AN INTERMEDIATE PREDICATE LOGIC

By TAKASHI NAGASHIMA*

This paper is a preliminary report on the intermediate predicate logic called CD by
Gabbay. Gabbay (1) defined CD as the logic determined semantically by Kripke structures
with constant domains, and he mentioned that the intuitionistically unprovable formula

Y x(F(x)V G(x)DIXF(x)V ¥ xG(x)
is valid in CD. Kripke remarked that the formula
¥ X(AV F(x))DAV Y XF() .

is valid in any structure with constant domain. Gabbay raised the problem that whether
CD is axiomatizable or not. In this paper, we propose two axiomatizations of CD: the
one is a sequent calculus intermediate between Gentzen’s LJ and LK, the other is intuition-
istic predicate logic with Gabbay’s formula as the additional axiom schema. Further axio-
matizations of CD will be published later on. Independently of the author, Gérnemann
[3] established an axiomatization of CD. She adopts Kripke’s formula as the additional
axiom schema to the intuitionistic predicate logic. Besides axiomatizations, some con-
siderations on the logic CD is given in this paper. Except the unprovability results, proofs
are carried out by using syntactical methods. Gentzen’s Hauptsatz does not hold for our
sequent calculus of CD. This fact causes some difficulties in applying syntactical methods.

An atomic formula is an expression of the form Pa, ... a, where P is an n-adic predicate
symbol and a,, ..., a, are free variables. Formulae are constructed from atomic formulae
according to the usual formation rules. Propositional variables are regarded as 0-adic
predicate symbols. A sentence is a formula containing no free variables. As in[2], we
use different letters for free and bound variables. The set of all free variables is denoted
B. The set of all predicate symbols is denoted . We assume that the reader is familiar
with Gentzen sequent calculi and Kripke models.

A CD-structure is defined to be (g, K, R, D) where K and D are nonempty sets, gEK,
and R is a reflexive and transitive binary relation on K. Let T stand for the one-element
set consisting of the empty sequence, and F stand for the empty set ¢. We suppose D"=T
when n=0. A CD-model on a CD-structure (g, K, R, D) is (g, K, R, D, ¢) where ¢ is a
function from PX K into 2T={T, F} such that (i) if P is an n-adic predicate symbol and
i€k then ¢(P,i)C D" and (ii) if i, jJEK and iRj then (P, )T e(P,j). Let Ap denote
the set of all assignments ¢: B —D. For ¢ €¥p and a€R, Ap(a, a) is defined to be the
set of .all fE€Ap such that (b)=p(b) for all b&€B—{a}. For a€Ap, aEPB and any
formula 4, we shall define (4, @, /) and (4, i). The function ¢(4, a, i) is defined induc-
tively as follows:

(1) If P is an n-adic predicate symbol (n=0) then

* Assistant Professor (Jokydju) in Mathematics.



54 HITOTSUBASHI JOURNAL OF ARTS AND SCIENCES [September

, T if (a(ay), ..., a(@)Ee(P, i),
o(Pay...an, a, l)={F otlfer(wilze. e )
(2 o(AAB, a, i)=¢(4, a, DNe(B, a, i).
3) o(AV B, a, DN=¢(4, a, DUe(B, a, i).
(4) @(ADB’ @, l)ZT—U{QD(A! asj)—(o(B’ a, .])]]EK’ lRJ}
(5 (4, a, )=T—U{o4, a, HIJEK, iRj}.
6) o(YxF(x), a, )=N{o(F(a), 8, i)|BEU(a, a)}, where a is a free variable not occur-
ring in Y xF(x).
D) o(JxF(x), a, ))=U{pF @), B, )| €A a, a)}, where a is a free variable not occur-
ring in J xF(x).
As mentioned in [5], if iRj then ¢(4, a, )Tep(4, a,j). Hence o(VxF(x), a, H=T
if and only if for all EUp(a, a) and for all jEK such that iRj, o(F(a), B, j)=T where a
is a free variable not occurring in Yy xF(x). Next we define o(4, )=N{p(4, a, )| EAp}.
(8, K, R, D, p)|=A is defined as ¢(4, g)=T. A formula 4 is CD-valid if and only if for all
CD-model M=(g, K, R, D, ¢), M|=A. A sequent 4,,..., An— By, ..., B, is CD-valid if
and only if the formula 4, A...A4mDB V...V By is C D-valid.

Now we set up three predicate calculi C1, C2 and C3. C2is equivalent to Gornemann’s
system. Cl is a sequent calculus lying between Gentzen’s LJ and LK. Cl1 is LK with the
restriction for inference rules —> and ——: one and only one formula (i. e. the principal
formula) occurs in the succedent of the lower sequent. It should be compared with Mae-
hara’s system which we shall call LJ’. LJ/is LK with the above restriction for rules —2,
—— and —»V. Machara [6,7] proved that LJ/ is equivalent to LJ. C2 is intuitionistic
predicate calculus with the additional axiom schema

v x(AV F(x)) DAV Y xF(x).
C3 is intuitionistic predicate calculus with the additional axiom schema
Vx(F(x)V G(x)DIXF(x)V Y xG().

TueoreM 1. For any formula A, the following are equivalent:
(@) A is CD-valid;
(b) A is Cl-provable;
(c) A is C2-provable;
(d) A is C3-provable.

PROOF. We omit the proof of the fact that (a) implies either (b), (¢) or (d). A proof
of completeness is published by Gérnemann.
(1) Implication of (a) by (b) is evident because CD-validity is preserved by Cl-inferences.
(2) Implication of (c) by (b). It suffices to deduce

' - 60, YxF(x)
from C2-axiom and
I - 0, F(a)

in LJ/ under the assumption that a does not occur in I, @, Y xF(x). If @ is empty then
it is clear. If @ is a sequence A, ..., 4, (n=>1) then it is shown as follows: Let 4 be the
formula A4,V ...V A, then
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Y X(AV F(x) = 0, Y xF(x)
is LJ’/-deducible from an axiom sequent
— Y x(AVF(x))DAV Y xF(x),
thence we have
' — 6, Fla)
I'—= AV F(a)
I — Y x(AV F(x)) ¥ x(AV F(x)) = 0, ¥ xF(x)
I — 0, YxF(x).
(3) Any formula of the form yx(4VF(x))DA4V yxF(x) follows immediately from a
C3-axiom. Hence (c) implies (d).
(4) As shown below, any formula of the form VY x(F(x)VG(x)DIxF(x)V Y xG(x) is
Cl-provable. Hence (d) implies (b).
F(a) —» F(a) G(a) — G(a)
F(a)V G(a) — F(a), G(a)
VEXVGE) = F@), 6@
¥ X(F(x)VG(x)) > FxF(x), G(a)
¥ X(F(x)V G(x)) = FXF(x), ¥ xG(x)
Yx(F(x)V G(x) = AxF(x)V ¥ xG().

A formula is said CD-provable if it is provable in C1, C2 or C3.
THEOREM 2. Gentzen’s Hauptsatz fails for Cl.

PrROOF. Consider the following proof in Cl, where Fis a monadic predicate symbol.

Fa— Fa —Fa — —Fa Fa — Fa
Fa — 3yFy, —Fa —Fa — JxFx, —Fa —Fa, Fa —
Fa\/ —Fa — JxFx, —Fa m
v x(Fx\ —Fx) —» JxFx, —Fa JxFx, Yyx—Fx —>
v x(Fx\/ —Fx) — JxFx, Y xFx ¥ x—Fx - 13 xFx

v x(FxV —Fx) — JxFx, =3xFx
The cut can not be eliminated from this proof. For, suppose there were cut-free proof of
v x(FxV —Fx) = 3xFx, = 3xFx. By Subformula Property, no inference —Y occurs in
this proof since there is no positive occurrence of v in the endsequent. Hence this would
be an LJ/-proof. By Macehara’s theorem,

v x(FxV 1 Fx)D3xFxV 3 xFx
would be LJ-provable, which is a contradiction. Q.E.D.

Let P be a monadic predicate symbol. The P-relativization AP of an arbitrary formula
A is defined by induction as follows:
(1) If no quantifiers occur in 4, then AP is A.
(2) (AAB)P is APAB®.
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() (AVB)? is AP\ BP,

4) (ADB)F is APDBP,

(5) (AP is 4~

() (VxF(x)? is ¥ x(PxD FF(x)), where FP(a) is (F(a))P.

(M) @AxF(x)P is Jx(PxAFP(x)), where FFa) 1s (F(a))*.

If & stands for a sequence Ay, ..., Ay of formulae then ZF denotes the sequence 4,7, ..., AL
If a denotes a sequence aj, ..., a, of variables then Pq denotes the sequence Pa, ..., Pa,

of formulae.

The well-known Relativization Theorem reads: For sentence A containing no P, A is prov-
able in the classical (intuitionistic) predicate calculus if and only if JxPxD AP is prov-
able in the classical (intuitionistic) predicate calculus.

THEOREM 3. Let A be a sentence and P be a monadic predicate symbol not occurring
in A. Then A is provable in CD if and only if Y x(PxV —Px)D(JxPxD AP) is provable
in CD.

Proor. For any sequence = of formulae, let P(E) denote the sequence Pay, Pa,, ...,

=

Pa, where ay, a,,...,a, are all of the free variables contained in E. Let II denote the
sequence consisting of the formulae Y x(Px\/ —Px) and JxPx. Given proof H in C1
of a sequent ¥ — @ is transformed into a proof in Cl1 of
P, P(¥, D), Yx(Px\V —Px), JxPx — QP
by induction on the length of H. We divide cases according to the lowermost inference
S in H.
Case 1: S is a cut. Let S be of the from
I'—>6,D D, 4> A
I, 4—-0, 4,
and let a be the sequence of all the free variables contained in D but not in I, 6,4, 4.
We transform S into
I?, Pa, P(I", ©), I - BF, DP DFP, 4%, Pa, P(d, 4), I > A*
I'", Pa, P(I', 0), IT, 4%, Pa, P(4, A), IT — GF, AP
Pa, I'?, 4%, P(I", 4, 0, A), IT —> @F, AP
JxPx, I'?, 47, P(I", 4, 0, A), IT - OF, AP
I'?, 4%, P(I, 4,0, 4), I - 6F, AP.
Case 2: S is an —»D. Suppose S runs as follows:
A, "> B
I'— ADB.

Then § is transformed into
AP, P, P(A,B, I"), [T — BP
I'?, P(A,B, I'), Il - APDBP,
Case 3: S is an —»Y. Suppose S runs as
I'—> 0, Fla)
I'> 8, yxF(x),
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then S is transformed into
FP(a) — FP(a)
I'?, Pa, P(I", @, Y xF(x)), Il > OF, FP(a) FP(a) — PaD F¥(a)
T®, Pa, P([, O, Y xF (X)), Il — GF, PaD FP(a)
Pa, I'?, P(I", 09, Y xF(x)), I - OF, PaD F¥(a) (D

Pa — Pa
—Pa — PaD FF(a)
(n Pa, I'?, P(I", 0, Y xF(x)), I > @F, PaD F¥(a)
PaN —Pa, I'F, P(T, 6, YxF(x)), Il — @F, PaD FP(a)
Y x(Px\/ —Px), I'?, P(I, O, ¥ xF(x)), [ > OF, PaD FF(a)
I'?, P(I", O, Y xF(x)), Il > OF, Pa> FF(a)
I'?, P(I, 0,YxF(x)), Il - or, VX(PXDFP(X).
The other cases are treated similarly. Q. E.D.

Remark. We can not dispense with the formula ¥ x(PxV —Px) in the last theorem.

Let F be a monadic predicate symbol and 4 be the CD-provable sentence
v x(FxV —Fx) D 3xFx\ —~3xFx,
then JxPxDAF is not CD-provable. For if it were provable then by substituting
Ax(Fx\/ —Fx) for P we could obtain
Jx—1FxD3xFxV 3xFx

while, as shown later, this formula is not provable.

Theorem 3 depends on the fact that for any CD-model M=(g, K, R, D, ¢),
M=y x(PxV —Px) if and only if (P, i)=¢(P, j) for all i, jEk.

Now let A be an LJ-provable sentence and P a monadic predicate symbol not occurring
in 4. Then JxPxD AP is CD-provable since it is LJ-provable by Relativization Theorem.
The converse seems to hold:

CONJECTURE. Let A be a sentence and P be a monadic predicate symbol not occur-
ring in A. Then A is provable in LJ if and only if 3xPxD AP is provable in CD.

THeOREM 4. If F is a monadic predicate symbol then the following formulae are not
provable in CD:
() FxFxAJx—FxDyx(ExV —Fx);
2) —(Yx 1 FxDyYxFx);
(3) ——3xFxD3Jx—Fx;
4) IxFxDFxFxV3xFx;
(5) IAxYyFyDFx)D3xFxV —dxFx;
(6) 3IAxVYy(FyDFx).

Proor. Let N be the set of finite ordinals (i. e. nonnegative integers).
(1) Countermodel (0, N, <, N, ¢) where o(F, N={jljEN, 0« j<i} for i€N.
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(2) Let G be Ax(FxV —Fx). If 9—(yYx——FxD——yxFx) were provable then
1Y xG(x) would be provable (cf. [4], p. 491), contradicting (1).

(3) Countermodel (¢, K, C, {0, 1}, ) where K={g, {0}, {1}} and o(F, i)=i for iEK.

(4) Countermodel (0, {0, 1}, <, {0, 1}, ¢) where o(F, 0)=¢ and @(F, 1)={0}.

(5) Countermodel (0, N, .<, N, p)where o(F, )= {j|jEN, j<i}.

(6) Countermodel (0, NU{w}, =, N, ¢) where o(F, w)=¢ and ¢(F,i)={j|jEN,i<j}
for iEN. Another countermodel is the countermodel to (3) given above. Q.E.D.

Remark. The formula ——yx(Fx\V —Fx) is valid in every model (g, K, R, D, ®)
with finite K.
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