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NORMAL TESTS FOR A UNIT ROOT IN THE
AUTOREGRESSIVE TIME SERIES MODEL*

TAKU YAMAMOTO

Abstract

Test for a unit root has been widely used to investigate the dynamic nature of eco-
nomic time series. However, it is known to be rather cumbersome, since the asymptotic
distributions of the conventional test statistics are non-normal and we have to resort to
the special tables for critical values. Recently, Choi derived the test statistic whose as-
ymptotic distribution is normal. This paper proposes similar test statistics and examine
their empirical size and power through the Monte Carlo experiment, and compare them
with those of the conventional Dickey-Fuller test statistics.

1. Introduction

Let {x.} be generated from
x;=70+,81xt_1+,82x,_2+ [N +‘BPXz_p+ﬂg (t=1,2, . e ,T), (1.1)

where 7,#0, and », (¢=1,2, . .., T) are independently identically distributed as N(0,52).
We are interested in testing for a unit root hypothesis Hy: 312_,8,=1 against the alternative
hypothesis Hy: 212 ,8;<1 or Hy: 32,8+ 1. Under H,, the process {x,} has a unit root as
well as drift. We may note that the existence of the constant term y,#0 is not essential
in the discussion of the paper.

The well-known Dickey-Fuller tests for a unit root developed by Fuller (1976) or Dickey
and Fuller (1979) are based upon the following transformed model

Xe =10+ pXeg+ B ANy + - o F B 1A% piy il 0, (1.2)

where p=3%_8:, pi*¥=— Z;’;J-Hﬁ‘ (j=L12,...,p—1), and 4 is the difference operator. The
time trend ¢ is introduced since the process {x.} is a trend plus stationary process under
the alternative hypothesis H,. Let 9. be the least squares estimator of p. The Dickey-Fuller
test statistics, T(4.— 1) and the usual z-statistic for testing the hypothesis p=1, are known to
be non-normal and necessary critical values are tabulated in Fuller (1976, Ch.g).

* 1 am grateful to Ms. Motoko Yuasa for an able research assistance for the computations reported in
the paper. The research was in part supported by Grant-in-Aid 04630013 of the Ministry of Education,
science and Culture of Japan.
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Recently, Choi (1991) has proposed a new test statistic which is asymptotically normal.
Yamamoto (1992a) has also proposed a simple and convenient method for circumventing
the difficulties encountered in the statistical inference in a vector autoregressive model which
may have unit roots. It was shown that the usual Wald test statistic of constraints is as-
ymptotically chi-square. See also Toda and Yamamoto (1993).

In this paper, as a special case of Yamamoto (1992a), we propose test statistics for a
unit root whose asymptotic distributions are normal. We also propose a simple way to
enhance the power of the tests. We examine empirical sizes and powers of those tests through
the Monte Carlo experiment. Further, we compare their powers with the Dickey-Fuller
tests.

II. Test for a Unit Root Based Upon the Asymptotic Normality

In this section, we briefly explain the test procedure. In order to test for a unit root
based upon asymptotic normality, we consider the following regression model:

x;=7‘0+‘81x‘-1+52x,_2+ o e +ﬁng_p+ﬁp+1.Xz_p_1+r1t+7]3. (2.1)

The key elements of the above regression model are that it is expressed in levels not in trans-
formed form and it includes an extra lagged variable x,_,_,. Since x,_,_; and  are redundant
variables, we have Bp4;=7,=0.

Following Dickey and Fuller (1979) or Sims, Stock and Watson (hereafter SSW, 1990)
the regression model (2.1) can be expressed as

X =6112% 1+ 0102 -2+ « o F010ZYpF G2t 8328+ 84(1— 1)+, (2.2)
where z4,_;=dx,_;j—p (=12, . . . ,p), 28 =Xy —p(t—1),
011=— Z?:jlﬂﬁi (G=12,...,p) 62=p+r1
S3=2221Bi 8a=8au+71, and p=yo/(1— E%_13..9)-

Under H,, that is, 32_,8:=1, and the assumptions 8,1,=r,=0, we have §;,=0, 6.=p,
63=1, and 5,=p. Using the above representation, we have the following result:

Theorem: Let B, the least squares estimator of 8; (j=1, . . ., p+1) in the regression model
2.1). We have

D
(a) 2y —> N0, 1), 23)
and
®) VT (poy— 1) N(O, 1), @.4)

where {3,N=Zf’=15i, .y is the conventional t statistic for testing ¥.2_ =1, that is, t.x=
(b5 —1)/SE(@.x), SE(p.x) is the relevant estimate of asymptotic standard error of p.n, and
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D
— implies the convergence in the distribution.

The proof is essentially a special case of Yamamoto (1992a), and is given in Appendix
A in detail. We may note that the proof of (b) needs an extra explanation.

Remark I: Choi (1991) derived a similar result from the following regression model, by
adding x,_,_, variable to (1.2) not to (1.1):

Xe=ro+pr1Xe-1+ Bi¥dXe g+ . . By 1 dXtopi1F ppeaXeoporF il e 2.9

He showed that the conventiooal ¢ statistic for testing p,=1 based upon the OLS estimate
of p, is asymptotically normal. It corsesponds to (a) of the above theorem, but they are
not algebraically the same in general.

Remark 2: It is important to note that the proposed test statistics .» and #.» include only
the first p coefficient estimates and intentionally drop $,.,. If we included f,,,, we have

D24 Bi=5,. Then yT(X2+}5:—1) becomes degenerate, and T(X. 214, — 1) has a non-normal
limiting distribution as in the Dickey-Fuller statistics. This is easily seen in the argu-
ment in Appendix A.

Remark 3: The proposed method can be extended to more general models. Consider

now that the model (1.1) has double unit roots. For simplicity, we here assume that we

know a priori that y=0. In this case, we consider the following regression model:
Xe=F1Xe—1t BaXi—gt . .. +PpXi-pt+ Bpt1Xe-p-1F BpreXiop—2+ 7. (2.6

We now have two additional lagged variables x,_,, and x;_,_,. The true. values of §,4;
and 8,4, are zero. The transformed representation is given as follows:

Xt=51,121t—1+51,2zlr—2+ e +51_pzlt_p+522t2+ 532t3+77t, (27)
where
Zlg_j =A2x;_.j (j:l’ 2, “e ey p), Z,2=Ax¢_1, Z¢3=X¢_1,

51/_2? J+2(l—2).8i (J 1 2 .. ,P),
~Z8G-1), and s=X2 A

Following Hasza and Fuller (1979), the null hypothesis for double unit roots is given by
d,=83=1. We can formulate the hypothesis in terms of the original parameter g’s as
follows:

Hy: Rg=r, 2.8)
H: RB#r,
where 8=[51, 2, . . ., Botals ¥=I[1, 1T’, and R is the 2 x (p+2) matrix such that

R_[l 1 1 1... I oo]
o -1 =2 =3...—(p=1D 0 of



150 HITOTSUBASHI JOURNAL OF ECONOMICS [December

We can easily construct the Wald statistic for the hypothesis. Yamamoto (1992a) has shown
that it is asymptotically ch-isquare. It corresponds to the test statistic ¢,(2) in Hasza and
Fuller (1979) which is asymptotically non-normal. The method can be further generalized
to regression models which have the constant term and/or trend terms. However, if we
are interested in the Wald tests which also involve coefficients of the constant term, the pre-
sent method will no longer produces a chi-square distribution. See Yamamoto (1992b)
for treatment of the case.

III. Empirical Size of the Normal Tests

3.1 Estimators to be Examined

While the proposed tests are convenient, it is important to examine their properties
in small and moderate samples before we use them in practice. In this experiment, we
consider two types of very simple data generating processes:

Xt =x;._1+77;, (3.1)
and

x;=l+x;_1+7],, (3.2)
where 7, is independently identically distributed as N(0, 1).

We now consider test statistics which are asymptotically normal. For data from the
first process (3.1), two relevant regression models are given by

Xe=p1Xt—1 + BoXt—2t e, (3~3)
and .
Xe=7o+ P1Xe-1+ foXe—2+ 7. (3.4)
The least squares estimates of 8, are denoted as sy and @, respectively. The conventional
t statistics are denoted as #x and %,», respectively. For the data from the second process
(3.2), the regression model is given by
" X =70+ BrXeoy + BeXeat rat + 7. (3.5)

The least squares estimate of 8, is denoted as §.» and the concentional ¢ statistic is denoted
as 7.y. Here, the subscript N indicates that these test statistics are asymptotically standard
normal. Their asymptotic distributions are summarized as follows:

JTGE=1)-NO, 1) (=N, s, ), (3.6)
and

D
#—sN©,1)  (i=N, N, tN). (3.7)

!

We call these test statistics as the unmodified test statistics in order to distinguish from the
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ones introduced below. Since the data generating processes (3.1) and (3.2) do not include
higher order stationary parts, that is, p=1, the test statistics #, (i=N, pN, tN) exactly co-
incide with the ones proposed by Choi (1991). Thus, these experiments also serve as ones
for his method.

Next, we introduce a simple modification to the above test statistics, by adding a var-
iable x,.,, instead of x;_, in the regression models. The modification is expected to give
more power to the tests. For data from the first process (3.1), the regression models are,
instead of (3.3) and (3.4), given respectively as

Xe=p1Xe-1+F BoXe-10+ 71, (3.8)
and

Xe=yo+ B1Xe—1+ BoXt—10+ 7:. (3.9)
The least squares estimates of g, are denoted as pyn and p,ym, respectively. The conven-

tional ¢ statistics are denoted as #ym and #,xn, respectively. For data from the second process
(3.2), the regression model is, instead of (3.5), given by

Xe=yo+ f1Xe—1+ BoXe—10+ 71t + 7. (3.10)

The least squares estimate of 8, is denoted as p.vm and corresponding ¢ statistic is denoted
as #.vm. Here, the added subscript m indicates that these test statistics based upon the
modified regression models. We call them the modified test statistics. The asymptotic
distributions of these statistics are summarized as follows:

_ D
3VT(p—1)—> N(0, 1) (i=Nm, uNm, er),' (3.11)
and

D
te—> N, 1)  (i=Nm, uNm, tNm). (3.12)
The explanation for the normalizing factor 3 +/T is given in Appendix B.

3.2 Design of Experiment

Sample sizes are T=25, 50, 100, 250, 500, and 1000. For each process, 40,000 series
are generated. Normal deviates are obtained from RANN2 of Facom Library Function
SSLII, which is based upon the Box-Muller procedure.

3.3 Small Sample Characteristics of the Tests

For illustration, Figs. 1-4 show the histograms of density functions of v7(3,y—1),
2.8, 3 YT (b.ym—1), and #,ym, respectively. The range of each cell of the histogram is 0.08,
and each curve is drawn by averaging three neighbouring cells for smoothing out an other-
wise erratic curve. These figures generally show the pattern of convergence to N(0, 1) as
T increases. Figures of other statsitics show similar patterns and are omitted for the sake
of space.
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Basic characteristics are tabulated in Table 1. As explained earlier, all test statistics
which appropriately normalized converge to the standard normal variate as T goes to in-

finity. Thus, we expect that, in the limit, bias and skewness are zero, variance is unity,
and kurtosis is three.

Major findings are summarized as follows:
(1) Generally, biases are negative, variance are greater than unity, skewnesses are nega-
tive, and kurtosises are greater than three. Negative baises are more profound than nega-
tive skewnesses. As T becomes large, they indicate the convergence to N(1, 0).

TABLE 1. SMALL SAMPLE PROPERTIES OF +/7(p;—1) AND £*

T Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis
F N
25 —0.237 1.20 —-0.109 3.06 —0.218 1.07 —0.073 3.40
50 —0.157 1.07 —0.058 2.96 —0.151 1.04 —0.051 3.15
100 —0.117 1.06 —0.037 2.97 -—0.114 1.04 —0.036 3.08
250 —0.069 1.02 —0.001 3.01 —0.068 1.02 —0.002 3.06
500 —0.048 1.01 —0.009 2.98 —0.048 1.00 —0.010 3.00
1000 —0.036 1.01 —0.003 3.05 —0.036 1.01 —0.003 3.06
Pun Tul
25 —0.852 1.36 —0.137 3.08 —0.795 1.27 —0.130 3.39
50 —0.581 1.19 —0.089 3.02 —0.561 1.15 —0.088 3.18
100 —0.413 1.11 —0.042 2.99 —0.406 1.09 -—0.043 2.09
250 —0.255 1.04 —0.000 3.01 —0.253 1.04 —0.000 3.05
500 —0.179 1.02 —0.008 2.98 —0.178 1.01 —0.007 3.01
1000 —0.128 1.02 —0.001 3.05 —0.128 1.02 —0.001 3.06
prN TN
25 —1.524 1.64 —0.160 3.07 —1.430 1.50 —0.167 3.38
50 —1.063 1.36 —0.118 3.02 —1.026 1.30 —0.107 313
100 —0.747 1.17 —0.066 3.00 —0.733 1.15 —0.066 3.08
250 —0.470 1.08 —0.005 2.96 —0.466 1.07 —0.004 3.00
500 —0.329 1.03 —0.007 2.95 —0.328 1.02 —0.007 2.97
1000 —0.234 1.02 —0.018 2.97 —0.234 1.02 —0.018 2.99
BNm tNm
25 —1.684 6.81 —1.489 6.77 —0.641 1.18 —0.069 3.69
50 —1.028 3.86 —1.345 6.14 —0.549 1.02 0.022 3.17
100 —0.673 2.20 —0.996 5.00 —0.430 1.04 0.002 3.05
250 —0.388 1.26 —0.580 3.69 —0.277 1.03 —0.018 3.07
500 —0.280 1.11 —0.387 3.25 —0.211 1.01 —0.016 3.01
1000 —0.195 1.06 —0.249 3.08 —0.149 1.02 —0.006 2.99
_ﬁme TuNm
25 —5.695 15.68 —0.620 3.47 —1.808 1.21 —0.223 3.93
50 -—3.089 5.93 —1.076 4.94 —1.566 0.95 —0.018 3.34
100 —1.830 2.93 —0.950 4.59 —1.221 1.06 0.057 3.00
250 —1.009 1.62 —0.617 3.72 —0.808 1.08 —0.012 3.04
500 —0.693 1.28 —0.404 3.29 —0.592 1.04 —0.013 3.01
1000 —0.480 1.15 —0.262 3.12 —0.422 1.04 0.002 3.01
DeNm 2:Nm
25 —8.889 19.03 —0.311 3.08 —2.437 1.28 —0.453 4.22
50 —5.502 8.33 —0.771 3.72 —2.388 0.77 —0.115 3.40
100 —3.235 4.44 —0.841 4.03 —1.980 0.98 0.119 3.06
250 —1.746 2.16 —0.653 3.82 —1.375 1.15 0.020 3.02
500 —1.164 1.50 —0.427 341 -—1.004 1.10 —0.001 3.00
1000 —0.813 1.24 —0.274 3.13 -0.735 1.07 —0.001 3.01

* The normalizing factor is 34/T for the modified p-type statistics.
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(2) Generally, r-type statistics are closer to N(0, 1) than the corresponding o-type statistics.
(3) The modification makes the statistics deviate from N(0, 1). Especially, the deviation
is larger for the p-type statistics. It is reflected in large negative biases and large variances,
particularly when the sample size is small.

3.4 Empirical Sizes of the Tests

Tables 2a and 2b show empirical sizes for both two sided and lower one sided tests for

TABLE 2a. EMPIRICAL SIZES OF p-TYPE TESTS

Size of 19 Size of 59 Lower Lower
T Lower Upper Sum Lower Upper Sum 1% 5%
Tail Tail Tail Tail Tail Tail
175
25 0.015 0.003 0.018 0.055 0.017 0.072 0.027 0.095
50 0.010 0.003 0.013 0.043 0.018 0.061 0.019 0.077
100 0.009 0.004 0.013 0.037 0.020 0.057 0.016 0.069
250 0.006 0.004 0.011 0.030 0.023 0.053 0.013 0.059
N 500 0.006 0.004 0.010 0.027 0.023 0.050 0.012 0.056
1000 0.006 0.005 0.011 0.028 0.024 0.052 0.012 0.055
ONm
25 0.278 0.008 0.286 0.360 0.019 0.379 0.310 0.408
50 0.151 0.000 0.151 0.230 0.002 0.232 0.179 0.283
_ 100 0.084 0.000 0.084 0.150 0.002 0.152 0.107 0.199
250 0.03t 0.000 0.038 0.088 0.005 0.093 0.054 0.131
500 0.023 0.000 0.023 0.065 0.008 0.073 0.036 0.104
1000 0.016 0.001 0.017 0.050 0.012 0.062 0.026 0.085
OuN
25 0.071 0.001 0.072 0.170 0.006 0.176 0.103 0.245
50 0.037 0.001 0.038 0.103 0.008 0.111 0.059 0.165
100 0.021 0.002 0.023 0.072 0.011 0.083 0.036 0.122
250 0.012 0.003 0.015 0.047 0.015 0.062 0.022 0.085
500 0.009 0.003 0.012 0.038 0.017 0.055 0.016 0.074
1000 0.008 0.004 0.011 0.035 0.020 0.055 0.015 0.067
OpuNm
25 0.773 0.004 0.777 0.831 0.007 0.838 0.797 0.857
50 0.516 0.000 0.516 0.631 0.000 0.631 0.561 0.692
100 0.285 0.000 0.285 0.409 0.000 0.409 0.332 0.484
250 0.112 0.000 0.112 0.209 0.001 0.210 0.147 0.279
500 0.058 0.000 0.058 0.132 0.003 0.135 0.082 0.192
1000 0.032 0.001 0.033 0.088 0.006 0.094 0.049 0.139
PN
25 0.201 0.000 0.201 0.358 0.002 0.360 0.260 0.453
50 0.098 0.000 0.098 0.219 0.003 0,222 0.139 0.304
100 0.048 0.001 0.049 0.231 0.005 0.137 0.073 0.204
250 0.021 0.001 0.022 0.077 0.009 0.086 0.037 0.130
500 0.013 0.002 0.015 0.054 0.012 0.066 0.024 0.099
1000 0.010 0.003 0.013 0.044 0.015 0.059 0.019 0.082
OcNm
25 0.939 0.002 0.941 0.958 0.003 0.961 0.947 0.965
50 0.856 0.000 0.856 0.918 0.000 0.918 0.884 0.942
100 0.570 0.000 0.570 0.701 0.000 0.701 0.624 0.764
250 0.260 0.000 0.260 0.399 0.000 0.399 0.312 0.487
500 0.126 0.000 0.126 0.245 0.001 0.246 0.167 0.327

1000 0.064 0.000 0.064 0.150 0.003 0.153 0.092 0.220
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TABLE 2b. EMPIRICAL SIZES OF 7z-TYPE TESTS

Size of 19, Size of 5% Lower Lower
T Lower Upper Sum Lower Upper Sum 1% 5%
Tail Tail Tail Tail Tail Tail
N
25 0.014 0.004 0.018 0.047 0.017 0.064 0.024 0.083
50 0.011 0.004 0.015 0.040 0.018 0.058 0.019 0.072
100 0.009 0.004 0.013 0.036 0.020 0.056 0.017 0.068
250 0.007 0.004 0.011 0.030 0.023 0.053 0.013 0.058
500 0.006 0.004 0.010 0.027 0.023 0.050 0.012 0.056
1000 0.006 0.005 0.011 0.028 0.024 0.052 0.012 0.055
tNm
25 0.038 0.003 0.041 0.102 0.010 0.112 0.057 0.165
50 0.022 0.002 0.024 0.079 0.008 0.087 0.038 0.136
100 0.017 0.002 0.019 0.066 0.010 0.076 0.031 0.116
250 0.013 0.003 0.016 0.048 0.014 0.062 0.022 0.089
500 0.006 0.005 0.011 0.026 0.024 0.050 0.010 0.051
1000 0.008 0.003 0.011 0.036 0.018 0.055 0.016 0.069
FuN
25 0.060 0.002 0.062 0.145 0.007 0.152 0.086 0.216
50 0.033 0.002 0.035 0.096 0.009 0.105 0.053 0.153
100 0.021 0.002 0.023 0.069 0.011 0.080 0.035 0.117
250 0.012 0.003 0.015 0.047 0.015 0.062 0.022 0.085
500 0.009 0.003 0.012 0.038 0.017 0.055 0.016 0.073
1000 0.008 0.004 0.012 0.036 0.020 0.056 0.015 0.067
£ uNm
25 0.222 0.000 0.222 0.431 0.001 0.432 0.297 0.556
50 0.142 0.000 0.142 0.342 0.000 0.342 0.209 0.472
100 0.091 0.000 0.091 0.239 0.001 0.240 0.142 0.345
250 0.046 0.001 0.047 0.133 0.004 0.137 0.073 0.209
500 0.026 0.001 0.027 0.091 0.007 0.098 0.045 0.152
1000 0.018 0.001 0.019 0.065 0.010 0.075 0.031 0.116
304
25 0.168 0.001 0.169 0.320 0.002 0.322 0.222 0.418
50 0.086 0.001 0.087 0.204 0.004 0.208 0.125 0.286
100 0.045 0.001 0.046 0.125 0.006 0.131 0.070 0.197
250 0.021 0.002 0.023 0.076 0.010 0.086 0.037 0.128
500 0.013 0.002 0.015 0.053 0.012 0.065 0.024 0.098
1000 0.010 0.003 0.013 0.044 0.015 0.059 0.019 0.082
FeNm
25 0.423 0.000 0.423 0.660 0.000 0.660 0.519 0.768
50 0.401 0.000 0.401 0.694 0.000 0.694 0.522 0.811
100 0.279 0.000 0.279 0.516 0.000 0.516 0.370 0.640
250 0.131 0.000 0.131 0.244 0.001 0.245 0.188 0.399
500 0.066 0.000 0.066 0.181 0.002 0.183 0.103 0.273

1000 0.038 0.001 0.039 0.117 0.005 0.122 0.062 0.189

1% and 59, significance levels.

(1) Since the test statistics are negatively biased as explained earlier, lower tail empirical
sizes are larger than the corresponding nominal sizes and upper tail empirical sizes are
smaller, especially when the sample size is not large.

(2) The p-type tests are worse than the z-type tests in the sense their sizes are much larger
than the corresponding nominal sizes, as expected from the above results. For the un-
modified test statistics, as the sample size increases, empirical sizes converge to the corre-
sponding nominal sizes. The modified test statistics also exhibit the convergence, but their
sizes remain much larger than the nominal sizes.
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(3) In conclusion, in terms of size, the unmodified z-type tests are the best among them,
and they are close to N(0, 1) when the sample size is 500 or larger.

1V. Power of the Tests

4.1 Test Statistics to be Compared

In addition to the test statistics proposed in this paper, we compare their power with
that of the well-known test statistics by Dickey and Fuller (1979). For data from the
first process (3.1), The Dickey-Fuller statistics are obtained by estimating following the
models:

Xe=PF1Xs_1+ 7e, (4-1)
and

Xi=yo+ P1Xe—1+ 7. 4.2)

The least squares ‘estimates of 3, are denoted as p ,, respectively. The conventional ¢
statistics are denoted as # and #,, respectively. For the data from the second process (3.2),
the Dickey-Fuller statistic is obtained from

X =T0+ﬁlxt—1+r1t+v2- (4.3)

The least squares estimate of g, is denoted as 3., and the corresponding ¢ statistic is denoted
as #.. The notation for these statistics is exactly the same as used in Dickey and Fuller
(1979), and necessary critical values are tabulated in Fuller (1976).

4.2 Design of Experiment

In this experiment, we consider two types of data generating processes for representing
alternative hypotheses. Instead of (3.1) and (3.2), we have respectively

X =pX5_1+ Nty (44)
and

(=) =p(Xiey— (= 1))+ 7., (4.5)

where 7, is independently identically distributed as N(0, 1). Since we are generally interested
in testing for a unit root hypothesis against a stationary alternative, we only consider the
case where p<1. In particular, we set p=0.95, 0.90, and 0.80.

Since the proposed test statistics are generally negatively biased, we first obtain the
size-corrected critical values from the experiments reported in section 3. These critical
values are tabulated in Table 3.

Sample sizes are T=25, 50, 100, 250, 500, and 1,000. For each process, 40,000 series
are generated. Normal deviates are obtained as in the previous experiment.
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TABLE 3. CRITICAL VALUES OF 5% AND 19, Lower TaIL TESTS

5%
T N fNm fuv Bulm AN beNm
25 —2.01 —6.73 —2.82 —12.94 —3.68 —16.56
50 —1.88 —4.19 —2.41 —7.67 —3.00 —10.89
100 —1.82 —3.08 —2.16 —4.98 —2.56 -7.16
250 -1.73 —-2.38 —1.93 —3.29 —2.19 —4.39
500 —1.69 —2.13 —1.83 —2.67 -—1.99 —3.28
1000 —1.69 —1.97 —1.79 —2.31 —1.90 —2.72
1%
T pN ﬁN’m p,uN ﬁme ﬁrN ﬁer
25 —2.78 —10.53 —3.68 —~16.63 —4.66 —19.90
50 —2.59 —6.60 —3.16 —10.51 —3.89 —13.80
100 —2.52 —-4.73 —2.87 —7.01 —-3.31 —9.39
250 —-2.42 —3.49 —2.63 —4.57 —2.86 —5.88
500 —2.37 —3.06 —2.51 —3.65 —2.67 —4.39
1000 —2.41 —2.80 —2.49 —3.19 —2.56 —3.63
5%
T N TNm TuN TuNm TN TeNm
25 —1.93 —2.41 —2.69 —3.65 —3.49 —4,39
50 —1.84 —-2.19 -2.36 —3.15 —2.92 —3.86
100 —1.81 -—2.09 —2.14 —2.89 —2.52 —3.57
250 -1.72 —1.94 —1.92 —2.53 —2.18 —3.13
500 —1.69 —1.87 —1.82 —2.28 —1.99 —2.71
1000 —1.68 —1.81 —1.79 —2.09 —1.90 —2.43
1%
T N TNm Tul TuNm TN TeNm
25 —2.74 —3.34 —3.59 —4.66 —4.47 —5.54
50 —2.60 —2.91 —3.15 —3.91 —3.81 —4.55
100 —2.54 —2.82 —2.89 —3.56 —3.29 —4.18
250 —2.43 —2.69 —2.64 —3.25 —2.86 —3.84
500 —2.38 —2.56 —2.51 —-2.97 —2.67 —3.4
1000 —2.41 —2.51 —2.48 —2.81 —2.56 —-3.15

4.3 Power of the Tests

The experimental results of the powers of the tests for 5% and 19 significance levels
are given respectively in Tables 4a and 4b. Major findings are summarized as follows:
(1) The modified test statistics are more powerful than the unmodified ones. It indicates
that the modification is quite effective.
(2) The proposed test statistics, both the unmodified and the modified, are less powerful
than the Dickey-Fuller tests.

V. Conclusion

In this paper, we proposed a few test statistics for a unit root which are asymptotically
normal, and reported their experimental sizes and powers. We found that, when the sample
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TABLE 4a. POWER OF 5%, LOWER TEST: CORRECTED SIZE
[4 T B by bm Ba Buw Duiim fe few feNm

095

25 0.09 0.08 0.08 0.08 0.06 0.06 0.04 0.04 0.05

50 0.14 0.09 0.13 0.10 0.07 0.07 0.02 0.04 0.05

100 0.32 0.12 0.25 0.19 0.10 0.13 0.01 0.06 0.06

250 0.90 0.19 0.58 0.62 0.16 0.41 0.12 0.12 0.24

500 1.00 0.30 0.89 0.99 0.27 0.81 0.89 0.24 0.70

1000 1.00 0.47 1.00 1.00 0.44 0.99 1.00 0.41 0.98
0.90

25 0.15 0.11 0.12 0.11 0.08 0.06 0.03 0.04 0.06

50 0.32 0.16 0.26 0.19 0.11 0.12 0.03 0.06 0.07

100 0.76 0.24 0.60 0.46 0.19 0.34 0.10 0.13 0.16

250 1.00 0.46 0.98 0.99 0.41 0.93 0.90 0.35 0.80

500 1.00 0.72 1.00 1.00 0.68 1.00 1.00 0.64 1.00

1000 1.00 0.93 1.00 1.00 0.92 1.00 1.00 0.91 1.00
0.80

25 0.34 0.21 0.24 0.19 0.13 0.09 0.06 0.07 0.07

50 0.78 0.36 0.55 0.32 0.25 0.21 0.16 0.17 0.16

100 1.00 0.59 0.98 0.87 0.51 0.82 0.71 0.41 0.62

250 1.00 0.93 1.00 1.00 091 1.00 1.00 0.87 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 T z (9.4 TNm Tu £uN TalN'm Te TN TeNm

095

25 0.08 0.07 0.07 0.06 0.06 0.05 0.06 0.07 0.05

50 0.14 0.09 0.12 0.07 0.07 0.06 0.06 0.04 0.05

100 0.31 0.12 0.23 0.12 0.09 0.12 0.15 0.06 0.06

250 0.90 0.19 0.58 0.44 0.16 0.40 0.70 0.12 0.23

500 1.00 0.30 0.90 0.97 0.27 0.81 1.00 0.23 0.70

1000 1.00 0.47 1.00 1.00 0.44 0.99 1.00 0.41 0.98

0.90 ]

25 0.14 0.10 0.10 0.07 0.08 0.06 0.07 0.05 0.05

50 0.31 0.15 0.22 0.11 0.11 0.10 0.12 0.07 0.07

100 0.76 0.23 0.57 0.31 0.18 0.30 0.35 0.13 0.16

250 1.00 0.46 098 0.97 0.41 0.92 0.96 0.34 0.79

500 1.00 0.71 1.00 1.00 0.68 1.00 1.00 0.64 1.00

1000 1.00 0.93 1.00 1.00 0.92 1.00 1.00 0.91 1.00
0.80

25 0.32 0.20 0.15 0.11 0.12 0.06 0.11 0.07 0.06

50 0.77 0.36 0.55 0.32 0.25 0.21 0.29 0.17 0.12

100 1.00 0.59 0.98 0.87 0.51 0.82 0.79 041 0.55

250 1.00 0.93 1.00 1.00 091 1.00 1.00 0.87 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

size is large, say, =500 or larger, empirical sizes of the unmodified z-type tests are close
to the corresponding nominal ones.
tively biased, and we have to use the size-corrected critical values for tesitng. The mod-
However, the modification has its cost,
that is, it brings even larger negative biases and the size-corrected critical values are also
needed for testing. Generally, powers of the proposed tests, even those of the modified
ones, are weaker than the those of the Dickey-Fuller type tests.

ification for improved power was quite effective,

On the other hand, the p-type tests are strongly nega-
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TaABLE 4b. PoweR OF 19, LOWER TeST: CORRECTED SIZE

14 T b on £Nm Bu Bu Pulim P+ BN p:Nm
055
25 0.02 0.02 0.02 0:02 0.01 0.01 0.01 0.01 0.01
50 0.03 0.02 0.03 0.02 0.02 0.02 0.00 0.01 0.01
100 0.08 0.03 0.06 0.05 0.03 0.03 0.00 0.01 0.01
250 0.51 0.06 0.27 0.25 0.05 0.15 0.01 0.03 0.06
500 0.99 0.11 0.66 0.87 0.10 0.53 0.46 0.08 0.37
1000 1.00 0.21 0.97 1.00 0.20 0.94 1.00 0.19 0.90
0.90
25 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01
50 0.08 0.05 0.07 0.05 0.03 0.03 0.00 0.01 0.02
100 0.31 0.08 0.24 0.15 0.06 0.10 0.02 0.03 0.04
250 0.99 0.22 0.87 0.88 0.18 0.70 0.52 0.15 0.45
500 1.00 0.46 1.00 1.00 0.43 1.00 1.00 0.38 0.99
1000 1.00 0.78 1.00 1.00 0.76 1.00 1.00 0.75 1.00
0.80
25 0.09 0.07 0.06 0.05 0.04 0.02 0.01 0.01 0.02
50 0.34 0.16 0.26 0.16 0.10 0.08 0.03 0.04 0.04
100 0.93 0.33 0.84 0.68 0.26 0.51 0.31 0.18 0.27
250 1.00 0.78 1.00 1.00 0.74 1.00 1.00 0.68 1.00
500 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.97 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 T 4 N £Nm ‘?p ?FN ?yN'm, T 2N TeNm
055
25 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
50 0.03 0.02 0.02 0.01 0.02 0101 0.01 0.01 0.01
100 0.07 0.03 0106 0.03 0.02 0.03 0.04 0.01 0.02
250 0.49 0.06 0.24 0.14 0.05 0.16 0.36 0.03 0.06
500 0.99 0.11 0.66 0.73 0]10 0.52 0.92 0.08 0.38
1000 1.00 0.21 0.96 1.00 0.20 0.94 1.00 019  0.89
0.90
25 0.03 0.03 0.02 0.01 0.02 0.01 0.02 0.01 0.01
50 0.08 0.04 0.05 0.03 0.03 0.02 0.03 0.01 0.02
100 0.31 0.08 0.20 0.08 0.06 0.08 0.12 0.03 0.04
250 0.99 0.21 0.84 0.74 0.18 0.67 0.77 0.14 0.44
500 1.00 0.46 1.00 1.00 0.42 1.00 1.00 0.38 0.98
1000 1.00 0.78 1.00 1.00 0.77 1.00 1.00 0.75 1.00
0.80
25 0.08 0.06 0.03 0.02 0.03 0.01 0.03 0.02 0.01
50 0.33 0.14 0.18 0.09 0.08 0.05 0.09 0.04 0.03
100 0.92 0.31 0.77 0.49 0.24 0.43 0.44 0.17 0.23
250 1.00 0.78 1.00 1.00 0.73 1.00 1.00 0.68 1.00
500 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.97 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

In sum, the o-type tests and the modified ones are inferior to the Dickey-Fuller tests
since they need the size-corrected critical values for testing as in the Dickey-Fuller tests and
they are less powerful. The z-type tests in the large sample may be useful in practice, since
they do not need the size-corrected critical values, although they are also less powerful than
the Dickey-Fuller tests.

HitotsuBAsHI UNIVERSITY
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APPENDIX A .: PROOF OF THE THEOREM

(a) The following proof is a special case of the one in Yamamoto (1992a) except the proof
of (b) below. We express the model (2.1) in the matrix notation as follows:

X Z‘B, Y[_1+7]¢, (A.l)

where Y. =[xy, Xe—p, . . ., Xi_p_y, 1, t], and B =81 B - - » Bot1> 70> 71l We now in-
troduce the following non-singular transformation matrix D:

Z,_,=DY, ,, (A2)
where Z,_ =[zY_,, 2% ,, ..., z%_p, 1, 23, t], and
- 0
- 0
D+
D= )
—p
0 0 1
1 0 .. 0 g -
0 L 0 -1 1
and D+ is the p x (p+ 1) matrix such that
1 -1 0 ...l 0
0 I -1 ... 0
Dt=
0 01 -1

The model (2.2) is rewritten in the matrix form as

X =ﬁ’D_1DYg_1+7]5
=8"Zi—1+ 1, (A.3)
where 5’=[51,1, 51,2, “ ey 51.11; O3, 535 54]’=13,D—1'

We may note that the variables z%,_,’s are stationary of order 0,(1), the constant term

is of 05(1), z.® is stochastic of order 0,( ¥T), and the trend variable ¢ is of 0,(T). Moreover,
for the limit of the moment matrix, SSW showed that

Ve 0 0 0
P 0 Vas Vaz V.
-1 7:- Zo 17 )1 V= 22 23 24 , A.4
T O I SRV ARV AP Al 0 Vi Ve Vi (A4
0 V42 V43 V44
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where 7 is the scaling matrix such that

JTI, 0 0 0
o vT 0o o0
o o T o0

0 0 0 T

Further, they showed that while ¥y, is the fixed constant, and Vi; (i, j=2) are stochastic
and are appropriate integrals of Wiener processes.

Let §,6(k=1, 2, . .., D), 63 83, 04 be the least squares estimates of 5, ,(k=1, 2, ..., p),
&4, 05, and &, Tespectively. SSW and Park and Phillips (1989) showed that §1—6,=0,(1/ ¥vT)
where 6;=[611, 01,2 - - « » 1.9 03— 83=05(1/ ¥T), 63— 65=0,(1/T), and §,—5,=0,(T*2).
In particular,

VT, — 8~ N(O, V7). (A.5)

Further, it is important to recall that + Téai63=1.

The null hypothesis H, is expressed as Rg=1 in the matrix form, where R is the p+3
element vector such that R=[1, 1,...,1,0,0, 0. We now consider the conventional ¢
test statistic as follows:

t=(RE—1)/SE(RB)= vT(RE—1)| YTSE(RE) (A.6)

where SE(RA)=[R6%(Z 1L ,13Y1-1Y 1) 'R, and where ¢*=3(x, — BY. )Y T—p—1).
Since we have g=D’4, it is easily seen that

RE=351_1p=01p+ 83
Since ¥ T(§;—1)—0, we have
VIRE—1)= VT(51,5+ 55— 1)

L VTiy, (A

5 NQ, *Vii)se)
where (V;Y)z5 is the (p, p)-element of V7. On the other hand, since Z,=DY;, we have

VTSE(RS)= VTIPRD 1L 1ZeesZer) Yy A DR2
= VT[*RDy G T 1 ps2ZeaZ0 ey ™) 'y DRI,

By the structures of R and D, we have

. RD’=[0,0,...,0,-1,0, 1, 0]

P
Noting that ¥ is block diagonal and 4%—3?% we have
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VTSE(R)—> VT[2RD’p-1V-1-DRJ12
= VT[T %6*/(V;1Dpp +0(T-D)]2

L VTIT (VY A8)
oV iD)pp2

From (A.6), (A.7) and (A.8), the conclusion follows.

(b) Here, by definition, §,,,=—fp4,=0 and it is regarded as the redundant parameter
in the p-th order stationary autoregressive process {z'}. Then, it is easily verified that
(Vﬁl),,p=1/az. (See, for example, Appendix 7.5 of Box and Jenkins (1976).).- Thus, from
(A.7), we have the desired result:

VT(RE~ 1)~ N(O, 1). (A.9)

APPENDIX B: DERIVATION OF THE NORMALIZING FACTOR 3/T-

For illustration, we derive the asymptotic distribution of §.yn in the regression model
(3.10). We can develop the argument as a special case of the one in Appendix A, by set-
ting p=1. For the transformed expression (A.3), we have Y, ,=[x:_y, Xi_10, 1, 1T, Zioy=
[Xem1— X105 1, Xy — p(t—1), £—17’, and

1 -1 0O 0
0 1 0
D= (1) P (B.1)
0 0 -1 1
For the limit of the moment matrix V, ¥;, becomes scalar, and in particular we have
V11=9q¢%. (8.2)
Thus, from (A.5) and §,,,=0, we have
VT(811—61.0)= «/TéLID—>N(O, 1/9). B.3)

< . . P
Following the similar argument in Appendix A, we have p.ym=56,,,+ 8, and v T(§;3—1)—0.

— P =a
VIBrm—1)— ¥Téy,. B4
Consequently, we have
_ D
3 VT (peym—1)— N(O, 1). (B.5)

In the above (B.2) is essential for the normalizing factor 3 V7.
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