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In the former part of this paper, the author will establish a
solvability condition and a solution formula of the equation in ’
distributive lattice whose sublattice has at least a maximal ele-
ment and ‘a minimal one. In the latter part, some theorems on
the extension of Boolean lattice will be discussed, and their logi-
cal interpretation will be given.

In G. Birkhoff’s Lattice Theory, he proposed a general programme to -
apply lattice theory to logic, and then explained briefly the various logics and
corresponding lattice theories introduced by many writers up to this time.!

"From the point of view of lattice equation, the author, in this-paper, will
discuss the elementary properties of a logical equation which has been fairly
long treated,® but which is now almost neglected in spite of its great usefulness.

In section I, the author will state the essence of the theorems relating to
the equation in Boolean lattice considered to correspond to classical logic. "In
section II, he wishes to consider the problem corresponding to section I with
respect to the equation in distributive lattice which is situated between Boolean
lattice and modular lattice, the latter being considered to correspond to the-
logic of quantum mechanics. Lastly in section III, one property of Boolean
lattice will be considered which is interésting from the standpoint of classical
logic.

I

The elementary theorems about the equation in Boolean lattice are as
follows : . - : .

THEOREM 1,  Simultaneous equations with one unknown in Boolean
lattice can be transformed tnio a single equivalent equation, whose right-hand
side is zero. . '

This theorem means in the sense of classical logic that several propositions
can be reduced to one proposition which is synonymous but of negative form.

v G. Birkhoft, Lattice Theory (New York, 1940), pp. 122-131.

* J. Venn, Symbolic Logic (New York, 1894), pp. 289-330.
L. Couturat, L'Algébre de la Logique (Paris, 1914), pp. 52-62.
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THEOREM 1, The necessary and sufficient condition that the equation
f(x)=0 in Boolean lattice is solvable (let an element of that Boolean lattice be
sts root) is as follows :

A~f0)=0

The solvability condition expressed in the above theorem is a generaliza-
tion of many mediate inferences in classical logic.

THEOREM I, When the equation f(x)=0 in Boolean lattice is solvable,
the general form of its voots is

FO) = (fF(1) ~ ),
where w is an arbitrary element of that Boolean lattice.

This theorem has not been logically interpreted so far. But it is evident
that this theorem shows the process to determine by calculation the concept
satisfying various conditions.? .

These theorems can be easily extended to the case of equation with many
unknown and each of them can be also logically interpreted.*

These theorems regarding the equation in Boolean lattice include impor-
tant and applicable properties both in theory and practice.

Therefore the device of mechanical calculation in Boolean lattice is prac-
tically significant and also possible. ’

II

In this section, the properties of the equation in distributive lattice will
be discussed,’ which correspond to section I.

If an equation in distributive lattice D has an element of D as root, this
equation is said to be solvable.

In this section, we will especially deal with a distributive lattice D whose
sublattice has a maximal element and a minimal one.

THEOREM 11, Simultaneous equations with one unknown in distribu-
tive lattice Dy satisfying the above conditions may be transformed into a single
equivalent equation. .

Although this theorem will correspond to theorem I,, its proof will be
given later in this paper.

THEOREM 11, The necessary and sufficient condition that the equation
in distributive lattice

) (@~%)~b = (c~x)-d
is solvable, is expressed in the following way:
(2) (@~d)~b = (c~b)—d®

* The author attempted general application of this root in_*‘ Elementary Applications of Com-
plemented Distributive Lattice,” The Hitotsubashi Review, Vol. 21 (1949), (written in Japanese).

t The author’s “Egquation in Boolean Algebra,”” Otsuka Sugaku-kai Shi (Journal of Otsuka
Mathematical Society), Vol. 8 (1939), (written in Japanese).

5 Assistant Seki considered some of these problems by representation theory of lattice. Now the
author will directly deal with these problems not by means of representation theory.

¢ The condition that the equation (¢ ~&)—b=(c ~#)—d in modular lattice is solvable, is
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PROOF : Let the equation (1) be solvable and its root be ». Then we
have,

(3) (a~r)~b = (c~7)-d.
By meeting b, we have
b= (brcrr)w(b~d)
Again if ¢ meets it, then
c~b = (brcrr)-(b~c~d)
When we join d, we get
(c~b)wd = (b~c~7)-d
Then by the distributive law, we get
@) (~b-d = (c~r)-d)~(b-ad)
Similarly if we substitute @ for ¢ and & for d respectively, we get
) (@~d)b = ((a~7)-b)~(b-ad)
By the equalities (3), (4) and (5), the equality (2) is the necessary condition.

Now assume that the equality (2) holds. When we substitute s(=(z~d)-b)
for x on the left-hand side of the equation (1), we get (a~s)-b=(a~((a~d)-b))-b
=(a~db=s. Also if s(=(c~b)-d) is substituted for & on the right-hand side
of the equation (1), we have (c~s)~d=(c~((c~b)—d))~d=(c~b)-d=s.

Therefore an element s of D satisfies the equation (1) and we see that the
equality (2) is the sufficient condition. Q. E.D. )

LEMMA 1 The set of roots of the equation in distributive lattice D con-
stitutes a sublattice. The root of the solvable equation in the above defined distribu-
tive lattice Dy is I-(g~u) where g is the greatest voot, | the least, and u is an
arbitrary element of Dy

PROOF : Let the equation in D

(1) (@~x)b = (c~x)-d
have » and s as roots. Then we have
(6) (@~7r)-b = (c~7)—d, (a~s)~b = (c~s)—d.
When we join these two equalities, then
(@~(r-s)~b = (c~(r—s))-d
When we meet these two equalities,
(@a~(r~s)-b = (c~(r~s))d
These two equalities tell that not only » and s but also s and #~s are the
roots of the equation (1). Thus the set of roots of the equation (1) constitutes
a sublattice .

Especially when (1) is an equation in D,.,, W will have a maximal element
m. Let w be an arbitrary element of .J¥. As mentioned above, w—m is also
a root of the equation (1) where m<w-m. Hence m=w-m. And this shows

(@~(c—d))—b=(c~(@—b)—d. And this corresponds to the mediate inference in the logic of
quantum mechanics.
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that m is the greatest element of . Let m be replaced by g. Similarly we
see that the equation has the least root /.

As we have the relation, ISw=g, we get w=Il-(g~w) and w belongs to
the set ~{g~Dw). Conversely, any element of this set is /~(g~«) while [ and ¢
satisfy the equation (1) and we get the following relation.

@ (a~D-b=(c~)v-d, (a~g)-b=(c~g)-d
When we meet « to the second equality and join it to the first equality, we get
(a~(-(g~w))~b = (c~(I-(g-u))-d
Hence I~(g~u) is in general a root of the equation (1). Q. E.D.
LEMMA 2 If the equation in Dy,

® (Grx)vk = (pr2)vg
is solvable, the least root of
©) x-(k~q) = kg
is the least root of (8)
PROOF : Let a root of the equation (9) be v, then -
ve(k~q) = k-q.
By meeting 7 to it, we get
(o) (frkrg=(G~R) (i~
By joining k, (j~v)wk = (j~q)-k
Similarly by substituting p for 5 and g for k respectively, we get
(prv)vg = (p~k)-gq
When the equation (8) is solvable, by theorem II;, we have
(j~a)wk = (p~k)—q '
Hence (jro)vk = (p~v)-q
Therefore all the roots of the equation (9) satisfy the equation (8).
Provided that the least root of the equation (9) be y and any root of the
equation (8) be 2, we obtain '
(10) y~(k~q) = k-q, (jr2a)vk = (p~2)-q
When we substitute y~z for x on the left-hand side of the equation (9),
(yr2)w(k~q) = (y-(k~g)~(2-(k~q))
From the first equality of (10),
(o) Ak~q) = (k-q)~(2vk)~(z-q)
When 2 is joined to the second equality of (10),
gk = z2-q
Again when £ is joined,
gvk=zwqg=zoq-k
Hence (yro)o(krg) = (kvg)~(2vk-q)
i.e. (y~2)w(k~q) = kg
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This show that y~ 2 is also a root of the equation (9). As y is the least root of
the equation (9), y<y~2=<z. Hence y<z. Q.E.D.

The least root of the equation (9) corresponds to the symmetric difference
of k and g in Boolean lattice. Let it be denoted by £/¢. Dually we have the
following lemma.

LEMMA 3 If the equation in D, (j—x)~k=(p-x)~q is solvable, the
greatest root of the equation %~ (k—q) = k~q ts the greatest root of the above
equation. .

The greatest root of the equation x~(k-¢q) = k~q is the dual concept of
k!q defined above. Let it be denoted by ki q.

THEOREM 11, If the equation in Dm (@ ~x)~b=(c~x)>d is solvable,
the gemeral form of its roots is '

(b1d)~((a~b)ilc—d)~u),
where w is an arbitrary element of Do

PROOF : The least root of the solvable equation D, is b/d by lemma 2.
As the above equation can be transformed into (b - )~ (¢~ b)=(d~ x)~(c - d),
the greatest root of this equation is (a-b)/ (¢~d) by lemma 3. Then by lemma
1, the general form of the root is (b/d)~(((a-b)/(c~d)) ~u) where « is an
arbitrary element of D.. Q. E.D.

COROLLARY The solvable equation inn Dw, (a~x)-b=(c—x)~d is
equivalent to the equation x— (b!d)=x ~ (@~ b)i(c—d)).

PROOF : By theorem II,, the set of the roots of a solvable equation in
D., is determined by its greatest and least roots. If (a~x)-b=(c~x)-d is
solvable, b/d<(a—b)i(c~d). Then bothof 6/d and (a-b)i (¢ d) are also
roots of w—(b!d)=x~((a-b)i(c—d)). Moreover as we have the following
relation O/d)<x—(b!d)=x~(a-b)i(c—d)=Zz, b!d is the least root and
similarly (a—b)7(c—d) the greatest root. Hence the roots of the above two
equations are identical. Q. E.D.

If the equation (a~x)-b=(c~x)-d is solvable, #Ab ! d)=x~((a-b) i (c-d))
will be called its canonical form.

PROOF OF THEOREM II,: When simultaneous equations in D with
one unknown (g; ~ %) < by=(ci~ )~ d; (i=1, 2, ..., ») are reduced to their cano-
nical forms, the above system is equivalent to

(11) wo (bt d)y=x~((ai~b) i (o di) (=1, 2, ..., w)
Formally let us make the following equation

(12)  x- GGl d)=5~G(ab)i (e d)))
1f the simultaneous equations (11) are solvable, the following relation can be
obtained for all values of ¢ .

(13) b !d<x=Z(ai—b)ilcs—d) Consequently

(14) P! d)Sx=<i (@i~ b)i (e )

7 71, denotes lylyrresdy, and § I; denotes L~Ng~-evla,
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It shows that all the roots of (11) are roots of (12). Conversely if (12) is solva-
ble, we have the relation (14). And for all valiies-of ¢, (13) will be established.
Hence all the roots of the equation (12) are the roots of (11).

When we assume solvability, a system of the simultaneous equations with
one unknown,

(gi~x)wbi= (ci~x)—di 1=1, 2, ..., n)
is equivalent to the equation
wo (i (bi! d))=x~( (@i = bi) i (cied))) Q.E.D.

If the logic corresponding to lattice D, (a logic situated between classical
logic and the logic of quantum mechanics) exists, theorem II, will give a trans-
formation rule of proposition in that logic. And theorem II, can be nothing
but a mediate inference in it. Finally theorem III; offers the calculating
process of constructing the assigned concept.

III

In this section, we will prove a theorem concerning the extension of
Boolean lattice and explain its meaning in classical logic.

Def. 1 When the meaning of / in Boolean lattice B is invariant in its
sublattice S, i.e. without any modification 7, € of B are 7, ¢ of S, this sublattice
is called a self-complemented sublattice of B.

Def. 2 Let S be a self-complemented sublattice of a Boolean lattice B.
An element of B, which satisfies an equation in S, is called an algebraic ele-
ment of S, while other elements are called transcendental.

. THEOREM III, The set of all algebraic elements A of a self-comple-
mented sublattice S of a Boolean laitice B is also a self-complemented sublattice
of B. .
PROOF : Let two elements of A be g and b. As g satisfies an equation
(s~x)-(t~x')=0in S, (s~a) ~(t—a’)=0, where s and ¢ are elements of S.
As b also satisfies an equation (u~z)-(v~2/)=0 in S, (u~b)—(v~b)=0
where » and v are elements of S. Now consider the equation ((s—u)~x)-
((t~v)~x")=0. As s—u and t~v are also elements of S, that is an equation in
S.  When we substitute a~b for x, we have ((s—t) ~(a~b)) - ((t~v) ~ (a~b)")=
(s~a~b)~(u~a~b)w(t~v~a’)-(t~v~b)=0 Hence a~b also satisfies an
equation in S and belongs to A. In a quite similar way, @ —b will also satisfy
the equation ((s~u)~2)w(({-v)~2x')=0 in S, and belong to A. Thus A
constitutes a sublattice. Finally ¢/ satisfies the equation (f~x)- (s~2')=¢ in
S, and belongs to A. Thus A is self-complemented. Q. E. D.

THEOREM III, Awn algebraic element of A in the previous theovem is
an algebraic element of S.  In other words, A is algebraically closed.

PROOF: Let (¢ ~x)~(b~x")=0be an equation in A, which is satisfied
by its algebraic element ¢. Then we have

(15) (@~c)-(b~c)=0
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where @ and b are elements of A. As ¢ and b are algebraic elements of S, we
get (16) (s~a)-(t~ad)=0, (w~b)y~(v~b)=0
where s, ¢, © and v are elements of .S.

When the equalities (15) and (16) are joined, (@ ~c¢)— (b~c’) - (s~a) - (t~a’)
—(u~b)~(v~b)=0. It shows that the equation with unknown x and y,
(crz)l/~y)—(s~x)w(t~x")~(u~y) - (v~9y) =0 is solvable in B. The
solvability condition shows that ¢ will satisfy an equation in S. Thus an
algebraic element of A is also an algebraic element of S. Q. E. D.

Def. 3 Let a be an element of a Boolean lattice B, which does not be-
long to a self-complemented sublattice S of B and s and ¢ be two arbitrary
elements of S. Then the set of elements (s~a)-(t~a’) will be denoted by S(a).

THEOREM III; S(a) is the smallest self-complemented sublattice of B
which contains S and a.

PROOF : Provided that » and y are two elements of S{g), we have
x=(s~a)-(t~a’), y=(u~a)—(v~a’) where s, ¢, v and v are elements of S,
Then x - y=((s - u) ~a) - (({ - v) ~a’) where s—u and ¢t~ belong to S. Hence
x~yis an element of S{a). Similarly x~y is also an element of S{a). Conse-
quently S(a) is a sublattice of B. Again we a/=(0~a) - (/~a’). Moreover as
Z and O belong to S, @/, together with @, belongs to S(@). Thus S{a) is self-
complemented. Every element s of S, being expressed as (s a) - (s —a’), be-
longs to S{a). As (Z/~a)-(0~a’), a is an element of S(a). Thus S(a) is a seli-
complemented sublattice containing .S and a.

Now let a self-complemented sublattice containing S and ¢ be 7. Then
arbitrary elements s, ¢ of S belong to T. And both @ and o belong to 7.
Consequently every element (s ~a)~ (¢t ~a’) of S(a) belong to T and we have
S(@=T. Thus Sla)is the smallest self-complemented sublattice containing .§
ande. Q.E.D.

By this theorem, S(a) may be called an extension of S by a.

Def. 4 Let Sbe a self-complemented sublattice of a Boolean lattice B.
When S{a)=>5(b) holds, @ and b are said to be equivalent with respect to S.?

LEMMA Let a transcendental element of .S be w. Then every element
of S(w) is in only and only one way expressed by (s ~w)— (t ~w’), s and ¢ be-
longing to S.

PROOF: Put (s~w)-(t~w')=(u~w)- (v~w’) and assume that s, ¢,
u and v are elements of S. ‘Then we have

(s ~w) = (s' ~u)) ~w) = ((t ~ V)« (! ~0)) ~w)=0
As w is a transcendental element of S and the coefficients of the last equality
belong S, we have (s ~u/)< (s’ ~u)=0 and (t ~v') - (¢ ~v)=0. Hence we get
s=wuand i=2. Q.E.D.
THEOREM 111, If a and b are transcendental elements of S, the meces-

¥ As an isomorphic extension of lattice is considered to be logically meaningless, we regard ex-
tensions to the same lattice as equivalent.
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sary and sufficient condition that a and b are equivalent with respect to S is thal
(@ ~b)~(a’ ~b) belongs to S.

PROOF : Put S{a)=S(b), then a belongs to S(b) and a=(s ~b)~ (¢ ~¥), s
and ¢ being elements of S. Again b belongs to S(a) and b=(u~a)-(v~d'), u
and v being elements of S. Then from these two equalities, we have

a = (s~((ura)~(w~a)N)(t~(/ ~a)- (2 ~d)))

= (((s~ruw)~(t~w))~a)- (((s~v) - (t~7) ~d)

By lemma we get

(s~u)—(t~u)=27 and (s~v)~({t~2)=0
The first equality can be reduced to (s’ ~ )~ (¢ ~«/) = . By joining it to the
second, we have :

(s~ (t/ ~t) - (s~D) - (t~D) =0
It shows that the equation with unknown x and y

(' ~x) e/ ~ ) (s~y) - (t~y)=0

is solvable in S. The solvability condition is (s/ ~#)— (s ~)=0, 1.e. s=¥F.
Hence a=({b ~#)— (' ~t) and (¢ ~ V) - (¢/ ~ b)=t where ¢ belongs to S.

Conversely, let (a~¥)—(a’~b) be an element » of S. From (a~¥)-(a’~b)=7,
we have a=(b~") - (0'~#). As # belongs to S, it shows that a is an element of
S(b). Then by theorem III;, we get S(a)&S(). Quite similarly S(b)S(Ea).
Thus S{¢)=S5(b) and ¢ and b are equivalent with respect to S. Q. E.D.

Def. 5 The equivalence relation defined by Def. 4 is evidently reflexive,
symmetric and transitive. Therefore the elements of B may be classified by
this relation. Every class of this classification is called an equivalent class.

As is well known, B constitutes a group with respect to symmetric differ-
ence. ‘The self-complemented sublattice S of B is a subgroup-of B.

COROLLARY If a self-complemented sublattice A of a Boolean lattice B
s algebraically closed, the equivalent classes of A coincide with the cosets of A
as a group with respect to symmetric difference.

PROOEF : As A is algebraically closed, elements ¢ and b of B are equiva-
lent if and only if (a~F)-(a’~b) belongs to A. This shows that @ and b of B as
. a group belong to the same coset of 4. Q. E.D.

Finally we will explain the logical meaning of various theorems proved
in this section.

S(e) means the smallest subuniverse which can be constructed of one
subuniverse and an dttribute ““a” by “and”, “or” and ‘‘not”. Thataisa
transcendental element of S means that the attribute ‘‘a” cannot be defined as
an attribute which satisfies a logical equation in subuniverse S.

Hence the principal theorem III, tells us how to decide whether two at-
tributes can extend S to the same subuniverse respectively where each at-
tribute cannot be defined as an attribute satisfying a logical equation in S.

o





