ON THE UNIFORM DISTRIBUTION
OF THE POWER MATRICES WITH DEGREE 2

By SETsu0O ONARI

1. In this paper let us take up a problem with respect to the distribution of S(A)=
{A™m=1,2,3,....}, where A is a real square matrix with degree 2. It is difficult to solve
this problem for an arbitrary A, so that we deal with a specialized A as follows: |Al=1
and —2<0(A4)<2, where | A| and 6(A) are determinant of A and trace of A respectively.

The first question that we propose to deal is to represent four elements of A™ by means
of m successfully. In case of degree 2 we can solve this question with the trigonometrical
function of m. Namely, roughly speaking, the elements of A™ move with the fluctuation of
m presenting an aspect of simple oscillation. Furthermore these four simple oscillations have
a common angular velocity, and on the principal diagonal line they have different amplitudes
and phase differences, but’on the subordinate diagonal line they have the same phase difference.
In order to draw those conclusions, characteristics of Gegenbauer’s polynomials are effectively
used.

On the basis of those facts we propose to describe the uniformity of distribution of A™,
after some notions of uniforinity are suitably defined in the last two sections.

2. Let af(X,Y), a@(X,Y) be systems of polynomials with variables X and Y over

the ring of rational integers Z, which are defined by
L au(X, Y)=Xad(X, Y)—aP(X, Y),
@ a2n(X, Y)=Ya(X, Y),

where we adopt initial conditions as follows :
3 af’(X, Y)=0, aP(X, Y)=-—1.

Now for an arbitrary matrix A with degree 2 over the real number field R, we denote
its determinant and its trace by | A| and o(A) respectively. Then we obtain the following
proposition 1 by the induction on m without difficulty.

Proposition 1.

@ Am=a)(o(A), | ANA—aP(e(A), | A DE,
where E, is-the unit matrix of degree 2.

Here we wish to decide the systems of the polynomials «@(X, Y), a(X, Y) explicitly.
The following proposition 2 answers this question, as by (2) we have only to consider the
ad(X, Y).

Proposition 2.

=1
@ ax =1 (-1
for all m=1,2,3,.....

Proof. We carry out the proof by the induction on . In case of m=1, (5) is obvious.
Now let us assume that the conclusion of (5) is right for m=1,2,3,..... 2, (1<k). Then we

m—i—1
Z

)Xm—zi-—x Yi
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obtain by (1) and (2)
afl(X, V)=Xa’(X, V)—aP(X,Y)
=XaP(X, Y)— YaP (X, Y)

~[>:l]( (* 7 l)x"—ziYi—[g]<—1>f(k‘j‘2)m—ﬁ—zYfﬂ. 9

At the last summation of the above relation, we adopt j—1 for ¢, and because an equality

k—2
[ :'—I—l [ é :l is obvious, so that the summation turns into

[Z]( - 1<k —j- 1>X" gy
But of course we know
[i]_[/e_—_l:l:{l, if k=0 (mod 2)
2 2 0, if A2=1 (mod 2)
and therefore we must proceed on separating the computation into two cases such that k=0
(mod 2) and £2=1 (mod 2).

In the first case, let us assume 2=0 (mod 2).

<*>=<-1>o(k—g-1)Xk—z-»y»

{< (P (F ) ey
~bT ([[k§]1> [y14]

2

( 1)o<k+100 1)xk+1 20— lYO

N 21( o (* )+ (e
A
+(_1)[%](k EE;_Z};l-l 1)Xk+'_2[%]_ly[%]_ ()
Now clearly

(k—:—1>+<k ;i;1>=<k+l—i—i——1>,

and because of the assumption 2=0 (mod 2)
k k
(k—[7]—1)_ k+1—[7]—1>
k - k
AR ANE
are obvious. Accordingly

(r)=(— 1)°<kJr1 o0 1)X"“"2'°‘1Y°
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(k—H)—l] 1

+ T (1)’<k+1. )X’H-l-zf-lyf

k+D—1
-1/ k+l—] —— |—1 11 D
+(_1)[< 2) ]< + [ 2 ] )Xu;—z[(_z)_]_ly[(T)]

[(k+;)—1:|

<(k-{—1)i—z'—1

(k+21)—1]
5,

This consequence is obtained in case of the transformation m=4+1 in (5).

)X k-+1) —2i-1 Yi

In the second case, let us assume 2=1 (mod 2). Taking consideration of [—IZE—]=[—J,

we assert
k—1

<*>=[g]el)i(k‘f‘l)xk*ﬂw [z]< it N xeys
:(—1)°<k_8_1)X"‘2'°Y°
Bl (e

( 1)0<(k+1) 0 1>X(k+l) —2+0— lYO

(k+l) 1

0
" z a () () e ey
=(_1)0<(k+1) 0— 1)X(,¢H)_Z.ﬂ_lyo

0
(k+1)—1] .
+ 5 (—1)"<(k+1)._ ’_1>X<k+1'-2f-lyf
i= [
(k-H;-—l] (k )
_- & 1y +1 ”‘i_1> k+1) —28~1 V4
= ;éo ( 1)< ; X ket 21yt

This consequence is obtained in case of the transformation m=4-+1 in (5). Consequently
we have known that the formula (5) is proved by the induction on .
Accordingly by (2) we also obtain
a®(X, Y)=0
[%5] o
a®(X, V)= ): (— 1)1( i )Xm~2i—2Yi+1
for all m=2,3,4,.....

3. In this section generating functions of ¢@(X,Y), a@(X,Y) come into question. We
begin with the identity
Um+t . yml
6) ——y =UUM VA UV VR
Since the right side of (6) is a symmetric polynomial with respect to U and V, we can
find such polynomial Pp.,(X,Y) with variables X and Y over the ring of rational integers
Z that the identity
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m+1 m+1
= PanU+V.U-V),  m=0,1,2, -
is obtained.
Now we describe the following proposition.
Proposition 3. If the real matrix A of degree 2 is semi-simple and | A |#0, then
(7) 1 — hd Pm+1(U(A); | A I):Em
SDA(IE) m=0 | A ™+ !
where ¢4(x) is a characteristic polynomial of A.
Proof. (7) denotes
®) 1 Fd’"’ 1 }:’ _ Pri(o(A),1A])
m! |_ dz™ gDA(.T) =0 | A ImH
for all m=0,1,2,..... Since A is semi-simple, there exist #, and 0, in the complex number
field such that
pa()=(x—0,Xx—0,), 0,%0,, 0,6,%0.

Accordingly
(the left side of (8)] .
17 1 4™/ 1 1
“mli| 6,—0, dz"\xz—0, x—0, >:|x=o
1 M (=1"m! { 1 _ 1 }:|
T om! L 6,—6, (z—0)" (z—0)™" | Jo=0
1 /1 1

- 02—01 \oénh N 01””)
_ 0(n+l_0;n+l 1

01_02 (0102)m+1
_ Ppi(0,40,,0,0,)
(6,0,)"+
— Pm+1(U(A), A |>
[A |m+1 .
For the sake of convenience we define that the polynomial Py(X.Y) denotes 0. This
promise is employed in the next section.

4. In this section we must verify
Proposition 4.
©)] a®(X, V)=Pu(X,Y) m=0,1,2,.....
Accordingly by (2)
a2(X, Y)=YP...(X,7Y), m=1,2,3,..--.
Before giving the proof of this proposition, we need the following lemma.
Lemma. For an arbitrary natural number n and an arbitrary natural number 7 such

that 193[%1,

(10) 3:;0(—1)*(":"‘)( 4 >=1,
Proof. [the left side of (10)]
:%é}o(-l)"( ; )(n—k)(n—k—l) ..... '(n—k~r+1).
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Now for each 2 (0<k<7) and r <lgrg[%:,> we put

JeD)=(x—k)x—k—1)e....«(x—k—7r+1),
F=Z 17 ; Jro

Then for each r (137‘3[—;—:’) the roots of fi ,(x)=0 are % k-+1,....,k+r—1. There-

fore for an arbitrary 7, (1 Srs[_g—:b we obtain
hAD=Ffo D= =f (H)=0.

Now considering the fact

F.(r)=r1,

Lo wfr—R\(r\_ 1 _
£ 1)
namely the proof of this lemma is completed.
n

A reason of constantness of Fy(x) (131‘3[ D)

:,) is as follows,

By simple computation we have
Je(2)—fe (x—1)
=rfe.r1{x—1)
=rfk_1,r_1(x—2).

Therefore for an arbitrary = (1Sr$[%]> we obtain the following relation.
Fr(x)*Fr(x'—l)

= Z0{ Ym0 § Ve
(0 Yoo —fo a1}

(0 Joferata—D)

(5 forta—D
A
+(—1)’( 4 )rﬁ_r~l(x~1)

=7f,7-1(x—1)
+r{Fr_1(x—1)—(*1)o<rgl °'T_l(x_1)}

—r[Fr_l(x—Z)—(_l)f-l(:_i r—x,r—x(x—z)}

+H(=17fr roi(z—1)

=r{Fr.(x—1)—Fr_,(x—2)}
+(—1)Tr(x—1—r)(.r——l—(r—}—l)). ol —=1—C+r—2)
+(—1)T—lr($*2—(7‘—'1))(x—2—r) ...... (x_z_(r+r_3))

I
M-~

>,
i

Il
<

k

[}

I
~
I
—
~r

=4
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=r{Fr(x—D—F_,(x—2)};
ie. F(x)—Flx—1)=r{F,_(x—1)—F,_,(x—2)}.
Since Fi(x)=1, by the induction on r we reach the conclusion that F,(x) is a periodic
function with period 1. Here since the degree of F,(x) is not over » the proof of this lemma
is completed.

Considering a case n=m—1, we suppose, when m is even, r=0,1,2, .. .'.;%—I(S[—;—:D

and, when m is odd, r=0,1, 2, ,—m2_—1 <S|:—g‘]> respectively. Then we obtain the fol-
lowing corollary. :
Corollary.
i fm—i=1\(j >__
an- 4t D( j )( ;)7L
is established, if m=0 (mod 2) for all j=0,1,2,~~-~,%—1, and if m=1 (mod 2) for all
7=0,1,2, ..., mz_l —-1, m2—1

Now we return to the verification of proposition 4.
Proof of proposition 4. For the purpose of verifying (9), it is enough to take consid-
eration of the following identity for all m=1,2,3,...., because

a(X, V)=P(X,Y), a’(X,V)=P(X,Y)

are clear.
12) aQ(U+V, U-V)=Um4 U2 V+... + V™24 -1,
Now we make use of (5) in proposition 2. Then
[the left side of (12)]

l?( 1)i<m"?_1)(U+ VR u- vy
[é’]( 1)1< z—1>m1—é—1<m—§i—1>m_i_j_lV”,-

To simplify the computation we carry on computating about two cases. As the first case
we assume m=0 (mod 2). Then

®= 2 éo(—l)f(m_."ﬂ)(’”ﬁi,‘l)}Um—f—x Vi
B[ (T o
B () o
B ()R o
1 ey [



64 HITOTSUBASHI JOURNAL OF ARTS AND SCIENCES [September

Now by simple computation we obtain

a (" ET)CTT)

so that by making use of the foregoing corollary (11) the above computation is able to be
continued as follows:

(b)—j-l{Z( (" Dy vvey

— :Z: (Um.—j—l Vj+ Uj Vm—j—l) ;
=0

=[the right side of (12)1.
In the next place as the second case we assume m=1 (mod 2). Then

(#)—:_1[ s (" fumev

+,=:_Z_:J 2o o )

Now the above third summation is able to turn into

LZ (T o

On the other hand considering the foregoing formula (13) and the next formula which can be
easily verified, namely

—i1 m—2{—1 m—i—1\/ m—1
<m Z.Z > m—1 = m—1 2 R
2 ! 2 i

we obtain the conclusion as follows:

(b)=§o_ {éﬂ(—l)(m—?_ >(’” 2 )}(Um—f W Uiy iy

m—1

+ —;2(_1)1()71—;—1)(7:;2211 —i) U T VmT_l
Bl Y Do
—‘—1 m—i—1\/ m— 1
b o e
i
m m—1 m-—l

= 7‘ (U’""“‘V’—i—U’V’" MU 2V 2
—[the right side of (12)].

Here the reason of the equality before the last one is based upon the foregoing corollary (11)
Now we have come to the end of the proof of proposition 4.
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5. In this section we deal with generating functions of a¥(X,Y) and aj?(X,Y) attached
to A, which is a real matrix with degree 2. To represent a®(X,Y) and ai(X,Y) by the
generating function is important for the description of our last conclusion.

By the foregoing propositions 3 and 4, we have the following formula, namely

1 _ = a®(A) 4D ,
(14) 9DA(x) & AT x™,
where A is a real regular semi-simple matrix with degree 2 and ¢a(x) is its characteristic
polynomial. Therefore by (2)
1 = amia(A),| Al
paAlx) w2 A

are very clearly established. Here roughly speaking we can say that two generating functions

m

of a®(X,Y) and a@®(X,Y) attached to A, are the same function, namely 90—11]&;)‘. We can

arrange those circumstances in the following proposition 5.
Proposition 5. If A is areal regular semi-simple matrix with degree 2, then generating
functions of a®(X,Y) and a®(X,Y) at A, which are defined by generating functions of

a® ) : z o(A)x—|A] .
W(a(A),|Al) and aP(o(A),|A|) respectively, are oa(@) and 0a(Z) respectively.

To say more precisely, the following formulas are able to be verified,

2= F a4, an(57)"

% - f; aR(o(A), IAI)(| A I>m

for every A that satisfies the foregoing conditions.

(15)

Proof. It is clear by regarding the initial conditions (3) and propositions 3 and 4.

6. From now on we restrict our standpoint; namely we deal with all the matrices that
satisfy the following condition.
(16) |Al|=1, —2<o(A)<2.
Then we obtain the following obvious result.
Proposition 6. If a real matrix A of degree 2 satisfies the conditions (16), then A is
semi-simple.
Proof. 1f A is not semi-simple, the characteristic equation of A is not separable ; namely
pAx)=0 and ¢4(x)=0 have a common root. By the way
pahxr)=2"—0(A)z+1,
pix)=2z—0(A),
therefore we must obtain

WECN.

which means ¢(A)==+2. It is a contradiction.
By this proposition 6 there is no necessity for the condition of semi-simplicity. Accordingly
we can freely make use of the conclusion in proposition 5, on condition that A satisfies (16).
Since | A|=1, we simply denote af(X, 1) and a2(X,1) by a(X) and a(X) respectwely
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z, X . .
Now we put A=<xl ;), and then on the (z,z,) plane we classify the domain which
3 4

is characterized by —2<d(A)<2, into twelve parts.
First of all, we define § and 7 by
¢=xitx1,—2, p=xitx,1,—2
and consider (xy, x,) which satisfies —2<x,+x,<2, and define the domains from I to XII as
follows :

I={(z;, zs); £>0,2,>0, z,>0}
I={(z;, z); >0, x,<0, 2,>0}
Ni={(xy, x,); £>0,x,<0,x,<0}
IV={(z;, z); §>0,2,>0, z,<0}
V={(JC1, IA) 5 7]>O, x1>0, .TC4>O}

a7 Vi= {(xl, z); 7>0,,<0, z,>0}

VIl={(x;, x,); >0, 2,<0, z,<0}

VII={(x,, z,); 7>0,2,>0,z, <0}
IX={(z,, zy); £<0,7<0,z,>0,z,>0}

X={(z,, x,); £<0,9<0,x,<0,x,>0}
XI={(x, x,); £<0,9<0,z,<0, z,<0}

XII={(z,, z,); £<0,7<0,z,>0, z,<0}.

This classification is able to be described by the éeometrical method as follows.

Now using the above classification, we claim the {ollowing proposition 7.
Proposition 7. If A satisfies (16), then for an arbitrary m=1,2,3,-...,
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1
(x}—2x, cos §+1)*

. . .
& sin 0 Sln{(m_l)o_*—e;ggl} sin20 sin m0
An= L
) =2, 0+1)°% .
S;s g sin mb 54( E x;ifloas +1) sin{(m—1)0+¢lp}
where
9=cos™ "(ﬁ), 0<0<7;
o gooy|_Xising -, .
gi=tan™!| =0 T | 0<pi< 5 (=1, 4)

and ey, ¢, ¢, ¢, which are either 1 or —1, are defined by the following table in accordance
with the domain in which z;, and =z, exist.

1 & & €4

I: 1 1 —1 -1
II: 1 -1 -1 -1
111 : 1 —1 —1 1
IV: 1 1 -1 1
V: -1 —1 1 1
VI —1 1 1 1
VII: -1 1 1 -1
VIII : ~1 ~1 1 ~1
IX: —1 —1 -1 -1
X: -1 1 —1 -1
XI: -1 1 -1 1
XII: —1 -1 -1 1

Proof. Before giving the proof of this proposition, we need some results with respect
to Gegenbauer’s polynomial. It is a system of polynomials Ci(x) which are defined by the
following relation; namely

(1 F<v+%‘)F(n+2v) gt
2 F(2v)F<n+v+%)

T (n+2v) 1l 1-=

=7 T2 F(‘”’”+Z”’”+ 25 2 >

where I'(x) is gamma function and Fa, 8,7; 2) is Gauss’ hypergeometric function. It is well
known that CY(z) has such generating function as follows:

a8  U-2artaf™= ¥ Ciam; —1<e<L,|el<L.

nty-L

FACT
L -

Ciz)=

n!

It is the above formula in case of v=1 that we need now, namely
1 I~ i
19 Topegar = LChBam; —1<e<L, |zI<1.
Now for this special value of v, the next formula (20) is a well known one.

. _ sin(m+1)0
(20) Cl(cos &)= ~enb
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We need (19) and (20) for the proof of proposition 7: Now back to the proof, by the
fact |Al=1, (14) is
' 1

| 1——207A).7:-{—x2

Therefore in comparison with (16) and (18) we obtain
@) (T )=apuota),  m=012, ...

Then the formula (20) and the definition of # in the statement of propositio 7 give us
the following formula :

= 3 a(o( A

sin mf

22) aPle(A)= “sng > Mm=0L2...
Accordingly
23) as,%’(a(A))=sm(;"Tm, m=1,2,3, ...
Here proposition 1 and (21) and (22) lead to
x, sin mf—sin(m—1)0 x, sin mé
sin 8 sin &
(24) Ar= . . .
Z; sin m0 Z, sin mf —sin(mn—1)0
sin & sin ¢
for all m»=1,2,3,..... We continue the computation about the diagonal elements of the right

side of (24). By some elementary methods we obtain
x, sin mf —sin(m—1)8
=z, sin{(m—1)0+0} —sin(m—1)4
=z, cos #—1) sin(m—1)f+x, sin 0 cos(m—1)4.
Here we must consider whether z,cos#—1 and z,sinf is positive or negative.

Z, cos 0—1=‘%‘(~T§+x1x4~2}=%€

is clear. Since 0<#<x, sin#>0, so the sign of x,sin# depends on only the sign of z,. In
the same way we obtain

x4 sin m@—sin(m—1)0

=(z4 cos §—1) sin(m—1)8+z, sin 8 cos(m—1)8
and

Z4COS 0—1=—é—(x§+xlx4-2)=%n,
and the sign of z,sin¢ depends on only the sign of z,.

In accordance with the classification (17), we obtain the following table.

x, sin mf—sin(m—1)0

x;cos0—1, oz sind,

sin #
U1V : + + L, sin{(m—1)0+¢,}
VUVIIIUIXUXII: - + —L, sin{(m—1)0+¢,}
VIUVIIUXUXI — — —L,; sin{(m—1)0—¢}
ITyII1 : + — L, sin{(m—1)0—¢,}

1

(z3—2x, cos §+1)2
sin ¢ ’

where L,=
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z, sin mf@—sin(m—1)8

xscos0—1, x,sind,

sin §
VuVl : + + L, sin{(m—1)0+¢.}
IuITUIXuX : — + —L, sin{(m—1)0+¢,}
HIYIVUXIuXII : - — —L, sin{(m—1)0—¢,}
VIIu VIII : + — . L, sin{(m—1)0—g¢,}

1
(2—2x, cos §+1)*
sin & ‘

where L,=

Therefore we have proved proposition 7 except when &7=0 and z.z,=0. But it is so
easily verified that in cases of §7=0 and z,2,=0 proposition 7 is also valid that we omit
the rest of proof.

Corollary 1. 1If areal matrix A of degree 2 satisfies the condition (16), and if we denote

(m) o)(m)
A™ by (y‘ re > for all m=1,2,3, ..., then

¥y
1
(z3—2z, cos 0+1)* X,
(m) (m)
SERE sin 0 » PIS500
1

x xj—2x, cos 6-+1)°

1< < RS -
Corollary 2. 1f a real matrix A of degree 2 satisfies the condition (16) and if 2z/0,

Lo(4)

namely 2r/cos” is a rational number, then there exists a certain natural number m such

2 b
that A™=diagonal matrix.

7. Here for the sake of description of the last theorem in this paper, we establish some
definitions about a uniform distribution of matrix with degree 2. We denote the ring of ra-
tional integer and real number field by Z and R respectively. In this section we mainly treat
with real numbers modulo 2r, namely elements in R/2zZ. Let a sequence {g®} in R/2zZ be
uniformly distributed on the interval [0,27), namely on the unit circlee. 'We define that the
sequence {q®} in R/2zZ is similar to {q®} with the phase difference B, if and only if there
exist a€R and SER/2zZ, which are independent from m, such that for all m»=0,1,2,....

P =aqP+p in R/2zZ.
Since {g®} is uniformly distributed on the unit circle, it is the same with this {g®}.

my Jm)
We proceed on the second definition. Let {Bm= (Z::"‘; I;(jm)) ; m=0,1,2, } be a sequence
of the square matrices with degree 2 over R/2zZ. We define that the sequence of the matrices
{Bn} in R[27Z is uniformly distributed with the phase difference (8, .) on the interval
[0, 27), namely on the unit circle, if and only if {${®} and {6%} are uniformly distributed
on the interval [0, 27), namely on the unit circle, and there exist a;, aER and B, f.ER/27Z,
which are independent from m, such that for all m=0,1,2, .-

bP =a b+ B, in Rf2zZ

M=, + B, in R/27Z,
namely {6} and {b{”} are similar to {6} and {b%} with the phase difference 8, and §,
respectively,
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w(lm) w(;n)

w(m) w(m)); mzoy 1’ 2, } be a
3 4

sequence of any complex square matrices with degree 2. We define that this sequence {Wn}
is circumferential, if and only if the absolute value {W™} for an arbitrary j=1,2,3,4

is independent from . Now let the sequence of any complex square matrices with degree
(m)

o, (Wm0

wgm) w (4m)

Now we proceed on the third definition. Let {Wm=<

>} be circumferential, and at that time for this sequence we define the

(m) (m)
second sequence of square matrices with degree 2 over R/2zZ by {(Z(’m) me)>; m=0,1, 2, },
3 4

where for an arbitrary j=1,2, 3, 4, ¢/PER/22Z is defined by
wi=|w{™ | exp (gy™); *=—1.
(m) lm)
We denote <q(lm, g(zm)) by arg Wn and we call this matrix the argument of Wi,
3

4
Now the last definition is described as follows. Let {Wa; m=0,1,2,....} be a sequence
of complex square matrices with degree 2 and be circumferential.
We define that {Wn} is uniformly distributed with the phase difference (8, 8,), if and
only if {arg Wn; m=0,1,2,....} is the same.

8. On the basis of the above definitions we describe the last theorem.

Theorem. Let A be a real matrix with degree 2 such that |[A]=1 and —2<e(A)<2.
Let us denote {A™; m=1,2,3,....} by S(A). Then the distribution of S(A) in four dimen-
sional Euclidean space R* is described as follows,

(a) if 2rfcos™? 0(51 ) is a rational number, then S(A) is a finite set.

a(A)

(b) if 2m/cos™? > is an irrational number, then there exists a sequence {Wn; m=

1,2,3,---.} of complex square matrices with degree 2 which is uniformly distributed
with the phase differences, which are defined by the following table, such that

Am=In(Wa),
namely S(A) is the imaginary part of the sequence {Wn; m=1,2,3,...} which is
uniformly distributed :

( @1+, 0) if A exists in IuVIIUX

(—¢1+¢,,0) if A exists in MU VIITUIX

(—p,—¢,, 0) if A exists in Iy VuXil

( 01—, 0) if A exists in IVUVIUXI,

Z; sin &

Z,cos 0—1

Proof. (a). In general, let

{T :<a1 sin(m®,-+¢,) ay sin(m02+C2)>}
" as Sin(mos‘i‘CB) a, sin(mb,+¢,)

be a sequence of real square matrices with degree 2 which has twelve real parameters ay, 0;
(>0), & (7=1,2,3,4). Let us assume that 2z/0; (j=1,2,3,4) are all rational numbers, say
2r0;=s,r;.

Then if m=m' (mod s,*s,*s4+s,), we obtain g, sin(mf;-+{)=ay sin(m'0;+L)), j=1,2,3,4
ifnmediately. Therefore {Tm; m=1,2,3,....} is a finite set. Accordingly (a) is clear,

A
where ¢;=tan™! , ((=1,4) and 0=cos“g(2 >, 0<o<).
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(b). We denote A by (.2:1 f) Let us define Wn by

X3 T4
1
t—2 0-+1)% . .
(] J;;ZS +1) exp i{(m—1)0-+<io} _51_?127 exp im0
1
Z3 . (xi—2x,cos 0+1)* . ,
sin 0 &P iml <ind exp i{(m—1)0+¢lp.}
A 3 sin ¢ . ,
where 0=cos™ o(4) 0<0<x and ¢i=tan™! TSI ~, (=1, 4) and the values of ¢ and

2 zicos §—1
¢, are determined as the foregoing table in proposition 7. Then our conclusion is obvious.





