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Abstract

Carlsson and van Damme (1991, 93) presented a notion of a global game, which is an

incomplete information game where the actual payo# structure is a#ected by a realization of a

common shock and where each player gets noisy private information of the shock. For

n-person symmetric games with two possible actions characterized by strategic complementar-

ity, they showed that equilibrium play in a global game with vanishing noise is uniquely

determined. The concept of global games is important not only as a theory of the most refined

notion of equilibrium but also as a theory of coordination failures under private information.

From this viewpoint, this paper makes the theory of global games more general and more

applicable to such problems. The implications of the theory of global games are investigated in

two specific models: a speculative attack model and a network externality model. It is shown

that both the monetary authority in the speculative attack model and the central planner in the

network externality model will prefer the equilibrium in a global game with small noise to the

worst equilibrium in the corresponding complete information game. Therefore, they will

welcome the existence of small noise, if they apply mini-max principle to multiple equilibrium

problems.

Key words: global game; coordination failure; speculative attack; network externality
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I . Introduction

In many coordination failure problems, it seems more plausible to assume that players do

not exactly know other players’ types. Investors in a foreign exchange market may have some

private information on balance-of-payments or on monetary authorities’ intention to defend a

fixed exchange rate (Krugman 1979). Potential users of the new technology characterized by

network externalities may face some uncertainty in other users’ preference (Farrell and
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Saloner 1985) or in productivity of the new technology.

In their seminal theoretical paper Carlsson and van Damme (1991, 93) presented a notion

of a global game, which is an incomplete information game where the actual payo# structure

is a#ected by a realization of a common shock and where each player gets noisy private

information of the shock. For n-person symmetric games with two possible actions character-

ized by strategic complementarity, they showed that equilibrium play in a global game with

vanishing noise is uniquely determined.

The concept of global games is important not only as a theory of the most refined notion

of equilibrium but also as a theory of coordination failures under private information. From

this viewpoint, in Section 2 of this paper I make the theory of global games more general and

more applicable to such problems. First, Carlsson and van Damme (1991) assumed that the

prior on the common shock is uniform and the payo# function is linear about the shock.1 I

relax these assumptions. Secondly, in order to get a unique equilibrium we do not need to

assume that the radius of the support of the noise converges to zero. Convergence of the

variance of the noise to zero is su$cient. Thirdly, the global game theory singles out an

equilibrium not only when players observe shocks with infinitesimal noise but also when they

observe the sum of a common shock and an infinitesimal idiosyncratic shock and each player’s

payo# depends on this sum.

In the subsequent two sections, I apply the theory of global games to coordination failure

problems. In Section 3, I study a speculative attack model under incomplete information. It is

shown that a monetary authority, who applies mini-max principle to multiple equilibrium

problems, will prefer to keep investors’ information on monetary authorities’ intention to

defend a fixed exchange rate incomplete. In Section 4, by using a network externality model,

I study welfare implications of small noise. In the network externality model, I assume that the

payo# function is linear about both the realization of a common shock and the number of

other players who choose a new technology. I also assume that the common shock and noises

are independent normal random variables. Under these assumptions, we can derive stronger

results than in preceding sections: the Bayesian Nash equilibrium is uniquely determined for a

certain set of pairs of standard deviation of common shock and that of noises.

II . n-person Symmetric Global Games

Suppose there are n players, i�1,…, n. The set of all the players is denoted by N. Players’

payo#s are a#ected by a common shock s. Before the players simultaneously decide their

actions, each player i observes the shock with noise:

qi�s�ei. (1)

The shock s is drawn from a distribution on [s, s] with a strictly positive and continuously

di#erentiable density h. The noises e1, e2,…, en are independent of s and have a joint

distribution F with a continuous and bounded density *. * is symmetric about any ei and ej :

*(e1,.., ei,.., ej,.., en)�*(e1,.., ej,.., ei,.., en) for any i, j�N and any {e1, e2,…, en}. The support

of F is contained in a ball around zero with radius g. The support of each player’s private

1 Carlsson and van Damme (1990) study a more general case for two player game.
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information is denoted by [ q, q ].

Each player i has two possible actions, a and b. Every player’s payo# has an identical

functional form and is a#ected by other player’s action in the same way. Each player’s

marginal gain by choosing a instead of b is expressed as

v
�
��
�

m

n�1
� s
�
��
�

where m denotes a number of the other players who choose a. s is a realization of the common

shock. v(m/(n�1), s) is di#erentiable and strictly increasing in s. The game is characterized

by strategic complementarity: v(m/(n�1), s) is strictly increasing in m/(n�1). We also

assume that v(m/(n�1), s) satisfies v(0, s)���, v(1, s)���,

v(0, s)�0, (2)

and

v(1, s)�0. (3)

Inequalities (2) and (3) imply that for high enough shocks, action b is strictly dominated by

a, and for low enough shocks, action a is strictly dominated by b.

We first study Nash Equilibria of the complete information games that correspond to our

incomplete information games. Suppose there is no noise in observation of the shock s and s is

common knowledge. Let sa b denote the unique solution of

v(1, sa b)�0, (4)

and let sa b denote the unique solution of

v(0, sa b)�0. (5)

Then we have inequalities: s�sa b�sa b�s. If s	s�sa b, there is a unique Nash equilibrium B�
(b1,…, bn), in which all the players choose b. If sa b�s	s, then A�(a1,…, an), in which all the

players choose a, is the unique Nash equilibrium. If sa b�s�sa b, there are two Nash equilibria

in pure strategy, A and B, and one Nash equilibrium in mixed strategy, in which each player

assigns identical probability q to action a. q is determined by

S
n�1

m�0

v
�
��
�

m

n�1
� s
�
��
�

�
��
�

n�1

m

�
��
�

qm(1�q)n�1�m�0. (6)

Figure 1 summarizes the Nash equilibrium correspondence of the complete information

games. When sa b�s�sa b, both A and B are strict equilibria, i.e. equilibria in pure strategies in

which each player actually looses if he deviates unilaterally. Therefore both equilibria satisfy

the conditions imposed by almost all the refined equilibrium notion such as perfectness (Selten

1975) and strategic stability (Kohlberg and Mertens 1986).2

Next we study Bayesian Nash equilibria of the incomplete information games. Let qi(qi)

denote player i’s probability of taking action a when he observes qi. Player i’s behavioral

2 The strict equilibrium is the most refined equilibrium notion that is discussed in van Damme (1991a). van

Damme (1991b) surveys non-cooperative game theories that select a unique equilibrium from two strict equilibria

in 2 X 2 games.
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strategy is a function qi(�) from [ q, q ] to [0, 1]. When all the players except i follow

strategies {q1(�),…, qi�1(�), qi�1(�),…, qn(�)}, player i with private information qi expects the

following marginal gain by choosing a instead of b:

Vi(qi)�

S
n�1

m�0
���

��
����

��
v
�
��
�

m

n�1
� s
�
�	



�
�



S
lm
�i�Lm

�i

�
�



P
j�lm

�i

qj(s�ej) P
�k�lm

�i and k�N�i

{1�qk(s�ek)}
�
�
�

�
�
�

���

�� �
��

��

h(s)*(e1,…, ei�1, qi�s, ei�1,�, en)

� h(s)*(e1,…, ei�1, qi�s, ei�1,�, en)de1�dei�1dei�1�dends

de1�dei�1dei�1�dends (7)

where N�i is the set of all the players except i, {1, 2,…, i�1, i�1,…, n}. lm
�i denotes a selection

of m players from N�i and Lm
�i, the set of all such selections. Since qj�s�ej, the fraction in

equation (7) is the conditional joint density of the shock s and the types of player i’s opponents,

q1,…, qi�1, qi�1,…, qn, given player i’s type qi. A Bayesian equilibrium is a set of strategies

{q1(�),…, qn(�)} such that, for each player i and every possible value of qi, behavioral strategy

qi(qi) maximizes player i’s expected payo#, that is, qi(qi)�1 if Vi(qi)	0, qi(qi)�0 if Vi(qi)

0, and qi(qi)�[0, 1] if Vi(qi)�0. On the existence of a Bayesian Nash equilibrium in

behavioral strategies, we claim the following:

Proposition 1. In our incomplete information games, there exists a Bayesian Nash equilibrium

point in behavioral strategies.

Proof. Theorem 1 in Milgrom and Weber (1985) shows that if a game satisfies the two

F><. 1. T=: N6H=-:FJ>A>7G>JB CDGG:HEDC9:C8: D; I=: CDBEA:I:
IC;DGB6I>DC G6B:H.
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regularity conditions, Equicontinuous payo#s (R1) and Absolutely continuous information

(R2), then there exists a Bayesian Nash equilibrium point. Finiteness of the number of actions

for each player is su$cient to imply R1. Under Assumption 1, the joint distribution of (s, q 1,

q 2,…, q n) as well as the marginal distribution of each q i and s has a density. This implies R2.

Our main results concerning the characteristics of the Bayesian Nash equilibria are

summarized as follows:

Theorem 1. Let sG denote the unique solution of the equation:

G(sG)�S
n�1

m�0

1

n
v
�
��
�

m

n�1
� sG

�
��
�
�0. (8)

sG satisfies s a b�sG�sa b. For every d�(0, min [sG�sa b, sa b�sG])there exists positive g, such that

whenever the support of F is contained in a ball around zero with radius g, the equilibrium

behavioral strategy qi(qi) for every i�N satisfies qi(qi)�0 for all qi�[ q, sG�d), and qi(qi)�
1 for all qi�(sG�d, q ].

For the proof we will use the following lemmas.

Lemma 1. Under Assumption 1, the unconditional probability of the event “player i’s type qi is

lower than other m players’ types and higher than n�1�m players’ types” is equal to 1/n for

every m�{0, 1,.., n�1}:

�
��
�

n�1

m

�
��
�

m integrals

	��

��	
��

ei

		��

ei

n�1�m integrals

	ei

��
		ei

��
*(e1,…, en)de1	dei�1dei�1	dendei�

1

n
. (9)

Proof. Let p be a permutation of {1, 2,…, n}. P denotes the set of all the n! permutations.

Let Zp be the event that the permutation of the players sorted in increasing order of their noise

ej coincides with p. For example, if p�{n, n�1,…, 1}, then Zp�{en�en�1�	�e1}. Since Zp

and Zp’ are mutually exclusive whenever p
p’, and the density function *(e1, e2,…, en) is

bounded and symmetrical about any ei and ej, the probability of Zp is equal to 1/n! for all p�
P. For every m�{0, 1,.., n�1}, there are (n�1)! permutations in which the n�m th number

is equal to i. Therefore the probability of the event that ei is n�m th smaller in {e1, e2,…, en}

is equal to (n�1)!/n!�1/n. The left-hand side of equation (9) denotes the probability of this

event.

Lemma 2. Let h�g (s) and h�g (s) denote the maximum and minimum value of h(
) on[s�g,

s�g]. There exists a constant k such that for any g�(0, (s�s)/2] and s�[s�g, s�g],

h�g (s)

h�g (s)
�1�k g, (10)

and

h�g (s)

h�g (s)
�1�k g. (10�)

Proof. Since h(s) is strictly positive and continuously di#erentiable, there exist max s�[ s , s ]
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�h�(s)� and positive min s�[ s , s ]�h(s)�. Let k�(2 max s�[ s , s ]�h�(s)�)/(min s�[ s , s ]�h(s)�), and

we get the two inequalities.

We turn to the proof of Theorem 1.

Proof of Theorem 1. Our assumptions on the marginal payo# function v(m/(n�1), s)

imply that equation (8) always has a unique solution which satisfies sa b�sG�sa b.

If we choose g as g�(sa b�s)/2, then type qi�(sa b�s)/2 is sure that s is smaller than sa b

and prefers b to a. It implies that there is no equilibrium with qi(qi)�0 for any i�N and any

qi�[ q, (sa b�s)/2]. By a similar proof, we can show that if g�(s�sa b)/2, there is no

equilibrium with qi(qi)�1 for any i�N, and any qi�[(sa b�s)/2, q ].

Now we study the equilibrium behavior for qi�((sa b�s)/2, sG�d) and qi�(sG�d,

(sa b�s)/2). First we look for simple equilibria of the form

qi(qi)�0 if qi�x and qi(qi)�1 if qi�x. (11)

In such equilibria, type qi expects the following marginal gain by choosing ai instead of bi.

Fi(qi, x)	

S
n�1

m�0

�
��
�

n�1

m

�
��
	

m integrals


�


�


�


x�s
�
�


x�s

n�1�m integrals


x�s

�

�
x�s

�

v
�
��
�

m

n�1
� s
�
��
	


�


�
 

�


�


h(s)*(e1,…, ei�1, qi�s, ei�1,�, en)

� h(s)*(e1,…, ei�1, qi�s, ei�1,�, en)de1�dei�1dei�1�dends

de1�dei�1dei�1�dends. (12)

By Lebesgue’s Theorem of Bounded Convergence (see Weir 1973), the continuity of *(�)
implies that Fi(qi, x) is continuous in qi. Therefore, the equilibrium x must satisfy Fi(x, x)�
0. By a simple translation, we get

Fi(x, x)�S
n�1

m�0

�
��
�

n�1

m

�
��
	

max

�


��
�

h�g (x)

h�g (x)
v
�
��
�

m

n�1
, x�g

�
��
	

,
h�g (x)

h�g (x)
v
�
��
�

m

n�1
, x�g

�
��
	

�
�
��
�

m integrals


�


�


�


ei

�
�


ei

n�1�m integrals


ei

�

�
ei

�

*(e1,…, en)de1�dei�1dei�1�dendei. (13)

Lemma 1, 2 and the fact that v(�, s) is strictly increasing in s, imply that for small enough g,

the right-hand side of the equation is smaller than G(sG)�0 on x�((sa b�s)/2, sG�d).

Therefore this class of equilibria with x�((sa b�s)/2, sG�d) does not exist. A similar proof

applies for x�(sG�d, (sa b�s)/2).

Next we study more general equilibria. Suppose that for any g�0 there exists a pair of a

distribution F and a Bayesian Nash equilibrium profile {q1(�),…, qn(�)}; the support of F is

contained in a ball around zero with radius g and the equilibrium profile satisfies qi(qi)�0 for

some i�N and some qi�((sa b�s)/2, sG�d). In the equilibrium, Vi(qi), type qi’s expected
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marginal gain by choosing a instead of b, is expressed by equation (7). Let Q i* be the set

{qi�Vi(qi)�0 and (sa b�s)/2�qi�sG�d} and let Q*��i�N Q i*. Since qi(qi) is an optimal

strategy, Vi(qi) � 0 if qi(qi)�0. Therefore if qi(qi)�0 for some i�N and some qi�
((sa b�s)/2, sG�d), then Q* is non-empty. For g�(sa b�s)/2, Q* have a lower bound that is

greater than (sa b�s)/2. Lebesgue’s Theorem of Bounded Convergence implies that Vi(qi) is

continuous in qi. These two facts imply that inf(Q*)�Q* for small g. Without loss of

generality, suppose Vi(inf(Q*))�0. Since all the players whose type qj is smaller than inf(Q*)

will play b, Vi(inf(Q*)) is equal to or smaller than Fi(inf(Q*), inf(Q*)), which is smaller than

zero for small enough g. A contradiction. A similar proof with a contradiction applies for x�
(sG�d, (sa b�s)/2).

The intuition for the nonexistence of the simple equilibrium that is defined by equation

(11) with x�[ q, sG�d) or x�(sG�d, q ] is very simple. Suppose there exists such an

equilibrium with x�[sa b, sG�d), and player i gets private information qi that is infinitesimally

higher than x. Since player i’s private information is not so favorable for action a, he would

choose a only when he expects many other players choose a. Infinitesimal noises make such

coordination impossible. If the support of the noises is small compared with the support of the

common shock and the density of the common shock is smooth, the private information qi will

convey almost no information on ei. Player i’s posterior joint distribution of his noise and the

other players’ noises is very close to the prior joint distribution. Therefore, he expects that one

half of the other players observe qj to be lower than x and he can not rely on other players’

coordination in choosing a. The critical point sG depends on each player’s expectation of the

relative position of his noise with the other players’ noises. Since the unconditional probability

of the event “player i’s type qi is lower than other m players’ types and higher than n�1�m

players’ types” is equal to 1/n for every m�{0, 1,.., n�1}, sG is determined by equation (8).3

Next we generalize our results. First we show

Corollary. Assume that the support of F is contained in a ball around zero with radius g, which

is smaller than min {(sa b�s)/2, (s�sa b)/2}. Then for every d�(0, min[sG�sa b, sa b�sG]) there

exists positive s 2
e such that whenever s 2

e (the unconditional variance of ei) is positive and smaller

than s 2
e , each players’ behavioral strategy qi(qi) satisfies qi(qi)�0 for any qi�[ q, sG�d), and

qi(qi)�1 for any qi�(sG�d, q ].

Proof. For qi�[ q, (sa b�s)/2] and qi�[(sa b�s)/2, q ], the same proof as in Theorem 1

applies. For qi�((sa b�s)/2, sG�d) and qi�(sG�d, (sa b�s)/2), we first look for simple

equilibria of the form

qi(qi)�0 if qi�x and qi(qi)�1 if qi�x.

Chebyshev’s inequality implies Prob [�ei��s 0.5
e ]�se. By this inequality, we get

3 If the number of players is two or the function v(m/(n�1), s) can be expressed as the sum of a linear

function of m/(n�1) and a function of s, the unique equilibrium behavior in a global game with vanishing noise

will be identical with the unique equilibrium behavior that is selected out of multiple equilibria of the correspond-

ing complete information game by risk-dominance criterion of Harsanyi and Selten (1988). But, in general, the

two equilibria di#er. (See Carlsson and van Damme 1991.)
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Fi(x, x)�

S
n�1
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�

m

n�1
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e
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��
	

,

0.5
e

0.5
e
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(1�se)h�s (x)�se h�g (x)
v
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�

m

n�1
, x�s 0.5

e

�
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m integrals
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����

ei

n�1�m integrals

�ei
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��ei

��
*(e1,…, en)de1�dei�1dei�1�dendei
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e

h�g (x)

(1�se)h�s (x)�se h�g (x)
v
�
��
�

m

n�1
, x�g

�
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,

0.5
e

h�g (x)

(1�se)h�s (x)�se h�g (x)
v
�
��
�

m

n�1
, x�g

�
��
	



�
�

��el��s 0.5
e
���

ei

����

ei
�ei

��
��ei

��
*(e1,…, en)de1�dei�1dei�1�dendei

�
�
�

(14)

Lemma 1 and 2 imply that for small enough s 2
e , the right-hand side of the equation is smaller

than G (sG)�0 on x�((sa b�s)/2, sG�d). Therefore this class of equilibria with x�((sa b�
s)/2, sG�d) does not exist. A similar proof applies for x�(sG�d, (sa b�s)/2). For more

general class of equilibria, the same proof as in Theorem 1 applies.

Now, we study the games in which each player’s payo# is a#ected by the sum of a

common shock and an infinitesimal idiosyncratic shock. Suppose ei is not a noise but an

idiosyncratic shock and player i’s payo# is a#ected by qi�s�ei instead of s.

v
�
��
�

m

n�1
	 qi

�
��
	

.

We keep all the other assumptions from our original model. In this new model, equations, (7),

(12), and inequality (13) will hold if we replace both the term v(m/(n�1), s) in equations (7)

and (12) and the term v(m/(n�1), s�g) in inequality (13), with v(m/(n�1), qi). This fact

implies that Proposition 1 and Theorem 1 are still true.

III . A Speculative Attack Model

In this section we apply the theory of global games to a speculative attack model in which

investors’ information on monetary authorities’ intention to defend a fixed exchange rate is

incomplete. Consider a foreign exchange market of a small open country with a fixed exchange

rate system. The market is opened two times, at the first and the second period. There are three

types of participants, investors, the domestic monetary authority, and pure traders. There are

two types of assets, domestic and foreign currency. Both currencies bear zero nominal interest.

Neither foreign residents nor foreign monetary authorities do not hold domestic currency. All
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the investors are domestic residents.

There are n risk neutral investors. At the beginning of the first period, each investor owns

A/n unit of domestic currency. Investors consume all their assets in the second period. To buy

or sell one unit of foreign currency, investors pay c/2 unit of foreign currency as transaction

cost. In order to buy consumption goods, domestic currency is required. Therefore, if an

investor purchases one unit of foreign currency in the first period, he will resell it in the second

period and the total transaction cost will be c.4 In the first period, each investor choose one of

two actions, converting all the domestic currency into the foreign currency in the first period

and repurchase the domestic currency in the second period, or holding domestic currency until

the second period. We call the first action speculation and the second non-speculation. Each

speculating investor will incur transaction cost cA/n. Let k denote the number of investors

who speculate in the first period. Then the total demand for foreign currency by the investors

amounts to kA/n.

Net purchase of foreign currency by pure traders is equal to the current account deficit of

the country. Let D denote the current account deficit in the first period. D is a random variable

with cumulative density function H(�). The investors do not observe a realization of D when

they make decisions on speculation in the first period.

We model the monetary authority’s behavior as follows. Let R denote the potential

reserves the monetary authority is willing to use to defend the initial fixed rate. If the demand

for foreign currency is greater than R in the first period,

R� k

n
A�D,

then the domestic currency will be devaluated 100e percent in the second period. Otherwise

the fixed rate will be kept constant in the second period. R is a random variable with a support

[R, R]. Each investor gets private information on R:

qi�R�ei

where ei denotes noise.

The random variables D, R, and ei satisfy the following conditions.

A1) H(�), the cumulative density function of D is continuously di#erentiable and satisfies

H�(x)�0 for all x�[ R�A, R ],

H(R�A)�0,

H(R)�1,

�c�e{1�H(R)}�0,

and

�c�e{1�H(R�A)}�0.

A2) R is drawn from a distribution on [ R, R ] with a strictly positive and continuously

di#erentiable density.

4 If we assume that the investors hold assets with interest, then c will consist of the transaction cost and interest

rate di#erential between the two countries.
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A3) The noises e1, e2,…, en are independent of s and have a joint distribution F with a

continuous and bounded density *. * is symmetric about any ei and ej : *(e1,.., ei,.., ej,.., en)

�*(e1,.., ej,.., ei,.., en) for any i, j�N and any {e1, e2,…, en}. The support of F is contained

in a ball around zero with radius g.

To simplify the model, we assume that in the first period the authority keeps the initial

fixed rate and is willing to supply the amount of foreign currency that the market wants to buy,

kA/n�D. If we assume that the authority stops selling foreign currency as soon as it uses up

R, we would have to model the dynamic process in the first period market.

We assume that

0�c�e�1.

Therefore, if an investor expects devaluation, he will have an incentive to convert his domestic

currency into foreign currency in the first period and repurchase the domestic currency in the

second period. The price of the consumption good is set in world markets and the foreign price

level is constant and equal to one. The initial fixed exchange rate is normalized to be one.

Under these assumptions investors’ payo# is summarized by Table 1.

The sequence of events in our model is summarized as follows.

1) Nature chooses the potential amount of intervention, R and the current account deficit of

the first period, D.

2) Each investor gets private information on R. He observes neither D nor R.

3) The foreign exchange market of the first period is opened. The investors simultaneously

decide whether speculate or not. The monetary authority keeps the initial fixed rate and

supplies the amount of foreign currency that the market wants to buy, kA/n�D, where k

denotes the number of investors who speculate.

4) If monetary authority’s foreign currency supply in the first period is greater than R, the

authority will devaluate the domestic currency 100e percent in the second period. Otherwise

the authority will keep the initial fixed rate. In both cases, the authority sustains the fixed rate

within the second period and is willing to supply the amount of foreign currency that the

market wants to buy. The investors consume all their wealth.

We study investor i’s marginal gain by choosing speculation instead of non-speculation.

Let m denote a number of the other investors who speculate. If investor i does not speculate,

the probability of devaluation will be equal to 1�F(R�m A/n). Therefore, investor i’s

marginal gain by choosing speculation instead of non-speculation is expressed as

v
�
��
�

m

n�1
� �R

�
��
�
��c�e

�
�
�
1�H

�
��
�

R� n�1

n

m

n�1
A
�
��
�

�
�
�
.

We first consider the complete information case in which the investors observe R before

participating the first period market. Let Ra b and Ra b be defined by

T67A: 1. ICK:HIDGH’ P6ND;; >C I=: SE:8JA6I>K: AII68@ MD9:A

under devaluation under no devaluation

speculate (1�c)A/n (1�c)A/n

not specuate (1�e)A/n A/n
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�c�e{1�H(Ra b)}�0, (16)

and

�c�e{1�H(Ra b)�A}�0. (17)

If Ra b�R�Ra b, there will be two Nash equilibria in pure strategy. The one in which all the

investors speculate and the probability of the devaluation is 1�F(R�A) and the other in

which no investor speculates and the probability of the devaluation is 1�F(R).

Next we study incomplete information case. If we replace �R with s, the marginal gain

function v(m/(n/�1),�R) will satisfy all the assumptions in Section 2. Therefore we can

apply Theorem 1 to our speculative attack model. The critical value of the potential interven-

tion RG is determined by

S
n�1

m�0

1

n
H
�
��
�

RG� m

n
A
�
��
�
�1� c

e
. (18)

RG satisfies Ra b�RG�Ra b. Assume that noise is very small. Then Theorem 1 implies that

if an investor gets private information that is lower than RG, he will speculate. And if an

investor gets private information that is higher than RG, he will not speculate.

If actual R is smaller than RG, the probability of the devaluation will be 1�F(R�A). And

if actual R is greater than RG, the probability of the devaluation will be 1�F(R). So we must

be interested in the factors determining RG. Equation (18) implies that as transaction cost c

decreases or as the expected width of devaluation e increases, RG will become higher.

In order to explicitly solve equation (16), (17), and (18), let us specify the probability

distribution of the current account deficit. Suppose that the distribution is highly concentrated

around D�D*.5 Then we can get approximate solutions of equation (16), (17), and (18):

Ra b	D*,

Ra b	D*�A,

RG	D*�
�
��
�
1� c

e

�
��
�

A.

In this example, the relative sizes of the transaction cost and the possible devaluation rate

determine the critical amount of foreign reserves. If the transaction cost is close to the size of

the possible devaluation, the monetary authority will only need to prepare reserves as much as

the expected current account deficit in order to defend the fixed exchange rate.

Assume that the monetary authority can choose one of two situations, the complete

information case and the incomplete information case with small noise. The authority has to

make a decision before the authority knows realization of R, which is exogenously determined.

Also assume that the authority applies mini-max principle to multiple equilibrium problems.

That is, the authority holds the worst case in whole account. Then the monetary authority will

prefer the incomplete information situation with small noises over the complete information

situation.6

5 We assume that H(D*�e) is close to 0 and H(D*�e) is close to 1 for a small value e�0.
6 Bhattacharya and Weller (1992) constructed a model in which the central bank, when it intervenes in the

foreign exchange market, chooses not to reveal precisely what their targets are. In their model, investors are
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IV . The Network-Externality Model with Normal Random Shocks

Since there is no rigorous microeconomic foundation in our speculative attack model, it

is di$cult to evaluate national welfare in each equilibrium. In this section, by using a network

externality model, we analyze welfare implication of small noise.

Consider a technology characterized by network externalities. There are n identical

agents. The agents simultaneously decide whether to adopt the technology (action a) or not to

adopt (action b). The more the agents coordinate to adopt the technology, the higher their

utility. The payo# of the agents who do not adopt the technology is normalized to be zero. If

agent i chooses a, his payo# is

vi

�
��
�

m

n�1
� s
�
��
�
��c�r

m

n�1
�s (19)

where m denotes the number of the other agents who choose a and s denotes a common shock

that a#ects the productivity of the technology. r is positive. We assume the following informa-

tion structure. Each agent i observes qi that consists of a common shock s and a noise ei:

qi�s�ei.

s and ei are independent normal random variables with means zero and standard deviations

ss�0, se�0 respectively. The noises, e1,…, en, are independent of each other. Each agent i

knows neither other agents’ private information nor the composition of qi.

Since the support of each noise is not bounded, we can not directly apply Theorem 1 to

this model. But as Carlsson and van Damme (1993) show for two player game, under the

normal distribution assumption we can derive stronger results than in Theorem 1: the Bayesian

Nash equilibrium is uniquely determined for a certain set of (se, ss).

To begin with, we consider the complete information games that correspond to our

incomplete information game. Suppose there is no noise and s is directly observable. If s�c�
r, there is a unique Nash equilibrium B in which all users choose b. If s�c, there is a unique

Nash equilibrium A in which all users choose a. If c�r�s�c, there are two pure-strategy

Nash equilibria and one mixed-strategy Nash equilibrium.

Now we study our incomplete information game. For low enough qi, E[vi(1, s)�qi]�0

and action a(to adopt the technology) is strictly dominated. Conversely, for high enough qi,

E[vi(0, s)�qi]�0 and action b(not to adopt the technology) is strictly dominated.

First we look for simple equilibria defined by equation (11). That is, all the agents set a

common critical value x. In such equilibria, agent i who observes qi expects the following gain

by choosing a instead of b.7

assumed to be risk averse. Therefore, the impreciseness of investors’ information increases central bank’s ability to

manipulate the exchange rate. For general discussion on central bank secrecy, see Cukierman (1992).
7 Note that

E[ s�qi]�
s 2

s

s 2
s�s 2

e

qi, E[qj�qi]�
s 2

s

s 2
s�s 2

e

qi,

and Var[qj�qi]�
2 s 2

s s 2
e�s 4

e

s 2
s�s 2

e

qi.

(See Hoel 1962, p.200.)
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Fi(qi, x)��c� s 2
s

s 2
s�s 2

e

qi�
r

n�1 S
j�N�i

Prob[qj�x�qi]

��c� s 2
s

s 2
s�s 2

e

qi�
r

n�1 S
j�N�i

���
1

sz

�
�x�

s 2
s

s 2
s�s 2

e

qi
�
�

�
���

exp
�
�
	
� u2

2



�
�

du (20)

where s 2
z denotes Var[qj�qi]�(2s 2

s s 2
e�s 4

e )/(s 2
s�s 2

e ). Since function Fi is continuous and

(Fi/(qi�0 for all qi and all x, Fi implicitly defines agent i’s reaction function: when all of agent

i’s opponents take a common switching value x, then the optimal switching value for player i,

qi, is determined by Fi(qi, x)�0. The necessary and su$cient condition of an equilibrium

switching value x is

Fi(x, x)�0.

Fi(x, x) is strictly concave up at x�0 and concave down at x�0. Therefore, we get a su$cient

condition for a unique equilibrium switching value x:8

dFi(x, x)

dx x�0

� s 2
s

s 2
s�s 2

e

� �
����(n�1)

1

2

1

2{2s 2
s s 2

e�s 4
e } {s 2

s�s 2
e }

s 2
e �0. (21)

In the same way as in Theorem 1, we can show that under this condition there is no other

Bayesian Nash equilibrium of a more complicated form. The shaded region of Figure 2

represents the set of (se, ss) that satisfies the su$cient condition (21). If condition (21) is not

satisfied and Fi(0, 0)��c�r/2 is close to zero, then we will have three simple form equilibria.

To carry out welfare analysis, consider agent i’s expected payo# evaluated before the

revelation of qi. Suppose all the agents, including agent i, take a simple behavioral strategy

defined by equation (11) with a switching value x. Then agent i expects the following payo#:

Wi(x)����

x
F i(qi, x)y(qi)dqi (22)

where y(qi) denotes the density function of qi. By a di#erentiation, we get

dWi(x)

dx
��Fi(x, x)y(x)� r

n�1 S
j�N�i

���

x
g(x�qi)y(qi)dqi (23)

where function g(qj�qi) is the conditional density of qj given qi. The second term in the right

hand side of equation (23) denotes a spillover e#ect: a decrease in the switching value of all but

one agent bestows an external benefit upon the remaining agent.9 This fact implies that the

unique Bayesian Nash equilibrium is not Pareto optimal and all the agents will gain by

coordinating to decrease their common switching value.

Next we compare our Bayesian Nash equilibrium with Nash equilibria of the correspond-

ing complete information games. Suppose there is no noise and s is directly observable. Then

the economy can get stuck at a set of ine$cient equilibria in which no agent adopts the

technology at all s�(��, c). In such a worst case scenario the expected welfare of a

8 This condition is almost identical with Carlsson and van Damme’s (1990).
9 For a more detailed discussion on spillover e#ects, see Cooper and John (1988).
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representative agent evaluated before the revelation of s is

���

c
(�c�r�s)h(s)ds

where h(s) is the density function of s. On the other hand, in the incomplete information game

with infinitesimal noises there is a unique Bayesian Nash equilibrium. Equation (20) implies

that the switching value is close to c�r/2. This value is identical with the solution of equation

(8). Equation (20) and (22) imply that the expected welfare of a representative agent in this

equilibrium is

���

r

2
c�

(�c�r�s)h(s)ds�O(se)

which is greater than the expected welfare in the worst case of the complete information games

for small enough se. Therefore a central planner, who applies mini-max principle to multiple

equilibrium problems will prefer the incomplete information situation with small noises over

the complete information situation.

V . Concluding Remarks

As more economists interested in coordination failure problems, the question how one of

multiple equilibria is selected becomes more important. By generalizing Carlsson and van

Damme’s theory of global games, this paper studied a selection mechanism under incomplete

information. The implications of the theory of global games are investigated in two specific

models: a speculative attack model and a network externality model.

F><. 2. T=: S:I D; (se, ss) T=6I S6I>Hfi:H I=: SJ$8>:CI CDC9>I>DC (21)

;DG 6 UC>FJ: EFJ>A>7G>JB.
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Even when the monetary authority possesses relatively large foreign exchange reserves,

the speculative attack can be a self-fulfilling equilibrium under the complete information

situation. Each investor finds speculation profitable, when he believes that many other

investors will speculate. Suppose that there is a common shock and each investor gets noisy

private information. The noise is small. Then each investor expects that one half of other

investors get worse news for speculation than his. This expectation makes coordinative

speculative attack impossible. It is shown that the monetary authority in the speculative attack

model and the central planner in the network externality model will prefer the equilibrium in

a global game with small noise to the worst equilibrium in the corresponding complete

information game. Therefore, they will welcome the existence of small noise, if they apply

mini-max principle to multiple equilibrium problems.
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