βS∪{j}

`n(W T
S∪{j}βS∪{j}).

(2) Check if we have significantly improved `n(W T
Sk−1

β̂Sk−1
) by adding jk.

Specifically, if we have with S = Sk−1,

max
j∈Sc

max
βS∪{j}

`n(W T
S∪{j}βS∪{j})− `n(W T

S β̂S) > Lξn|S| log pn/n, (2.2)

set Sk = Sk−1 ∪ {jk} and go to (1). If not, set M̂ = Sk−1 and end this

algorithm.

The above is our ML-type forward regression procedure and is denoted

by FR in Section 3.

By replacing jk in (1) with

jk = arg max
j∈Sc

max
ηjS

`n(W T
S β̂S +W T

j ηjS) (2.3)
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and

max
j∈Sc

max
βS∪{j}

`n(W T
S∪{j}βS∪{j}) with max

βS∪{jk}
`n(W T

S∪{jk}βS∪{jk})

in (2), we can define the sequentially conditional screening procedure, which

is denoted by SC in Section 3. From a computational point of view, this is

easier to implement.

Some comments on the stopping rule in (2.2) are in place. We define

our information criterion as

−`n(W T
S β̂S) +

L|S|
2

qn log pn
n

, (2.4)

where qn = ξn|S| and ξn tends to ∞ slowly. From a theoretical point of

view, any ξn tending to ∞ will work. We emphasize qn’s dependence on

|S|.

We use this information criterion as our stopping rule. Actually, |S| in

(2.2) should be (2|S| + 1)/2 from (2.4). However, we omitted 1/2 just for

simplicity. We have no theoretical suggestion for ξn in Theorem 2 below.

Therefore we took ξn = 1 in our numerical studies.

Choosing a suitable stopping rule is very challenging. This is because

the true model size can increase to infinity and we have to pay some cost

in the uniform convergence rate in S. Besides, our setup is nonlinear and

nonparametric. Note that both Chen and Chen (2008) and Chen and Chen
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(2012) assume the true model size is bounded and that they proved selec-

tion consistency among the models whose dimensions are bounded. The

current model size can affect the asymptotics. However, when we go on to

a larger model, the penalty increment of traditional information criteria is

independent of the current model size such as |S|. Thus we have come up

with the criterion in (2.4) to cope with these problems. We need to make

some non-trivial modifications to the proof of Theorem 2 in Honda, Ing and

Wu (2019) to derive our theoretical results on this criterion. If we deal with

parametric models, we should remove L in (2.4).

2.3 Critical assumptions and main theorems

Next we present critical assumptions and main theoretical results which

cover both of the proposed procedures. The other technical assumptions

are relegated to Section 4.

The following assumption is similar to Assumption (E) in Zheng, Hong

and Li (2020) and this assumption stipulates how large the signal is when

M 6⊂ S. If the LHS of (2.5) is small for any j ∈ Sc, the remaining signal

is sufficiently small and there may be no need of adding new covariates. In

Theorem 1, we relate the LHS of (2.5) to the log-likelihood.
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Assumption LB : When M 6⊂ S, there is a uniform lower bound as

|E[{Y − µ(g∗TS XS)}XjhjS(Z)]| > ρLB (2.5)

for some j ∈ M ∩ Sc and hjS(z) satisfying E{h2jS(Z)} = 1. This ρLB can

depend on n and is closely related to Kn and pn as seen in Theorems 1-3.

This assumption is equivalent to

E[E{(Y − µ(g∗TS XS))Xj|Z}2]1/2 > ρLB.

We consider general setups and have to deal with uniformity in S ⊂

{1, . . . , p}. Hence we need an upper bound on the size of possible S to have

sufficiently small convergence rates of the estimators.

Assumption UB : We know an upper limit of M, Kn, and our technical

assumptions should hold for S ⊂ {1, . . . , p} such that |S| ≤ Kn. We allow

both |M| and Kn to increase to infinity. This Kn satisfies

K
3/2
n L

σminλL

√
log pn
n
→ 0. (2.6)

(2.6) implies we should have Kn/n
1/5 → 0. This upper limit Kn does

not have to be tight w.r.t. |M|, e.g. we allow |M|/Kn → 0.

Now we state our theoretical results. We present the proofs of these

theorems in Section 4 together with Lemmas 1-4. These lemmas are proved

in the supplementary material.
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We have three critical parameters, Kn, pn, and ρLB. There are trade-

offs among them as in (2.6) in Assumption UB, (2.8), and (2.9) in Theorem

3.

Theorem 1 relates Assumption LB to possible improvement on the log-

likelihood function.

Theorem 1. Suppose that all the assumptions except for Assumption B(2)

hold. Then with probability tending to 1, we have uniformly in k smaller

than Kn,

max
j∈Sc

max
βS∪{j}

`n(W T
S∪{j}βS∪{j})− `n(W T

S β̂S) ≥ CLBρ
2
LB with S = Sk−1

and

max
j∈Sc

max
ηjS

`n(W T
S β̂S +W T

j ηjS)− `n(W T
S β̂S) ≥ CLBρ

2
LB with S = Sk−1

if M 6⊂ Sk−1 and CLBρ
2
LB/2 is larger than the RHS’s of Lemmas 3 and 4

in Section 4. Note that CLB is from Lemma 1 in Section 4.

Note that

max
βS∪{j}

`n(W T
S∪{j}βS∪{j}) ≥ max

ηjS
`n(W T

S β̂S +W T
j ηjS). (2.7)

If we have

Kn

√
log pn

n2/5
= o(ρ2LB), (2.8)
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our condition on the RHS’s of Lemmas 3 and 4 is satisfied.

In Theorem 2, we establish the theoretical validity of our stopping rule.

We have to prove that our procedures stop once we have M ⊂ Sk. There

are many and many S satisfyingM⊂ S and |S|+1 ≤ Kn. This is different

from the proof for model selection consistency and we cannot apply the

standard arguments for information criteria straightforwardly. In addition

recall we allow both |M| and Kn to tend to infinity as long as all the

assumptions and conditions are satisfied. Therefore the arguments in Chen

and Chen (2012) do not apply to out setup.

Theorem 2. Suppose that all the conditions and assumptions in Theorem

1 and Assumption B(2) hold. Then the criterion defined in (2.4) works as

a stopping rule in both of our forward selection algorithms. Specifically, as

long as CLBρ
2
LB > Lξn|Sk| log pn/n and |Sk| < Kn, our algorithms do not

stop until M⊂ Sk with probability tending to 1. In addition, once M⊂ Sk

and |Sk| < Kn, we stop at this step with probability tending to 1.

The inequality condition in Theorem 2 is much less restrictive since it

is true if we have for some positive constant C1,

CLBρ
2
LB > C1ξnKn

log pn
n4/5

.

According to Theorem 3, both of the proposed procedures enjoy the
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screening consistency when ρLB in (2.5) is large enough.

Theorem 3. Suppose that all the conditions and assumptions in Theorem

1 hold and set

∆ = E{`(Y,XTg∗(Z))} − E{`(Y,XT
S0
g∗S0

(Z))}.

Then M⊂ Sk for some k ≤ Kn with probability tending to 1 if

∆/(CLBρ
2
LB) < Kn − 2. (2.9)

3. Numerical studies

In this section, we present our numerical studies. They consist of simulation

studies in Subsection 3.1 and an application to the multiple myeloma (MM)

data with p = 44760 in Subsection 3.2. We did all the computations by

using R.

3.1 Simulation studies

We carried out simulation studies to evaluate the finite sample performances

of the ML-type forward regression (FR) and sequentially conditional screen-

ing (SC) procedures in the high-dimensional GVCM and the results are

compared with those of the nonparametric independence screening of Fan,

Feng and Song (2011). Recall that the parametric version of the SC pro-
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cedure was originally proposed for the generalized linear model in Zheng,

Hong and Li (2020). In addition, the results are also compared with those

of the group LASSO (gLASSO) and group SCAD (gSCAD) procedures.

We implemented both of them by using R package grpreg of Breheny and

Huang (2015).

We describe our simulation setups. When we generate the index vari-

able Z ∈ [0, 1], the covariate vector X ∈ Rp and the response variable Y ,

we follow the same spirit in the simulation settings of Yang, Yang and Li

(2020). We first sample (Z∗,X)T from a p + 1 dimensional normal dis-

tribution N(0,Σ), where Σ is a (p + 1) × (p + 1) covariance matrix. Two

commonly used covariance structures for Σ with parameter ρ are

Σ1 :σij = 1, ∀ i = j;σij = ρ, ∀ i 6= j, and

Σ2 :σij = ρ|i−j|, ∀ i 6= j,

and they correspond to the equi-correlated and the auto-correlated struc-

tures respectively. Here, we take multivariate normal X to check the ro-

bustness of our procedure in spite of Assumption X(1) in Section 4. Letting

Φ(·) be the cumulative density function of N(0, 1), we set Z = Φ(Z∗) so

that the index variable is correlated with X.
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Given {Z,X}, we consider two sets of coefficient functions

G1 :g1(Z) = g2(Z) = g3(Z) = 2 + 2 sin2(2πZ), g4(Z) = −3ρg1(Z)

and

G2 :g1(Z) = −(3 + 2 cos2(0.5πZ)), g2(Z) = −3(1 + Z),

g3(Z) = (2− Z)2 + 2, g4(Z) = 3 + 2 sin2(0.5πZ).

We generate the response variable Y following the high-dimensional GVCM

in (1.1) by specifying the covariate structure (Σ) and coefficient function

(G): (Σ1, G1), (Σ1, G2), (Σ2, G1) and (Σ2, G2). We write η(Z,X) = g1(Z)X1+

g2(Z)X2 + g3(Z)X3 + g4(Z)X4. We implicitly include the intercept term

as in the algorithm in Subsection 2.2. This means S0 = {0} with X0 ≡ 1.

We deal with normal, logistic and Poisson regression models. In the nor-

mal regression models, Y follows a normal distribution with mean η(Z,X)

and variance 1; In the logistic regression models, Y follows a Bernoulli

distribution with P (Y = 1) = exp(η(Z,X))/(1 + exp(η(Z,X))); In the

Poisson regression models, Y follows a Poisson distribution with mean

exp(η(Z,X)). In particular, we set smaller coefficients G1/4 and G2/6

to avoid large mean values in Poisson regression models. Besides, a kind of

special care is necessary to the logistic regression models due to the sepa-

ration problem (Heinze and Schemper, 2002). See Remark 1 at the end of
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this subsection.

We use both the stopping rule (2.2) and the high-dimensional BIC

(HBIC) of Yang, Yang and Li (2020) to terminate the iteration of FR

and SC. The HBIC criterion is included for comparison although it is not

theoretically justified yet for the present setup. In addition, we also give

the results on FR and SC with no stopping rule (Kn = 10). Hereafter they

are called FR.full and SC.full. In this section, we denote the criterion (2.4)

as the likelihood information criterion (LIC) in our table. As illustrated by

Cheng, Honda, and Zhang (2016), the stopping criterion based on EBIC or

BIC will tend to stop the forward regression in varying coefficient model too

early. Thus, we continue selection along the path of FR and SC algorithms

until the stopping criterion is satisfied m times and they are denoted by

FR.m and SC.m, respectively. In our simulation, we set m = 1, . . . , 5. In

Cheng, Honda, and Zhang (2016), they terminated their algorithm with

m = 5.

We describe the parameter setting of algorithms and simulation designs

here. The quadratic B-spline with L = 5 is employed in all the procedures.

We consider (n, p) = (200, 1000) and (n, p) = (400, 1000) for the normal

regression models, and consider (n, p) = (300, 1000) and (n, p) = (500, 1000)

for the logistic and Poisson regression models. We take ρ = 0.25 and
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ρ = 0.5 for Σ1 and ρ = 0.5 for Σ2. We select the top-b(n/L)/ log(n/L)c

ranked variables based on their marginal ranking, in the NIS procedure,

where bxc represents the integer part of number x, and we set Kn = 10 as

the maximum iteration number for both the FR and SC procedures. We

exploit 10-fold cross validation for tuning parameter selection for the group

LASSO (gLASSO) and group SCAD (gSCAD) procedures and set a = 3.7

in the SCAD penalty as proposed in Fan and Li (2001).

We evaluate the performances of these procedures by the averaged num-

ber of true positives (TP), the averaged number of false positives (FP) and

the proportion of attaining the sure screening result (Sure) over 200 repli-

cations.

We present the results for (Σ1, G1) and (Σ2, G2) in Tables 1-6 here and

put the other tables in the supplementary material. Note that FR+LIC

with some m is our proposed procedure. It is very important for screen-

ing procedures not to miss relevant covariates with small or moderate FP

rates. We summarize our simulation results from this perspective. Our

observations are as follows :

1. For the normal regression models, gSCAD and FR+LIC with m = 1

performed equally very well. However, m should be 3 or larger for the

logistic and Poisson regression models. Specifically, gSCAD and FR+LIC
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with m = 3 and 4 performed equally very well. FR+LIC with m = 3 has

higher TP than gSCAD except only for the logistic regression models in

Tables 1, 3 and 4. Note that FR’s FP is reasonably small. FR+LIC with

m = 3 has a lower TP, 3.02, than 4.00 for gSCAD for the logistic regression

model in Table 3. However, for m = 4, we have 4.00 vs. 4.00(gSCAD). In

Tables 1 and 4, the differences between gSCAD and FR+LIC with m = 3

are much smaller. FR+LIC with m = 4 has the highest TP among the

three and FR.full has the highest TP in all the tables.

2. FR performed better than SC and there was no significant difference

between them. Thus we may be able to use SC as an alternative for ex-

tremely large p although full likelihood maximization w.r.t. submodels may

be desirable. HBIC also performed almost as well as LIC although HBIC

is not theoretically justified as a stopping rule yet, either.

3. NIS does not seem to work well as a screening procedure for GVCM in

terms of poor TP and FP. gLASSO did not perform well with very large

FP.

In conclusion, we recommend to use FR+LIC with m = 3 or 4. We

can adjust the choice of m depending on the situation. We repeat that we

should not miss relevant covariates at the stage of screening.

Remark 1. Note that TP + FP are less than Kn = 10 in the FR.full
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and SC.full rows of the results for the logistic regression models. This is

because we stopped the FR and SC procedures early due to the separa-

tion problem (Heinze and Schemper, 2002). The separation problem leads

to non-convergent coefficient estimates and unbounded log-likelihood func-

tions. When the separation occurred, we used the Firth’s bias reduction

and terminated the iteration since variables in the selected set was able

to perfectly separate the binary response and thus it was not necessary to

include any more variables. We also applied this principle to FR.m and

SC.m.

3.2 Real data analysis

We apply our proposed method to the analysis of the multiple myeloma

(MM) data in Mulligan et al. (2007). One of the main purposes of the

study was to identify genes that are relevant to the clinical response of

multiple myeloma. In this MM data, 264 patients were subject to repli-

cate gene expression profiling using the Affymetrix 133A/B microarray and

44760 non-overlapped genes were measured for each patient. These MM

patients are originally classified into six categories according to the clinical

response. Among the six categories, we merge the complete response (CR)

and the partial response (PR) to one category and the other categories to
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Table 1: Simulation results for the design (Σ1, G1) with ρ = 0.25, (n, p) =

(200, 1000) for the normal model, and (n, p) = (300, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 7.00 0.00 3.00 11.01 0.00 2.63 11.37
gLASSO - - 1 4 26.73 1.00 4.00 55.59 0.19 3.19 23.58
gSCAD - - 1 4 3.30 0.96 3.96 0.28 0.10 3.08 0.92
FR.full - - 1 4 6.00 1.00 4.00 6.00 0.30 3.31 6.70
SC.full - - 1 4 6.00 1.00 4.00 5.87 0.26 3.25 6.75
FR LIC 1 1 4 0.00 0.00 1.70 0.00 0.00 3.00 0.02

2 1 4 1.00 0.00 2.70 0.00 0.22 3.22 0.80
3 1 4 2.00 0.70 3.69 0.00 0.28 3.29 1.74
4 1 4 3.00 1.00 4.00 0.70 0.29 3.29 2.73
5 1 4 4.00 1.00 4.00 1.70 0.30 3.30 3.73

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 3.00 0.02
2 1 4 1.00 0.00 2.00 0.00 0.22 3.22 0.80
3 1 4 2.00 0.00 3.00 0.00 0.28 3.29 1.74
4 1 4 3.00 1.00 4.00 0.00 0.29 3.29 2.73
5 1 4 4.00 1.00 4.00 1.00 0.30 3.30 3.72

SC LIC 1 1 4 0.00 0.00 1.70 0.00 0.00 2.97 0.16
2 1 4 1.00 0.00 2.70 0.00 0.16 3.13 1.00
3 1 4 2.00 0.70 3.69 0.00 0.20 3.19 1.94
4 1 4 3.00 0.99 3.99 0.71 0.22 3.21 2.92
5 1 4 4.00 1.00 4.00 1.70 0.24 3.23 3.90

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 2.98 0.16
2 1 4 1.00 0.00 2.00 0.00 0.16 3.14 1.00
3 1 4 2.00 0.00 3.00 0.00 0.20 3.19 1.95
4 1 4 3.00 0.99 3.99 0.01 0.22 3.21 2.92
5 1 4 4.00 1.00 4.00 1.00 0.24 3.23 3.91
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Table 2: Simulation results for the design (Σ1, G1) with ρ = 0.25, (n, p) =

(400, 1000) for the normal model, and (n, p) = (500, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0.00 2.86 18.14
gLASSO - - 1 4 14.31 1.00 4.00 77.30 0.42 3.42 24.69
gSCAD - - 1 4 1.58 1.00 4.00 0.68 0.30 3.29 0.81
FR.full - - 1 4 6.00 1.00 4.00 6.00 0.58 3.58 6.42
SC.full - - 1 4 6.00 1.00 4.00 5.96 0.50 3.50 6.50
FR LIC 1 1 4 0.00 0.00 2.00 0.00 0.00 3.00 0.00

2 1 4 1.00 0.00 3.00 0.00 0.42 3.42 0.58
3 1 4 2.00 1.00 4.00 0.00 0.50 3.50 1.50
4 1 4 3.00 1.00 4.00 1.00 0.54 3.54 2.46
5 1 4 4.00 1.00 4.00 2.00 0.56 3.56 3.44

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 3.00 0.00
2 1 4 1.00 0.00 2.00 0.00 0.42 3.42 0.58
3 1 4 2.00 0.01 3.01 0.00 0.50 3.50 1.50
4 1 4 3.00 1.00 4.00 0.01 0.54 3.54 2.46
5 1 4 4.00 1.00 4.00 1.01 0.56 3.56 3.44

SC LIC 1 1 4 0.00 0.00 2.00 0.00 0.00 3.00 0.02
2 1 4 1.00 0.00 3.00 0.00 0.32 3.31 0.70
3 1 4 2.00 1.00 4.00 0.00 0.40 3.40 1.61
4 1 4 3.00 1.00 4.00 1.00 0.44 3.44 2.58
5 1 4 4.00 1.00 4.00 2.00 0.48 3.48 3.54

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 3.00 0.02
2 1 4 1.00 0.00 2.00 0.00 0.32 3.31 0.70
3 1 4 2.00 0.02 3.02 0.00 0.40 3.40 1.61
4 1 4 3.00 1.00 4.00 0.02 0.44 3.44 2.58
5 1 4 4.00 1.00 4.00 1.01 0.48 3.48 3.54
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Table 3: Simulation results for the design (Σ1, G1) with ρ = 0.5, (n, p) =

(200, 1000) for the normal model, and (n, p) = (300, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 7.00 0.00 2.99 11.01 0.00 2.64 11.36
gLASSO - - 1 4 26.09 1.00 4.00 56.67 0.42 3.42 21.12
gSCAD - - 1 4 2.88 1.00 4.00 0.16 0.37 3.31 1.62
FR.full - - 1 4 6.00 1.00 4.00 6.00 0.82 3.83 6.17
SC.full - - 1 4 6.00 1.00 4.00 5.62 0.60 3.59 6.41
FR LIC 1 1 4 0.00 0.00 1.01 0.00 0.00 2.97 0.06

2 1 4 1.00 0.00 2.02 0.00 0.70 3.68 0.34
3 1 4 2.00 0.02 3.02 0.00 0.76 3.76 1.26
4 1 4 3.00 1.00 4.00 0.02 0.78 3.78 2.25
5 1 4 4.00 1.00 4.00 1.01 0.79 3.79 3.23

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.03 3.01 0.06
2 1 4 1.00 0.00 2.00 0.00 0.70 3.70 0.36
3 1 4 2.00 0.00 3.00 0.00 0.76 3.77 1.30
4 1 4 3.00 1.00 4.00 0.00 0.78 3.78 2.29
5 1 4 4.00 1.00 4.00 1.00 0.79 3.79 3.27

SC LIC 1 1 4 0.00 0.00 1.01 0.00 0.00 2.85 0.31
2 1 4 1.00 0.00 2.02 0.00 0.36 3.27 0.89
3 1 4 2.00 0.02 3.02 0.00 0.47 3.42 1.74
4 1 4 3.00 1.00 4.00 0.02 0.54 3.50 2.66
5 1 4 4.00 1.00 4.00 1.02 0.57 3.55 3.59

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 2.91 0.32
2 1 4 1.00 0.00 2.00 0.00 0.40 3.35 0.91
3 1 4 2.00 0.00 3.00 0.00 0.48 3.44 1.82
4 1 4 3.00 1.00 4.00 0.00 0.55 3.51 2.75
5 1 4 4.00 1.00 4.00 1.00 0.57 3.55 3.69
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Table 4: Simulation results for the design (Σ1, G1) with ρ = 0.5, (n, p) =

(400, 1000) for the normal model, and (n, p) = (500, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0.00 2.81 18.20
gLASSO - - 1 4 10.74 1.00 4.00 77.83 0.70 3.70 18.52
gSCAD - - 1 4 0.80 1.00 4.00 0.31 0.70 3.68 1.01
FR.full - - 1 4 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4 6.00 1.00 4.00 5.97 0.90 3.90 6.09
FR LIC 1 1 4 0.00 0.00 2.10 0.00 0.03 3.03 0.02

2 1 4 1.00 0.28 3.15 0.00 0.94 3.94 0.11
3 1 4 2.00 0.86 3.87 0.28 0.98 3.98 1.07
4 1 4 3.00 1.00 4.00 1.15 1.00 4.00 2.06
5 1 4 4.00 1.00 4.00 2.15 1.00 4.00 3.06

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.10 3.10 0.02
2 1 4 1.00 0.00 2.05 0.00 0.94 3.94 0.18
3 1 4 2.00 0.08 3.08 0.00 0.98 3.98 1.14
4 1 4 3.00 1.00 4.00 0.08 1.00 4.00 2.12
5 1 4 4.00 1.00 4.00 1.08 1.00 4.00 3.12

SC LIC 1 1 4 0.00 0.00 1.92 0.00 0.02 3.02 0.08
2 1 4 1.00 0.24 3.08 0.00 0.78 3.77 0.32
3 1 4 2.00 0.84 3.84 0.24 0.86 3.86 1.25
4 1 4 3.00 1.00 4.00 1.08 0.90 3.90 2.20
5 1 4 4.00 1.00 4.00 2.08 0.90 3.90 3.17

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.08 3.08 0.08
2 1 4 1.00 0.00 2.10 0.00 0.78 3.77 0.38
3 1 4 2.00 0.14 3.13 0.00 0.86 3.86 1.30
4 1 4 3.00 1.00 4.00 0.14 0.90 3.90 2.25
5 1 4 4.00 1.00 4.00 1.14 0.90 3.90 3.22
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Table 5: Simulation results for the design (Σ2, G2) with ρ = 0.5, (n, p) =

(200, 1000) for the normal model, and (n, p) = (300, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 2.96 7.04 0.00 2.94 11.05 0.00 2.46 11.54
gLASSO - - 1 4.00 20.23 1.00 4.00 74.03 1.00 4.00 41.24
gSCAD - - 1 4.00 2.13 0.88 3.88 0.76 0.92 3.86 0.92
FR.full - - 1 4.00 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4.00 6.00 1.00 4.00 5.92 0.94 3.90 6.11
FR LIC 1 1 4.00 0.00 0.00 2.00 0.00 0.19 2.75 0.00

2 1 4.00 1.00 0.00 3.00 0.00 0.62 3.62 0.19
3 1 4.00 2.00 1.00 4.00 0.00 1.00 4.00 0.80
4 1 4.00 3.00 1.00 4.00 1.00 1.00 4.00 1.80
5 1 4.00 4.00 1.00 4.00 2.00 1.00 4.00 2.81

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.40 2.88 0.00
2 1 4.00 1.00 0.00 2.00 0.00 0.90 3.90 0.40
3 1 4.00 2.00 0.00 3.00 0.00 1.00 4.00 1.29
4 1 4.00 3.00 1.00 4.00 0.00 1.00 4.00 2.29
5 1 4.00 4.00 1.00 4.00 1.00 1.00 4.00 3.29

SC LIC 1 1 4.00 0.00 0.00 2.00 0.00 0.16 2.62 0.02
2 1 4.00 1.00 0.00 2.98 0.02 0.52 3.36 0.34
3 1 4.00 2.00 0.98 3.96 0.04 0.84 3.77 0.93
4 1 4.00 3.00 0.98 3.97 1.03 0.92 3.86 1.84
5 1 4.00 4.00 0.98 3.98 2.02 0.94 3.88 2.82

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.32 2.73 0.02
2 1 4.00 1.00 0.00 2.00 0.00 0.76 3.60 0.50
3 1 4.00 2.00 0.00 2.98 0.02 0.88 3.81 1.34
4 1 4.00 3.00 0.98 3.96 0.04 0.92 3.86 2.29
5 1 4.00 4.00 0.98 3.97 1.03 0.94 3.88 3.27
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Table 6: Simulation results for the design (Σ2, G2) with ρ = 0.5, (n, p) =

(400, 1000) for the normal model, and (n, p) = (500, 1000) for logistic and

Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0.00 2.84 18.16
gLASSO - - 1 4 2.38 1.00 4.00 102.50 1.00 4.00 45.38
gSCAD - - 1 4 0.17 0.98 3.98 0.20 1.00 4.00 0.29
FR.full - - 1 4 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4 6.00 1.00 4.00 5.96 1.00 4.00 6.00
FR LIC 1 1 4 0.00 0.00 2.01 0.00 0.96 3.96 0.00

2 1 4 1.00 0.06 3.06 0.00 1.00 4.00 0.96
3 1 4 2.00 1.00 4.00 0.06 1.00 4.00 1.97
4 1 4 3.00 1.00 4.00 1.05 1.00 4.00 2.96
5 1 4 4.00 1.00 4.00 2.06 1.00 4.00 3.96

HBIC 1 1 4 0.00 0.00 1.53 0.00 0.96 3.93 0.00
2 1 4 1.00 0.42 2.94 0.00 1.00 4.00 0.96
3 1 4 2.00 0.88 3.88 0.42 1.00 4.00 1.97
4 1 4 3.00 1.00 4.00 1.29 1.00 4.00 2.96
5 1 4 4.00 1.00 4.00 2.29 1.00 4.00 3.96

SC LIC 1 1 4 0.00 0.00 2.02 0.00 0.94 3.92 0.00
2 1 4 1.00 0.08 3.08 0.00 0.98 3.97 0.96
3 1 4 2.00 1.00 4.00 0.08 0.99 3.99 1.94
4 1 4 3.00 1.00 4.00 1.07 1.00 4.00 2.93
5 1 4 4.00 1.00 4.00 2.08 1.00 4.00 3.93

HBIC 1 1 4 0.00 0.00 1.67 0.00 0.94 3.88 0.00
2 1 4 1.00 0.55 3.22 0.00 0.99 3.98 0.96
3 1 4 2.00 0.90 3.90 0.55 1.00 4.00 1.94
4 1 4 3.00 1.00 4.00 1.45 1.00 4.00 2.94
5 1 4 4.00 1.00 4.00 2.45 1.00 4.00 3.94
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another category. Hence we have only two categories. 90 patients are in

the CR+PR category. In brief, CR and PR requires at least 100% and 50%

decrease in paraprotein, respectively, and CR+PR represents high decrease

in paraprotein. This group merging is also employed in the analysis of Mul-

ligan et al. (2007). We select relevant genes to classify patients into the two

categories, CR+PR and the others, by exploiting our proposed screening

procedure for GVCM, where we adopt AGE as the index variable. All the

genes are normalized with mean 0 and variance 1.

We consider both the logistic regression model and the varying coef-

ficient logistic regression model with AGE as the index variable in our

analysis. We use the quadratic spline with L = 5. For the naive logistic

regression model, we apply the sure independence screening and the sequen-

tially conditional screening, which are denoted by SIS and nSC respectively.

For the varying coefficient logistic regression model, we consider NIS and

SC. The latter one is one of the proposed procedures in this paper. 44760 is

too large for FR and besides SC performed almost as well in the simulation

studies. Therefore we consider only SC here.

To measure the prediction performances, we compare the models with

top-10 genes selected by these methods. Note that we select 10 covariates

for each case and don’t use any stopping rules. We report the area under
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the curve (AUC) and the leave-one-out prediction error. The latter one

is defined as the mean of the absolute difference between the predicted

probability and the response. The results are reported in Table 7. The table

implies that using the varying coefficient model (NIS/SC) leads to larger

AUC than using the naive logistic regression model (SIS/nSC), and using

SC yields the smallest prediction error among all methods. This implication

indicates that genes has dynamic impacts on the clinical response through

AGE. Further, SC with 10 covariates on hand performs the best in this

data and the AUC is very close to 1 .

Next we apply SC with the stopping rule to the varying coefficient

logistic model. We take m = 4 in LIC as suggested in our simulation, and

then four genes are selected by SC+LIC. The coefficient functions of the

selected covariates are illustrated in Figure 1 and the corresponding AUC

is around 0.85. These four genes are good candidates for further biological

research and deserve more attention in conjunction with patients’ age.

4. Assumptions and proofs

In this section, we describe technical assumptions first and state technical

lemmas that are verified in the supplementary material. Finally we prove

Theorems 1-3.
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Table 7: AUC and leave-one-out prediction error.

SIS NIS nSC SC

Prediction error 0.36 0.49 0.24 0.22

AUC 0.78 0.80 0.91 0.99

Figure 1: The AGE versus β(AGE) plot for the index variable AGE and 4

genes selected by SC in the MM dataset.

4.1 Technical assumptions

First we state technical assumptions. Note that all S in the following tech-

nical assumptions satisfy |S| ≤ Kn. All the constants in the assumptions

are fixed except for L. We need those assumptions because we consider

generalized varying coefficient models and have to deal with b(XT
S gS(Z)),

b(W T
S βS), µ(XT

S gS(Z)), µ(W T
S βS), σ(XT

S gS(Z)), and σ(W T
S βS). IfXT

S gS(Z)

or W T
S βS take very small or large values, we have to put stringent assump-
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tions on b(θ), µ(θ), and σ(θ) and this will make the setup and proofs very

complicated. Therefore we impose Assumptions X(1) and CF(1) as As-

sumptions (A) and (B) in Zheng, Hong and Li (2020).

Assumption X :

(1) |Xj| < CX1 uniformly in j for some positive CX1.

(2) CX2 < E{X2
j |Z} uniformly in j for some positive constant CX2.

We need Assumption CF(2) to approximate coefficient functions suffi-

ciently by employing the B-spline basis uniformly in S and j ∈ S.

Assumption CF :

(1) maxz ‖g∗S(z)‖1 ≤ Cg uniformly in S and maxz |h∗jS(z)| < Ch uniformly

in j ∈ Sc and S for some positive constants Cg and Ch.

(2) We take L ∼ n1/5. Then uniformly in S,

max
z
‖g∗S(z)− I|S| ⊗BT (z)β∗S‖1 <

CA1
L2

and uniformly in j 6∈ S and S,

max
z
|h∗jS(z)−BT (z)η∗jS| <

CA2
L2

for some positive constants CA1 and CA2.

Then we have |XT
S g
∗
S(z)| < CX1Cg and related variables are in a suffi-

ciently large bounded interval, say [θL, θU ], with probability tending to 1.
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A sufficient condition for the former of Assumption CF(2) is

sup
z
{‖g∗S(z)‖1 + ‖g∗S

′(z)‖1 + ‖g∗(2)S (z)‖1} < C1

for some positive constant C1 uniformly in S by Corollary 6.26 of Schumaker

(2007).

Assumption B :

(1) b(θ) is twice differentiable on [θL, θU ] and

|µ(θ)| < µmax and σmin < σ(θ) < σmax

for θ ∈ [θL, θU ]. µmax, σmin, and σmax are positive constants constants.

(2) b(θ) is also three times differentiable and |b(3)(θ)| < σ′max for θ ∈ [θL, θU ].

σ′max is a positive constant.

Assumption B(1) has the following implication : As long asK
3/2
n L

√
log pn/n→

0, we can fix a sufficiently large bounded interval [θL, θU ] depending on As-

sumptions X(1) and CF(1)(2) and there are suitable µmax, σmin, and σmax

for this [θL, θU ]. Note that this [θL, θU ] contains all the related variables

with probability tending to 1.

As in Lee, Noh and Park (2014) and other papers on varying coefficient

models, we impose Assumption W. These authors assume the population

version and derive the sample version given in our Assumption W in their

technical lemmas. However, such arguments are very common and we di-
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rectly use the sample version for simplicity of presentation.

Assumption W : For some positive constants λL and λU ,

λL
L
< λmin

(
n−1

n∑
i=1

WiSW
T
iS

)
≤ λmax

(
n−1

n∑
i=1

WiSW
T
iS

)
<
λU
L

uniformly in S with probability tending to 1.

The following assumption is also a standard one for varying coefficient

models. If we do not have any observations on some part of [0, 1], we cannot

identify or estimate coefficient functions there.

Assumption Z : For some positive constants CZ1 and CZ2, CZ1 < fZ(z) <

CZ2 on [0, 1], where fZ(z) is the density of Z.

When we prove necessary uniform properties of β̂S in S, we exploit

standard arguments based on Bernstein’s inequality (e.g. Lemma 2.2.11 of

van der Vaart and Wellner (1996)). We use the next assumption when we

apply Bernstein’s inequality in the proofs of Theorem 3 and Lemma 2. This

kind assumption is a standard one in the literature, e.g. Zheng, Hong and

Li (2020).

Assumption E : Write e = Y − µ(XTg∗(Z)) and ei = Yi− µ(XT
i g
∗(Zi)).

Then for some positive constant Me,

E{|e|m|X, Z} ≤ m!Mm
e , m ≥ 2

uniformly in X and Z.
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4.2 Technical lemmas

We present technical lemmas necessary to the proofs of Theorems 1-3. We

prove these lemmas in the supplementary material.

In the lemmas, we assume |S| + 1 ≤ Kn. Note C1, C2, . . . are generic

positive constants which are large enough. They may depend on fixed

positive constants in the assumptions, but are independent of n. In these

lemmas, we don’t suppress the constants, λL, λU , σmin, and σmax to see

their potential effects on the lemmas.

Lemma 1 evaluates how much E{`(Y,XT
S g
∗
S(Z))} increases whenM 6⊂

S.

Lemma 1. Suppose Assumptions LB, X(1)(2), CF(1), B(1), and Z hold.

Then we have (i) and (ii).

(i) Assumption LB implies that there is a positive constant C1 such that

E{h∗2jS(Z)} ≥ C1
ρ2LB
σ2
max

for some j ∈M∩ Sc if M 6⊂ S.

(ii) There is a positive constant C2 such that for any j ∈M∩ Sc,

E{`(Y,XT
S g
∗
S(Z) +Xjh

∗
jS(Z))} − E{`(Y,XT

S g
∗
S(Z))} ≥ C2σminE{h∗2jS(Z)}.

We denote C1C2σmin/σ
2
max from (i) and (ii) by 2CLB in Theorems 1-3.
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We need the uniform convergence rate of β̂S even for wrong or mis-

specified models (M 6⊂ S). Then we have to deal with all S ⊂ {1, . . . , p}

satisfying |S| ≤ Kn. This is why there is |S| = |S|1/2|S|1/2 on the RHS in

(4.1). The first |S|1/2 is from the size of S and the second |S|1/2 is from

the uniformity in S. This latter |S|1/2 is an additional cost for dealing with

the uniformity. The B-spline basis dimension L in the convergence rate is

a standard one.

Lemma 2. Suppose Assumptions X(1)(2), CF(1)(2), B(1), W, Z, and E

hold. Then for some positive constant C1, we have

‖β̂S − β∗S‖ ≤ C1
L|S|
σminλL

√
log pn
n

(4.1)

uniformly in S with probability tending to 1.

By Lemma 2, we have |(β̂S − β∗S)TWiS| → 0 uniformly in S when

Assumption UB is satisfied. This and Assumptions X(1) and CF(1) imply

that all the related variables are in some sufficiently large bounded interval.

In the next lemma, we evaluate the difference between the log-likelihood

for β̂S and its theoretical counterpart. Lemma 4 deals with a similar prob-

lem.
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Lemma 3. For some positive constants C1 and C2, we have

|`n(W T
S β̂S)− E{`(Y,XT

S g
∗
S(Z))}| (4.2)

≤ C1

(λ1/2U |S|
σminλL

√
log pn
n4/5

+

√
|S| log pn

n

)
+ C2

1

L2

uniformly in S with probability tending to 1.

The first term is dominant on the RHS and the RHS tends to 0 by

Assumption UB.

Lemma 4. For some positive constants C1 and C2, we have

|`n(W T
S β̂S +W T

j η
∗
jS)− E{`(Y,XT

S g
∗
S(Z) +Xjh

∗
jS(Z))}| (4.3)

≤ C1

(λ1/2U |S|
σminλL

√
log pn
n4/5

+

√
|S| log pn

n

)
+ C2

1

L2
.

uniformly in S with probability tending to 1.

The first term is dominant on the RHS and the RHS tends to 0 by

Assumption UB.

4.3 Proofs of Theorems 1-3

We prove Theorems 1-3 by employing Lemmas 1-4. We prove Theorem 1

first. We verify Theorem 2 by following the proof of Theorem 2 of Honda,

Ing and Wu (2019). However, the proof is lengthy and complicated. We

put that of Theorem 3 before that of Theorem 2.
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Note that we deal with S satisfying |S|+ 1 ≤ Kn in the proofs.

Proof of Theorem 1. The idea of the proof is as follows : The uncondi-

tional maximum w.r.t. gTS∪{j}(Z)XS∪{j} is larger than or equal to the con-

ditional or sequential maximum w.r.t. hjS(Z)Xj in g∗TS (Z)XS +hjS(Z)Xj.

Thus our assumptions guarantee a lower bound of the amount of the in-

crease of `n(gTS∪{j}(Z)XS∪{j}) when M 6⊂ S.

First notice the following inequalities : Uniformly in j 6∈ S and S,

`n(W T
S∪{j}β̂S∪{j}) ≥ `n(W T

S β̂S +W T
j η̂jS) ≥ `n(W T

S β̂S +W T
j η
∗
jS). (4.4)

We have with probability tending to 1,

|`n(W T
S β̂S +W T

j η
∗
jS)− E{`(Y,XT

S g
∗
S(Z) +Xjh

∗
jS(Z))}| (4.5)

≤ the RHS of (4.3) <
CLBρ

2
LB

2

uniformly in j 6∈ S and S as shown in Lemma 4.

Lemma 1 and Assumption LB imply

E{`(Y,XT
S gS(Z) +Xjh

∗
jS(Z))} − E{`(Y,XT

S g
∗
S(Z))} ≥ 2CLBρ

2
LB (4.6)

for some j ∈M∩ Sc if M 6⊂ S. Recall that CLB is defined in Lemma 1.

We also have with probability tending to 1,

|`n(W T
S β̂S)− E{`(Y,XT

S g
∗
S(Z))}| ≤ the RHS of (4.2) <

CLBρ
2
LB

2
(4.7)
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uniformly in S as shown in Lemma 3. Thus (4.4)-(4.6) yield the desired

result. Hence the proof is complete.

Proof of Theorem 3. Notice that if (k + 1) ≤ Kn, we have by Lemma 3,

E{`(Y,XT
S0
g∗S0

(Z))} − CLBρ
2
LB

2
≤ `n(W T

S0
β̂S0) ≤ `n(W T

Sk
β̂Sk

) (4.8)

≤ E{`(Y,XT
Sk
g∗Sk

(Z))}+
CLBρ

2
LB

2

with probability tending to 1.

If M 6⊂ Sk and (k + 1) ≤ Kn,

`n(W T
Sk
β̂Sk

)− `n(W T
S0
β̂S0) ≥ kCLBρ

2
LB (4.9)

with probability tending to 1 by Theorem 1.

By (4.8) and (4.9), we obtain

(k − 1)CLBρ
2
LB ≤ E{`(Y,XT

Sk
g∗Sk

(Z))} − E{`(Y,XT
S0
g∗S0

(Z))} (4.10)

Besides, we have for any Sk,

E{`(Y,XT
Sk
g∗Sk

(Z))} ≤ E{`(Y,XTg∗(Z))}. (4.11)

Thus (4.10) and (4.11) imply

(k − 1)CLBρ
2
LB ≤ ∆ (4.12)

with probability tending to 1. If we have k + 1 = Kn, (4.12) contradicts

the assumption on ∆ and Kn. Hence the result of Theorem 3 follows.
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Proof of Theorem 2. The former half is trivial from Theorem 1, (2.7),

and (2.2).

We exploit the idea of the proof of Theorem 2 of Honda, Ing and Wu

(2019) to prove the latter half.

First notice that

XT
S g
∗
S(Z) = XTg∗(Z) and W T

S β
∗
S = W Tβ∗

if M⊂ S and |S| ≤ Kn. Hence we have for these S,

‖β̂S − β∗S‖ ≤ C1
L

σminλL

√
|S| log pn

n

uniformly in S with probability tending to 1. The above rate is different

from that in Lemma 2 and this is because p
|S|
n is not necessary when we

employ the arguments based on Bernstein’s inequality for these S. See

(S1.5) and (S1.6) in the supplementary material.

The proof consists of three steps.

Step 1: Derivation of an expression of `n(W T
S βS)− `n(W T

S β
∗
S).

Step 2: Derivation of an expression of `n(W T
S β̂S)− `n(W T

S β
∗
S).

Step 3: Evaluation of `n(β̂S+) − `n(β̂S), where S+ = S ∪ {j} for S and j

such that M⊂ S, |S| < Kn, and j 6∈ S.

Step 1) We derive (4.16), which is similar to (44) of Honda, Ing and Wu

(2019).
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Let

‖βS − β∗S‖ ≤ L

√
ηn|S| log pn

n
, (4.13)

where ηn →∞ at any rate. Then we evaluate

`n(W T
S βS)− `n(W T

S β
∗
S) = `n(W T

S βS)− `n(W Tβ∗).

By Taylor’s theorem, this is equal to

1

n

n∑
i=1

(βS − β∗S)TWiS`
′(Yi,W

T
iSβ

∗
S)

+
1

2n

n∑
i=1

(βS − β∗S)TWiSW
T
iS(βS − β∗S)`′′(Yi,W

T
iSβ

∗
S + θiW

T
iS(βS − β∗S))

= A1 + A2 (say),

where |θi| ≤ 1. Recall that W T
S β
∗
S = W Tβ∗.

A1 : We should deal with

1

n

n∑
i=1

XijBk(Zi)[ei + {µ(XT
i g
∗(Zi))− µ(W T

i β
∗)}] = B1 +B2 (say).

B1 is the main term and we have

1

n

n∑
i=1

XijBk(Zi)ei =
1

n

n∑
i=1

XijBk(Zi)`
′(Yi,X

T
i g
∗(Zi)) = Op((log pn/(nL))1/2)

(4.14)

uniformly in j and k from the arguments based on Bernstein’s inequality.
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As for B2, there are positive constants C1 and C2 such that

∣∣∣ 1
n

n∑
i=1

XijBk(Zi){µ(XT
i g
∗(Zi))− µ(W T

i β
∗)}
∣∣∣ (4.15)

≤ C1

n

n∑
i=1

Bk(Zi)σmax|Xij||XT
i g
∗(Zi)−W T

i β
∗| ≤ C2CXCA1

L3

uniformly in j and k with probability tending to 1. Here we used As-

sumptions X(1) and CF(2) and the fact that n−1
∑n

i=1Bk(Zi) = Op(L
−1)

uniformly in k.

Hence we have

A1 =
{ 1

n

n∑
i=1

`′(Yi,X
T
i g
∗(Zi))W

T
iS

}
(βS − β∗S) +Op(‖βS − β∗S‖

√
L|S|L−3).

Note that by (4.13),

‖βS − β∗S‖
√
L|S|L−3 = O(n−1L|S|

√
ηn log pn).

A2 : Write Σ̂S = n−1
∑n

i=1 σ(W T
i β
∗)WiSW

T
iS.

Then

A2 = −1

2
(βS − β∗S)T Σ̂S(βS − β∗S) +

λU
L
‖βS − β∗S‖2Op(δn),

where δn = ‖βS − β∗S‖|S|σ′max. The second term is negligible compared to

n−1L|S|
√
ηn log pn.
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Hence we have

`n(W T
S βS)− `n(W T

S β
∗
S) (4.16)

=
{ 1

n

n∑
i=1

`′(Yi,X
T
i g
∗(Zi))W

T
iS

}
(βS − β∗S)

−1

2
(βS − β∗S)T Σ̂S(βS − β∗S) +Op(n

−1L|S|
√
ηn log pn).

Step 2) We will use (4.16) to derive a useful expression of `n(W T
S β̂S) in

(4.20). Define aS and βS by

aS =
1

n

n∑
i=1

WiSei and βS − β∗S = Σ̂−1S aS. (4.17)

(4.14) and Assumption W imply

|aS|2 = Op(n
−1|S| log pn) and βS − β∗S = Op(L(n−1|S| log pn)1/2).

(4.18)

If for some δS ∈ RL|S|,

‖βS + δS − β∗S‖ ≤ L

√
ηn|S| log pn

n
,

we have from (4.16) that uniformly in δS and S,

`n(W T
S (βS + δS))− `n(W T

S β
∗
S) (4.19)

= −1

2
aTS Σ̂−1S aS +

1

2
δTS Σ̂SδS +Op

( |S|L(ηn log pn)1/2

n

)
.

Because of the optimality of `n(β̂S) and (4.19), we obtain

`n(W T
S β̂S)− `n(W T

S β
∗
S) = −1

2
aTS Σ̂−1S aS +Op

( |S|L(ηn log pn)1/2

n

)
(4.20)



4. ASSUMPTIONS AND PROOFS45

uniformly in S. Recall that `n(W T
S β
∗
S) = `n(W Tβ∗).

Step 3) Hereafter we write S+ = S ∪ {j} for S and j such that M ⊂ S,

|S| < Kn, and j 6∈ S. Then we evaluate `n(β̂S+)− `n(β̂S) by using (4.20).

We write

Σ̂S+ =

 Σ̂S Σ̂Sj

Σ̂jS Σ̂jj

 and aS+ =

aS
aj

 . (4.21)

Thus due to (4.20), we have only to consider the difference

aTS+
Σ̂−1S+

aS+ − aTS Σ̂−1S aS = aTS Σ̂−1S Σ̂SjF̂SjΣ̂jSΣ̂−1S aS (4.22)

− 2aTS Σ̂−1S Σ̂jSF̂Sjaj + aTj F̂Sjaj,

where F̂Sj = (Σ̂S − Σ̂jSΣ̂−1S Σ̂Sj)
−1, when we evaluate `n(β̂S+)− `n(β̂S).

We will demonstrate that the RHS of (4.22) has the stochastic order of

L|S|Op(n
−1 log pn) uniformly in S and j. Then the latter half of Theorem

2 is established with (4.20).

By Assumptions B(1) and W, we have for some positive C1, C2, and

C3,

C1L ≤ λmin(F̂Sj) ≤ λmax(F̂Sj) ≤ C2L and λmax(Σ̂jSΣ̂Sj) ≤ C3L
−2

(4.23)

uniformly in S with probability tending to 1. (4.14) implies that uniformly
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in j,

|aj|2 = LOp

( log pn
nL

)
. (4.24)

Hence (4.23) and (4.24) yield that the third term on the RHS of (4.22)

satisfies

aTj F̂Sjaj = LOp(n
−1 log pn) uniformly in j and S. (4.25)

Next we evaluate the first and second terms on the RHS of (4.22) :

(aTS Σ̂−1S Σ̂Sj)F̂Sj(Σ̂jSΣ̂−1S aS) and (aTS Σ̂−1S Σ̂Sj)F̂Sjaj. (4.26)

To establish (4.31) below, we carefully evaluate

Σ̂jSΣ̂−1S aS = Σ̂jSΣ̂−1S
1

n

n∑
i=1

WiSei. (4.27)

Then we need to examine Σ̂Sj = Σ̂T
jS closely. We write

Σ̂Sj = (s1, . . . , sL)

and notice from (4.23) that

sTmsm = Op(L
−2) and λmax(Σ̂jSΣ̂−1S Σ̂SΣ̂−1S Σ̂Sj) = Op(L

−1) (4.28)

uniformly in m ∈ {1, . . . , L}, j, and S with probability tending to 1. Be-

sides, we have for some positive C4 and C5,

max
m
|sTmΣ̂−1S WiS| ≤ C4L‖sm‖‖WiS‖ ≤ C5L|S|‖sm‖CX1 = Op(|S|CX1)

(4.29)



4. ASSUMPTIONS AND PROOFS47

uniformly in i and S with probability tending to 1.

Here we employ the standard arguments based on Bernstein’s inequality

conditionally on sTmΣ̂−1S WiS by using Assumption E and the above proper-

ties of sTmΣ̂−1S WiS and obtain

1

n

n∑
i=1

sTmΣ̂−1S WiSei = Op({(nL)−1|S| log pn}1/2) (4.30)

uniformly in m, S, and j. Note that |S| in Op({(nL)−1|S| log pn}1/2) is

necessary since {sTmΣ̂−1S WiS}ni=1 depends on m, j, and S and we have to

take into account all S and j satisfying M⊂ S, |S| < Kn, and j 6∈ S. See

also the arguments around (S1.6) in the proof of Lemma 2.

Therefore (4.30) yields that uniformly in S and j,

|Σ̂jSΣ̂−1S aS|
2 = LOp((nL)−1|S| log pn). (4.31)

Thus (4.23), (4.24), (4.26), and (4.31) imply that the first and second

terms on the RHS of (4.22) have the stochastic order of Op(n
−1|S|L log pn)

uniformly in S and j. We have demonstrated that the RHS of (4.22) has

the stochastic order of Op(n
−1|S|L log pn) uniformly in S and j.

Hence the proof of Theorem 2 is complete.
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5. Conclusions

We proposed two forward screening procedures with a stopping rule and

established their desirable properties such as screening consistency in Sec-

tion 2. When we constructed our stopping rule, we took uniformity in the

convergence rate of estimators into consideration. Such important unifor-

mity has been overlooked in the literature. Thus the stopping rule and the

related information criterion have their own significance.

Our simulation studies showed good finite sample performances of the

proposed procedures as screening tools. We also applied one of our proce-

dures to a real data set with p = 44760.

Our ML-type forward regression procedure, denoted by FR in Section

3, is based on maximizing the log-likelihood function without any approx-

imation except for spline function approximation to coefficient functions.

Our simulation studies in Subsection 3.1 showed a simpler procedure called

SC there performed closely to our FR procedure. Likelihood maximiza-

tion as in the FR procedure may be desirable. However, the SC screening

procedure can be a useful and faster alternative for extremely large p.

Supplementary Materials

The supplementary material includes the proofs of all the lemmas in
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the paper.
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Supplementary Material

This supplementary material contains the proofs of Lemmas 1-4 and additional simulation

results.

S1 Proofs of Lemmas 1-4

Recall that |S| ≤ Kn in this section.

Proof of Lemma 1.

(i) Take hjS(z) in Assumption LB. Then we have by the definition (i.e.



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

optimality ) of h∗jS(z) and Taylor’s theorem,

|E[{Y − µ(XT
S g
∗
S(Z))}XjhjS(Z)]|

= |E[{µ(XTg∗(Z))− µ(XT
S g
∗
S(Z))}XjhjS(Z)]

−E[{µ(XTg∗(Z))− µ(XT
S g
∗
S(Z) +Xjh

∗
jS(Z))}XjhjS(Z)]|

= |E[{µ(XT
S g
∗
S(Z) +Xjh

∗
jS(Z))− µ(XT

S g
∗
S(Z))}XjhjS(Z)]|

= |E{X2
j h
∗
jS(Z)hjS(Z)σ(XT

S g
∗
S(Z) + δ1Xjh

∗
jS(Z))}|

≤ σmaxE[E{X2
j |Z}|h∗jS(Z)hjS(Z)|]

≤ C1σmaxE{h∗2jS(Z)}1/2,

where |δ1| ≤ 1, for some positive constant C1. Here we used the following

facts :

E{Y |X, Z} = µ(XTg∗(Z)) and E{Xj`
′(XT

S g
∗
S(Z) +Xjh

∗
jS(Z))|Z} = 0.

We also used Assumptions B(1), CF(1), X(1), and Z. Hence (i) is estab-

lished.

(ii) We also have by the definition of h∗jS(z) and Taylor’s theorem,

E{`(XT
S g
∗
S(Z) +Xjh

∗
jS(Z))− `(XT

S g
∗
S(Z))}

= E[E{Xj`
′(XT

S g
∗
S(Z) +Xjh

∗
jS(Z))|Z}h∗jS(Z)]

+
1

2
E{X2

j h
∗2
jS(Z)σ(XT

S g
∗
S(Z) + δ2Xjh

∗
jS(Z))}

≥ C2σminE{h∗2jS(Z)},
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where |δ2| ≤ 1, for some positive constant C2. Note that we used Assump-

tions B(1), CF(1), X(1)(2), and Z here. Hence (ii) is established.

Hence the proof of Lemma 1 is complete.

In the following proof, we keep their values when we use Mj repeatedly.

Proof of Lemma 2. We consider βS satisfying

‖βS − β∗S‖ = 2Ctmp
L|S|
σminλL

√
log pn
n

, (S1.1)

where |S| ≤ Kn and Ctmp is to be specified later in this proof.

Then we have by Taylor’s theorem,

`n(W T
S βS)− `n(W T

S β
∗
S)

=
{ 1

n

n∑
i=1

`′(Yi,W
T
iSβ

∗
S)W T

iS

}
(βS − β∗S)

+
1

2n

n∑
i=1

`
′′
(Yi,W

T
iSβ

∗
S + δ3iW

T
iS(βS − β∗S))(βS − β∗S)TWiSW

T
iS(βS − β∗S)

= A1 + A2 (say), (S1.2)

where |δ3i| ≤ 1.

Recall that `′(y, θ) = y − µ(θ) and `
′′
(y, θ) = −σ(θ). Now we evaluate

A1 and A2.

A1 : An element of the left side of A1 is divided into

B1jk =
1

n

n∑
i=1

{`′(Yi,W T
iSβ

∗
S)− `′(Yi,XT

iSg
∗
iS(Zi))}XijBk(Zi)
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and

B2jk =
1

n

n∑
i=1

`′(Yi,X
T
iSg
∗
iS(Zi))XijBk(Zi)

for 1 ≤ j ≤ p and 1 ≤ k ≤ L.

Since

|W T
iSβ

∗
S −XT

iSg
∗
iS(Zi)| ≤

CXCA1

L2

and

1

n

n∑
i=1

Bk(Zi) = Op(L
−1) (S1.3)

uniformly in k, we have with probability tending to 1,

|B1jk| ≤ C1
C2

XCA1

L3
(S1.4)

uniformly in j and k for some positive constant C1. Note that (S1.3) follows

from the properties of the B-spline basis and Bernstein’s inequality. We also

used Assumptions X(1), CF(1)(2), and B(1) here.

Next we evaluate B2jk by using Assumption E and Bernstein’s inequal-

ity. First recall that E{`′(Y,XT
S g
∗
S(Z))XjBk(Z)} = 0 for j ∈ S and notice

that

{Y −µ(XT
S gS(Z))}XjBk(Z) = {e+µ(XTg∗(Z))−µ(XT

S g
∗
S(Z))}XjBk(Z).

Thus Assumptions X(1), CF(1)(2), B, and E imply that there are some
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positive constants M1 and M2 such that

|E[|{Y − µ(XT
S gS(Z))}XjBk(Z)|m] ≤ M1

L
m!Mm−2

2 (S1.5)

for m ≥ 2.

Applying Bernstein’s inequality with (S1.5), we obtain

P
{∣∣∣n−1 n∑

i=1

`′(XT
iSg
∗
S(Zi))XijBk(Zi)

∣∣∣ ≥ κn√
nL

}
≤ 2 exp

{
− n2κ2n/(2nL)

M1n/L+M2nκn/
√
nL

}
≤ 2 exp(−M3κ

2
n)

for some positive constant M3. We specify κn later.

To guarantee the uniformity of

∣∣∣n−1 n∑
i=1

`′(XT
iSg
∗
S(Zi))XijBk(Zi)

∣∣∣ ≥ κn√
nL

in |S| satisfying |S| = q and in q ≤ Kn, we have to deal with

2 exp(−M3κ
2
n) exp(q log pn) (S1.6)

since g∗S(z) depends on S. Hence we take κ2n = 4q log pn/M3 and have

2 exp(−M3κ
2
n) exp(q log pn) ≤ 2 exp(−3q log pn).

Since we have

∞∑
q=1

2 exp(−3q log pn) ≤ 2
∞∑
q=1

n−3q ≤ 16

7n3
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for n ≥ 2, we obtain

|A1| ≤ C3

√
|S|L‖βS − β∗S‖

(√ |S| log pn
nL

+
1

L3

)
≤M4‖βS − β∗S‖

√
|S|2 log pn

n
(S1.7)

uniformly in S with probability tending to 1 for some positive constants C3

and M4.

A2 : Assumptions B and W imply that we have

A2 ≤ −
1

2
σmin(βS − β∗S)T

( 1

n

n∑
i=1

WiSW
T
iS

)
(βS − β∗S)

≤ −σminλL
2L

‖βS − β∗S‖2 (S1.8)

uniformly in S with probability tending to 1.

Combining (S1.7) and (S1.8), we have

A1 + A2 ≤ ‖βS − β∗S‖(M4 − Ctmp)

√
|S|2 log pn

n
< 0 (S1.9)

uniformly in S with probability tending to 1 if we take Ctmp = 2M4.

Note that (S1.9) holds uniformly in βS in (S1.1). Thus the concavity of

`n(W T
S βS), (S1.2), and (S1.9) yield the desired result. Hence the proof of

Lemma 2 is complete.

We can prove Lemmas 3 and 4 in the same way and the proof of Lemma

4 is omitted.
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Proof of Lemma 3. We have

`n(W T
S β̂S)− E{`(Y,XT

S g
∗
S(Z))}

= `n(W T
S β̂S)− `n(W T

S β
∗
S) + `n(W T

S β
∗
S)− `n(XT

S g
∗
S(Z))

+`n(XT
S g
∗
S(Z))− E{`(Y,XT

S g
∗
S(Z))}

= A1 + A2 + A3 (say). (S1.10)

We evaluate A1, A2, and A3.

A1 : By the LLN for Y 2
i , Assumption B, and Lemma 2, we have for some

positive constants C1, C2, and C3,

|A1| ≤
1

n

n∑
i=1

(|Yi|+ µmax)|W T
iS(β̂S − β∗S)|

≤
{
n−1

n∑
i=1

(|Yi|+ µmax)2
}1/2{

n−1
n∑

i=1

|W T
iS(β̂S − β∗S)|2

}1/2

≤ C1

(λU
L

)1/2
‖β̂S − β∗S‖ ≤ C2

(λU
L

)1/2 L|S|
σminλL

√
log pn
n

≤ C3
λ
1/2
U |S|
σminλL

√
log pn
n4/5

(S1.11)

uniformly in S with probability tending to 1.

A2 : By the LLN for |Yi| and Assumptions X(1), CF(2) and B, we have for

some positive constant C4,

|A2| ≤
1

n

n∑
i=1

(|Yi|+ µmax)|W T
iSβ

∗
S −XT

iSg
∗
S(Zi)|

≤ C4(µmax + E{|Y |})CXCA1

L2
(S1.12)
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uniformly in S with probability tending to 1.

A3 : We should apply the argument based on Bernstein’s inequality to

1

n

n∑
i=1

[`(Yi,XiSg
∗
S(Zi))− E{`(Yi,XiSg

∗
S(Zi))}].

As in the proof of Lemma 2, we can prove that for some positive constant

C5,

|A3| ≤ C5

√
|S| log pn

n
(S1.13)

uniformly in S with probability tending to 1.

(S1.10)-(S1.13) yield the desired inequality. Hence the proof of Lemma

3 is complete.

S2 Additional numerical studies

Here we give the simulation results for design (Σ1, G2) and (Σ2, G1). We

made almost the same conclusions as in Subsection 3.1.
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Table 1: Simulation results for the design (Σ1, G2) with ρ = 0.25, (n, p) = (200, 1000)

for the normal model, and (n, p) = (300, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 2.99 7.01 0.00 2.99 11.01 0.00 2.75 11.26
gLASSO - - 1 4.00 26.02 1.00 4.00 73.67 1.00 4.00 41.20
gSCAD - - 1 4.00 3.37 1.00 4.00 0.08 1.00 4.00 0.24
FR.full - - 1 4.00 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4.00 6.00 1.00 4.00 5.96 1.00 4.00 6.00
FR LIC 1 1 4.00 0.00 0.00 1.90 0.00 0.36 3.29 0.00

2 1 4.00 1.00 0.00 2.90 0.00 0.93 3.93 0.37
3 1 4.00 2.00 0.90 3.90 0.00 1.00 4.00 1.30
4 1 4.00 3.00 1.00 4.00 0.90 1.00 4.00 2.30
5 1 4.00 4.00 1.00 4.00 1.90 1.00 4.00 3.30

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.78 3.64 0.00
2 1 4.00 1.00 0.00 2.00 0.00 0.94 3.94 0.79
3 1 4.00 2.00 0.10 3.10 0.00 1.00 4.00 1.73
4 1 4.00 3.00 1.00 4.00 0.10 1.00 4.00 2.73
5 1 4.00 4.00 1.00 4.00 1.09 1.00 4.00 3.73

SC LIC 1 1 4.00 0.00 0.00 1.88 0.00 0.38 3.30 0.00
2 1 4.00 1.00 0.00 2.88 0.00 0.92 3.92 0.38
3 1 4.00 2.00 0.88 3.88 0.00 1.00 4.00 1.31
4 1 4.00 3.00 1.00 4.00 0.88 1.00 4.00 2.31
5 1 4.00 4.00 1.00 4.00 1.87 1.00 4.00 3.31

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.78 3.63 0.00
2 1 4.00 1.00 0.00 2.00 0.00 0.94 3.94 0.78
3 1 4.00 2.00 0.10 3.10 0.00 1.00 4.00 1.72
4 1 4.00 3.00 1.00 4.00 0.10 1.00 4.00 2.72
5 1 4.00 4.00 1.00 4.00 1.10 1.00 4.00 3.72
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Table 2: Simulation results for the design (Σ1, G2) with ρ = 0.25, (n, p) = (400, 1000)

for the normal model, and (n, p) = (500, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0 2.98 18.02
gLASSO - - 1 4 9.30 1.00 4.00 104.14 1 4.00 41.59
gSCAD - - 1 4 1.21 1.00 4.00 0.32 1 4.00 0.11
FR.full - - 1 4 6.00 1.00 4.00 6.00 1 4.00 6.00
SC.full - - 1 4 6.00 1.00 4.00 5.98 1 4.00 6.00
FR LIC 1 1 4 0.00 0.01 2.06 0.00 1 4.00 0.00

2 1 4 1.00 0.57 3.57 0.01 1 4.00 1.00
3 1 4 2.00 1.00 4.00 0.58 1 4.00 2.00
4 1 4 3.00 1.00 4.00 1.58 1 4.00 3.00
5 1 4 4.00 1.00 4.00 2.58 1 4.00 4.00

HBIC 1 1 4 0.00 0.00 1.05 0.00 1 4.00 0.00
2 1 4 1.00 0.06 2.12 0.00 1 4.00 1.00
3 1 4 2.00 1.00 4.00 0.06 1 4.00 2.00
4 1 4 3.00 1.00 4.00 1.05 1 4.00 3.00
5 1 4 4.00 1.00 4.00 2.06 1 4.00 4.00

SC LIC 1 1 4 0.00 0.01 2.06 0.00 1 4.00 0.00
2 1 4 1.00 0.57 3.57 0.01 1 4.00 1.00
3 1 4 2.00 1.00 4.00 0.58 1 4.00 2.00
4 1 4 3.00 1.00 4.00 1.58 1 4.00 3.00
5 1 4 4.00 1.00 4.00 2.58 1 4.00 4.00

HBIC 1 1 4 0.00 0.00 1.06 0.00 1 4.00 0.00
2 1 4 1.00 0.07 2.15 0.00 1 4.00 1.00
3 1 4 2.00 1.00 4.00 0.07 1 4.00 2.00
4 1 4 3.00 1.00 4.00 1.07 1 4.00 3.00
5 1 4 4.00 1.00 4.00 2.07 1 4.00 4.00
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Table 3: Simulation results for the design (Σ1, G2) with ρ = 0.5, (n, p) = (200, 1000) for

the normal model, and (n, p) = (300, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 2.96 7.04 0.00 2.95 11.05 0.00 2.77 11.23
gLASSO - - 1 4.00 36.51 1.00 4.00 72.28 1.00 4.00 40.38
gSCAD - - 1 4.00 4.29 0.99 3.99 0.08 1.00 4.00 0.16
FR.full - - 1 4.00 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4.00 6.00 1.00 4.00 5.81 1.00 4.00 6.00
FR LIC 1 1 4.00 0.00 0.00 1.97 0.00 0.00 2.08 0.03

2 1 4.00 1.00 0.00 2.97 0.00 0.08 3.08 0.03
3 1 4.00 2.00 0.97 3.97 0.00 0.99 3.99 0.12
4 1 4.00 3.00 1.00 4.00 0.97 1.00 4.00 1.10
5 1 4.00 4.00 1.00 4.00 1.97 1.00 4.00 2.10

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.02 1.98 0.03
2 1 4.00 1.00 0.00 2.00 0.00 0.12 3.01 0.05
3 1 4.00 2.00 0.05 3.05 0.00 0.90 3.89 0.17
4 1 4.00 3.00 1.00 4.00 0.05 0.99 3.99 1.07
5 1 4.00 4.00 1.00 4.00 1.05 1.00 4.00 2.06

SC LIC 1 1 4.00 0.00 0.00 1.97 0.00 0.00 2.08 0.03
2 1 4.00 1.00 0.00 2.97 0.00 0.09 3.08 0.04
3 1 4.00 2.00 0.97 3.97 0.00 0.99 3.99 0.12
4 1 4.00 3.00 1.00 4.00 0.97 1.00 4.00 1.12
5 1 4.00 4.00 1.00 4.00 1.97 1.00 4.00 2.12

HBIC 1 1 4.00 0.00 0.00 1.00 0.00 0.02 1.98 0.03
2 1 4.00 1.00 0.00 2.00 0.00 0.13 3.02 0.06
3 1 4.00 2.00 0.04 3.04 0.00 0.90 3.89 0.18
4 1 4.00 3.00 1.00 4.00 0.04 0.99 3.99 1.08
5 1 4.00 4.00 1.00 4.00 1.04 1.00 4.00 2.08
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Table 4: Simulation results for the design (Σ1, G2) with ρ = 0.5, (n, p) = (400, 1000) for

the normal model, and (n, p) = (500, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0.00 2.98 18.02
gLASSO - - 1 4 21.16 1.00 4.00 99.98 1.00 4.00 39.21
gSCAD - - 1 4 2.41 1.00 4.00 0.27 1.00 4.00 0.08
FR.full - - 1 4 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4 6.00 1.00 4.00 6.00 1.00 4.00 6.00
FR LIC 1 1 4 0.00 0.00 2.00 0.00 0.22 2.87 0.00

2 1 4 1.00 0.28 3.28 0.00 0.68 3.67 0.22
3 1 4 2.00 1.00 4.00 0.28 1.00 4.00 0.89
4 1 4 3.00 1.00 4.00 1.28 1.00 4.00 1.89
5 1 4 4.00 1.00 4.00 2.28 1.00 4.00 2.89

HBIC 1 1 4 0.00 0.00 1.12 0.00 0.39 2.78 0.00
2 1 4 1.00 0.12 2.25 0.00 0.84 3.82 0.39
3 1 4 2.00 0.98 3.98 0.12 0.99 3.99 1.23
4 1 4 3.00 1.00 4.00 1.10 1.00 4.00 2.21
5 1 4 4.00 1.00 4.00 2.10 1.00 4.00 3.21

SC LIC 1 1 4 0.00 0.00 2.00 0.00 0.24 2.90 0.00
2 1 4 1.00 0.28 3.27 0.00 0.70 3.70 0.24
3 1 4 2.00 1.00 4.00 0.28 1.00 4.00 0.94
4 1 4 3.00 1.00 4.00 1.27 1.00 4.00 1.94
5 1 4 4.00 1.00 4.00 2.27 1.00 4.00 2.94

HBIC 1 1 4 0.00 0.00 1.16 0.00 0.42 2.86 0.00
2 1 4 1.00 0.15 2.31 0.00 0.84 3.83 0.42
3 1 4 2.00 0.98 3.98 0.15 0.99 3.99 1.26
4 1 4 3.00 1.00 4.00 1.13 1.00 4.00 2.25
5 1 4 4.00 1.00 4.00 2.13 1.00 4.00 3.25
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Table 5: Simulation results for the design (Σ2, G1) with ρ = 0.5, (n, p) = (200, 1000) for

the normal model, and (n, p) = (300, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 7.00 0.00 2.98 11.02 0.00 2.95 11.05
gLASSO - - 1 4 27.86 1.00 4.00 68.46 0.26 3.23 21.48
gSCAD - - 1 4 3.41 0.88 3.88 0.50 0.36 3.12 2.05
FR.full - - 1 4 6.00 1.00 4.00 6.00 0.94 3.94 6.06
SC.full - - 1 4 6.00 0.98 3.98 5.84 0.34 2.75 7.25
FR LIC 1 1 4 0.00 0.00 1.36 0.00 0.00 2.98 0.02

2 1 4 1.00 0.00 2.36 0.00 0.84 3.84 0.17
3 1 4 2.00 0.36 3.36 0.00 0.92 3.92 1.08
4 1 4 3.00 1.00 4.00 0.36 0.93 3.93 2.08
5 1 4 4.00 1.00 4.00 1.36 0.93 3.93 3.08

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.02 2.98 0.02
2 1 4 1.00 0.00 2.00 0.00 0.82 3.83 0.18
3 1 4 2.00 0.00 3.00 0.00 0.92 3.92 1.08
4 1 4 3.00 1.00 4.00 0.00 0.93 3.93 2.08
5 1 4 4.00 1.00 4.00 1.00 0.93 3.93 3.08

SC LIC 1 1 4 0.00 0.00 1.36 0.00 0.00 1.99 0.94
2 1 4 1.00 0.00 2.36 0.00 0.22 2.29 1.66
3 1 4 2.00 0.34 3.35 0.01 0.26 2.45 2.50
4 1 4 3.00 0.98 3.98 0.38 0.28 2.56 3.39
5 1 4 4.00 0.98 3.98 1.37 0.32 2.64 4.30

HBIC 1 1 4 0.00 0.00 1.00 0.00 0.00 2.02 0.98
2 1 4 1.00 0.00 2.00 0.00 0.22 2.40 1.73
3 1 4 2.00 0.00 3.00 0.00 0.27 2.52 2.65
4 1 4 3.00 0.98 3.98 0.02 0.30 2.62 3.57
5 1 4 4.00 0.98 3.98 1.02 0.33 2.65 4.52
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Table 6: Simulation results for the design (Σ2, G1) with ρ = 0.5, (n, p) = (400, 1000) for

the normal model, and (n, p) = (500, 1000) for logistic and Poisson models.

Screen Stop m Normal Logistic Poisson
Sure TP FP Sure TP FP Sure TP FP

NIS - - 0 3 15.00 0.00 3.00 18.00 0.00 2.99 18.01
gLASSO - - 1 4 9.07 1.00 4.00 95.22 0.60 3.60 23.64
gSCAD - - 1 4 1.01 1.00 4.00 0.46 0.78 3.75 1.62
FR.full - - 1 4 6.00 1.00 4.00 6.00 1.00 4.00 6.00
SC.full - - 1 4 6.00 1.00 4.00 5.97 0.85 3.76 6.24
FR LIC 1 1 4 0.00 0.00 2.02 0.00 0.08 3.08 0.01

2 1 4 1.00 0.07 3.05 0.00 1.00 4.00 0.09
3 1 4 2.00 0.98 3.98 0.07 1.00 4.00 1.08
4 1 4 3.00 1.00 4.00 1.05 1.00 4.00 2.08
5 1 4 4.00 1.00 4.00 2.05 1.00 4.00 3.08

HBIC 1 1 4 0.00 0.00 1.02 0.00 0.28 3.28 0.01
2 1 4 1.00 0.00 2.08 0.00 1.00 4.00 0.30
3 1 4 2.00 0.10 3.10 0.00 1.00 4.00 1.29
4 1 4 3.00 1.00 4.00 0.10 1.00 4.00 2.29
5 1 4 4.00 1.00 4.00 1.09 1.00 4.00 3.29

SC LIC 1 1 4 0.00 0.00 2.06 0.00 0.02 2.68 0.77
2 1 4 1.00 0.12 3.10 0.00 0.66 3.38 1.12
3 1 4 2.00 0.98 3.98 0.12 0.75 3.52 2.00
4 1 4 3.00 1.00 4.00 1.09 0.77 3.60 2.92
5 1 4 4.00 1.00 4.00 2.10 0.80 3.66 3.87

HBIC 1 1 4 0.00 0.00 1.02 0.00 0.14 2.85 0.88
2 1 4 1.00 0.00 2.09 0.00 0.68 3.48 1.34
3 1 4 2.00 0.12 3.12 0.00 0.79 3.66 2.22
4 1 4 3.00 1.00 4.00 0.12 0.81 3.69 3.13
5 1 4 4.00 1.00 4.00 1.12 0.85 3.76 3.97
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