
HYPERMATRIX AND ITS APPLICATION 

By KlN-ICHI YAMADA* 

In this paper, the author will cons der multld mensronal matrlces on a Ime dlfferent from 

that of R. Gouarn~ and I. Samuel.1 In the first half, a singular situation shall be pointed 
out concerning multidimensional matrices and in the second half, an application of a specific 

kind of them shall be proposed. 

S O Hypermatrices 

A setout of numbers on the lattice points (i,j, ...,k,1) of an N-dimensional space will be 

called an .N:-dimensional matrix of order IXJX ... XKXL or an IXJX ... XKXL hypermatrix, 

where i ranges over 1, 2, ..., I, j over 1, 2, ..., J, ..., k over 1, 2, .,., K and I over 1, 2, ..., L. 

The number a*j. hl set out on the point (i,j, ..., k, l) will be called the i･j･... ･k･1 element 

of the hypermatrix, which as a whole will be denoted by A or by [aij ht]. 

The elements shall be real numbers and the dimension be fixed hereafter. 

Equality and inequality of two hypermatrices of the same order will be defined in the 

same way as usual. Thus they enjoy the usual fundamental properties : reflexivity, symmetricity 

or antisymmetricity and transitivity. 

Addition of two hypermatrices of the same order will be defined also as usual, and it 

enjoys commutativity and associativity. There exists the additive identity and every hyper-

matrix has its additive reciprocal. 

Scalar multiplication of a hypermatrix by a real number will be defined too as usual. 

And it enjoys commutativity, associativity and double distributivity. 

Let A=[aiJ,kl] be an IXJX...XKXL hypermatrix and B=[bpq .*] a PXQX...XRXS 
hypermatrix with L=P. Then multiplication of A by B shall be defined by 

AB=[ ~ aij .klblq ."s] ' 
l,q,.. ,' 

Thus it proves easily to be associative and doubly distributive over addition. 

S I Cubic Hypermatnces 

An LXLX ... X LXL hypermatrix will be called cubic. The set of all cubic hypermatrices 

with a specific L forms a ring with respect to addition and multiplication defined above, since 

it is closed under these operations which possess the fundamental properties as was shown 

* Professor (A-~"o~ju) in Mathematics. 

l Ren6 Gouarn~ et Isaac Samuel : Introduction ~ l'~tude des matrices multldimensionnelles. Cahiers 

de Physique 16 (1962), pp. 133-142. 
Isaac Samuel et Ren6 Gouarn~ : Determinants des matrices ~ 1¥Tdimension d'ordre n. Cah. de Phys. 

16 (1969*), pp. 143-152. 
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in the preceding section. ' 
How about the multiplicative unit ? 

It might be natural to introduce the extended Kronecker's delta by 

6*J kl if i~j= ..= _ I . k=1 {
 
~ 

Let the hypermatrix [6*j kl] be denoted by E, then we have 

for every A. Because 
~ aij kl6lq . '*=a*j..,k* 

t,q...... 

holds for every Nple (1,j, ..., k, s), where a,J..,hL being the general element of A. 

Though (1) is an identity in hypermatrix algebra, 

is not. Because 

~ 6ij klalq 's 
t,q. ,. 

vanishes unless i=j=...=k=1. 

It is a singular situation which does not occur in matrix algebra that (1) is an identity, 

but (2) is not. Thus E might be called justly a right unit. 

How about the uniqueness of right unit ? 

For the sake of simplicity, two definitions shall be introduced. 

Definition I : A cubic hypermatrix U is called a right unit, if 

A U= A 
holds for every cubic hypermatrix A. 

Definition 11 : Let A=[a*j . kt] be a given cubic hypermatrix. The square matrix 

[ ~ a*j .,kl] 

,, ,h 

shall be called the contracted matrix of A and denoted by Ctr A. 

Then we can prove 
[Theorem l] A cubic hypermatrix is a right unit if and only if its contracted matrix is 

the unit matrix. 

Proof : If U=[uil kt] is a right unit, then the equality 

(3) ~ a*j ktutq .",=aij.,k, 
t,q,. ,' 

i.e. 

(4) ~(aij kl ~ ulq,.."')=aij..k, 
holds for every aij k 

Theref ore 

~ ulq '* 

i.e. 

(6) Ctr U= E (2) 

where Et2) is the unit matrix. Thus the condition is necessary. 

Conversely, Iet (6) hold. Then we have elementwise (5), which implies (4) i.e. (3) for 

'every aii...h*. Thus the condition is sufficient, and the proof is completed. 

This theorem te]Is us that right unit is not at all unique. Because L2 equations (5) have 

LN unknowns. 
And this is another singular situation concerning hypermatrices. 
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A 2 X 2 X 2 hypermatrix 

al22 

/ I ¥,a222 
all2¥J a2121 

l
 al21¥~_ / I -¥a221 alll¥¥a211/ 

will be denoted by 

[alll I alE2] al21 

a211 a221 a212 a222 
for the sake of typographical simplicity. 

Example I Two right units shall be given for instance. 

0.5 2, 2 = 2Q ~t3All 95 -~] [~ ~l-~ _~][_~ 5 - J [ 
4
 l -3 

[~ :ll ~ ~][ ~ -1 IJ=[3 411 5 41J _ _ _ -3 1 2 0.5 0.5 2 3 9 -7 ' 
Concerning contracted matrices, we have 
[Lemma] The contracted matrix of the product of two cubic hypermatrices is the product 

of their contracted matrices. 

Proof : Let A=[aij...hl] and B=[bpq, ,rs] be two given cubic hypermatrices. 

Then by definition 
Ctr (AB)=Ctr [ ~ aij . k:blq "Ts] 

t,q,..,,T 

=[ ~ ( ~ aij klblq"'rs)] 
j,.. ,k t,q,,,.,T 

=[~( ~ aij kt)( ~ blq ' Ts)] 
L j, ..,h q, ",r 

=[ ~ aij,..kl][ ~ blq"'rs] ' 

J,,,,,h q,_',r 
The last member is just the product of the contracted matrix of A and that of B. And 

the lemma is proved. 

How about the reciprocal ? 

For the sake of this problem, Iet us introduce 

Definition 111 : Let A be a given cubic hypermatrix and U a right unit. If there exists 

a cubic hypermatrix B such that AB=U, then A is said to be nonsingular and B is called a 

right reciprocal of A. 

And we have 
[Theorem 2] A cubic hypermatrix is nonsingular if and only if its contracted matrix is 

nonsingular. 
Proof : A cubic hypermatrix A is nonsingular if and only if there exists a cubic hyper-

matrix B such that 

AB= U , (7) 
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where U is a right unit. On applying the lemma we have 

Ctr A ' Ctr B= Ctr U 

v"hich combines Theorem I to yield 

(8) Ctr A ' Ctr B=E(21 

Thus the nonsingularity of Ctr A is a necessary condition. 

Converse]y, Iet Ctr A be a nonsingular matrix. By definition there exists a matrix M 

such that 

(Ctr A)M=E(2) 
Then we can construct easily a cubic hypermatrix J~, whose contracted matrix is M. And 

lve have (8). Application of the lemma on the left member yields 

Ctr (A J~)= E(2) 

Lvhich combines Theorem I to yield (7). 

Thus the condition is sufficient and the proof is completed. 

(Corollary) If AB is a right unit, then so is BA. 

Proof : (8) and commutativity of reciprocal matrices together imply 

Ctr B ' Ctr A= E (2) 

1~'hich is equivalent l~ rth 

BA= U 
bv Theorem l. 

Example -9 

[ : :ll02Q l 

- 

 

i~_ nonsingular because of 

[ 2 I13 I][1 2j-3 -1 = O Il I -l 
l
[
 
l
 -1 32 1 1 -3 2 1 -7 7ilO -9 

and 

[
 

Ctr O Il I -1 1 O 
-7 7110 -9 O l 

[1 ~l-~ - = ~ ;1-li ~] _f ;ll02Q } 
l
[
 

l
[
 

1
 1 -vl l' l
 

and 

Ctr ~3 41- 5 5 _ I O 
7 -71 10 -9 ~ O l 

combme the first half to verify the lemma. 

Theorem -9 and the corollary are very close to those of matrix algebra except the unique-

ness of reciprocal. 

S 2 Transition Hypermatrices 

Let us consider a specific kind of hypermatrices in this section. 

Definition IV : A cubic hypermatrix A=[aij. .kt] will be called a transition hypermatrix if 

A;~0 and 
~t aij..kt=1 for all (t,J' k) 

1~-here O is a cubic hypermatrix with zero elements exclusively. 
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In order to apply this kind of hypermatrices in somewhat practical situation, the follow-

ing definition shall be introduced. 

Definition V : Let A=[aij,..kt] and B=[bij.,.kt] be transition hypermatrices of Qrder LN. 

Then the hypermatrix 
1
 LN-2 aij.,.klblq .'rs , 

t,q,.. *r 

will be called the transition product of A and B and denoted by A*B. 

[Theorem 3] The transition product of two transition hypermatrices is a transition 

hypermatrix. 
Proof : Let A and B be given transition hypermatrices of order LN. 

Due to nonnegativity of the elements and Definition V, we have 

A*B~O , (1) 

~t aij.,,kt=1 for all (1,j, k) 

and 
~blq' rs=1 for all (1,q, ...,r) 

together imply that 
1
 LN-2 aLj ..klblq_'rs 

t,q, ,r ~
 
)
 

= 
1
 LN-2 blq Ts aij . ht 

q, .,r L 

L1 ~ I . 
~ -2 

Since each of the N-2 numbers q, ...,r ranges over 1,2, L 

~ 1=LN-2 

Thus we have ~( ~ ) -1
 
1
 

b
 (2) atj. kl lq rs = L"I'-2 

t,q,. ,r 

(1) and (2) combine to prove that A*B is also a transition hypermatrix. 

Again for the sake of application, Iet us introduce a specific kind of transition hyper-

matrices by a usual 
Definition VI : A transition hypermatrix A will be said to be regular, if there exists a 

natural number H such that ' 
HA>0 , 

where presuperscript denotes a transition power of a transition hypermatrix. 

And we can prove the 
[Principal Theorem l] If A is a regular transition hypermatrix, then 

nA-W as n-oo , 
where W=[wij., kt] is a transition hypermatrix with such elements as 

wtj .kl=wl 
irrespective of (i, j, . . ., k). 

Proof : We can assume without loss of generality that A is positive. Because otherwise, 

there exists a natural number H with HA>0, and we can prove that 
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'n(HA)-'W as m-co 

i.e. 

nA-~W as n-oo . 
Let ;1 be defined by 

p= min aij "kt , 
t,j, . ,k,t 

then due to the assumption and Definition IV the inequalities 

(3) O < p < l hold. 

s shall be specified hereafter and Mt, Int and afi) ks defined by induction with respect 

We will begin with 

(4) M0= 1??ax aij...hs 
t*J,.... 

(5) m0= min atj...ks , i,j* . ,k 

= 

 

(6) (1) I asJ , klalq' '"s ' aij .,ks N-2 L
 t,q, ..,r 

(7) M1 = max d l) tj ks' 
i,j,. ,k 

and 
' ) l= mtn a 

i,j, ,k 

We have 

(9) m <M:o and ml~~Ml 
obviously by definitions. 

On substituting Mo for alq rs in (6) and simplifying by ~aij ..ht=1, we obtam 

a) ~M a~,.. ks - o 

which combines (7) to prove 

Similarly, substitution of mo for atq.. Ts in (6) and simplification by ~aij tz=1 yield 

a) ;~m a~,.ks- o 
which is combined with (8) to have 

(11) ml;~mo ' Due to (9), (10) and (11), inequalities 

(12) mo ~~ml ;~MI ~.n4:o 
hold. 

Now we will define aCt) Mt and mt by induction 
t'.. ks' 

(t) I (t_1) = (13) as' .,hs ,v-2 aij...hia[q ,rs L
 l,q, ',r 

(14) Mt= max a(t) t,j,...,k eJ..'es ' 

mt=t~finkas~3t) ks ' (15) 

The inequalities (12) mean that inequalities 

(16) mo;~mi ... ;~mt_l~M:t_1~ "' ;~M1;~M:o 

hold for t=2. 

By substituting Mt_1 for dt-1) in (13) and simplifying by ~atj..,kl=1, we 1lave 

39 

tO t. 
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(t) < . , aij. .ks =M*_* 

~~'hich combines (14) to yield 

(17) Mt~~Mt_1 ' Similarly, on substituting mt-1 for a(t~1) in (13) and applying ~aij...kt=1, rt 

lq' 'TS t that 

(o > av" ks=mt_1 

And we have 
(18) tnt >= mt _l 

by definition (15). 

(16), (17) and (18) together imply that 

mo~ml~ "' ~Int~~Mt~ _' ;~M <M (19) 

Thus (19) has proved to be true for all t. 

By definitions, two classes of inequalities 

at' kt !1>0 for all (i,j, ...,k,1) 

and 
Mo~alq'rs>0 for all (1,q, ...,r) 

hold. Therefore we have 
(aej kt~!t)(Mo~alq "T3)~;O 

l'e. 

aij .hlMo~;gM0+patq rs~;aej klalq rs 

for all (i,j, ..., k, l) and all (1,q, ..., r). 

Summation over (1, q, ..., r) and division by LN-2 yield 

~ aij,.kl~LpM0+ L~-2 ~ ･･･ = ~ -alq rs> L L"v-2 N-2 aij ' klalq' 'TS 
r*q, . *r t*q,,..,r l'q""'r 

On applying ~aij"'kt=1 and (6), we obtain 

Q
 
~
 

M LuM + LP > (1) for all (i,j, ...,k) azq rs N_ 2 = a*,.. ks 
t,q, .,' 

Thus by (7), the inequality 

~
 

(20) (1 -L;1)M0+ LP alq ' rs;~Ml 
N-2 

l'q" 'r 

holds. 

Similarly by definitions, we have two classes of inequalities 

aj kl ;1>0 for all (i,j,...,k,1) 

and 
alq Ts 7n >0 for all (1,q, ...,r) , 

whence we infer that 

. -mo);~O , (alj 'kt ~ p)(alq "rs 

i.e. 

atj,, tlmo~/ImQ+;!alq ' rs2~aij ..ktalq"'rs for all (i,j, ...,k, ~ and all (1, q, . 

We sum up these inequalities over (1, q, .,., r) and divide by LN-2 to obtain 

p
 atj kl Lpm + L alq rs < L L"v- 2 N- 2 aij...hlalq" rs N-2 

i'q' "" l'D"" t,q,. ,r 

Application of ~aij,.,k'=1 and (6) yield 

[September 

i
s
 

I, 

observed 

r
)
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o
 
~
 

p < a) m Lpm + LN-2 alq"'rs=al'j "ks for all (i, j..., k) 

t,q, ,T 

Thus by (8) the inequality 

o ~ - l (1 LF!)7n + L 
N-2 

t.q,...,r 

holds. 

Subtracting (21) from (20), we obtain 

(1 - Lp) (MO ~ mo) ;~ Ml ~ ml 

lvhich concludes 

l - Lp ;~ O 

and that 

(1 -L;t)t(Mo ~mo) ;~Mt -mt , (22) 

is true~ for t=1. 

Let us assume that (22) is true for t=u-1 i.e. 

(1 -Lp)sL-1(M -mo) ~Mu-1 ~m (23) 

o - u-1 ' By definitiol]s, we have two classes of inequalities 

a~j kl ;L>0 for all (i,j, .,., k, ~ 

and 
Mu-1~a(tt~1)~~O for all (1, q, . , ., r) , 

tq...rs -

¥vhence ~ve obtain 

(aij' kl-;x)(Mu-1~af~]rls));~0 

i.e. 

atj' kl-~[u-1~pJlfu-1+palq "l~s =a~j 'kzalq"'rs for all (i, j, ..., k, ~ and all (1, q, ..., r) (w-1)> (u-1) 
iY 2 we have On summing up these inequalities over (1, q, ..., r) and dividing by L ~- , 

LN 2 aaJ kt LpMu l+ L L ~ 
- 

;
/
 

(u-1) > aij kza N-2 N-2 Iq ' Ts ' atq...rs = 

t,q, ..,r t,q,...,r t,q,. .,r 
¥lhich rs combmed wrth ~aij , kl=1, (13) and (14) to yield 

- 

 

(24) P (u- l) > ., (1 Lp)Mu l+ L N_2 atq . rs =M_ . 
l,q."'*r 

Similarly, we have two classes of inequalities 

at' kt ;L>0 for all (i,j, ..., k, l) 

and 
a(u-1)_1'tu l>0 for all (1, q, ..., r) 

tq. .TS 

bv definitions. 

We combine them to obtain 
(aej ' kt ~;1)(af~]rls) ~mu-1) ~~O 

i,e. 

aij ' ktmu-1~Plnu-1+pafq~TTls)~~aif" kzafqu.rls) k, l) and all (1, q, ..., r) for all (i,j, ..., 

Summation over (1, q, ..., r) and division by LN-2 yield 

as' kL L;tl'tu l+ L ~ 
- 

 

~
 
- p

 
(u-1) < LN-2 N-2 as' kzatq , rs alq rs= N~2 L

 t,q,.., r t,q. ,r t,q,. *r 
which we simplify into 

41 
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- (25) kt cl(*'~1) < m (1 Lp)m~ l+L N-2 tq '* = 
l,q:. " 

by ~t aij.,,kt=1, (13) and (15). 

Subtraction of (25) from (-24) yields 

(26) (1 -Lp)(M~_1 - m~_1) ~ M~ - m~ . 
(23) and (-~6) together with (1-Lpe)>0 imply that 

( I - L p)"(Mo ~ mo) > M In 

i.e. (22) is true for t=u. 

Thus the general validity of (22) is proved by induction. 

From (1) and (22) we can infer that 

(27) Mt-mt-O as t-oo, 
since O~1-Lp<1. 

(19) and (27) together conclude that afJt) kt is the i'j.....k･1 element of A and there 
exists a number wt for each I such that 

(t) aij .ht-wt as t-oo, 
independent of (i, j, . . . , k) 

And this is what is to be proved. 

S 3 An Application 

Let us assume that there are L states given and from every N-1 ple combination of L 

states one of the L states may result. If the probability that the state I may result from a 

state-combination (i,j, ...,k) is aij...kl with ~1 aij .kt=1, then this situation might be realised 

compactly by the LN transition hypermatrix [a*j,.,kz]. 

Example 3 The following table gives the percentage of children with bright-coloured hair. 

This is realised by 23 transition hypermatrix 

[0.8 0.5110.2 0.5] 

0.3 O.6 0.7 0.4 ' 
The following theorem is very important in this connection. 

[Theorem 4] The i,j, ...,k, I element of nA gives the probability that the process which 

has started in a state-combination (i,j, ...,k) will be in a state I after n steps provided that 

every state-combination is equally likely. 

Proof : The theorem is true for n=1 by the above-given interpretation of a transition 

hypermatrix. 

Assume that the theorem is true for n=m-1, and let 'A be denoted by [a{;) hl]' 

The i'j'... 'k･1 element of 'nA is 
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(~) I (~_1) = 

.
 
,
 (1) aij kt N_2 a*, . kPapq "t L

 
p,q, , 

Since by assumption af!~'hlP) is the probability that the process starting in a state-combination 

(i,j, ...,k) will be in a state p after In-1 steps, 1/LN-2 is that of p to be combined with 

(q, ...,1-) and apq "~ Is that of (p, q, ...,r) to be followed by a state I on the m-th step, each 

summand of (1) is the probability that the process which started in a state-combination (i, j, ..., k) 

~1'ill be in state I through a state-combination (p, q, ...,r) after 1'~ steps. Such summands 

being summed up over (p, q, ..., r) give the probability that the process which has started in 

a state-combination (i,j, ...,k) will be in a state I after In steps. Thus the theorem is true 

for n=1n. 

And the proof is completed by induction. 

Example 4 (Continued) 

2 0.8 .510.2 O.5]=[0.61 O.5510.39 0.45] [
 
O.3 0.6 0.7 0.4 0.51 0.57 0.49 0.43 ' 

tells that 550/0 of the grandchildren of bright-haired fathers and dark-haired mothers may be 

bright-haired. 

Implication of Principal Theorem I is now very important, since it tells that after a large 

number of steps, the probability of the process to be in a specific state I will be nearly w, 

no matter what the initial state-combination may be. 

This situation shall be explained by 

Example 5 (Continued) 

3 [0･8 0.5110.2 0.5]=[O .572 0.56 O.428 0.44 ,
 0.3 0.6 0.7 0.4 0.552 O 564 O 448 O 436 

4[0.8 O.5110.2 0.5]=[0.5644 0.562 II0.4356 0.438 
J
,
 

O.3 0.6 0.7 0.4 0.5604 0.5628 0.4396 0.4372 
[0.8 0.5jl0.2 0.5]=[0.56288 0.5624110.43712 0.4376] 

O.3 0.6 0.7 O.4 O.56208 0.5626 0.43792 0.4374 
The nex. t problem to be attacked is 

how to get W in Principal Theorem 1. 

Definition Vll Let A be a given transition hypermatrix. A transition hypermatrix F for 

which 

F*A=F , 
holds will be called a fixed transition hypermatrix of A. 

Now we can prove 
[Principal Theorem 2] W in Principal Theorem I is the unique fixed transition hyper-

matrix of A. 

Proof : By Principal Theorem 1, we have 

(2) nA-W as n-oo . Whence we obtain 

(3) "+1A-W*A as n-oo . 
(9-) combined with (3) yields 

W*A - W-O 
Since two hypermatrices in the left member are constant hypermatrices, we have 

W*A= W , 
~~'hich means that W is a fixed transition hypermatrix of A. 



,
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Let F be a fixed transition hypermatrix, then we have 

F*A= F . 
By successive postmultiplication of A we obtain 

F*nA= F , 
which combines (9-) to yield 

F-F*W. 
Since both members are constant, we infer that 

F= F* W 
i,e. 

fij,,,hl I fij .kqwpq, ,rt for all (1'J' ' k, ~ 
= r

 
LN-2 

p,q,,.,, 

On applying wpq..,rt=wl' It rs observed that 

~ fij...kPwpq...ri fij kP 
p,q,.,.,r = LN-2 LN-2 p,q,. . 

Slmplification by ~ fij. .kP=1 yields 

~r = ' wl LN-2 fij..,kP wl 

p,q,,, 

These three equalities combine to prove 

fij,,.kl=wl for all (i,j, ...,k,1) 

which is equivalent with 

F= W . 
Thus the uniqueness is proved to complete the proof. 

By Principal Theorem 2, we can evaluate the ultimate distribution of states, as shown in 

Example 6 (Continued) 

[~1 ~11~2 ~2]*[ ･ ･ I ･ ･ l=[ l 2 0.8 0.5 0.2 0.5 wl wllw2 w2 
03 0607 04 wl wllw2 w2 

gives 

O. 65wl +0' 45w2= w 

{
 
:
 O. 35wl +0' 55w2 = w 

wl+ w2=1 . 
And we have 

wl = O. 5625 , w2= O. 4375 

which means that 

[ I 0.5625 0.5625 Il 0.4375 0.4375 
l
[
 
l
 

n .8 0.5 O.9_ 0.5 
~~ 0.3 0.6 0.7 0.4 0.5625 0.5625 0.4375 0.4375 as n-oo. 

S 4 Concluding Remarks 

Thus far, we have considered the concept "hypermatrix" from applicative point of view on 

Markov chain. And some relevant results have been reached as far as regular Markov chain 

concerns. In S 1, however, some singular situations were referred to concerning unit and 

reciprocal hypermatrices. Therefore we are little ready for absorbing Markov chain. The 

next problems are to elaborate definitions and to arrange theorems thereof. 

1965-5-10 




