
ON THE UNIFORM DISTRIBUTION 
OF THE POWER MATRICES WITH DEGREE 2 

By SETSUO ONARI 

1. In this paper let us take up a problem with respect to the distribution of S(A)= 
{A~; m=1,2, 3, . . ..}, where A is a real square matrix with degree 2. It is difficult to solve 

this problem for an arbitrary A, so that we deal with a specialized A as follows : I A I =1 

and -2<(T(A)<2, where I A I and c(A) are determinant of A and trace of A respectively. 
The first questron that we propose to deal rs to represent four elernents of A~ by means 

of m successfully. In case of degree 2 we can solve this question wrth the tngonometncal 

function of m. Namely, roughly speaking, the elements of A~ move with the fluctuation of 

m presenting an aspect of simple oscillation. Furthermore these four simple oscillations have 

a common angular velocity, and on the principal diagonal line they have different amplitudes 

and phase differences, but'on the subordinate diagonal line they have the same phase difference. 

In order to draw those conclusions, characteristics of Gegenbauer's polynomials are effectively 

used. 

On the basis of those facts we propose to describe the uniformity of distribution of A~ 

after some notions of uniforinity are suitably defined in the last two sections. 

2 Let a(~n(X Y) cr~)(X Y) be systems of polynomials with variables X and Y over 
the ring of rational integers Z, which are defined by 

(1) a(~1)+1(X, Y)=Xa(~i)(X, Y)-a~)(X, Y), 
(2) a~~1(X, Y)= Ya~)(X, Y), 

where we adopt initial conditions as follows : 

(3) a~n(X, Y)=0, a(02)(X, y)= -1. 

Now for an arbitrary matrix A with degree 2 over the real number field R, we denote 

its determinant and its trace by I A I and o(A) respectively. Then we obtain the following 

proposition I by the induction on m without difflculty. 

Proposition 1. 

(4) A~=a(~1)(a(A), I A DA-a~)(o(A), I A DL~, 

where E2 is-the unit matrix of degree 2. 

Here we wish to decide the systems of the polynomials o!(~1)(X, Y), a~'(X, Y) explicitly. 

The following proposition 2 answers this question, as by (2) we have only to consider the 
a(~1)(X, Y). 

Proposition 2. 

r~~~~l 

L2J -( t' ) - - t (5) (r(~1)(X, Y)= ~ (-1)i m l-1 X~ 2' IY 
*=0 

for all m=1,2, 3, .... 

Proof We carry out the proof by the induction on m. In case of m=1, (5) is obvious. 

Now let us assume that the conclusion of (5) is right for m=1,2, 3, . ..., k, (1~k). Then we 
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obtain by (1) and (2) 

a(kl)+1(X' Y):=:Xa(hn(X' Y)-a(h2)(X' Y) 

=:Xa(kl'(X' Y)- Ya(kl)1(X' Y) 

[?] [Lt~] k 1 2 i -t ) I -t ) ' - =: k t I h_2i_2vi+1 ~ (-1) Xk 2tY~ ~ (-1) ' X (*) 1 

At the last summation of the above relatiOn' we adopt j-1 for i' and because an equality 

l _[~] i [k 2 2 +1- 2 s obvious' so that the summation turns into 

[~] )
 

( I Xk-2jYj k - j-
~ (-1)j-1 

j-1 j=1 

But of course we know 

[~L]_[k-l]= ' I O (mod 2) fk 
{
 
~
 

1
 

2 , i I (mod 2) fk O
 

2
 

and therefore we must proceed on separating the computation into two cases such that kEO 

(mod 2) and kE1 (mod 2). 
In the first case' Iet us assume k~~O (mod 2). 

o
 
)
 

(
 
-

(*)=(-1) k-O I Xk-2'oYo 
O
 

[~::l] _( 1)i-1(k-i-1 Xk-2iYi 
t
 
)
 

ktl { - :-(-1) +~ JL _ t 
-1 Xh~2[~]Y[~] [
-
_k 

- 2 

 

(
 
2
 

k
 (-1)[ I l 2
 
[~L]_ 

1
 

== 
(-1) k+1 Xh+1 20 Iv!o o ~0-1 

O
 

[~]-1 ' _ {( )} - - t + ~ (-1)~ k i-l~+(k-i-1 Xk+1 2t IY 
i ) ~ i-l t=1 

+(-1)[h] k [ - [~]_lY[~] (**) - - 

 

k
 

(
 
-2 - 

 

T I k+1-2 
X 

[
 
l
 

k
 
1
 
2
 

Now clearly 

(k-i-1) + (k -i-1) = (k+ I -i-1) 

i i-1 i ' and because of the assumption k~~O (mod 2) 

! [~] I f [l] ( [ ;2]-1lj (LJ~1[ {2] 1) k _ I feTl 

 

are obvious' Accordingly 

(**)=;(-1) (k+1 O 0-1 k+1-2'o-1 vo o ~ 

 

X 4
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r(k+1)-11 
L 2 J~ (k+1-i-1) + ~ (-1)i l k~-1 -2i-1 vi X 
*=1 

! -[(k+1)-1]_ 1 r(k+1)-11 k+1 r(k+1)-11 l
 2 -1 r(k+1)-11 k+1-2 +(-1)L 2 J L 2 J YL 2 J X ( r 2 1 j L(k+1_) IJ 

r(k+1)-11 

L 2 J (k+1) i-1 X'k+1'-2i-1Y 
= ~ (-1) *=0 

This consequence is obtained in case of the transformation m=k+1 in (5). 

In the second case, Iet us assume kE:1 (mod 2). Taking consideration of [ = k-1 

l
[
 
,
 
J
 

k
 T 2

 we assert 

[~:;~] [~] k - j- 1 ,(k-i-1) 
(
 
)
 

(*)= ~ (-1) I ~: (-1)j-1 Xk-2jYj . Xk-zi Yi -

= 
(k-0-1) ( - 1) O Xk-2' o Yo 

[1] ( 1)i-1(k-i-1 Xk-2iYt 2 { i(k-i-1) 
)
}
 

+ ~ (-1) i ~ ~ 

= 
- 1)o((k+ 1) -O - 1)X (h+1} -2'0-1 Yo 

O
 

r(k+1)-11 

L 2 i fl(k-i-1)+(k-i-1)}X(k+1)-2i IY 
+ ~ (-1) i=1 1 t - 1 =(-1)o((k+1)-0-1¥/Xlk+1]-2'o-1 o 

Y
 O

 
r(k+1)-11 

L 2 J (k+1) i-1 X(k+1)-2i-lY 

(
 
r
 + ~ (-1) 

i=1 
r(k+1)-11 

L 2 J (k+1) t I X(k+1) 2i IY 
= i t ) - - i' ~ (-1) 
t=0 

This consequence is obtained in case of the transformation m=k+1 in (5). Consequently 

we have known that the formula (5) is proved by the induction on m. 

Accordingly by (2) we also obtain 

a(2)(X, Y)=0 

[~2~~2] i-2 X~ 2i 2Yi+1 a~)(X, Y)= ~ (-1) ( ) - -m . 
i=0 l for all m=2,3,4, 

3. In this section generating functions of a(Inl)(X, y), a~)(X, Y) come into question. We 

begin with the identity 

(6) Um+1 _ Vm+1 = U~+ Uln-1 V+ . . . , + UV1"-1+ v~. 

U-V 
Since the right side of (6) is a symmetric polynomial with respect to U and V, we can 

find such polynomial P,1~+1(X, Y) with variables X and Y Qver the ring of rational integers 

Z that the identity 
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~+1 ~+1 U - V m=0, 1, 2, . .. . U- v = Pm+1(U+ v. U' V), 

is obtained. 

Now we describe the following proposition. 
Proposition 3. If the real matrix A of degree 2 is semi-simple and I A I ~0, then 

= ,n+1((r(A), I A D ,,~ 1
 =~ (7) ~+1 x , PA(x) m=0 1 A l 

where pA(x) is a characteristic polynomial of A. 

Proof (7) denotes 

(8) P,n+1(o(A). I A D l [ dlle { I }] = IAlm+1 
m ! dxm ,,A(x) :r=0 

for all 7n=0, 1,2, .... . Since A is semi-simple, there exist 61 and 02 in the complex number 

field such that 

~A(x)=(x-el)(x-02)' O :~:02' 0162~0, 
Accordingly 

[ihe left side of (8)] . 

- _ m x-O x 6 f e o dx'n 2 1 x=o 
l ( 1)'7'm T I I ]x=0 ~ = m ! (x-a2) (x-el)'n+1 1'e+1 62-0 

2 1 ) 
=_ 

1
 
l
 

m+1 In+1 
6~+1_6m2 +1 1 
~ 1~02 m+1 (el62) 

Pm+ 1(61 + 62' 6162) 

(C162)n$+1 

Pm+1(a(A), I A I ) 

~ 
For the sake of convenience we define that the polynomial Po(X. Y) denotes O. This 

promise is employed in the next section. 

4. In this section we must verify 

Proposition 4. 

(9) a;nl)(X. Y)= P,n(X, Y) m=0, l, 2, .. . . . 

Accordingly by (2) 

a~)(X, Y)= YP~_1(X. Y), m=1. 2, 3, . . .. 

Before giving the proof of this proposition, we need the following lemma. 

Lemma. For an arbitrary natural number n and an arbitrary natural number r such [
 
,
 
J
 
n that 1~r~ 2 

(lO) ~(-1) n,k)( ~ 1 

(
 
=
 
k
 
)
 

k=0 
~L [the left side of (10)] 

= 

 

*k~Q(-1) k ) r k (n -k)(n -k- 1) ' ' ' ' " (n -k-r+ 1). 
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/ r l~ Now for each k (o~k~r) and r 1 1~r<1 IL I ' we put 
¥ ~L 2 Jl 

ft,r(x) =(x-k)(x-k- 1)' ' ' ' " (x-k-r+ 1)' 

r k( r ) Fr(x)=k~=0(~1) k fk,r(x)' 
r
 
n
 L l) Then for each r ~l~r~ , the roots of fi r(x) O are k k+1, "-,k+r-1' There-

2
 

( [ n l~ fore for an arbitrary r, ~l ~ r~ TJ) we obtain 
f ; , r(r)= f2' r(r)= - ' ' = fr'r(r)= O' 

Now considering the fact 

Fr(r)=r !, (
 
[
 - 
)
 

if we can prove that Fr(x) n iS a constant function,then we obtain the conclusron 1~r< 2
 

(
 
=
 f (
 
n-k r 1 ~(-1) r k ~Fr(n) 1 r! k=0 

namely the proof of this lemma is completed. 
(
 
n
 [ l) A reason of constantness of Fr(x) ~l~r~ 2 is as follows' 

By simple computation we have 

fk,r(x)-ft.r(x-1) 

=rfk,r-1(x-1) 

=rfh_1,r-1(x-2). (
 
[
 
- 
)
 

Therefore for an arbitrary r _ ~ we obtain the following relation' 1<r< 2
 

Fr(x)-Fr(x-1) 

=r ( ~(-1) k ) ~ ' ~ k( r ~ (x-1) r k fk,r(x) k~=0( 1) k )fk,r 
k=0 

r k 

 

= 

 

r ~(-1) k {fk.r(x)-fk,r(x-1)} 
h=0 

= 

 

r k 

 

r ~(-1) k rfx,r-1(x-1) 
h=0 

( ,-= o 

 

r (-1) o rfo r 1(x-1) 

{( ) , 
)
}
 

r-1 r-1 r-1 +~(-1) k k-1 rftr 1(x-1) +
 h=1 

( ~ )rfr'r-l 

+(-1)r (x-1) 
=rfo'r-1(x-1) 

I ~ ~0r l(x 1) ( - -
,
 
}
 

rl +rlFr-1(x-1)-(-1)o 

-r 
l Fr-1(x - 2) - ( - 1)r-1 (r - l~r- I ' r- 1(x - 2) } 

r-l 
+(-1)rrfr'r-1(x-1) 

= {Fr-1(x-1)-Fr-1(x-2)} 
+ ( - 1)rr(x- I -r)(x- I -(r+ 1)) ' ' ' ' " (x- I -(r+r-2)) 

+( - 1)r-lr(x-2 -(r- 1))(x-2 -r) ' ' ' " ' (x-2-(r+r-3)) 
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= {Fr-1(x- 1)-Fr-1(x-2)} ; 
Fr(x) - Fr(x - 1) = r{Fr-1(x - l) -Fr-1(x - 2)} . i, e. 

Since Fl(x)=1, by the induction on r we reach the conclusion that Fr(x) is a periodic 

function with period 1. Here since the degree of Fr(x) is not over r the proof of this lemma 

is completed. 

Z~!_1(<r~l~ 
Considering a case n=m-1, we suppose, when m is even, r=0, 1,2, .1' f 2 ~-L Jl 

, ( [-]) and, when m is odd, r=0, 1,2, m-1 < respectively. Then ve obtain the fol-_n 2
 
2
 

lowing corollary. 

Corollary. (
 
i
 

l)( J )= (11) ~(-1)i m-i- 1 
j
 

i=0 

is established, if m~O (mod 2) for all j=0, 1,2, ....,m --1, and if m:~I (mod 2) for all 2
 

j=0,1,2,.... m-1 m-l -1 ' 2 ' 2 ' 
Now we return to the verification of proposition 4. 

Proof of proposition 4. For the purpose of verifying (9), it is enough to take consid-

eration of the following identity for all m=1,2, 3, ...., because 

a(ol)(X, Y)=Po(X, Y), ail)(X, Y)=P1(X, Y) 

are clear. 

(12) a(~1)(U+ V, U' V)= U'n-1 + U'n-2V+ ' ' ' ' + UVln-2+ vm-1 

Now we make use of (5) in proposition 2. Then 
[the left side of (12)] 

[~~~] i-1 (U+ V)m-2i-1(U' V)i 
.
(
 
)
 

m-. 
= s=0 t [~~~~2- l] 

= 

 

' 
-i-1)m 2i-](m-2J'i-1) 
~ (-1) U'n-i-j-lVi+j t i ~= t=0 'o 
[fn~l] ,1~-2i-1 m-t 

i '-1)(m-2i-1 
= t=0 '=0 

To simplify the computation we carry on computating about two cases. As the first case 

we assume m~O (mod 2). Then 

~l (#) j~0 {t~0( l)i(m-'- V j-i U'n-j-lVj 
)
}
 

_ = = + ~ J ~, ( l) Uln-j-1Vj V
 

i m-i-1Am-2i-1 7n ll7L j I _ 

j=~_2 i=0 

In 

-- 

 

;~0 {ti~0(~1) Um-j-1 Vj V
 

)
}
 

i m-i-1)~m-2i-1 
i j- i 

In 

+ ;~ Jltj~0( 1)t( i-1)( m-2i-1 UjV'n-j-1 
)
}
 

.= = _ m-
i m - i- j- 1 

n' 

_ 
_;1{tjo ~ t(m-i-1 j-i {U'n-j-1Vj+UjVm-/-1}. (b) )

(
 

)
}
 

m-2i-1 ~_ ~=( 1) i 
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Now by simple computatiOn we obtain 

( -'- V ):=(m j-1)( IJj), ¥m t 1)~m-2i-1 (13) . . . t J-t so that by making use of the foregoing corollary (ll) the above computation is able to be 

continued as follows : 

7n 
-- 

 

j-o JILjo t m-i-lV j (U'n-j-1Vj+UjV'n-j-1) 
)
}
 

(~):= ~_ ~=(-1) j )~ i 
,7L1 
2~] (U'n-j-1 Vj+ UjV'n-j-1) 

j~:o 

:::[the right side of (12)]. 

In the next place as the second case we assume m~~:1 (mod 2). Then 
"~-l 

':;o fltjo ( V Uln-j=1Vj 
)
}
 

i m-i-1)~m-2i-1 (#):= ~ ~=(-1) i j- i 
{- )( - } 

t
 
)
 

'?L-1 m-2i-1 m-1 71~-1 (
 
i-1 m-1 UzV 2 .= m-+ ~(-1)t l

j
 

so 2
 

'7t-1 1'n-j-1 i( i-1 m-2i-1 )( )} . m + ~ ~ (-1) ' Uln-j-1Vj (~) j=~~::~+1 t=0 t j-i 
Now the abOve third summation is able to turn into 

'It-1 
- V

 '=0 {L-o UjV'n-j-l i m-i-1)~m-2i-l 
.
j
-
~ ~(-1) i j- i 

On the other hand considering the foregoing formula (13) and the next formula which can be 

easily verified, namely 

m-i-1Y m 
= 

 

)
(
 
m-2i-1 1 (m-i-1 m-1 2 m-1 [

 2 -1 2 
we obtain the conclusion as follows : 

1"-1 J=0~1{t_o ~ i( ' m -i - ) (m - 2i - l) J1 
' ' 
Uln-j-lVj+UjV'n-j-1) (b)::= ~ ~_( 1) l 

J-l 
[1'~~~:1 _ t _'_ (m2 1'~ )} ~ ~ i i m 2t li In-1 ?n-1 ('n 1 1) 

U V + ~( l) 
io 

'n-l 
j~__o Jlsj~0(~1)s m-i-1V j (Um-j-lVj+UjV17L-j-1) 

)
}
 

-- 

 

j )~ i 

+ T _ f m-1 77~_1 In-l .= m _ I 

 

77e=1 

2 U2V ~( 1) m 1 1
 
so 2

 

"t_-1_1 22~~ 2~~ 
l=0 
[the right side of (12)]. 

Here the reason of the equality before the last one iS based upon the foregoing corollary (11) 

Now we have come to the end of the proof of proposition 4. 
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5. In this section we deal with generating functions of (r(~1)(X, Y) and a~)(X. Y) attached 

to A, which is a real matrix with degree 2. To represent a(~n(X, Y) and c(~)(X. Y) by the 

generating function is important for the description of our last conclusion. 

By the foregoing propositions 3 and 4, we have the following formula, namely 

(14) I = a(1) l(a(A) I A l)x~ 
= 

- 
A(x) ~=0 1 A [~+1 

where A is a real regular semi-simple matrix with degree 2 and pA(x) is its characteristic 

polynomial. Therefore by (2) 

l = a~~2(a(A), IAD x~ 
~
 PA(x) = I A l~+2 
~=0 

are very clearly established. Here roughly speaking we can say that two generating functions 

of a(~1)(X Y) and a(2) I . We can (X. Y) attached to A, are the same function, namely 
~)A(x) ~ 

arrange those circumstances in the following proposition 5. 

Proposition 5. If A is a real regular semi-simple matrix with degree 2, then generating 

functions of a(~1)(X, Y) and a~)(X, Y) at A, which are defined by generating functions of 

x a(A)x- I A l a(~1)(a(A) I A I ) and a~)(o(A) I A l) respectrvely are pA(x) and respectively. 
pA(x) 

To say more precisely, the following formulas are able to be verified, 

( )~, 
= (15) ,~A(x) I A l ~=0 

a(A)x-lAl ~ x ~
 
(
 

= PA(x) I A l ~=0 
for every A that satisfies the foregoing conditions. 

Proof. It is clear by regarding the initial conditions (3) and propositions 3 and 4. 

6. From now on we restrict our standpoint ; namely we deal with all the matrices that 

satisfy the following condition. 

(16) I A I =1, -2<a(A)<2. 
Then we obtain the following obvious result. 

Proposition 6. If a real matrix A of degree 2 satisfies the conditions (16), then A is 

semi-simple. 

Proof If A is not semi-simple, the characteristic equation of A is not separable ; namely 

PA(x)=0 and p~(x)=0 have a common root. By the way 
99A(x) = x2 - cr(A)x + I , 

p~(x) = 2x - a(A), 

therefore we must obtain 

~)A( a(~) ) = O 

which means a(A)=~2. It is a contradiction. 
By this proposition 6 there is no necessity for the condition of semi-simplicity. Accordingly 

we can freely make use of the conclusion in proposition 5, on condition that A satisfi~~ !16). 

Since i A l=1, we slmply denote 'x(~n(X, 1) and a~)(X, 1) by a'~1)(X) and a~)(X) respectively. 
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N・wweputA一
蟹：），andthen・nthe（　）か1aneweclassifythed・mainwhich

is　characterized　by　－2＜σ（A）＜2，into　twelve　parts．

　　Fhrst　of　al1，we　de五neξandηby

　　　　　　　ξ叩1＋ヱ、簸一2，　η＝婿＋∬、∬4－2

and　consider（諾1，苅）which　satis6es－2＜諾1十諾4〈2，and　de6ne　the　domains　from　I　to　XII　as

fol10WS　l

　　　　1＝｛（¢、，必4）3ξ＞0，ヱ、＞0，∬4＞0｝

　　　II＝｛（∬、，劣4）；ξ＞0，∬、＜0，∬4＞0｝

　　　III＝｛（∬、，灘4）3ξ＞0，∬、＜0，例く0｝

　　　IV＝｛（∬、，詔4）1ξ＞0，｛τ、＞0，∬4＜0｝

　　　V＝｛（ヱ1，¢4）1η＞0，¢1＞0，記4＞0｝

（17）　VI＝｛（必1，¢4）3η＞0，¢1＜0，簸＞0｝

　　VII＝｛（詔1，∬4）；η＞0，∬1〈0，¢4〈0｝

　　VIII＝｛（¢1，躍4）；η〉0，ヱ1＞0，例＜0｝

　　　IX＝｛（∬1，¢4）1ξ＜0，ηく0，¢、＞0，∬4＞0｝

　　　X＝｛（∬1，亀）1ξ＜0，η＜0，詔1＜0，躍4＞0｝

　　　XI＝｛（¢1，¢4）3ξ＜0，ηく0，¢1＜0，」じ4＜0｝

　　XII＝｛（∬1，ヱ4）1ξ＜0，ηく0，∬1〉0，∬4く0｝．

This　classi丘cation　is　able　to　be　described　by　the　geometrical　method　as　follows．

．
　
　
2
厘
＼

　
　
　
　
　
＼
而

　
　
　
町
　
澱
　
一

　
　
　
　
￥

　
　
　
　
　
　
　
　
ワ
　

＼燕

．

　　　　　　　　　0圃『『『『、 侭XI
　　　　　（一1，一1〉
　　　　　　　　ヤ
　　　　　　　／、
　　　　　　孤　、

　　　　　　　　　、

　　　　　　　　　1

V

　（1ミ）／I

D（　　／、、一一一＿

　　　　　　　　　蕩1＼》侮2
　＼＼

一〆2＼　　IV
　　皿　　　　　　う
一2　＼　　　忍
　　皿　￥￥敬’》
　　　　　＼　　争　　　　“～　＼　ノ争
　　う　　『×　＼　7、
　　　　　　　う　　ペ　ヲ
　　　ぜ　　　　り　　　
　　　『、￥▽Ψ＼＼

Now　using　the　above　classification，we　claim　the　following　proposition7．

脅oρ05髭foπ　7。　　If　且　satisfies（16），then　for　an　arbitrary　㎜＝1，2，3，…，
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a (x~-2xl cose+1)~ sin{(m 1)0+elpl} sinao sinmO 
x 

l sin 6 
A'"= 

 (x~4-2x4 cose+1)1_B sin{(m 1)6+a4p4} 

x sinB6 sin m6 
4 sin O 

where 
O cos~la(A) 0<0<1r; 
2' 
xi sin 6 ~r 

(i= 1, 4) pi=tan~1 xicos6-1 ' O~ pi~T ; 

and el'ei,e4,e~ which are either I or -1, are defined by the following table in accordance 

with the domain in which xl and x4 exist. 

1
 

l
 

-1 l
 

-1 1
 

1
 

l
 

-l -1 
1
 -1 
1
 -l 
-1 -1 
-1 -1 
l
 -l 
l
 -1 
-1 -l 

Proof. Before giving the proof of this proposition, we need 

to Gegenbauer's polynomial. It is a system of polynomials C"'(x) 

following relation ; namely 

( i~) C (x) (~1)" F .+ 2 r(n+2~) (1-x2)' d~ {(1-x2) 

-1 
-1 
l
 
1
 
1
 
l
 

-l 
-l 
-l 
-l 
l
 
1
 

some 
which 

;
}
 

~+v--

results with 

are defined 

r(2.)F(n + " + ) ! n 
2
 

(
 
)
 

F(n + 2v) 1 1 - x F¥-n, n+2v, "+ ; ~ 
where F(x) is gamma function and F~a, p, r ; z) is Gauss' hypergeometric function. 

known that C:~(x) has such generating function as follows : 

~ (18) (1-2xt+x2)~"= ~ C~(t)x~; -1<t<1 Ixl<1 
~=0 

It is the above formula in case of v=1 that we need now, namely 

l 2tlx+x2 ~~~oC1~(t)x~' -1<t<1 Ixl<1. 

- 
(19) 

Now for this special value of ,,, the next formula (20) is a well known one. 

sin(m+1)6 
(20) C*11'(cos 6) = 

sin e ' 

respect 

by the 

It is well 
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We need (19) and (20) for the proof of proposition 7: Now back to the proof, by the 

;fact IAl=1, (14) is 
1
 
=
 

l 1-2('(A) x+x = ~ a(~1)+1((1(A))x~. 
2 ~=0 2

 
Therefore in comparison with (16) and (18) we obtain 

( o(A) ) _ 
(21) C~1 2 _a(~])+1((T(A)), m=0, l, 2, . . . . . , 

Then the formula (20) and the definition of a in the statement of propositio 7 give us 

the following formula : 

(22) ' a(~1)(a(A))= Sin mO m=0, 1, 2, 
sinC ' 

Accordingly 

(23) sin(m-1)C In= 1, 2, 3, . . . . (~~'(a(A))= sin 6 ' 

Here proposition I and (21) and (22) Iead to 

xi sin In6-siri(m-1)e x2 Sin me 
sin e sin e 

(24) A~= 
x3 Sin mC x4 sin mC -sin(m- 1)O 
sin e sin 6 

for all m=1, 2, 3, ..... We continue the computation about the diagonal elements of the right 

side of (24). By some elementary methods we obtain 

xl sin mO -sin(m - 1)O 

= l sin {(m - 1)6+6} - sin(m - 1)e 

= xl cos e-1) sin(m-1)e+xl sin O cos(m-1)e. 
Here we must consider whether xl cos e-1 and xl sin e is positive or negative. 

1
 
1
 xl cos e - I = -(x~1 +xlx4 -2)= T~ 
2
 

is clear. Since 0<0<7r, sine>0, so the sign of xl sin O depends on only the sign of xl' In 

the same way we obtain 

x4 sin In6-sin(m-1)O 

= x4 cos 0-1) sin(m- 1)e+x4 sin 6 cos(m -1)e 
and 

l
 x 

osC-1=T(x~+xlx4 2) ~ ~ 

and the sign of x4 sin O depends on only the sign of x4' 

In accordance with the classification (17), we obtain the following table. 

xl cos e-1, xl sin O, xl sin mC-sin(m-1)O 
sin 6 

where L= l
 

I U IV . 
V U VIII U IX U XII : 

VI U VII U X U XI 

II U 111 

(x~* -2x* cos C+ 1)~ 

+ 

+
 

+ 
+
 

L1 sin {(m - 1)6+ pl} 

-LI sin{(m-1)e+~)l} 

-LI sin{(m-1)6-pl} 
Ll sin {(m - 1)e - ~)l} 

sin O ,
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x4 sin mO -sin(m- 1)e 
x4 cos 0-1, x sm O, sin6 

69 

V U VI : + + L4 sin {(m -1)6+ p4} 
I U 11 U IX U X : + -L4 sin{(m-1)e+ p4} 
IIIUIVUXIUXII : -L4sin{(m-1)e-p4} 
VII U VIII : .. L4 sin{(m-1)6-p4} + 

where L - (x~,-2x4 cos e+1)~ 

a~ sin 6 ' 
Therefore we have proved proposition 7 except when ~~=0 and xlx4=0. But it is so 

easily verified that in cases of ~~=0 and xlx4=0 proposition 7 is also valid that we omit 

the rest of proof. 
Corollary 1. If a real matrix A of degree 2 satisfles the condition (16), and if we denote 

y(*) A'(~) 

(
 
)
 

A~ by I J2 for all m=1,2, 3, ...., then 
y(3~) y(~) 

ly(1") l~ (x~-2xl cos 6+1)~ Iyf~) l~ sin26 
x 

sin O ' 
x3 (x~1~2x4 cos e+1)~ 

l A'(~) I ~ l y(~) I ~ , J4 l:~ sin 6 sin e ' Corollary 2. If a real matrix A of degree 2 satisfies the condition (16) and if 2,,-/6, 

a(A) . namely 2lr/cos~ 2 ' Is a rattonal number, then there exists a certain natural number m such 

that Am=diagonal matrix. 

7. Here for the sake of description of the last theorem in this paper, we establish some 

definitions about a uniform distribution of matrix with degree 2. We denote the ring of ra-

tional integer and real number field by Z and R respectively. In this section we mainly treat 

with real numbers modulo 21:, namely elements in R/2li:Z. Let a sequence {q~)} in R/2,,-Z be 

uniformly distributed on the interval [O, 27T), namely on the unit circle. We define that the 

sequence {q~)} in R12l~Z is similar to {q~)} with the phase dtfference p, if and only if there 

exist (reR and peR/21FZ, which are independent from m, such that for all m O, 1,2, 

q~)=aq~)+p in R121TZ. 
Since {q~)} is uniformly distributed on the unit circle, it is the same with this {q("2)}. 

~
 
l
 

b(~) b(~) We proceed on the second deflnition. Let {B~=( 
be a sequence b(~) b(~)) ; m=0, 1, 2, .... J 

of the square matrices with degree 2 over R/2lrZ. We define that the sequence of the matrices 

{B~} in R121TZ is umformly distributed with the phase difference (P1'fi2) on the interval 

[O, 21T), namely on the unit circle, if and only if {b(1~)} and {b(~)} are uniformly distributed 

on the interval [O, 27r), namely on the unit circle, and there exist al' (r2eR and fil' p2eR12ltZ, 

which are independent fronl m, such that for all m O 1,2, 

b(4~)=alb(l~)+pl in R12ltZ 

b(3~)=a2b(2~)+p2 in R/21TZ, 
namely {b(~)} and {b3 } are siprlilar to {b{*)} and {b(~)} with the phase difference pl and p~ (~) 

respectively. 
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Now we proceed on the third definition. Let J1 Wm=(~:~: ~:~:) ; m=0, 1,2, . . .. }
 
be a 

sequence of any complex square matrices with degree -'!. We define that this sequence {W,n} 

is tircumferential, if and only if the absolute value { W(~)} for an arbitrary j=1,2, 3, 4 

is independent from m. Now let the sequence of any complex square matrices with degree 

2 fW,n~(w w )J 
, _ 

;~) c4~) 
w(*) w(~) be circumferential, and at that time for this sequence we define the {

(
 
;
 

q(~) (*) where for an arbitrary j=1 2 3 4 q(~) ) }' second sequence of square matrices with degree 2 over R/27TZ by I q2 m=0, 1,2, ... 
q(~) n(~) 
3 'f4 

eR/2lrZ is defined by ''', j w(j~)=1w(!~) I exp (iq~~)) , ' 
' 2=-1. /

 
~
 

~,nC*) a(~)) 
We denote t~(l~) Tt(2~) by arg Wm and we call this matrix the argu'nent of W7n' 

q3 q4 
Now the last definition is described f ll as o ows. Let {Wm; m=0, 1,2, ....} be a sequence 

of complex square matrices with degree 2 and be circumferential. 

We define that {W,n} is umformly distributed with the phase difference (pl'p2)' if and 

only if {arg Wm; m=0, 1,2, ....} is the same. 

8. On the basis of the above definitions we describe the last theorem. 

Theorem. Let A be a real matrix with degree 2 such that I AI=1 and -2<a(A)<2. 
Let us denote {A~ ; m=1, 2, 3, ....} by S(A). Then the distribution of S(A) in four dimen-

sional Euclidean space R4 is described as follows, 

1 a(A) 
(a) if 2lr/cos~ 2 rs a rational number, then S(A) is a finite set. 

l o(A) 
(b) if 27T/cos~ 2 rs an irrational number, then there exists a sequence {W,n ; m= 

1, 2, 3, ....} of complex square matrices with degree 2 which is uniformly distributed 

with the phase differences, which are defined by the following table, such that 

A~ = Im( Wm), 

namely S(A) is the imaginary part of the sequence {W~ m 1, 2, 3, } which Is 

uniformly distributed : 

( pl+p4' O) ' exrsts in I U VII UX if A ' 
(~~I+'04'O) if A exists in 11 U VIII U IX 

(-pl~~'4' O) if A exists in 111UVUXII 

( p - IVUVIUXI, l Pd,O) i f A exists in 

1 xi sin C a(A) where pi=tan~ -1 (0<0<1r). , (i=1,4) and 0=cos x,cos0-1 2 ' Proof. (a). In general, Iet 

_ al sin(mOl+~l) a2 sin(m02+~2) 
T~- a3 Sin(mOs+c3) a4 sin(In64+~4) 

be a sequence of real square matrices with degree 2 which has twelve real parameters aj, Oj 

(>0), ~j (j=1, 2, 3, 4). Let us assume that 2fr/Oj (j=1, 2, 3, 4) are all rational numbers, say 

2lr/C j = SJ Irj . 

. Then if m~~m' (modsl's2's3's4)' we obtam a sm(me +~')=ajsin(m'Oj+~j), j;=1, 2,3, 4 

Immediately Therefore {Tln ; m=1,2, 3, . .,.} is a finite set. Accordingly (a) is clear, 
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)
 

(
 
.
 (b). We denote A by xl x2 Let us define W~ by 
x3 x4 

(x~-2xl cos 0+1)~expi{(m 1)0+el,~l} x2_ exp i,n() 

(xi -2x4 cos C+1)~ 
sxm30 exp imf) exp i{(m- 1)6 +e~~)4} 

xi sin 6 o(A) f ' and , (i=1, 4) and the values o el . 0<6<1~ and ,~i=tan~1 xicose-1 where C=cos~l 2
 

e~ are determined as the foregoing table in proposition 7. Then our conclusion is obvious. 




