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ON THE EXISTENCE OF OPTIMAL STATIONARY STATES 
IN CAPITAL ACCUMULATION UNDER UNCERTAlNTY : 

A CASE OF LlNEAR DIRECT UTILITY* 

SHlN-ICHI TAKEKUMA 

I. Introduction 

In this paper we shall consider a problem of the existence of optimal stationary states 

in a quasi-stationary model of capital accumulation under uncertainty. The considered 
model in this paper is a reduced model of capital accumulation under uncertainty, which is 

similar to those of Radner (1973) and Zilcha (1976). We assume the stationarity of the 
economy in that the probability distributions of production technologies and utility functions 

are the same at every period in time. However our model is quasi-stationary since future 

utilities are discounted. The case of a stationary model in which future utilities are not 

discounted was considered by Radner (1973). 
The existence of optimal stationary states in general deterministic models has been 

proved by Khan & Mitra (1986) and McKenzie (1986). In this paper we shall prove the 
existence of optimal stationary states in a model with uncertainty, where the linearity of 

direct utility function is assumed. Our technique for proof depends on that of Khan & 

Mitra (1986). First we shall prove the existence of discounted golden-rule states by using 

their technique. In their proof Kakutani's fixed-point theorem was used. However, since 

uncertainty is incorporated in our economy, we have to consider an infinite dimensional 

space, that is, the space of essentially bounded measurable functions. To find a fixed-point 

in the space we shall apply the theorem by Fan (1952). Next we shall prove that any dis-

counted golden-rule state is an optimal stationary state by using the primal approach of 

Khan & Mitra (1986). 
This paper is formulated in the following fashion. In section 11 we shall construct a 

general reduced model of capital accumulation under uncertainty. In section 111 the sta-

tionarity assumptions will be introduced into the model. In section IV the existence of 

discounted golden-rule state of capital accumulation will be proved. In section V it will 

be proved that discounted golden-rule states are optimal stationary states. In Appendix 

the proofs of two lemmas on the fundamental properties of the sationary model will be 

given. 

II. A General Reduced Model 

For a preparation to construct a stationary model, first we shall present a general reduced 

* This paper was presented at the 1988 annual meeting of the Japan Association of Economics and Econo-
metrics held in Kyoto. I would like to thank Prof. K. Kamlya for helpful comn]ents. 
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model of capital accumulation where future utilities and production technologies are uncer-
tain. 

Let (9, ~; P) be a probability space. Each element in Q denotes a possible state of 

nature, which may be interpreted as a stream of environments in all past, present, and future 

periods. Family ~ is the set of all possible events and P denotes the probability distribu-

tion of states. Let T= {O, 1, 2, . . .} be the space of time. The uncertainty of states is 

described by a filtration {~~1 te T} , i.e., ~~ is a family of subsets ofQ such that ~~c~~+1 

for all teT. Each family ~7 is interpreted as the informations about states that will 

become known up to period t. We assume that (9, ~;:, P) is complete for all t. 

The production technology available at each period t>0 is described by a relation Yt : 

Q - R~ x R~, that is, 

(,,eQ -~ Yt(a,)CR~ x R~. 

where R~ denotes an m-dimensional Euclidean space. We assume that the graph of Yt 
defined by 

G(Yt)= {(x, y, a') I (x, y)e Yt((~,)l 

is ~ (R~) x ~ (R~) x ~~-measurable, where ~f (R~) is the family of all Borel subsets 
of R~. By Yt(a,) we represent the possibility of transformation of capital stocks. That is, 

(x, y)e Yt(a') means that under state co it is possible to transform capital stock x at period 

t- I into capital stock y at period t. 

The satisfaction in the economy at each period t>0 is described by a utility function 

ut :G(Yt) H' RU {- oel , that is, 

(x, y, a,)e;G(Y) - u (x J' a,)eRU {-oo} , 

where R denotes the real line. We assume that ut is a ~(R~) x ~(R~) x ~~-measurable 
function, which may take value - oo. ut(x, y, a,) is interpreted as a level of social welfare 

under state (~, obtained at period t if capital stocks at periods t- I and t are x and y respec-

tively. 

In order to describe a program of capital accumulation, we wi]1 use a stochastic process, 

i.e., a function K :TX Q - R~ such that K(t, ･) is ~~:-measurable for each teT. To denote 
a stochastic process K :TX 9-R~, we also write as K= {kt I teT} , where kt is a function 
defined by kt(a,)=K(f, (~,). 

Definition 2.1: A stochastic process K= {kt I teT} is called a program, if kt is an 

essentially bounded ~~t-measurable function on ~2 to R~ for each te T. 

In program K= {kt I teT} , for each teT, kt is a random variable and kt(a,) denote a 

capital stock planned to accumulate at period t in state a'. We should note that by this 

definition we restrict ourselves to essentially bounded programs. 

Definition 2.2: A program K= {kt I te T} is said to be feasible if for each t>0, (kt_1((v), 

kt((o))e Yt((~') a.s. 

Since kt and Yt is ~~-measurable, production technology Yt is perfectly known in 

determining capital stock kt at period t. However, in determining kt_1 at period t-1, 

production technology Yt is unknown. In this sense, uncertainty exists in production 
technology. Similarly, utility function ut is perfectly known in determining capital stock kt 
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at period t, but unknown in determining kt_1 at period t- 1. Thus, uncertainty also exists 

in utility function. 

To evaluate feasible programs, the so-called overtaking criterion in the following defini-

tion is used, which is a generalization of the usual maximization problem. For a feasible 

program K= {kt I te T } , by Ut(K) we denote the sum of expected utilities that will be ob-

tained up to period t in program K, i.e., 

J9L~:{1u(k 1((o) Ut(K)= . ._ , k,(a'), a')]dP(a') 

Definition 2.3: A feasible program K= {kt I teT} is said to be optimal if there is no 

other feasible program K'= {kt' I te T] with k0=ko' such that 

lim sup [Ut(K ') - Ut(K)] >0. 

t-+= 

III. A Stationary Model and Stationary States 

Now we introduce the stationarity assumptions into the model. First we assume the 
stationarity of informations and probability distributions over time. 

(A.1) (stationarity ofuncertainty) : There is a map ?: 9-~!2 such that for each t. T : (Q, ~~, 

p)-(g2, ~~_1' p) is measurability- and measure-preserving : 

(1) For each t, T : (p, ~)-(12, ~~_D is one to one and onto, and both T and T-1 are meas-

urable. 

(2) For each t. P(T-1(E))=P(E) for all Ee~~_1' 

This assumption means that two measure spaces (Q, ~~, p) and (O, ~~_1' p) are iso-

morphic to each other under transformation T. In fact, under this assumption, T(~)= 
~~_1 and P(T(E))=P(E) for all Ee~~. Hence, (O. T(~),P) is equivalent to (9, ~~_1' p). 

Under the above assumption, for any ~~-measurable function f :12-･R~, there is an 
~~_1~measurable function g :Q-~R~ such that g'T=f. In fact, by (1) of (A.1), function g 

defined by g~f't~1 is such a function. Namely, any ~~-measurable functionf is described 

as f=g'r by an ~7_1~measurable function g. Thus any g7-measurable function f is de-

scribed as f:=g.Tt by an ~~o~measurable function g, where Tt denotes the t-time composite 

map of T. 

Conversely, Iet g :Q-R~ be an ~T; measurable function Then by (1) of (A 1) 
function f :Q-R~ defined by f=g'Tt is ~~-measurable. In addition, by (2) of (A.1), for 

any Be ~F (R~), we have 

P(f 1(B)) = P((g'Tt)~1(B)) 

= P((g'l:t~1)-1(B)) 

= P(g~1(B)). 

Thus, functions f and g can be regarded as the same random variable only except that periods 

in time are different. 

Next we shall assume the stationarity :of production technologies and social welfares. 
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(A.2) (statiollarity ofproduction set and utility function) .' 

(1) For each t, Yt=Yl'Tt~1. 

(2) There is a number 0<6< I such that for each t, 

ut(x, y, a')=at~1ul(x, y', tt~1((o)) 

for al] (x, y, a')eG(Y,). 

Under this assumption, map t : Q-9 is interpreted as the time-shifting operator. Each 

element in s2 may be interpreted as a stream of environments at all the periods in time. 

Let us call rt history " Let a'eQand a' =T((~'). Then, under assumptions (A.1) and (A.2), 

history (,,' can be regarded as the exactly same history as history a', except that each period 

t in history (o corresponds to period t- I in history (~' . 

Now, Iet us make the usual assumptions of convexity, continuity, and boundedness for 

the model. Since the model is stationary, we only have to make them on the production 

technology and the utility function at period l, that is, Yl and ul' From now on, to denote 

Yl and ul' we will write Y and u respectively. 

(A.3) (convexity') : 

(1) For each a'el2, Y(a') is a convex subset ofR~ x R~. 

(2) For each (~'e9, u(x, y', Q,) is concave m (x y) 

(A.4) (continuity) : 

(1) For each aJep, Y((~') is a closed subset ofR~ x R~. 

(2) For each a'eQ, u(x, y, (v) is upper semicontinuous in (x, y), i.e., if (x~, y~)-(xo, yo)' then 

lim sup u(x~, y~, (,,) ~ u(xo' yo' a'). 

n-= 

(A.5) (boundedness) : There are numbers b* and u* having the following properties : 

(1) If(x, y)eY(a') and lxl>b*, then lyl<Ixl-

(2) If(x, y)e Y((~,) and lxl~~b*, then u(x, y, a')_'~~u* 

Let J~~* denote the set of all essentially bounded g;io~measurable functions on ~2 to 

R~. By ~~:*･t we denote the set of all essentially bounded ~Tl~measurable functions on 
S2 to R~. The capital stock at period O is described by using a function in ~~~*. Also, the 

capital stock at period I is described by using a function in 2~=･r, and is denoted as ft-, by 
a function f e 2~=. 

The techonology to transform capital stocks at period I is represented by the following 

set. 

~/= {(f, g) I f, ge2~=･T, (f((o), g((o))e Y((v) a.s.} . 

Thus, to describe the feasibility of capital stocks between period O to period 1, we can use 

the following set. 

~r= {(f, g)eE~~= x ~= I (f g ~)e ~l} 

Since the model is stationary, by ~ we can define the feasibility of capital stocks be-

tween any two ad.jacent periods t-1 and t. Thus, a program {k. t I teTl is feasible if and 

only if (kt_1'Tl-t,kt T )e~r for all t Set ~ may be called "sationary transformation set " 
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Definition 3.1: A function ke2~* is called a stationary state if (k, k)e!~ . 

For each (f, g)~~, Iet us define c(f, g), if possible, by 

c(f, g)=J u(f(co), g(r((o)), (~')dP((o), 

9
 

Here ep(f, g) may be interpreted as the expected social welfare when capita stocks at 

periods O and I (or, t- I and t) arefand g respectively. 

Definition 3.2: A stationary state ke2~* is called a discounted golden-rule state if 

ip(k, k);~ ~(f, g) for a]1 (f, g)e ~i~= with f- 6g=(1 - 6)k. 

Definition 3.3: A stationary state ke:~~~* is said to be optimal if program {k･rtlteT} 
is optimal. 

Here we shall state two lemmas on the fundamental properties of the model. They 
can be proved in a well-known and usual manner. For proof, see Appendix. 

Lemma 3.1: ~/ is a convex and closed subset of (2~= x 2~=).T in the weak* topol-

ogy. Therefore, so is ~. 

Lemma 3.2.･ ip is concave and upper semicontinuous on set {(f, g)e~l llfll~b*1 in 
the weak* topology, i.e., for any beER, set {(f, g)e~ I Ilfll~;b* and c(f g)>=b} is 

convex and weak* closed. -
Remark 3.1: Let ~~~1 be the set of all ~~:o~integrable functions on 9 to R~. J~~~= 

can be regarded as the set of all norm-continuous linear functions on ~;:1 [see Dunford & 

Schwartz (1964, p. 289, Thm. 8.5)]. On the other hand, for each ge~11' a linear function 

on ~i~= defined by 

. J fe2~=- g'fdPeR 
Is continuous In the norm topology. There is the weakest topology for ~:= such that for 

all ge~~~1 the above defined linear function is continuous. Such a topology for ~~ is 

commonly referred to as the weak* topology and is denoted by a(~=, ~l)' 

IV. E;~'istence ofDiscounted Goldell-Ru/e States 

In this section we shall prove the existence of discounted golden-rule states. To do so, 

we assume the following: 

(A.6) (monotonicity) : If (x, y)eE Y(a') and x~; x', then (x', y)e: Y(a') and u(x, y, (~')~ u(x', y, o'). 

(A.7) (expansibility) : There is (f, g)eE~ such that f - 6g<< (1 - 5)k for any (k, h) e ~r . 

Here, by f<<g we mean that f((v)<g((o) a.s. 

(A.8) (linearity of direct utility:) There are ~Tl~measurable functions a:S2-~~ with 

cr~ O and p: Q-R~ such that 

u(x, y, a') =sup {a((o)-' + p((~J) I z~; O. (x-z, y)e Y((o)} 

for each (x, y, co). 
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Remark 4.1.･ Under assumptions (A.4), (A.5), and (A.8), we can easily show that for 

(f, g)e ~, there is ce ~=.t with c~ O such that 

( f(~') - c((,,), g't(e'))e Y (a') 

and 
u(f'((~J), g'r(a'), (~') =a(co) c(a') + fi(a') a.s. 

Namely, (f-c, g'T)e ~/and ip(f, g)= Jf [ac+p]dP [See Hildenband (1974, p. 60, Prop. 3)]. 

Let us define a bounded sub~et of ~~~ by 

~P= {fe2i~= I (f g)e~ and llfll ~b } 

Lemma 4.1.･ ~~is nonempty, convex, and weak* compact. 

Proof: By (A.7) ofexpansibility, we have f - 6g<< f_ - 6f, i.e., f << g. Hence, by (A 6) of 

monotonicity, (g, g)e~. Therefore, from (A.6) ofmonotonicity it follows that (f', ~)e!~r 

for anyf';~g. Assume thatf'(co)>b* a.s. Then, by (A.5) of boundedness, we can conclude 

that lg'r((~')1<b* a.s., i.e., Ilgll<b*. Hence ge~~, which implies that ~~~c. The con-

vexity of ~~~Pis obvious. 

In addition, from Lemma 3.1 it follows that ~~is weak* closed. Therefore, it is weak* 

compact. That is because any bounded subset of ~= js relatively compact in the weak* 

topology by Alaoglu's theorem [see Dunford & Schwartz (1964, p. 424. Thm. V.4.2. Cor. 

Let define'a relation c: ~P - ~ by ' 
ep(k)= {(~f, g)E ~ I f- 6g=(1 - a)k} . 

Lemma 4.2: c has the following properties. 

(1) If(f, g)ec(k), then llfll ~b* and llgll~b*. 

(2) For each ke~~~, c(k) is nonempty, convex, and weak* compact. 

Proof.' Let ke~~Pand (f;g)ec(k). Suppose that llgll>b*. Since (f g)eep(k) f 
~g =(1 - 6)k. Since llkll~b*, this implies that 

ll f ll ~; (1 - 6) il k 11 + 6 Ilg 11 < Ilg II 

Therefore, for some co we can take x>f((o) such that 

lg'r((~')1 > I xl > b* . 

Since (f, g ' T)e ~/, by (A.6) of monotonicity we have (x, g't(a'))eY((~'). This contradicts 

(1) in (A,5) of boundedness. Hence llgll~b*. Thus, the above inequality also implies 

that llfll~~b*. This proves property (1). 

To prove property (2), Iet ke ~~P. By (A.7) of expansibility, (f, g)e~r and f -6g<< 

(1 -6)k. Letf'=~g+(1 -~)lc. Then, f<<f'. Therefore, by (A,6) ofmonotonicity, (f', g)e 

~ . Therefore (f', g)eEc(k). That is, ep(k)~c. The convexity of c(k) is obvious from 

the definition of c. The weak* compactness of c(k) follows from property (1) and the 
weak* closedness of ~r . I

 
Under (A.5) of boundedness, the above lemma enables us to define a relation ~r : ~~-

~ by 
~r(k)= {(.f, g)ec(k) I ip(f, g) ~ c(f', g') for all (f', g')ec(k)} . 
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Lemma 4.3.' If (fo, go)e~r(ko), then there exists coe~~~* ' r wrth c>0 

following conditions : 

(1) ' (fo_co,g0.1~)e ~l:. 

(2) c(fo,go)=Jf [ac0+p]dP 

(3) J a(-h+6g)dP;~ J a(co_f0+6go)dP for all (h,g'T)e ~l. 

Proof: Since (fo, go)eE~r(ko), by Remark 4.1 there exists coe~~:~ ･ t with 
satisfies _conditions (1) and (2). 

Consider two subsets of ~~~* ' T defined by 

229 

satisfying the 

co;~O which 

H=1c-f0+6golc~E~:~='T, c;~0, acodP< J acdP 

and 

C= {-h+ 6g I (h, g 'c)eE ~IJ 

Suppose that HnC~c. Then there exist ce2~*･T with c~O and (11,g't)e ~/ such 
that J [ac0+p]dP< J [ac+p]dP and c-f0+5g0=_h+6g. Sirice (h,g'lr)e ~/, (h+c,g'r) 

e ~/ by (A.6) of monotonicity. Therefore, (h+c, g)ec(ko). However, ~'! (fo, go) <ep(/1+ 

c, g). This contradicts that (fo, go)e~r(ko). Hence. HnC=c. Thus, 

Ja(-h+6g)dP< Ja(c f +ag )dP 

r r ' for all (h g r)e ~/ and ce2~=･T with c;~0 and j (rcodP<J crcdP. Since c can be chosen 

arbitrarily close to co, this implies (3). I 
Lemma 4.4: ~r has the following properties. 

(1) ~ is nonempty- and convex-valued. 

(2) ~r is closed, i.e., {(k,f,g)e~~x ~ l(f,g)e~r(k)} is a weak* closed subset of 

~Px~. 
Proof: Let keE~~P. Then ep(k) rs nonempty and weak compact by Lemma 4 2 

Therefore, since ip is upper semicontinuous, ~r(k) is nonempty. In addition, since c(k) is 

convex by Lemma 4.2, the convexity of ~r(k) immediately follows from the concavity of c. 

To prove property (2), consider a net (kN, fN, gN) in ~P x ~ , which is directed by ~:, 

and assume that it converges in the weak* topology to a point (k* ' f* ' g*)e ~px ~ such 

that (fN, gN)e~r(kN) for all N. 

First we shall show that (f* ' g*)e c(k*)' Since (kN, fN, gN) converges to (k* ' f* ' g*) in the 

weak * topology, there exists a sequence (k~ , f* , g~) converging to (k* ' .f* ' g*) almost surely such 

that each (k* , f*, g~) is a convex combinations of some elements (kN,fN, gN)'s (see Sublemma 

in Appendix). Since (fN,gN)eep(kN) for each N,f* - ag~=(1 - a)k* for each n. Hence f* -

8g* =(1 - 6)k* ' which implies that (f* ' g*)e c(k*)' 

Next we shall show that (f*'g*)e~r(k*)' Suppose that there were (fo'go)e~ such 
that ~(f*, , g*) < ip(fo' go) and fo ~ ag0=(1 - 6)k*. By (A.7) of expansibility, for some O < w< 1 

we have 
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c( f* ' g*) < c( f* , g~) and f~ - 5g~ << (1 6)k 

where ( f~ , g~) is defined by f~ =wf + (1 - w) fo and g~=wg + (1 w)g Slnce c rs upper senu 

continuous and kN converges to k* in the weak* topology, there is Nl such that 

ip( fN, gN) < c(f~,g~) (4. 1) 
and 

a( f~ - 6g.)dP< J a(1 - 6)kNdP 

for all N~~NI ' By Remark 4.1, there exists c~e~~~=+.1r such that (f~ -c~,g~ 'T)e ~/ and 

c(f*,g~)=f[ac~+p]dP. Also, by Lemma 4.3, for each Nwe have cNe~~~='r wrth cN;~0 
satisfying all the conditions in the lemma. Therefore, by (4,1)we have 

J [acN+p]dP< J [crc~+p]dP . (4. 3) 
for all N~zN1 ' Thus, by (4.2) and (4.3) we have 

a(cN fN+~gN)dP< J a(c~-f~+~g~)dP J -
for all N~Nl ' Since (f~ = c*,g* '?)e ~/, this is a contradiction to (3) in Lemma 4.3. I 

Theorem I : Under (A.1), . . . , (A.8), there exists a discounted golden-rule state. 

Proof: Let us define a relation F: ~:-) e~P by 

F(k) = { f I ( f g)e~r (k)l 

By Lemma 4, l, ~~ is nonempty, convex, and weak* compact. By Lemma 4.4. F is non-
empty- and convex-valued. Morover, since W is closed, so is F. Hence, since the range of 

F(or, (~P) is weak * compact, relation F is upper semicontinuous in the weak* topology 

[see Fan (1952, Lem. 2)]. Thus, by Fan's fixed-point theorem ((1952), Thm. 1), there exists 

k*e ~~such that k*eF(k*). By definition ofF, there is (f*, g*)e~r(k*) such that k* =f. 

Since (f *, g*)e c(k*), k* - ~g* =(1 - 6)k*. Therefore g* =k *. Thus, (k*, k*)e~r(k*), which 

l implies that k* is a discounted golden-rule state 

V. Optana/ Sratronary States 

In this section we shall prove that any discounted golden-rule state is an optimal sta-

tionary state. 

Lemma 5.1: For any feasible program K= {kt I teT} , there exists (fo'go)e~ having 

the following properties : 

(1) (fo'go)ec(ko)' 
(2) For any e>0 there exists so such that for all s>so , 

~JT: 6t-lip(fo, go) ~~ U,(K)- e 

t=1 

Proof Define h by h k T-t. Also, for each s>0, Iet us define (f*,g*) by 
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f* =~ 6t-1/It_1/~ ~t-1 and gs =~ 6t-1 s 
ht/~ 6t-1 

t=1 t=1 

Since program K is feasible, (ht_1'ht)e~ for all t. Therefore, by (A.3) of convexity, 

(ft'g*)e~ for all s. Also, since (ht l, _ ht) is uniformly bounded by (A.5), so is sequence 

(ft,g*). Since 0<6 < l, it is clear that sequence (ft,g,) is converging in the norm topology. 

Hence, by Lemma 3,1 we have a limit (fo'go)e~. Thus we have 

f0~6g0= Iim (f$-ags) 
s~~* 

= Iim (ko~6sh,)/ ~ 6t-1 

s~* t=1 
This implies that fo ~ 6g0=(1 - a)ko ' i.e., property (1). 

Moreover, it follows from the concavity of u in (A.3) that 

Ju(f,,g.',')dP~ J s s ~ 6t-1u(h h .7 ')dP/~ at-l t-1' t ' 

for each s. In addition, since Tt~1 is measure-preserving by (A.1), 

J
 

6t-1 u(ht_1' ht ' T")dP 

=
J
 

at-1 u(ht_1 ' ~t~1, ht ' Tt, Tt-1) dP 

=
J
 

ut(kt_1 ' kt " )dP 

Hence, for each s, we have the following inequality, 

J
 

~ ~t-1u(f,,g, 'T, ')dP;~ j ~ ut(kt_1' kt")dP , 
t=1 t=1 

i.e., 

~ 6t-lip(f,,g )~: U (K) 

t=1 

Since 6 < l, by virtue of Lemma 3.2, this implies property (2). I 

Theorem 2: Under (A.1), . . . , (A.5), any discounted golden-rule state is an optimal 

stationary state. 

Proof: Let k be a discounted golden-rule state. Let us consider any feasible program 

K= {kt I teT} such that k0=k. By Lemma 5.1, we have (fo'go)e~ with properties (1) 
and (2) in the lemma. Since k is discounted golden-rule state, ip(k, k);~c(fo'go)' Therefore, 

by property (2), for any e >0, we have 

~ ut(k.tt-1, k'T , ')dP= ~] 6t-lu(k'rt~1, k.Tt, ?t-1)dP 

=~ 6t-lip(k k) 

t=1 

;~ ~~ 6t-lc(fo' go) 

t=1 
~ U. (K) - e 
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I for all sufficiently large s. This implies the optimality of k. 

, (A.8), there exists an optimal station~ry state. Corollary 1: Under (A.1), . . . 

l
 

Proof: This immediately follows from Theorems I and 2. 

We sometimes allow that (O, O)e~, i.e., the zero capital stock is a stationary state. 

Under the natural assumption that nothing can be produced without capital, the zero capital 

stock is an optimal stationary state. In this case the existence of optimal stationary states 

is an obvious problem. However, we are not concerned with such a meaningless stationary 

state. In fact, the above theorem insures the existence of a nontrivial optimal stationary 

state. In order to show that, we assume the following condition. 

(A.9): If (0.0)e~, then there is (.f,g)eJ~ such that f=~g and J u(f,g'T, ')dP> 

J u(O, O, ･)dP 

Corol!ary I : Under (A 1) . . . , (A.9), there exists an optimal stationary state k with 

k~0. 

Proof.･ The golden-rule state k proved to exist in Theorem I can not be O by (A.9). Hence 
Theorem 2 implies the existence of an optimal stationary state k with k~0. 

A ppE_N:DIX 

In this appendix we shall prove Lemmas 3,1 and 3.2 in section 3. The technique for 

proof is standard [for example, see Takekuma (1980)]. 

Sublemma: For any net (generalized sequence) {f* I neA] in 2~* converging to fo in 
(T(2~*, 2;:D, there exists a sequence {fi I i=1, 2, . . . } in ~:* converging to fo almost 

surely such that each ft is a convex combination of some elements in {f* I neA} . 

Proof: Assume that a net {f~ I neA} in ~~~* converges to fo in a(2~=,~:D. Obvi-
ouslyf*eJ~~;1 for each n andfoe~~~1 ' Let us regard {f~ I neA} as a net in ~:1 and show 

that f* converges to fo in a(~~~1' ~~~=). Let p e~~~= . Clearly p e: ~;:1 ' Therefore, since 

f~ converges to fo in 6(2~~, 2;;1)' Iimfp 'f~dP=fp 'fcdP. This proves that f* converges to 

fo in o(:~~jl' 2~*). 

Let A be the smallest norm-closed convex subset of ~:1 inc]uding {f* I neA} . Then 

set A is a(~~~1' ~~~=)-closed [see Dunford & Schwartz (1964, p. 422, Thm. 13)]. Hence 
foeA, becausef* converges tofo in 6(~:1' 2~=). On the other hand, set A is identical with 

the norm-closure in :~~;1 of the convex hull of {f~ I neA} [see Dunford & Schwartz (1964, 

p. 425, Lem. 2.4 (ii))]. Therefore there exists a sequence {f, I i=1, 2, . . . } converging to fo 

in the norm topology of ~:1 such that each element li ofthe sequence is a convex combina-

tion of some elements in {f* IneA} . Moreover, without loss of generality, we can assume 

that the sequence converges to fo almost surely. This is because the convergence in the 

mean implies the convergence in measure, and because any sequence of measurable functions 

which converges in measure has a subsequence which converges almost surely [see Dunford 
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& Schwartz (1964, p. 122, Thm. 6 and p. 150, Cor. 13)]. l
 

Proofo.fLemma 3.1: The convexity of ~/ immediately follows from (1) of (A.3). To 
prove the weak* closedness of ~/, take any net {(,f* , g~) I neA} in ~/ converging to a point 

(fo'go) in the weak* topology. By the above sublemma there is a sequenc~ {(fi, gt) I i = 

1, 2, . . . } in ~/ converging to (fo'go) a.s. Therefore, since (fi((!')' gi((L,))e Yl(a') a,s. for each 

i, itfollows that (fo(a'), go((~'))eY1((o) a.s, by (1)of (A.4). That is, (fo'go)e ~/. This proves 

the weak* closedness of ~/. I 
Proof of Lemma 3.2: The concavity of c immediately follows from (2) of (A.3). To 

prove the upper semicontinuity of ip, take any net {(f*, g~) IneA} in ~r converging to a point 

(fo'go)e ~ in the weak* topology, and assume that ip(f~,g~)~~b for all n~EA. By the above 

sublemma there rs a sequence {(fi g()ll I , 2, . . . } converging to (fo,go) almost surely such 
that each (ft, gi) is a convex com~bin~tion of some elements in {(f*,g*) I neAJ . Since function 

9'f is concave, c (fi,gi);~b for a]1 i. This implies that 

lim sup Ju( f, , gt ' T, ')dP;~b . 

Since llf~ Il <= b* for all n, [1 ft ll ~ b* for all i. Therefore, from (2) of (A.5) it follows 

that ul(fi((~'), gi ' T(a'), a') ;~ u* a.s. Hence, by Fatou's lemma, we have 

lim sup J u( ft' gt 'T")dP~~ J Iim sup u( ft' gt 'r, ')dP . r
 

Moreover, since ul( (v) is upper semicontinuous by (2) of (A.2), Iim sup u(ft((v), gi ' .,.' 
r(co), (~') <= u(fo((o), go ' T((v), (~') a.s., which implies that 

J Iim sup u( ft ' gi 'r, ')dP~ J u(_fo' go 'T")dP ' r
 

Thus we can conclude that ip(fo' go) ~ b. 

HITOTSUBASHI UNIVERSITY 

This proves the upper semicontinuity of ~. I
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