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I. Introduction 

In every decision making situation, a decision has various implications in many ways. 

One of the virtues of management science efforts is that they make these irnplications clear 

and explicit to some extent by tracing the effects of a decision using formal models and 

logical reasoning. In this paper we will try to investigate three kinds of implications arising 

from the use of some stochastic programming models in the decision making situation under 

risk and from the decision based on these models. Almost all through this paper we shall 

be mainly interested in the situation where a decision maker is confronted with a problem 

involving a stochastic objective function, rather than a problem with stochastic constraints. 

Several models of this type are presented and analyzed extensively. 

Our main interest will be in investigating three kinds of implications of stochastic 

programming models and their uses. 
First, we shall see the implications that particular values for key parameters in these 

models, which a decision maker has to predetermine by some judgment, have in terms of 

the effects of the change of these values on the objective function in each model. Since 

the determination of values of parameters in these decision models are often considered to 

be in the realm of ' decision maker's subjective judgment ', information from this para-

metric evaluation will be very helpful for a decision maker. Although some efforts have 

been previously undertaken in this area, e,g., Agnew, et al. [2], the author believes that 

this paper is the first extensive study of parametric evaluation in stochastic programming 

models containing a discussion of explicit computational methods. 

The second kind of implications of stochastic programming models we shall see in 

this paper is the relationship between several stochastic programming models and mean-

standard deviation analysis which has been developed in portfolio selection. It is shown 

that there is a very close relationship between these two different approaches. 

Thirdly, we will see the utility implications of stochastic programming models pre-

sented in this paper. It is shown that most of the common stochastic programming models 
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presented in this paper are not compatible with the risk-averter's utility function and its 

expected value maximization. 
In the final part of this paper, we will attempt to impute the value of key parameter(s) 

in each stochastic programming model and some other utility maximization models from 

'the actual decision made by a decision maker, assuming that the decision is based on one 

,of the models presented in this paper. This is to know the implications of a decision by 

referring to some particular decision model with a particular parameter value implied by 

a decision maker's decision. In a way, this imputation will lead to finding a decision 

maker's attitude toward risk by imputed values for parameters in several decision models. 

Since we will present in Chapter 11 all the stochastic programming models which we 

will investigate, some readers might think it worthwhile to read this paper model-wise, 

that is, picking up sections in each chapter pertinent to a particular model, rather than 

following the order of chapters. 

II. Several Stochastic Programming Formulations and 

Parametric Evaluations 

Stochastic programming is a generalization of linear programming to the case where 

Isome or all of the parameters of the model are random, not deterministic. We consider 

the follwoing LP model as the starting point to the generalizations to the stochastic pro-

gramming models. 

max cx 
s.t. Ax<b 

x;~O, 

where c･ ･･ I Xn vector 
x･･･nX I vector 

b･･･mX I vector 

A･･･mXn matrix. 
(We do not indicate explicitly a transpose of a matrix when it is clear from the context.) 

There are various ways of handling the randomness in A, b, c. We consider those 
~lines of attack which A. Charnes and W.W. Cooper first developed and did extensive 

-research upon, that is, the chance-constrained programming (CCP) approach. 
In this approach we transform the original problems into so-called ' deterministic 

,equivalents ' of stochastic programming models, which are often non-linear programming 

problems. We will make a brief survey of various deterministic equivalents in the CCP 

,approach and then investigate the information that dual evaluators (Lagrangean multi-

pliers) in these models can give. Dual evaluation in non-linear programming has almost 

-the same properties as in linear programming. Using these dual evaluators in non-linear 

programming, we can obtain valuable information about the effect of parametric changes 

in CCP models. This information may give the decision maker very fruitful insight into 

both the structure of the model and his own attitude towards risk which is supposedly ex-

~pressed in the particular values he selected for parameters in the model, but which may be 

.only implicit in his mind. ' 
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II. I General Model 

The most general model of CCP models assumes randomness in all parameters, i,e.. 

A, b, c, and has the following formulation. 

max f(c, x) (2. 1) s.t. Pr(Ax~b)~:a (2. 2) 
where a is a mX I vector. 
Here f is some criterion function to be maximized and (2.2) are chance constraints, which 

means that the i-th constraint of the basic LP model above has to be satisfied with the 

probability of ai. The decision maker has to specify the form of the objective function, f. 

The most common approach to deriving the deterministic equivalent for this model 

is to assume that c and each row of A are independently and normally distributed vectors 

The normality assumption will be maintained throughout this paper. Although we can 
incorporate the randomness of b in the following derivation with a few additional assump-

tions, we will refrain from incorporating the randomness of b only because of the notational 

complexity it requires. We will use the following notations in the discussions below. 

p"' ~~(c), I Xn vector ~~･･･expectation operator 
V･･･ ~~(c-p)(c-p) 
pi... ~(a'), d･･･the i-th row of A 

~i･ ･ ･ ~(ai- pi)(ai-pi) 

F(q)"' I cq exp(-t2!2)dt 
~/~~ J _* 

We also assume that ai>.5 for all i. 

We can rewrite the i-th chance-constraint in the following successive way. 

Pr(aix~ bi) ~: a i 

Pr((a~- pix)j~/~~ ~ (bi- P~x)/~~;) ;~ a i 

F((bi- Pf x)/V~･) ;~ a i 
(bi-Pix)!~/~x~ix ~:F-1(ai) 

Putting Pi=F-1(ai) 
p~(+ piV~~~ ~ bi 

Therefore the deterministic equivalent to this general model is the following non-linear 

programming problem. 

max f(c, x) (2. 1) s,t. pix+pi~/x~]ix ~bi (2. 4) i=1, ･･･, m 
Since 1/~~~ is a convex function of x (see Kataoka [15D and pi>0 from the assumption 

that ai>.5, the left-hand-side of (2.4) is a convex function. This implies that the feasible 

region of the non-linear programming problem above is a convex set. 
If the decision maker specifies some concave objective function, the general model of 

CCP reduces to the so-called concave programming model (a concave maximizing objective 

function with a convex constraint set) for which various computational methods like gradient 

methods are developed under the assumption of the differentiability of all the functions 

involved. For a survey of these concave programming methods, see Hadley [ll] and 
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Wolfe [23]. 

In this model, the decision maker has to decide (or specify) two things before actually 

selecting the optimal decision. They are the form offand the values of risk levels, a . It 

is very helpful for a decision maker if he can estimate the implications of various values 

of a's, especially in terms of the effect of parametric changes of a's on the value of the 

maximand. It is possible to do this by using the dual evaluators in the non-1inear pro-

gramming problem (2.1), (2.4), (2.3). 

In solving this non-linear programming problem, we will get the Lagrangean multipliers, 

u, which is a I X m vector, and each component of which corresponds to each constraint 

of (2.4). In many concave programming methods, we can get u as a byproduct of the 
computation to get the optimal solution xo. If we do not have this byproduct in a parti-

cular algorithm, but if we get the optimal solution xo we can get the value of u by solving 

the following LP problem, which is a dual problem to (2.1)-(2.3) with xo inserted.1 The 

duality theorem in non-linear programming assures us that this method gives the right 
values of u (See Wolfe [24]). 

~ 
s.t. af(c, x)jaxj~~~_ui(P!+pi~,jxjV~;) J I ･･,n (2. 6) 

'*1 J 

where ~,j is the j-th column of ~~i-

If we consider the optimal value off as a function of b in this model as b's change, u 

is equal to af/ab under the following assumption. 

i) Tight constraints at xo remain tight in the new optimal solution after infinitesimal 

change of b's. 

ii) If xJ9=0, xj=0 in the new optimal solution after infinitesimal change of b's. 

For a detailed explanation on these conditions in the general non-linear programming 

models, see Abadie [1], especially his preface. 

Under the similar assumptions as above, dual evaluations as follows are possible. 

a f ja pi= -V~~ui 

af/aai=-~/x~]ix ui/~p(~i) (2. 6y 
where ~o(t) 1 = exp(-t2j2). 

~12 IT 

For the general discussion of the derivation･ of parametric evaluations using Lagrangean 
multipliers, see Naslund and Whinston [18]. There is also some discussion on the para-

metric evaluation in the CCP model in Agnew at el. [2]. 
(2.6y is the evaluation of risk levels in terms of the effect to the optimal objective 

function value. The decision maker may adjust the risk levels after getting this information. 

so that he is satisfied with the trade-off between f and a which-is implied by his selection of 

a particular value for ai. 

Now we shall turn our discussion into more specific models which have been devel-

oped so far in the context of the CCP approach. In these discussions, we are going to 

assume that randomness occurs only in c in order to focus attention on decision making 

situations with stochastic benefit, in this case, the objective function value, cx. This as-

sumption will be maintained throughout the rest of this paper. 

* We assume that f is differentiable-
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If we consider the maximization of the expected value of the objective function, cx, 

as an appropriate criterion, we have the following simple LP problem: 

max ~~(cx) = px 

s.t. Ax<b 
x;~O 

We call this model E-model, and ordinary dual evaluations in LP are available regard-

ing the effect of changes of b's on ~~'(cx). 

II. 3 V-model . 
When the legitimate criterion is to minimize the variance of the stochastic return (which 

we might consider as a measure of risk), the deterministic equivalent of CCP is reduced 

to the following quadratic programming problem. This model is called V-model. 

min Var (cx)=xVx 
s,t. Ax>b 

x;~O 
Since V is a positive definite martix (or a positive semi-definite martix in some special 

cases), various quadratic programming methods are available for solving this problem. 

In quadratic programming, dual evaluation is also possible. The dual evaluator will 

tell us the rate of change of the risk (variance of the objective, cx) according to the infini-

tesimal increase of b's. 

II. 4 a-fractile model (a-model) 

In this model, the decision maker wants to maximize the lower bound of cx above 
which he can be sure that the objective function value will fall with probability a . a is 

predetermined by the decision maker, and we call this lower bound the a-fractile. This 

model is called the a-fractile model or, more simply, the a-model. The formulation in 

probabilistic terms is the following. 

max f 
s.t. Pr(cx~:f)=a 

Ax<b 
x~O 

The deterministic equivalent for this model is the following non-linear programming 

max f=px-q~/xVx (2. 8) 

s.t. Ax<b 
x>0 

where q=F-1(a) 
If we assume a>.5, which is very reasonable, then q>0 and f becomes a concave 

There are several algorithms which solve (2.8)~2.10). One of them is Kataoka's 
irlethod (Kataoka [15D which is specially designed for (2.8)-(2.lO) His method uses Wolfe's 

quadratic programming algorithm as its main component. Another one is Geoffrion's 
method (Geoffrion [13]), using the bi-criterion method which he has developed for more 
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:general mathematical programs. 

Lagrangean multipliers of (2.9) in the problem (2.8~(2.lO) give us af/ ab=u. Another 

evaluation which might interest the decision maker is the change of the a-fractile itself in 

_response to the change of the value of a, that is, 

a f /a a = -~/~~~/~(q) 

According to Geoffrion [13], his method for solving (2.8)-(2.lO) can also give valuable 

information about the trade-off between the a-fractile and the expected value of the objec-

tive function (px) as a byproduct of the computation of the optimal solution. This trad~-

･off curve plots the relationship between a-fractiles and expected values of the objective 
function corresponding to the optimal solution (x's) as a varies. 

_II. 5 Probability maximum model (P-model) 

As the name sugge~ts, the criterion function of this model is the maximization of the 

probability that the objective function value (cx) exceeds a certain lower limit, 6. In the 

mathematical formulation, 

max Pe=Pr(cx;~O) 
s.t. Ax<b 

x~:O. 

The deterministic equivalent for this version is the following. (See Kataoka [16D 

max f(x)=(px-e)1~~~~ (2. 11) 
s,t. Ax~b (2. 12) 

' lthough we are assuming normality for the c ~ector, Roy [20] got the same problem 

as (2,ll)-(2.13) using the Tchevychev approximation for Pr(cx>6) without the normality 

assumption for c. In Roy's formulation, O is called the disaster level and Pr (cx~e) is 

considered to be the probability of survival. 

Since jl:x) in the deterministic equivalent is not concave, but quasiconcave, we cannot 

use any ordinary algorithm for concave programming. Kataoka [16] and Geoffrion [13], 

however, have independently developed special algorithms for (2.ll~(2.13). Geoffrion's 

method uses the same bi-criterion method as in the a-model. 

Several parametric evaluations may give us some useful information on the structure 

<)f the problem in this model. Some of them are 

af/a6=-1/1/~~~~, afiab=u 
a pc/a e = - 9,((O - px)j~/~~~)/~/~~~ 

a p6i ab = u~p((6 - px)/~/~~~). 

Since the decision maker has to determine the disaster leve]; O, in advance,' ape/a6 

will give him very important ideas on his own selection of O . He might want to change 

~ after knowing ape/ae, which is implied by a particular value for e. In Geoffrion's 
method of computation, we can get the trade-off curve between ~~'(cx) and Pe as in the case 

Of the a-model. This trade-off curve will help the decision maker reach a subjective judg-

ment concerning the appropriate value of e . 

JI. 6 Probability of loss model (PL-model) 

This fnodel maximizes the expected value of cx, stibject to a probabilistic constraint 
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on the loss which might occur. Its formulation is 

max ;lx 
s.t. Pr(cx~1r)~r 

Ax<b 
x;~O. 

This probabilistic constraint means that the probability that the objective function value~ 

falls short of some predetermined level, IT, has to be smaller than or equal to r, which is 

also predetermined. 

This model seems to be appropriate in many practical business situations, like port-. 

folio selection of common stocks. The probabilistic constraint in this model is shown to~ 

be equivalent to Babmol's confidence limit restriction in mean-standard deviation analysis._ 

(See p. 72 in Section 111. 2.5 below.) 

The deterministic equivalent for this model is 

max f(x)=px (2. 14) 

s.t, px-r~/xVx;~lr (2. 15) 

Ax<b 
_ 

2. 16) 

x>0 
where r=-F-1(r)-

Except in some extraordinary cases, we can assume r <.5 and therefore r>0. Positive-

r leads to a convex constraint set in this deterministic equivalent and we can use ordinary 

concave programming methods in solving this deterministic equivalent numerically. 

Dual evaluations and parametric evaluations give the decision maker valuable insight_ 

into the problem in this case, too. For example, . 
af/a,-,=v v is a Lagrangean multiplier for (2.15) 

a f /ab=u 

a f ja T = v~l･V~ !~(- r). 

af/alr' and af/a r might have special importance to the decision maker in selecting ap--

propriate values of lr and r-

III . Mean-Standard Deviation' 

Programming 

Analysi~ and, Stochastic 

Models 

In this chapter we shall see that the mean-stand'ard deviation analysis developed mainlr 

in the context of portfolio selection has some interesting correspondence with the special 

cases of stochastic programming models (or their deterministic equivalents) presented in . 

the previous chapter. 

III., I Mean-standard deviation analysis. 

Markowitz first proposed in his pioneerilrg paper; ' Portfolio, Selection,',. the' selection . 

of portfolios of common stocks based on the mean and the standard deviation (or variance) 

of the stochastic return of the portfolios, and developed the concept of the mean-standard 

deviation efficient frontier (E-S frontier) of the available･ set' of alternative'portf6libs. The-

effieien:tL frontier means, that. there･ is. no, other. feasib_le:. portf.olio? which, has; bo.th! higher mearL 
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return (E) and smaller standard deviation of the return (S) than those portfolios on the 

efficient frontier. If we accept the standard deviation as a measure of the risk of the port-

folio, it is very reasonable to select the portfolio only from those on the E-S frontier, since 

every portfolio on the efficient frontier minimizes the risk for some level of the expected 

return, and maximizes the expected return for some level of the risk. This mean-standard 

deviation analysis is also justified as expected utility maximization at least in two cases. 

One case is when the utility function of the decision maker is quadratic, regardless of the 

types of the probability distribution of the stochastic return. The other is the case when 

the probability distribution of the stochastic return of the portfolio is a normal distribution, 

regardless of what utility function the decision maker has in his mind, except that it is 

concave. (See Tobin [20], Feldstein [9], Tobin [2l].) 

The E-S efficient frontier in the portfolio selection model with stochastic return cx 

may be traced out by solving the following non-linear programming model, changing So 

~parametrically from O to oo. 

max px 
s.t. ~/~~So 

ex=: 1 

x;~O, 
where e is a I Xn vector all of whose elements are unities. 

(3. 1) 

(3. 2) 

(3. 3) 

(3. 4) 

Here xi is considered to be the 

~proportion of the total fund which will be invested in the i-th financial asset, hence the sum 

,of xi's has to be unity. The resulting efficient fronti.er on the E-S plane (expected return, 

E, on the vertical axis and standard deviation, S, on the horizontal axis) is a continous curve 

~made of segments of hyperboli. This curve typically will have some kinks. (See Marko-
witz [17] p. 153) Cornputationally it is easier to solve the following quadratic programming 

model, changing Eo parametrically, in order to get the E-S frontier. 

min xVx 
s.t. px~:Eo 

ex=1 
x~O 

Applying the same principle as in the mean-standard deviation analysis in portfolio 

selection, we can have the E-S frontier in the stochastic programming models in the previous 

chapter. This frontier will be traced out by solving the following non-linear programming 

model, which we could consider as a generalization of the model (3.1)-(3.4). This is a 

~oncave programming problem, since ~1~~~ is convex. 

max E=px 
s.t. ~/~~~So 

Ax<b 
x>0 

We call it problem I. 
(3. 5) 

(3. 6) 

(3. 7) 

(3. 8) 

As a computational device, we can solve the following quadratic programming problem, 

changing Eo parametrically, and get the mean-variance efficient frontier and then trans-

form it into the mean-standard deviation frontier. 

s,t. px;~Eo (3. 10) 
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The E-S efficient frontier from the stochastic programming problem2 is not necessarily 

made of segments of hyperboll on the E-S plane, but it is concave, if we consider this, 

frontier as E=E(S). This can be seen by a simple application of Lemma I in Gale [12]. 
This E-S frontier is depicted in Figure 1. If the E-S frontier cuts the S-axis, it is on the 

non-negative part of S-axis, since ~/~~~;~O. And we might have the leftward end point 

of this frontier on the E-axis, either on the positive part or non-positive part, when som~ 

riskless assets Gike government bonds and cash) exist. 

FIG. 1. 

E
 

frontier 

If we denote the slope of this frontier as dE / dS, its value at a point (Eo, So) is equal 

to the Lagrangean multiplier, k, to (3.6) in problem I, i.e., 

k=dE/dSls=so, (3. 13) except at several points where the E-S frontier may have kinks. At points of kinks, how-

ever, 

dE/dSl-~k~dE/dSl+ (3' 14) 
For the reasonings behind (3.13) and (3.14), Balinski and Baumol [3] have more general 

discussion on the properties of dual evaluators. 

III.2 The relationship with stochastic prograrnming models 

When Markowitz proposed the E-S frontier in portfolio selection, he did not prescribe 

which point on the frontier the decision maker should select. He left this task to the de-

cision maker's own subjective judgment. The decision maker has to have some decision 
model, either formal or intuitive, in order to select a single point on the E-S frontier from 

many points on the frontier. This should depend upon his attitude towards risk, or uporl 

2 When we talk about the E-S frontier in the rest of this paper, it always means the E-S frontier from (3.5) 

-(3.8), not from (3.1)-(3.4). ' 
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his utility function for returns (i.e., for income or wealth), etc. 

In the remaining portion of this chapter we shall see that all the stochastic programming 

models developed in the previous chapter, except the general model, have their optimal 

solutions on the E-S frontier. They, therefore, can serve as the mechanism for selecting 

a single point from the E-S frontier.3 Thus stochastic programming models can be con-

sidered as further aides to the decision maker in the mean-standard deviation analysis. 

complimentary or supplementary to the E-S frontier. 

III. 2.1 E-model 

Since the E-S frontier is the north-west boundary of the feasible region (i.e., the shaded 

area in Figure 2) on the E-S plane, the E-model is easily seen to seek the highest point ou 

the frontier. This is point A in Figure 2. Any other point in the feasible region (including 

the frontier) has smaller E(=px), and thus cannot be the optimal solution of E-model 
This case is rather trivial. 

III. 2.2 V-model 

The optimal solution of the V-model is point B in Figure 2, since V-model's objective 

is the minimization of the variance of cx, i.e., the minimization of the standard deviation, 

irrespective of the value of E. Point B is the most leftward point of the feasible region. 

This could be below the S-axis in some cases and above or on the S-axis in other cases. 

FIG. 2. FIG. 3. 
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II. 2.3 a-model 

Let us denote the optimal solution for the a-model xo, and V~57~5T=So, px0=Eo 

We assume a>.5, hence q>0. 

s The author found, after completing this research, that Pyle and Turnovsky [19] took the criterion func-

tions of the a-model, the P-model and the PL-model as the mechanisms for doing this and discussed the 
connection between these criteria and the expected utility approach. In this paper they show that these 
criteria 'lead to optimization of expressions involving the mean and standard deviation.' Here we further 
show algebraically that the optimization of these criteria necessarily leads to the optimal solutions on the 
E-S frontier, thus strengthening the validity of their contention of using these criteria in the mean-standard 

deviation analysis. That is, we establish a close relationship between stochastic progranuning models and 
the mean-standard deviation analysis, Notice that for some expressions involving the mean and the standard 
deviation, their optimizations do not necessarily lead to points on the E-S frontier. 
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Suppose there is a feasible combination of E and S (E=px, S=1/~~~) such that 

E;~Eo, S~So. Since q>0, 

E-qS;~Eo_qSo I 
.'. px- q~/x Vx ;~ pxo_q~~r 

The last inequality contradicts the optimality assumption of xo. Hence there could not 

be feasible combination of E and S such that E~~Eo and S~So. This means xo, hence 
(Eo, So) is on the E-S frontier. 

In the E-S plane, the a-model seeks to get to the highest line with a predetermined 

slope, q, that is, a line with the greatest intercept. This will be obtained by the tangency 

point, C, in Figure 3. As in that figure, the objective function of the a-model is easily 

rewritten as 

max f=E-qS 
thus 

max f in E=qS+f (3, 15) 
III. 2.4 P-model 

The objective function in this case is 

max f=(px-6)j~l~~~, 
which is, in E and S notation, 

max f in E=fS+e 
In the E-S plane the maximization of f is equivalent to the maximization of the slope 

of lines through (O, e). This will lead to the tangency point, D, of these lines with the E-

S frontier. Therefore, P-model picks up a point on the E-S frontier as its optimal solution. 

The similar proof by contradiction as in the case of a-model is also possible and easy to 

do in this case. Point D is depicted on the E-S frontier in Figure 4. 
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III. 2,5 Pl･model 

Let xo be the optimal solution for the deterministic equivalent of PL-model, (2.14)-

(2.17), and E0=pxo, S0=~5~~r. 
Since the point on the E-S frontier with S=So is the solution of max {pxlAx~b, 

1/~~~=So, x~~O}, we have only to prove that xo is the optimal solution to this latter 

problem in order to prove that (Eo, So) is on the E-S frontier. Let us call this latter 
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problem Problem (1) and call (2.14)-(2,17) Problem (2). 
Let ~ be the optimal solution of Problem (1). xo is a feasible solution to both Problem 

,(1) and (2) by construction. Therefore, 

pxo_rSo;~lr, (3' 17) 
and since ~ is optimal for Problem (1), 

From (3.17) and (3.18) 
p~ ;~ ,*- +rSo 

But S0=~/x Vx~ . 
Theref ore 

p j~~: IT +r~/x Vx~ 

' j~-r~/~~~.Vx'~ ;~lc (3' 19) 
This means that ~ is a feasible solution for Problem (2). Thus, from the optimality 

<)f xo to Problem (2), 

From (3.18) and (3.20) 

px0= pX. 
Therefore, if the o_ptimal solution to Problem (1) is unique, 

x=xo 
IEven if the optimal solution to Problem (1) is not unique, xo has been shown to be the 

･optimal solution to Problem (1). This implies that (EO, So) is on the E-S frontier. 
In the E-S plane, the probabilistic constraint of PL-model (or its deterministic equi-

valent (2.15)) is 

E;~rS+7T, 
and makes the feasible region narrower than without this constraint. The narrowed 
feasible region is the shaded part in Figure 5, and the E-S frontier is also shortened to the 

,arc GH. The restriction (2.15) does the same thing as Baumol's confidence limit restriction 

(see Baumol [4]) and the arc GH is the same thing as what Baumol calls the E-L efficient 

frontier. 

From this shortened frontier, the PL-model picks up point G according to the expected 

~Jalue ( ~~'(cx)) maximization. G is the higher of the two points of intersection of the 

I-S frontier and the line 

IV. Utility Implications of Stochastic Programming 

Models and Mean-Standard Deviation Analysis 

IV. I Some utility models 

In the previous chapter, we saw that several stochastic programming formulations 

with normality assumptions that were discussed in Chapter 11 Iead to optimal solutions 

, on the E-S efficient frontier. In Chapter 111 we also mentioned that the quadratic utility 

function, combined with the expected utility maximization principle by von Neuman and 
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Morgenstern, Ieads to the selection of a point on the E-S frontier as the optimal solution. 

In this case, too, the decision maker will select different E-S combinations depending on 

the parameter values of his quadratic utility function. 

Another utility function also leads to the optimal E-S combination which will be on 

the E-S frontier, if we assume expected utility maximization and normality of the random 

return in the model (see Freund [10]). In his model, Freund suggests the exponential 
utility function, 

U(R)= I -exp(-aR) 
where R is the random variable (return, etc.) and a is a positive parameter, imp]ying the 

risk-aversion of the decision maker. 

Taking the expected value of this utility function and assuming a normal distribution: 

for R, Freund derived the following objective function to be maximized (see Freund [10]). 

where E= ~~(R). S=V~~~~I~~~~･ (5.1) clearly shows that the maximization of this. 
function will lead to the selection of some point of the E-S frontier.4 

As a short summary of what we have shown in the previous chapter and also the firs 
part of this section, we can say that the E-S frontier could be considered as a set of optimal 

solutions of various decision models, some of which are stochastic programming-type. 
models with normality assumptions, the others being the expected utility maximization 
models using a quadratic or an exponential utility function. 

In this sense, the mean-standard deviation analysis can be said to be a comprehensive' 

approach to decision problems under risk, embracing several specific decisi6n models 

within its general framework. 

IV. 2 E-S indifference curves 

In picking up a point from the E-S frontier as the optimal E-S combinatron we es 

sentially use the E-S indifference curve in the E-S plane. There could be many types of' 

indifference curves, depending on what decision model we use. 

If we denote the maximand in each model discussed before as f a list of the maximand~ 

in those models is as follows. 

E-model f = E V-model f = - V= - S2 
P-model f = (E - O )/S 
a -model f = E - qS 
quadratic utility model5 f =E-a(E2+S2) 
Freund's model f=E-aS2/2 

From these maximands, it is very easy to derive the corresponding indifference curves on 

the E-S plane. Since we have been assuming that the E-S frontier is computed subject 

' For the ease of explanation, we assume that R in Freund's model (and quadratic utility model) is es-
sentially cx in stochastic programming models and we have the side condition Ax~b, x:~O, also in both 
models. In this way, we can talk about the same constrained E-S frontier, all through this paper withouL 
explicitly saying so. 

* The quadratic utility function is assumed to be 

U(R) =R-aR'. 
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to the side conditions, Ax~b, x;~O, we can determine the optimal solutions to each model 

using this E-S frontier and the derived indifference curves, a list of which is as follows. 

Model Indifference Curve 
E-model E = f V-model S = - f a -model E = qS + f 
P-model E = f S + 6 
PL-model E=f quadratic utility model (E-1!2a)2+S2=-fja+1!4a2 
Freund's model E=a/2S2+f 

In each family of indifference curves, f is the parameter which distinguishes one curve of 

the indifference curve family from the other curve of the same family. 
It can be easily seen that all the indifference curves for the v~rious stochastic programm-

ing models are linear in the E-S plane, some of which are horizontal, some vertical, some 

sloping. 

The indifference curve for the quadratic utility model is the circle with a center on the 

E-axis with E=1/2a. Since we want to maximize f, we in effect want to make these in-
difference circles as small as possible, but at the same time compatible with the E-S frontier. 

The optimal solution for this model, therefore, is the point of tangency between the in-

difference circle and the E-S frontier, depicted as I in Figure 6. 

E 

(O, ll2a) 

I
 

E 

J
 

s
 

In Freund's model, the indifference curves are a family of paraboli which are symmet-

rical with respect to the E-axis and with a slope aS. The optimal point in this model is 

the point of tangency between the E-S frontier and the parabola with as great an intercept 

with the E-axis as possible, the point J in Figure 7. 

IV. 3 Utility implications of stochastic programming models 

Since we have not connected the expected utility maximization and stochastic pro-
gramming formulations in any explicit way so far, Iet us now try to see what meaningful 

information can be derived from this effort. This effort means that we try to find the forms 

or properties of utility functions which are implied if we suppose that each stochastio 

programming model is an application of the expected utility maximization principle with 
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.a suitable utility function.6 We shall now try to identify the utility function which is thus 

:supposed to underlie each stochastic programming model. If identification of this function 

is not possible, then we will try to find out some of the properties of this utility function. 

_AS an essential assumption in this section we suppose that the expected utility maximiza-

'tion principle is consistent with each of the stochastic programming formulations in Chapter 

III. When the normality of c in the objective function is not assumed, K. Borch has shown 

by a very ingenious example of a special probability distribution that PL-model is, at least 

in one case, not compatible with the axioms of the expected utility maximization principle. 

,(See Borch [5], pp. 42) We maintain, however, the normality assumption of c throughout 

i;his paper. 

For the E-model, the maximand is just E= ~(cx). If we suppose that 
~~' ( U(cx)) = E, 

then U has to be either cx or else a positive linear transformation of cx.7 

For the V-model, 
~' ( U(cx)) = - S2 

-and therefore 

U(cx) = - (cx- E)2. 
'Thus, in this case, the underlying utility function is a special type of the quadratic utility 

-function.' 

For the a-model, P-model and PL-model it is very difficult to identify the underlying 

utility functions, although it is rather easy to find an important property of these functions 

with important implications. If we consider the maximands in the deterministic equivalents 

･of the a-model and the P-model as expected values of some utility functions, we have 
for 'the a-model: ~'(U(cx))=E-qS 
fol the P-model: ~~'(U(cx))=(E-O)/S. 

Although it is very difficult to work backward from these expected values to the under-

lying utility functions, we can at least deduce an important implication. That is, as we 

have seen in the previous section, the indifference curves in the E-S plane in these three 

cases are linear. As Tobin has shown in his pioneering work (Tobin [2l]), an indifference 
curve has to be strictly convex in the E-S plane for a utility function of strict concavity' 

that is, a risk-averter's utility function, when normality is assumed for the random benefit, 

in this case, cx. 
From this result we can at least say that the underlying utility functions for the a-model, 

P-model and PL-model are not utility functions of a risk-averter, since their indifference 

･curves in the E-S plane are not strictly convex. 

tf Various DeclSlon ModelS V. Imputation of Key Parameters o 

It seems reasonable to assume that behind every decision made by a decision maker 
-there lies some decision model, formal or intuitive. In the context of the discussions on 

,decision under risk that we have developed so far, we will now try to impute the value of 

' For another different approach to see the connection between the expected utility maximization and 

Ithese stochastic prograrnming models, see Pyle and Turnovsky [9]-
' Because a utility function is unique only up to a positive linear transformation. 
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the key parameter in various decision models implied in the decision maker's decision 

under risk, i.e., a combination of E and S he decided to select. 
In particular a decision maker is assumed to select a point on the E-S frontier, sub--

jectively or objectively, as the most suitable E-S combination to him. If we further assume' 

that he is utilizing a particular decision model, explicitly or implicitly, we can impute para-

meter values in this decision model he is supposed to be using from the information 
contained in that selected point. Thus we can give him important information about the-

attitude toward risk implied by his selected point. This information is, of course, if-then 

type information, Iike ' If he is assumed to be using the a-model in his selection, the selected_ 

point implies that the value of the key parameter in the a-model, a , must be such and such.'~ 

In these imputations, we also assume that we have complete information about the normal 

distribution of c, as the decision maker is assumed to have. 
Now let us denote the selected optimal solution as xo and the optimal E and S as Eo, 

and So where 
Eo pxo, S0=~/xoVxo 

V.1 Slope of the E-S frontier 

As we shall see shortly, the slope of the E-S frontier plays an important role in imput--

ing parameters to various decision models. We shall now discuss hovi to obtain this slope-

in computational terms. 
In Chapter 111, we saw that we can obtain the E-S frontier by solving (3.5)-(3.8), 

parametrically or, as a computational substitute, we can more easily solve the quadratic 

programming problem (3.9)-(3.12). 
The slope of the E-S frontier, denoted as dE / dS, is easily obtained from the program 

(3.5)-(3.8) as the Lagrangean multiplier for (3.6), k, for a particular value of S, So when we 

use the problem formulation (3.5)~3･8) to derive the E-S frontier. 
In fact, we have a sequence of values for k, each of which corresponds to some value-

of S. From this sequence, which will typically be supplied as byproduct of the optimiza-

tion computation, we can determine dE/dSls=s' for any S. When the sequence of~ 
values for k is not directly available from the optimization computation, we can get 
dE/dSIS=S, by solving the following linear programming problem for u and, k. 

s.t. uA+xoVklS0~~p (6. ~) 
This is the dual problem of (3.5)-(3.8) with the optimal xo substituted, since, by assumption* 

we know xo from the decision maker. We can consider the optimal solution, k, in (6.1)-

(6.3) as the Lagrangean multiplier for (3.6) in the concave progrannning problem (3.5)--

(3.8) with S=So. For the reasoning behind this method, see p. 66 in Chapter 11 above. 

When we use the parametric quadratic programming model (3.9~(3･12), for the deri-
vation of the E-S frontier, we usually get the sequence of values for the Lagrangean multiplier 

of (3.10), i.e., dS2 / dE, as a byproduct of the quadratic programming computation. In, 

that case;* 

dS2/dE=2SdS/dE (6. 4) 
Therefore except at point of kinks on the E-S frontier where we canuot define dE / dSi 
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uniquely, 

dE/dS =2S/(dS2/dE) (6. 5) 

In these ways we can get the slope of the E-S frontier, dE/dS Is=S' through various 

computational methods. 
If the decision maker happens to select a kinky point on the E-S frontier as his optimal 

decision, dE / dS cannot b~ defined uniquely and the linear programming problem (6.1)-

(6.3) will not have a unique solution. For further discussions, see p. 70 in Chapter 111 

above. 

In the following we assume that the decision maker has selected a regular (not kinky) 

point, and we let ko denote the slope of the E-S frontier at S=So. 

V. 2 Imputation of parameters 

If we know the value of the slope of the E-S frontier at E=Eo and S=So using one 

of the methods discussed in the previous section, we can impute the values of the key 

parameters of decision models by using the various relationships between those models 

and mean-standard deviation analysis discussed in Chapters 111 and IV. Since the E-
model and the V-model of stochastic programming do not contain any parameters in them, 
we will omit these two' models from the following discussion. 

V. 2.1 a-model 

If we assume that the decision maker is using the a-model as his underlying decision 

model under risk, we can then impute the values of the key parameters, q and a, from his 

selection of (Eo, So) from the E-S frontier in the following way. 

As we discussed in Chapters 111 and IV, the optimal solution for the a-model is given 

by the tangency point in Figure 3 in Section 111.2.3. At this point 

ko = q, 

or 
a = F(ko). 

Therefore, assuming the a-model for the decision model, we can irnpute the risk tolerance, 

(~, for the a-fractile in the decision maker's attitude toward risk. 

V. 2.2 P-model 

When we assume that the decision maker has selected the point (Eo, So) using the 
P-model as his implicit decision model, the following imputation of the parameter value, 

e, that he is supposed to be using js possible. 

Since what we are maximizing in this model is the slope of the line through (O, e), we 

have the following relationship from (3.16) and the fact that the maximization is attained 

at the point of tangency, D, in. Figurb 4, 

E0=koSo + 6 , 

substituting ko for f the maximand. 

From this, 

6 =Eo_koSo. 
Therefore, in the P-model, the lower limit on the objective or disaster level, 6, can be 

imputed. 
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V. 2.3 PL-model 

If the decision maker uses the PL-model, implicitly or explicitly, in making his selection 

from the E-S frontier, we can derive the following linear relationship between two para-

-meters in the model, namely, r and It, from (3.21). 

~In this case we can only use the fact that the line (3.21) goes through (Eo, So). The slope 

Of the E-S frontier at (Eo, So) is not relevant here. 

Since we have only one relationship for two parameters, we cannot uniquely impute 

'both r and ir. If we set, however, one of these two parameter values, we can of course 

~mpute the value for the other parameter. For example if we set 7r,the minimum required 

level for the objective, cx, we can impute the value for r from the decision maker's selection, 

'(Eo, So) as follows, 

r = F((Eo _ Ir)jSo). 

'This will give us the decision maker's implicit subjective judgement for the percentage of 

lhe time that he will tolerate the underattainment of the required leve], Ir. Conversely, 

,of course, we can impute IF by setting r-

~V. 2.4 Quadratic utility model 

In this model, we can obtain the slope of indifference curves by totally differentiating 

the expected utility function, ~'(U)=E-a(E2+S2). 

0=dE-a(2EdE+2SdS) 
dE/dS = 2aS/( I - 2aE). 

Since the optimal solution for this model is the point of tangency between the expected 

~utility function and the E-S frontier (see Figure 6), 

dE/dS=ko at E=Eo S So 
2aSo/( I - 2aEo) = ko. 

Rearranging for a, 

a=ko/(2koE0+So). 
Thus the only parameter of the quadratic utility function, a, can be imputed and we can 

Oompletely specify the quadratic utilify function for this decision maker by knowing his 

selection of a point of the E-S frontier, assuming that his decision is implicitly or explicitly 

~based on the maximization of the expected value of the quadratic utility function. 

'V. 2.5 Freund's model 

If the decision maker uses Freund's model as his decision model, we can specify the 

,exponential utility function used in his model from the decision maker's own selection, 

･(Eo, So). 

As we have discussed in the second section in Chapter IV, Freund's model has indif-

ference paraboli with a slope aS on the E-S plane, and picks up the optimal solution as the 

~tangency point of this indifference curve and the E-S frontier. Thus if (Eo, So) is the optimal 

~olution for this model, 

k0=aSo 
.'. . a=ko/So. 

a is the only parameter in Freund's model, which he calls a parameter of ' risk aversion'. 
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Complete specification of the underlying utility function is thus possible from knowledge 

of the decision made and the assumption that Freund's model has been utilized. 

VI. Concludmg Remarks 

In this paper we have investigated several types of implications of using some sto-

chastic programming models in decisions under risk. In particular, we have found that 

parametric evaluation using dual evaluators can give some helpful information in deter-

mining appropriate values of key parameters in the models. We have also found that 
each stochastic programming model presented in this paper (except the general model) has 

its optimal solution on the E-S frontier. Furthermore, we have examined indifference 
curves for stochastic programming models and some utility models, and we have seen that 

a risk-averter could not use the E-model, a-model, P-model and PL-model because they 

implicitly contradict the concavity property of his utility function. 

Since mean-standard deviation analysis is rather popular in investment decision analy-

sis, we have analyzed the implications that subjective selection on the E-S frontier has, in 

terms of its relationship with various decision models. Since we can impute the value of 

key parameters in each decision model presented in this paper, this approach could be used 

as a framework for empirical research on investors' or other decision makers' attitude 

toward risk. 
Several implications that we have seen so far in stochastic programming models could 

give a decision maker valuable information in deciding many things when using these 
stochastic programming models, including of course the final decision on the course of 

action he should take. 
He has to, first of all, decide what particular model to use in his case. At this stage. 

the implications that the particular model has in terms of the way it selects a point from the 

E-S frontier or the utility implication of the particular model may give him some hint and 

insight. 

Next, he has to determine, in most cases, the specific value for the key parameter(s) 

to use in his selected model (e,g. the value for a in the a-model.) Parametric evaluation 

in Chapter 11 will give him some insights into the trade-off structure in the model. 

When he has had the optimal solution from his selected model with a particular para-

meter value he has determined, he can impute the values of key parameters in other models 

which are implied by his optimal solution from his selected model. These imputed values 

of key parameters of other models provide additional information which may induce him 

to reconsider the tentative decision･ he has already made. 
In these ways we can provide several types of dialogues between formal models and 

the decision maker himself. This man-model interaction is one of the most essential factors 

in any successfully implemented management science project. 

Thus, the purpose of this paper as a whole might be summarized as an effort to give 

more aids to a decision maker under risk-taking situation in a more practical manner, not 

by inventing new models or new tools, but by letting him know many implications arising 

from the uses of stochastic progranmling models. Although it is certainly important to 

invent and devise new and better models and tools in management science, it is no less 
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important to search for more practical and comprehensive ways of utilizing models and 

tools that have been developed so far. (August 1971) 
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