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Chapter 1

Introduction

1.1 A participation problem in a public goods mech-

anism

The purpose of this dissertation is to examine a participation problem in a mechanism

to produce a (pure) public good. The public good is one that satisfies non-excludability

and non-rivalry: all agents can consume the same amount of a public good regardless of

their contribution to it. Therefore, every agent has an incentive to free-ride the public

good that is produced by other agents. As a result, the public good is provided at a low

level. This situation is referred to as the “free-rider” problem.

A solution to the free-rider problem is the construction of an economic mechanism

or system in which a socially efficient level of public goods is provided as a result of

the strategic behavior of agents. The construction of such mechanisms has been stud-

ied in two distinct directions: one is strategy-proofness, and the other is implementation

theory. In the theory of strategy-proofness, the mechanism designer, for example, the

policy-implementation organization or the supplier of public goods, constructs a mech-
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anism to elicit information about agents’ preferences; this information is necessary for

the provision of an efficient level of public goods as well as efficient cost distribution.

However, preferences are usually only privately known. Therefore, it is possible that

selfish agents try to misrepresent their preferences in order to manipulate the provision

of the public good and their cost burdens. As a result of such strategic misrepresenta-

tion, the level of the public good may be socially inefficient. Thus, the construction of

a procedure that gives all agents an incentive to announce their true preferences is an

important issue in the provision of public goods. The importance of preference revela-

tion was first pointed out by Samuelson (1954). His view on the possibility of truthful

preference revelation is negative. He pointed out that there is room for strategic ma-

nipulation in the Lindahl mechanism, and he thought that the efficient provision of a

public good could not be achieved through decentralized systems. Since the introduction

of Samuelson ’s viewpoint, there have been many studies on mechanisms in which the

truthful revelation of preferences is a weakly dominant strategy for all agents; such mech-

anisms are referred to as strategy-proof mechanisms. Groves (1973) constructed a class of

strategy-proof mechanisms, called the “Groves mechanism,” which achieve the efficient

provision of a public good on the domain of quasi-linear preferences. In the mechanisms,

some amount of private goods must be discarded to give incentives to agents to reveal

their true preferences. Thus, the allocations attained in the Groves mechanism are not

Pareto-efficient. After the construction of the Groves mechanisms, Laffont and Maskin

(1980) and Walker (1980) proved that only Groves mechanisms are strategy-proof mech-

anisms that can produce an efficient amount of the public good on a reasonable domain

of preferences. Therefore, strategy-proofness and Pareto efficiency are incompatible in

the public good economy.

Groves and Ledyard (1977) adopted a different approach from strategy-proofness,
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called Nash implementation. They gave up strategy-proofness and employed Nash equi-

libria as an equilibrium concept. They designed a mechanism that achieves a Pareto-

efficient allocation at some Nash equilibrium. Therefore, in the theory of implementation,

mechanisms can be constructed in such a way as to achieve Pareto efficiency, differently

from the theory of strategy-proofness. Although the Groves and Ledyard mechanism

does not satisfy the individual rationality condition1, Hurwicz (1979) and Walker (1981)

constructed mechanisms and succeeded in implementing the Lindahl allocation rule in

Nash equilibria. Following these studies, many authors have constructed mechanisms

that implement various desirable allocation rules under the concept of Nash equilibria.

However, implementation theory has limited the discussion to the construction of

public goods mechanisms, and the participation problem in the mechanisms has not been

sufficiently studied. In the implementation theory, all agents are assumed to participate

in the mechanism. Hence, the results in this field indicate that a public good can be

provided efficiently by constructing a public good mechanism under the assumption of

the participation of all agents. Although the assumption is essential for the mechanism

to fulfill its function in the economy, few studies have examined whether or not agents

enter the mechanism voluntarily.

The participation problem is also important from a practical point of view. In the

real world, there are many situations in which agents can decide whether or not to

participate in the mechanism, and this participation decisions have serious effects on the

effectiveness of the mechanism. For example, let us consider the case of international

environmental agreements, such as the Kyoto Protocol. An environmental agreement

can be regarded as a mechanism that provides a public good or eliminates harm to the

1The individual rationality condition requires that, for all agents, the allocation implemented by the

mechanism should be at least as good as their initial endowments.
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public in order to attain efficient allocations of resources. However, each country has the

right to decide to participate in such an agreement. Since a sufficiently large number of

countries must ratify such an agreement to put it into effect, the participation problem

is very serious with regard to the implementation of the agreement. In fact, in the case

of the Kyoto Protocol, the United States decided not to participate in the protocol, and

the implementation of the protocol seemed improbable for a while. Another example

is NHK, the public broadcasting network in Japan. NHK faces a serious participation

problem these days. By law, every household must pay a fee to NHK. However, many

individuals are refusing to pay this fee since they can watch NHK without paying the

fee and the individuals that do not pay are not penalized.

As can be seen from these examples, the participation problem is important in a case

in which an agent can decide whether or not to participate in a public good mechanism

and non-participants can benefit from a public good provided by the participants at no

cost. In such a case, every agent may have an incentive not to enter the mechanism,

hoping that other agents will participate in the mechanism and provide a public good.

This will generate another type of free-rider problem.

Palfrey and Rosenthal (1984) and Saijo and Yamato (1999) pointed out the impor-

tance of the strategic behavior of agents as they decide whether or not to participate

in the mechanisms. Palfrey and Rosenthal (1984) formulated a participation game in a

mechanism to implement a public project with identical agents. In this game, all agents

simultaneously choose whether or not to participate. If they enter the mechanism, they

contribute a fixed amount that is common to every participant. The public good is

supplied only if the aggregate contribution of participants outweighs its production cost.

Only the participants bear the cost of the public good, while non-participants can ben-

efit from the public good at no cost because the public good is non-excludable. They
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characterized pure and symmetric mixed Nash equilibria and showed that the efficient

provision of the public good is attained at a Nash equilibrium of this game but not all

agents enter the mechanism.

Saijo and Yamato (1999) introduced a model of voluntary participation in a mech-

anism that implements the Lindahl allocation rule when the public good is perfectly

divisible. Their model consists of two stages. In the first stage, agents decide simultane-

ously whether or not to participate in the public good mechanism. In the second stage,

knowing the participation decisions of others, the agents that selected participation in

the first stage choose their messages in the mechanism. As in Palfrey and Rosenthal

(1984), only the participants bear the cost of the public good, but the non-participants

can benefit from the public good at no cost in this model. In an economy in which all the

agents have the same Cobb-Douglas utility function and the same initial endowments

of a private good, Saijo and Yamato showed that the participation of all agents is not

supported as a subgame perfect equilibrium of this game and the equilibrium allocation

is not Pareto-efficient in many cases.

Okada (1993) examined the possibility of cooperation through the formation of an

organization in an n-person prisoners’ dilemma. In his game, agents face a similar

participation problem in the organization. He also showed that participation of all agents

is not necessarily achieved at the equilibrium of this game. The results presented in

earlier literature lead to the conclusion that the free-rider problem with respect to the

participation decision occurs and severely affects the resource allocations of the economy.

The existing literature has not considered the possibility that agents form a coalition

and coordinate the participation decisions. Researchers characterized a set of partici-

pants that is stable against unilateral deviations of agents, focusing solely on subgame

perfect Nash equilibria or Nash equilibria. However, in the theory of implementation, the
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mechanisms have been constructed not only under the concept of the Nash equilibrium

but also under other equilibrium concepts, such as coalition-proof equilibria (Bernheim,

Peleg, and Whinston, 1987) and strong equilibria (Aumann, 1959). If a mechanism is

constructed under the assumption that agents form coalitions, then it is natural to con-

sider that agents also coordinate participation decisions. Hence, in this case, it is impor-

tant to analyze the participation decision, considering the possibility of the cooperative

behavior of agents. In addition, behavior is based on various behavioral principles, and

economists do not know which behavioral principles people will employ. Thus, consider-

ing the various possibilities is meaningful for understanding the consequences of strategic

behavior.

In this dissertation, we consider the possibility that agents form a coalition in the

participation decision stage. In addition to the unilateral deviations, we consider the

following coordination behavior of agents:

• A subset of participants jointly switches to non-participation.

• Participants and non-participants form a coalition and coordinate the participation

decisions with or without monetary transfers.

• A subset of non-participants jointly chooses participation.

Considering the possibility of coalitional behavior, we investigate (i) whether or not there

is a set of participants that is stable against such coalitional behavior and (ii) which kinds

of sets of participants are stable against the coalitional behavior.

We analyze the participation problem in a public good mechanism, as in Saijo and

Yamato (1999). We examine coalition-proof equilibria and strong equilibria of the par-

ticipation decision stage game. The notions of coalition-proof equilibria and strong
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equilibria are refinements of Nash equilibria that are immune to coalitional deviations.

Therefore, even if a Nash equilibrium exists in this game, the participation game does

not necessarily have a strong equilibrium and a coalition-proof equilibrium. One of the

main purposes of this dissertation is to clarify whether there are coalition-proof equilibria

and strong equilibria in this game and to characterize the two equilibria of this game, if

such two equilibria exist.

1.2 Participation games in public good mechanisms

This section formally introduces the basic model in this dissertation. We consider the

problem of providing a (pure) public good and distributing its cost. There are one

private and one public goods in the economy. Let n be the number of agents. The set

of agents is denoted by N = {1, . . . , n}. Let Y be a given set of possible amounts of the

public good. For example, Y = R+ when the public good is (perfectly) divisible, and

Y = {0, 1} when the public good is indivisible. Each agent i has a preference relation

that is represented by the quasi-linear utility function Vi : Y × R+ → R such that

(y, xi) ∈ Y × R+ 7→ vi(y) − xi ∈ R. The cost function of the public good is denoted by

c : Y → R+.

In this dissertation, we consider a situation in which there is a mechanism to provide a

public good and distribute the cost of the public good, and each agent can simultaneously

decide either participation or non-participation in the mechanism. A mechanism (or

a game form) is a list of message spaces of all agents and an outcome function that

associates an allocation with each profile of messages. The following two-stage game

is considered: in the first stage, each agent simultaneously decides whether or not to

participate in the mechanism. In the second stage, knowing the participation decisions
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of other agents, the agents who choose participation in the first stage select their messages

from their message spaces of the mechanism. Only participants decide the quantity of

the public good and the cost shares of each participant through the choice of messages.

Denote by (yP , (xP
j )j∈P ) the allocation that is attained in the equilibria of the mechanism

when P ⊆ N is a set of participants. For example, if Y = R+, v
′
i(y) > 0 and v

′′
i (y) < 0

for every i ∈ P and every y ∈ R+, c
′
(y) > 0 and c

′′
(y) > 0 for every y ∈ R+, and the

ratio allocation rule introduced by Kaneko (1977a, 1977b) is achieved at the equilibrium

of the mechanism, then, for every set of participants P ,

yP ∈ arg max
y∈R+

∑
j∈P

vj(y) − c(y) and

xP
i =

v′
i(y

P )∑
j∈P v′

j(y
P )

c(yP ) for all i ∈ P.

(1.1)

In this dissertation, we are not concerned with the implementation problem of the

allocation rule. However, many researchers have constructed mechanisms that imple-

ment desirable allocation rules, such as the Lindahl allocation rule, under the various

equilibrium concepts. Besides Groves and Ledyard (1977), Hurwicz (1979) and Walker

(1981), discussed in this chapter, Peleg (1996) and Tian (2000) constructed mechanisms

that doubly implement the Lindahl allocation rule in strong equilibria and Nash equi-

libria; Corchon and Wilkie (1996) constructed mechanisms that doubly implement the

ratio equilibria in strong equilibria and Nash equilibria; Kalai, Postlewaite, and Roberts

(1979) constructed a mechanism that implements the α core allocation rule in strong

equilibria.2

In this dissertation, we assume that agents that selected non-participation can benefit

from the public good at no cost because of the non-excludability of the public good.
2Okada (1993) modeled the stage of producing public goods and distributing these costs as a non-

cooperative negotiation game among participants. An allocation that is Pareto efficient only within the

participants is achieved in some subgame-perfect equilibria of this game.
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Assumption 1.1 For every set of participants P and for every agent i /∈ P , xP
i = 0,

and i consumes yP .

Given the outcome of the second stage, the participation-decision stage can be re-

duced to the following simultaneous game. In the game, each agent i simultaneously

chooses either si = I (participation) or si = O (non-participation), and then the set

of participants is determined. Let P s be the set of participants at an action profile

s = (s1, . . . , sn). Then, each agent i obtains the utility Vi(y
P s

, xP s

i ) at the action profile

s. That is, the participants produce the public good, and they share the cost of the

public good as above. Each non-participant can benefit from the public good at no cost.

We call this reduced game a participation game, which is formally defined as follows.

Definition 1.1 (Participation game) A participation game is represented by G =[
N, Sn = {I, O}n, (Ui)i∈N

]
, where Ui is the payoff function of i, which associates a real

number Ui(s) with each strategy profile s ∈ Sn: if P s designates the set of participants

at s, then Ui(s) = Vi(y
P s

, xP s

i ) for all i.

We restrict our attention to the pure strategy profiles.

1.3 Equilibrium concepts

In this section, we introduce the notions of equilibria studied in this dissertation. The

first notion is very basic.

Definition 1.2 (Nash equilibrium) A strategy profile s∗ ∈ Sn is a Nash equilibrium

if, for all i ∈ N and for all ŝi ∈ S, Ui(s
∗
i , s

∗
−i) ≥ Ui(ŝi, s

∗
−i). A Nash equilibrium is strict

if Ui(s
∗
i , s

∗
−i) > Ui(ŝi, s

∗
−i) for all i ∈ N and for all ŝi ∈ S \ {s∗i }.
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The strict Nash equilibrium is an equilibrium concept that is strongly robust to

unilateral deviations. Every strict Nash equilibrium is a trembling-hand perfect Nash

equilibrium in normal form games. The trembling-hand perfect Nash equilibrium is the

notion of non-cooperative equilibria that is robust to the possibility that players make

mistakes with small probability.

Our second notion is the strong equilibria(Aumann, 1959). To define it, we use the

following notation. For all D ⊆ N , we denote the complement of D by −D. For all

coalitions D, sD ∈ S#D denotes a strategy profile for D. We simply write sN = s.

Definition 1.3 (Strong equilibrium) A strategy profile s∗ ∈ Sn is a strong equilib-

rium of G if there exist no coalition T ⊆ N and its strategy profile s̃T ∈ S#T such that

Ui(s̃T , s∗−T ) ≥ Ui(s
∗) for all i ∈ T with strict inequality for at least one i ∈ T .

A strong equilibrium is a strategy profile in which no subset of agents, taking the

strategies of others as given, can jointly deviate in such a way that all members are at

least as well off and at least one of its members is strictly better off.

Our third notion is the coalition-proof equilibrium. It was introduced by Bernheim,

Peleg, and Whinston (1987) and is known as a refinement of Nash equilibria based on the

stability against self-enforcing coalitional deviations. It is defined by using the notion of

restricted games. A restricted game is a game in which a subset of agents play the game

G, taking strategy profiles of agents outside the subset as given. We formally define it

as follows. Let T ( N and t = #T . Let s̄N\T ∈ Sn−t. A restricted game G|s̄N\T is a

game in which the set of agents is T , the set of strategy profiles is St, and the payoff

function for each i ∈ T is the function Ui(·, s̄N\T ) that associates a real value Ui(sT , s̄N\T )

with each element sT in St such that: Ui(sT , s̄N\T ) = Vi(y, xi), where (y, (xj)j∈N) is the

allocation when agents play (sT , s̄N\T ) in G.
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Definition 1.4 A coalition-proof equilibrium (s∗1, . . . , s∗n) is defined inductively with re-

spect to the number of agents t:

• When t = 1, for all i ∈ N , s∗i is a coalition-proof equilibrium for G|s∗N\{i} if

s∗i ∈ arg max Ui(si, s
∗
N\{i}) s.t. si ∈ S.

• Let T ⊆ N with t = #T ≥ 2. Assume that coalition-proof equilibria have been

defined for all normal form games with fewer agents than t.

• Consider the restricted game G|s∗N\T with t agents.

¤ A strategy profile s∗T ∈ St is called self-enforcing if, for all Q ( T , s∗Q is a

coalition-proof equilibrium of G|s∗N\Q.

¤ A strategy profile s∗T is a coalition-proof equilibrium of G|s∗N\T if it is a

self-enforcing strategy profile and there is no other self-enforcing strategy

profile ŝT ∈ St such that Ui(ŝT , s∗N\T ) ≥ Ui(s
∗
T , s∗N\T ) for all i ∈ T and

Ui(ŝT , s∗N\T ) > Ui(s
∗
T , s∗N\T ) for some i ∈ T .

Coalition-proof equilibria are defined as the Pareto efficient frontier within the set of

self-enforcing strategy profiles. The self-enforcing strategy profiles are recursively defined

with respect to the number of agents in coalitions. At a self-enforcing strategy profile of

N , no proper coalition of N can coordinate its members’ strategies in such a way that

all members of the coalition are at least as well off and at least one of them is strictly

better off, and no proper subsets of the coalition further deviate in a self-enforcing way.

Remark 1.1 It is clear that both coalition-proof, strict, and strong equilibria are Nash

equilibria. The set of strong equilibria is included in that of coalition-proof equilibria,

because the coalition-proof equilibria are required to be stable only against self-enforcing

coalitional deviations while the strong equilibria are defined to be stable against all
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possible coalitional deviations. The converse inclusion relation does not always hold.

Note that the set of strict Nash equilibria and that of strong equilibria are not necessarily

related by inclusion, nor are the set of strict Nash equilibria and that of coalition-proof

equilibria.

1.4 The relation to the earlier literature

The participation game may include various models presented in the earlier literature.

Using the framework of participation games, this section provides an overview of the

models and the results of existing literature.

1.4.1 The case of a public project

A fixed-contribution game

Consider a case in which the level of the public good takes either zero or one: Y = {0, 1}.

This kind of a public good is called a public project. Palfrey and Rosenthal (1984)

first considered a game that is similar to the participation game and is called a fixed-

contribution game. In this game, each player simultaneously decides whether or not

to contribute a fixed amount that is common to every player. In addition, the public

good is discrete and at most one unit of the public good is provided. If the aggregate

contribution outweighs the cost of the public good, then one unit of the public good is

provided. Otherwise, the public good is not produced. Let γ > 0 denote the contribution

of every player. The preference relations of all players are represented by the same quasi-

linear utility function. Let θ > 0 be such that vi(y) = θy for all i ∈ N . Let c > 0 be

the cost of producing one unit of the public good: that is, the cost function is c(y) = cy

for all y ∈ Y . We assume that there is a number of agents p∗ such that p∗γ ≥ c and
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(p∗ − 1)γ < c. Palfrey and Rosenthal (1984) considered the two cases. One is a refund

case, and the other is a non-refund case. If the number of contributors is less than p∗,

then the contributions are refunded to the contributors in the refund case, but not in

the non-refund case.

Interpreting the contribution of γ as the announcement of participation, we describe

the fixed-contribution game by the participation game. Let P be a set of participants.

Then, xP
i = 0 for all i /∈ P . If #P ≥ p∗, then yP = 1 and xP

i = γ for all i ∈ P .

Otherwise, yP = 0 and xP
i = 0 in the refund case, or xP

i = γ in the non-refund case.

Palfrey and Rosenthal (1984) compared the Nash equilibrium of the game under the

refund case and that under the non-refund case, and presented the following results.

Proposition (Palfrey and Rosenthal, 1984) (i) Under both the refund rule and the

non-refund rule, p∗ agents contribute γ in some pure-strategy Nash equilibrium. (ii) The

set of pure-strategy Nash equilibria under the non-refund rule is included in that under

the refund rule, and they may not coincide.

From (ii) of the above proposition, the set of pure-strategy Nash equilibria varies

under the different refund rules. Under the refund case, there may be a Nash equilib-

rium with the participation of fewer p∗ − 1 players because every player i is indifferent

between participation and non-participation when fewer than p∗ − 2 players other than

i choose I. On the other hand, under the non-refund rule, every player i clearly has an

incentive to choose O in the same situation. This indicates that a strategy profile with

the participation of fewer than p∗ − 1 players is not supported as a Nash equilibrium of

this game under the non-refund rule.

Palfrey and Rosenthal (1984) also examined the symmetric mixed Nash equilibria

of this game. Since there is a possibility that the participants must pay γ, although
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the public good is not provided under the non-refund rule, the incentive for players to

choose participation under the non-refund rule is intuitively less than that under the

refund case. This intuition is reflected in the following proposition.

Proposition (Palfrey and Rosenthal, 1984) The expected amount of contributions

in symmetric mixed-strategy Nash equilibria under the refund rule is greater than that

under the non-refund rule.

Correlation and efficiency

Note that the symmetric mixed-strategy Nash equilibrium is not necessarily efficient. In

the fixed-contribution game, pure-strategy Nash equilibria Pareto-dominates mixed Nash

equilibria under both the refund and non-refund rules in many cases. The reason simply

comes from the possibility that the public good is not provided with positive probability

in mixed Nash equilibria. Cavaliere (2001) examined whether or not coordination behav-

ior among agents leads to the efficiency of equilibria in the fixed-contribution game under

the non-refund rule. He was motivated by the fact that the fixed-contribution game has

efficient and inefficient Nash equilibria. One problem that was not considered by Pal-

frey and Rosenthal (1984) is why agents play one equilibrium rather than another. He

considered that some sort of communication would solve the coordination problem and

that agents could agree to play efficient strategy profiles through such communication.

He investigated the relationship between communication and the coordination problem

by using the concept of correlated equilibrium (Aumann, 1974, 1987), and showed the

following.

Proposition (Cavaliere, 2001) In the fixed-contribution game, there is an efficient

and symmetric correlated equilibrium, which is a convex combination of efficient pure-
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strategy Nash equilibria.

This result is intuitive, because agents can play only the efficient pure-strategy Nash

equilibria with positive probability by correlating their strategies. However, note that

every Nash equilibrium is a correlated equilibrium by definition. Thus, if the fixed-

contribution games have inefficient Nash equilibria, then there are inefficient correlated

equilibria. We can not conclude from his result that the correlation of strategies solves

the coordination problem in the fixed-contribution game.

A participation game in Coaseian bargaining

Dixit and Olson (2000) introduced a model of voluntary participation in a public project,

which is similar to the model of Palfrey and Rosenthal (1984). Dixit and Olson (2000)

considered the participation problem in Coaseian bargaining. In Coaseian bargaining,

participants agree to achieve an allocation that satisfies Pareto efficiency only within the

participants: the project is carried out, and the cost of the project is distributed in a

budget-balancing way if the joint benefit from the project is greater than the cost of

the public project; otherwise, the project is not undertaken, and the cost share of each

participant is zero.

The formal model is as follows: the preferences of agents are represented by the same

quasi-linear utility function. There is a unique number of agents p̂ such that p̂ θ > c and

(p̂−1)θ ≤ c. In their model, if p̂ or more agents choose I, then the project is undertaken,

and the participants share its cost equally. Otherwise, the participants do not undertake

the project and pay nothing. In our framework, the model of Dixit and Olson (2000)

can be represented in the following way. Let P ⊆ N be a set of participants. For every

non-participant i /∈ P , xP
i = 0. If #P ≥ p̂, then yP = 1 and xP

i =
c

#P
for all i ∈ P . If

not, yP = 0 and xP
i = 0 for all i ∈ P .
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Dixit and Olson (2000) analyzed symmetric mixed Nash equilibria of this game and

explained the properties of equilibrium strategies.

Proposition (Dixit and Olson, 2000) In a symmetric mixed Nash equilibrium, the

probability of choosing participation increases with respect to p̂.

Since every agent receives positive payoffs only if p̂ or more agents choose I, he

assigns a higher probability to participation as the minimal number of participants that

is necessary to undertake the project gets higher. We confirm from this proposition that

the probability of producing the public good is nearly zero when p̂ is small.3 Therefore,

in this game, there may be a Nash equilibrium at which the project is not done although

undertaking the project is socially efficient.

Note that, in the model of Dixit and Olson (2000), there is nC
bp pure-strategy Nash

equilibria at which p̂ agents choose I and the efficient provision is achieved. Hence,

the implication of voluntary participation to the equilibrium allocations are completely

different, depending on pure or mixed-strategy equilibria.

1.4.2 The case of a perfectly divisible public good

Saijo and Yamato (1999) introduced a participation game in a mechanism that imple-

ments the Lindahl allocation rule. In their model, the public good is assumed to be

perfectly divisible. They assumed that agents have the same initial endowments of the

private good and preference relations that are represented by the same Cobb-Douglas

3By using many numerical examples, Dixit and Olson (2000) demonstrated that the project is under-

taken with very low probability in every symmetric Nash equilibrium in a case in which p̂ is absolutely

large but substantially smaller than n. This case corresponds to the case in which
p̂

n
is close to zero.

Hence, the case is equivalent to that of very small p̂ if n is fixed. Therefore, the result that is analogous

to the observation in the numerical examples can be obtained from this proposition.
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utility function. Let ω > 0 be the initial endowments and let V α(y, z) = y1−αzα for

some α > 0, where z denotes a private good consumption. One unit of the public good

is produced from one unit of the private good. If the outcome of the second stage is

given by the Lindahl allocation for the participants, the participation decision stage is

described as follows: let P be a set of agents who choose participation in the first stage.

Then, yP = (1 − α)ω#P , zP
i = αω for all i ∈ P , and zP

i = ω for all i /∈ P . Note that

the level of the public good increases as the number of participants increases, differently

from the case of a public project.

Saijo and Yamato (1999) characterized the number of participants at a pure-strategy

subgame-perfect equilibrium for each value of α, and showed that the equilibrium number

of participants becomes smaller as α gets larger. These results indicate that, although

participation of all agents can be supported as an equilibrium for some α, some agents

choose non-participation in equilibria for many other α. They also proved that all agents

are less likely to choose I as the number of agents gets larger.

1.4.3 A participation problem in other economic models

Okada (1993) and Maruta and Okada (2001) introduced a model of group formation on

the prisoners’ dilemma game, which is called the institutional arrangement game. Their

model consists of multiple stages, and the first stage is the participation decision stage

in a group to achieve cooperative actions in the prisoners’ dilemma, which is similar to

the participation game. In the subgame-perfect equilibrium of their model, a sufficiently

large number of agents choose participation in the group, but not all agents enter it. As

a result, some agents choose cooperation, and others select defection in the prisoners’

dilemma game in the equilibrium of this game. This situation corresponds to the case

in which a positive but Pareto-inefficient amount of a public good can be produced by
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forming a group in the context of the provision of a public good.

Many other works have considered a participation model that has a similar struc-

ture to the participation game. The examples include participation in an international

environmental treaty (Barrett, 1994; Carraro and Siniscalco, 1993, 1998; Ecchina and

Mariotti, 1998; Hoel and Schneider, 1997) and the formation of cartels (d’Asprempnt et

al., 1983; Thoron, 1998; Belleflamme, 2000)

1.5 Organization of this dissertation

In Part I of this dissertation, we deal with topics regarding the participation game when

the public good is perfectly divisible as in Saijo and Yamato (1999). In Chapters 2 and

3, we examine a coalition-proof equilibrium of the participation game in a public good

mechanism to implement the ratio equilibrium allocation rule, which is an extention

of the Lindahl equilibrium allocation rule to the case of a convex cost function. We

consider the case of identical agents in Chapter 2, and extend the analyses to a case of

heterogeneous agents in Chapter 3. We mainly investigate the existence of coalition-proof

equilibria and the number of participants at the equilibria. In Chapter 4, we consider

a generalized game including the model of Chapter 2, and clarify the properties of the

coalition-proof equilibria based on different notions of dominance relations.

In Part II, we consider the case of a discrete public good. Chapter 5 considers the

case of a public project as in Palfrey and Rosenthal (1984). The participation game

considered in this chapter corresponds to the game with refund rule introduced by Pal-

frey and Rosenthal (1984). However, the payments of participants depend on the set

of participants in the participation game of this chapter, which is different from the

case presented in their study. The mechanism achieves the allocations satisfy Pareto effi-
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ciency within the participants and individual rationality. We study strict Nash equilibria,

coalition-proof equilibria, and the strong equilibria of the participation game as well as

the relationships among the three equilibria. We show that there is a Pareto-efficient

equilibrium allocation in this game. In Chapter 6, we first consider the participation

game in the case of a public project. We consider the possibility that agents in a coali-

tion coordinate their decisions through monetary transfers, and we examine the strong

equilibria of this game. Second, we study the participation game in the case of a multi-

unit public good; in this case, the public good is discrete and can have at most two

units. We investigate the difference between the case of a public project and that of a

multi-unit public good. We show that the equilibrium allocations are not Pareto efficient

if the public good can be produced in multiple units, which is similar to the results of

Saijo and Yamato (1999). Chapter 7 concludes this dissertation.
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Part I

Participation Games with Perfectly

Divisible Public Goods
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Chapter 2

Coalition-proof Equilibria in

Participation Games: Identical

Agents

In this chapter, we consider the case in which the public good is perfectly divisible:

Y = R+. We examine the participation game in a mechanism that implements the ratio

allocation rule introduced by Kaneko (1977).1 The purposes of this chapter are (i) to

investigate whether there is a participation decision that is stable against coordination

behavior of agents and (ii) to clarify which properties such participation decision satisfies

if the decision exists. In this chapter, we consider a case in which agents have the

identical preference. We show that the set of coalition-proof equilibria coincide with the

Pareto efficient frontier of the set of Nash equilibria in this case. Thus, a coalition-proof

equilibrium exists if there is a Nash equilibrium in this game.

1Note that the ratio allocation rule is equal to the Lindahl allocation rule when the cost function is

linear.
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2.1 Settings and examples

We assume that agents have an identical preference: v(·) = vi(·) for all i ∈ N . We

assume that v
′
> 0, v

′′
< 0, and v(0) = 0. The cost function c(·) satisfies c

′
> 0, c

′′ ≥ 0,

and c(0) = 0. Moreover let us assume that v
′
(0) > c

′
(0).

Example 2.1 Consider an example where n = 3, v(y) = α
√

y, and c(y) = y, where

α > 0. When the set of participants is P with p = #P , the public good provision yP

maximizes

p

(
α
√

y − y

p

)
.

Hence,

yP =
(αp

2

)2

.

The payoff to every agent i ∈ P is

α2p

2
− 1

p

(αp

2

)2

=
α2p

4
,

and the payoff to every i ∈ N\P is

α2p

2
.

Payoff matrix appears in Table 2.1, where agent 1 chooses rows, agent 2 chooses columns,

and agent 3 chooses matrices. The first entry in each box is agent 1’s payoff, the second

is agent 2’s, and the third is agent 3’s. There are two types of Nash equilibria in this

game. One is the Nash equilibrium with participation of one agent, and the other is the

Nash equilibrium with participation of two agents. Clearly, every Nash equilibrium with

two participants is coalition-proof, and only the Nash equilibria are coalition-proof.

In this example, the set of coalition-proof equilibria coincides with that of Nash

equilibria at which the number of participants is the greatest in the set of Nash equilibria.
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, α2

2
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I O

I α2

2
, α2

2
, α2 α2

4
, α2

2
, α2

2

O α2

2
, α2

4
, α2

2
0, 0, 0

O

Table 2.1: Payoff matrix of Example 2.1

In the following section, we show that this statement generally holds in the case of

identical agents.

2.2 Basic properties

Note that the payoffs to agents depend on the number of participants when agents are

identical. Let us introduce the following notation for convenience.

Definition 2.1 Let ui : {0, 1, . . . , n − 1} × {I, O} → R+ denote a payoff function of

agent i that depends on the number of agents other than i and i’s participation decision.

If p designates the number of participants other than i and si designates i’s participation

decision, then i receives the payoff ui(p, si).

Let yp be the level of the public good when p agents choose I for every p ∈ {0, . . . , n}.

Note that, for every i ∈ N and for every p, ui(p, I) = v(yp+1) − c(yp+1)

p + 1
and ui(p,O) =

v(yp). Since agents are identical, we have ui(p, I) = uj(p, I) for all i, j ∈ N and for all

p ≤ n − 1 and ui(p,O) = uj(p,O) for all i, j ∈ N and for all p ≤ n. Therefore, we can

hereafter omit agents’ indices of the payoff functions.

Lemma 2.1 For all numbers of participants p, q ∈ {0, . . . , n}, if p > q, then yp > yq.

29



Lemma 2.1 is immediate. By Lemma 2.1, the level of public good gets higher as the

number of participants increases.

Lemma 2.2 The payoff function of participants and that of non-participants are in-

creasing with respect to the number of participants other than them: (i) for all p, q ∈

{0, . . . , n − 1}, if p > q, then u(p,O) > u(q, O) and (ii) for all p, q ∈ {0, . . . , n − 1}, if

p > q, then u(p, I) > u(q, I).

Proof. Condition (i) is immediate from Lemma 2.1. We show condition (ii). Let

p, q ∈ {0, . . . , n − 1} such that p > q. The public good provision yp satisfies

(p + 1)v(yp+1) − c(yp+1) ≥ (p + 1)v(ỹ) − c(ỹ)

for all ỹ. In particular, we have

(p + 1)v(yp+1) − c(yp+1) ≥ (p + 1)v(yq+1) − c(yq+1).

Dividing the both sides of the above inequality by p + 1 yields

v(yp+1) − c(yp+1)

p + 1
≥ v(yq+1) − c(yq+1)

p + 1
.

Since p > q, we have

v(yq+1) − c(yq+1)

p + 1
> v(yq+1) − c(yq+1)

q + 1
. (2.1)

Therefore, we have v(yp+1)− c(yp+1)

p + 1
> v(yq+1)− c(yq+1)

q + 1
. Since the left hand side of (2.1)

is equal to u(p, I) and the right hand side is equal to u(q, I), we have u(p, I) > u(q, I).

¥

Lemma 2.2 is a basic property of our model. Using this property, we show the main

results of this chapter.
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2.3 Results

2.3.1 Existence of coalition-proof equilibria and uniqueness of

the number of participants at coalition-proof equilibria

In Example 2.1, there exist two types of Nash equilibria. Only the Nash equilibria

with participation of two agents can be supported by coalition-proof equilibria: in other

words, the number of participants in coalition-proof equilibria is uniquely determined by

the largest number of participants in the set of Nash equilibria. Using only the conditions

in Lemma 2.2 and the assumption of identical agents, we prove the following proposition.

Proposition 2.1 Suppose that agents’ preferences are identical. Let pmax ≤ n be the

maximal number of participants in the set of Nash equilibria: pmax = maxs∈NE(G) #{i ∈

N | si = I}, in which NE(G) is the set of Nash equilibria of G. In the participation game

with a perfectly divisible public good, the set of coalition-proof equilibria coincides with

the set of Nash equilibria at which pmax agents choose I.

Let smax ∈ Sn be a Nash equilibrium at which pmax agents select participation.

Let D ⊆ N denote a coalition and sD denote a strategy profile of D. The number of

participants at (sD, smax
−D ) is denoted by p. Note that, at the strategy profile smax, agent

i receives the payoff u(pmax − 1, I) if i chooses I, and j obtains u(pmax, O) if j chooses

O. Similarly, at (sD, smax
−D ), the payoff to agent i choosing I and that to agent j selecting

O are u(p− 1, I) and u(p,O), respectively. As preparations for proving Proposition 2.1,

we show the following lemmas.

Lemma 2.3 If the coalition D deviates in a way in which p ≤ pmax, then some of its

members are worse off. Moreover, for all agents i ∈ D, if p < pmax, then the payoff to i
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at smax is greater than or equal to the i’s payoff at (sD, smax
−D ).

Proof of Lemma 2.3. First, let us consider a case in which p = pmax. In this case,

there exists at least one member i of D with smax
i = O and si = I.2 By the definition

of Nash equilibria, we have u(pmax, O) ≥ u(pmax, I). Since pmax > p − 1, we obtain

u(pmax, I) > u(p−1, I) by Lemma 2.2. Therefore, i’s payoff decreases after the deviation.

Second, consider a case in which p < pmax. We obtain from Lemma 2.2 that u(pmax−

1, I) > u(p− 1, I) for every member i of D with smax
i = si = I and u(pmax, O) > u(p,O)

for every i ∈ D with smax
i = si = O. For every member i of D with smax

i = I and si = O,

the following inequalities are satisfied:

u(pmax − 1, I) ≥ u(pmax − 1, O) ≥ u(p,O) with equality if p = pmax − 1. (2.2)

The first inequality of (2.2) follows from the definition of Nash equilibria and the second

inequality follows from Lemma 2.2. Hence, we have u(pmax − 1, I) ≥ u(p,O) for every

i ∈ D with smax
i = I and si = O. Similarly, for every member i ∈ D with smax

i = O and

si = I, we have

u(pmax, O) ≥ u(pmax, I) > u(p − 1, I).

Therefore, the deviation by D does not improve the members’ payoffs if p < pmax.

¥

Lemma 2.4 If pmax < n, then u(t, O) − u(t, I) > 0 for all t ∈ {pmax, . . . , n − 1}.

Proof of Lemma 2.4. Suppose that pmax < n and that there exist t ∈ {pmax, . . . , n−1}

such that u(t, O) − u(t, I) ≤ 0. Hence, u(t, O) ≤ u(t, I).

2In the case of sD = smax
D , the payoffs to all the members trivially do not change.
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If t = n − 1, then u(n − 1, I) ≥ u(n − 1, O), which indicates that the participation

of n agents is supported as a Nash equilibrium. This contradicts pmax < n. Consider a

case in which t < n− 1. Since t+1 > pmax, we have u(t+1, O) < u(t+1, I). Otherwise,

condition u(t + 1, O) ≥ u(t + 1, I), together with u(t, O) ≤ u(t, I), implies that the

participation of t + 1 agents can be supported as a Nash equilibrium and pmax is not the

maximal number of participants in the set of Nash equilibria, which is a contradiction.

By the same way, the following inequalities are obtained:

u(t + 2, O) < u(t + 2, I),

u(t + 3, O) < u(t + 3, I),

...

and u(n − 1, O) < u(n − 1, I). (2.3)

From (2.3), participation of n agents is a Nash equilibrium, which is a contradiction.

Therefore, we have u(t, O) − u(t, I) > 0 for all t ∈ {pmax, . . . , n − 1}.

¥

Proof of Proposition 2.1. We first show that smax is a coalition-proof equilibrium.

If pmax = n, no coalitional deviations can improve their members’ payoffs by Lemma

2.3. Then smax is a strong equilibrium of G. Hence, it is a coalition-proof equilibrium.

Let us consider a case in which pmax = n − 1. By Lemma 2.3, no deviations after

which pmax or less agents choose I improve their members’ payoffs. Since pmax = n − 1,

the participation of n agents is not supported as a Nash equilibrium. Thus, we have

u(n− 1, O) > u(n− 1, I). It follows from this inequality that no deviations that achieve

the participation of n agents are profitable. Thus, smax is a strong equilibrium, which

implies that it is also a coalition-proof equilibrium. Next, consider a case in which
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pmax ≤ n − 2. Suppose, on the contrary, smax is not coalition-proof. Then, there exist a

coalition C and its self-enforcing strategy profile ŝC such that Ui(ŝC , s−C) ≥ Ui(s) for all

i ∈ C with strict inequality for at least one i ∈ C. Let p̂ be the number of participants

at (ŝC , smax
−C ).

Step 1. It follows that p̂ > pmax.

Since all members of C are not worse off and at least one member of the coalition

is better off after the deviation, we must have p̂ > pmax by Lemma 2.3. Hence, Step 1

holds.

Step 2. The strategy profile ŝC is not a Nash equilibrium of the restricted game G|smax
−C .

Note that p̂ − 1 ≥ pmax and that there is at least one member i ∈ C with smax
i = O

and ŝi = I. Since u(p̂ − 1, O) > u(p̂ − 1, I) by Lemma 2.4, agent i has an incentive to

switch from I to O again after the deviation by C. It is straightforward that ŝC is not

a Nash equilibrium of G|smax
−C . Thus, Step 2 is true.

By Step 2, ŝC is not a self-enforcing strategy profile, which is a contradiction. There-

fore, smax is coalition-proof.

Secondly, we prove that pmax agents enter the mechanism in every coalition-proof

equilibrium. We know from the proof of Lemma 2.3 that any strategy profile with the

participation of less than pmax agents is Pareto dominated by smax. Since smax is a self-

enforcing strategy profile, the participation of less than pmax agents is not supportable

as a coalition-proof equilibrium. Every strategy profile with more than pmax participants

also can not be coalition-proof because it is not a Nash equilibrium. Therefore, the
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number of participants in the set of coalition-proof equilibria is uniquely determined by

pmax.

¥

Corollary 2.1 A coalition-proof equilibrium exists in the participation game.

Proof. It is clear from Proposition 2.1 that the existence of a Nash equilibrium implies

that of a coalition-proof equilibrium in the participation game. The Nash equilibrium is

proved to exist in the same way as d’Aspremont et al. (1983). ¥

Remark 2.1 Thoron (1998) obtained a similar result to Proposition 2.1 in the cartel

formation problem. But Thoron (1998) used different conditions from ours. She used

the following two conditions: (i) u(p,O) > u(q, O) for all p, q ∈ {0, . . . , n− 1} such that

p > q and (ii) u(p,O) > u(p − 1, I) for all p ∈ {1, . . . , n − 1}. Although conditions (i)

and (ii) are satisfied in our model, we do not use condition (ii) in the proof; we use the

condition u(p, I) > u(q, I) for all p, q ∈ {0, . . . , n − 1} such that p > q, instead.

Remark 2.2 Note that Proposition 2.1 holds if agents have identical preferences and

Lemma 2.2 is satisfied. Thus, the assumption that agents have a quasi-linear preference

does not matter. Saijo and Yamato (1999) studied the symmetric Cobb-Douglas economy,

in which all agents have the preference that is represented by the same Cobb-Douglas

utility function α ln z+(1−α) ln y for some α ∈ (0, 1), where z denotes the consumption

of the private good. All agents are assumed to have the same initial endowments of the

private good ω > 0. They assumed that one unit of the private good yields one unit of

the public good, and they considered the voluntary participation game in a public good

mechanism to implement the Lindahl allocation rule. In this model, if P designates

a set of participants and p denotes the number of agents in P , the provision of the

35



public good is yp = (1 − α)ωp, the private good consumption of participants is αω, and

that of non-participants is ω. Hence, u(p − 1, I) = α ln αω + (1 − α) ln(ω(1 − α))p and

u(p,O) = α ln ω + (1 − α) ln(1 − α)ωp. Since u(·, I) and u(·, O) are increasing functions

in the first argument, Lemma 2.2 is satisfied. Therefore, the symmetric Cobb-Douglas

economy has a coalition-proof equilibrium, and the number of participants at coalition-

proof equilibria is unique.

2.3.2 Coalition-proof equilibria and the Pareto efficient frontier

of the set of Nash equilibria

We provide another characterization of the set of coalition-proof equilibria in the partic-

ipation game.

Definition 2.2 A strategy profile s ∈ Sn is Pareto dominated by a strategy profile s̃ if

Ui(s̃) ≥ Ui(s) for all i ∈ N and Ui(s̃) > Ui(s) for some i ∈ N .

Proposition 2.2 In the participation game, a strategy profile is a coalition-proof equi-

librium if and only if it is a Nash equilibrium that is not Pareto dominated by any other

Nash equilibrium.

Proof. Let pmax be the maximal number of participants in the set of Nash equilibria.

Take any coalition-proof equilibrium scpe. By Proposition 2.1, pmax agents choose I at

scpe. By Lemma 2.3, scpe Pareto dominates any other Nash equilibrium with partici-

pation of less than pmax agents and it is undominated by any other Nash equilibrium

with participation of pmax agents. Hence, scpe is a Nash equilibrium that is not Pareto

dominated by any other Nash equilibrium. Conversely, let spne be a Nash equilibrium

that is not dominated by any other Nash equilibrium. Then, pmax agents choose I in
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spne. Therefore, it is coalition-proof. ¥

It is clear from the definition of coalition-proof equilibria that the set of coalition-

proof equilibria coincide with the Pareto efficient frontier of the set of Nash equilibria in

every two-player game. However, the two sets do not necessarily coincide in games with

more than two players. Bernheim, Peleg, and Whinston (1987) provided an example of

three-player game in which there are two Nash equilibria, one is coalition-proof and the

other is not, and the former is dominated by the latter. In the participation game, the

two sets coincide regardless of the number of players.

Yi (1999) also investigated the equivalence between the set of coalition-proof equilib-

ria and the Pareto efficient frontier of the set of Nash equilibria. Yi(1999) considered a

game in which the strategy space of each player is a subset of real line and he showed that

if a game satisfies anonymity3, monotone externality4, and strategic substitutability5, then

the set of coalition-proof equilibria and the Pareto efficient frontier of the set of Nash

equilibria coincide. In the participation game, the anonymity condition is satisfied since

agents are identical and the payoff function of every agent i depends on his participation

decision and the number of agents other than i who choose I. The participation game

satisfies the monotone externality condition because the utilities of participants and non-

participants get higher as the number of participants increases. However, only a weaker

3A game satisfies anonymity if, for all i ∈ N , all si ∈ S, and all s−i, ŝ−i ∈ Sn−1, if
∑

j 6=i sj =
∑

j 6=i ŝj ,

then Ui(si, s−i) = Ui(si, ŝ−i).
4A game satisfies monotone externality if, for all i ∈ N , all si ∈ S, and all s−i and ŝ−i ∈ Sn−1, if∑

j 6=i sj >
∑

j 6=i ŝj , then either Ui(si, s−i) ≥ Ui(si, ŝ−i) or Ui(si, s−i) ≤ Ui(si, ŝ−i) holds. If the former

holds, the condition means positive externalities, and it represents negative externalities if the latter is

satisfied.
5A game satisfies strategic substitutability if, for all i ∈ N , all si, ŝi ∈ S, and all s−i, ŝ−i ∈ Sn−1,

if si > ŝi and
∑

j 6=i sj >
∑

j 6=i ŝj , then Ui(si, s−i) − Ui(ŝi, s−i) < Ui(si, ŝ−i) − Ui(ŝi, ŝ−i).
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condition than the strategic substitutability is satisfied in the participation game. De-

noting strategies I and O by 1 and 0, respectively, we can describe the condition of

strategic substitutability as follows: for all i ∈ N and for all p, p̂ ∈ {0, 1, . . . , n − 1},

if p > p̂, then ui(p,O) − ui(p, I) > ui(p̂, O) − ui(p̂, I). Thus, the gain from switching

from I to O is increasing with respect to the number of agents other than i that choose

I. In the participation game, when agents’ preferences are identical, Lemma 2.4 holds.

The condition of Lemma 2.4 means that the gains of an agent from switching from I

to O is positive if pmax or more agents other than the agent choose I. However, the

gains is not necessarily increasing with respect to the number of participants. Thus,

Proposition 2.2 provides different sufficient conditions from those of Yi (1999) for the

set of coalition-proof equilibria to coincide with the Pareto efficient frontier of the set of

Nash equilibria.

Finally, we mention that the coalition-proof equilibrium of our model is based on

weak domination6, while that of Yi (1999) is based on strict domination7. These two

coalition-proof equilibria are not necessarily related by inclusion. (See Example 4.1

on page 57) Hence, it is not trivial and open that the set of coalition-proof equilibria

under weak domination coincides with the strictly Pareto efficient frontier of the set of

Nash equilibria under Yi (1999)’s conditions. We will examine the relationship between

coalition-proof equilibria based on different dominance relations in Chapter 4.

6Strategy profile s weakly dominates strategy profile ŝ if there exists a coalition C such that all

members of C are not worse off and at least one member of the coalition is better off by deviating from

ŝ to s, holding the strategies of the others fixed.
7Strategy profile s weakly dominates strategy profile ŝ if there exists a coalition C such that all

members of C can be better off by switching from y to x, taking the strategies of the players outside C

as given.
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2.3.3 Extension to the case of v′(0) ≤ c′(0)

We extend the analysis to the case of v′(0) ≤ c′(0). We first consider the following case.

Case 1. There exists the number of participants p̃ ≤ n−1 such that v′(0) > c′(0)/(p̃+1)

and v′(0) ≤ c′(0)/p̃.

Example 2.2 Let n = 3 and v(y) = −y

(
y − 3

4

)
. Let us assume that one unit of the

public good can be provided from one unit of the private good. Note that v′(0) =
3

4
.

The payoff matrix is shown in Table 2.2. In this example, yp = 0 whenever p < 2. Hence,

I O

I (0.04, 0.04, 0.04) (0.02, 0.08, 0.02)

O (0.08, 0.02, 0.02) (0, 0, 0)

I

I O

I (0.02, 0.02, 0.08) (0, 0, 0)

O (0, 0, 0) (0, 0, 0)

O

Table 2.2: Payoff matrix of Example 2.2

the payoff to participants and non-participants are zero if the number of participants is

less than two. There are two types of Nash equilibria: one is a Nash equilibrium with

two participants and the other is a Nash equilibrium with zero participants. Clearly, the

set of coalition-proof equilibria coincides with the set of strategy profiles in which two

agents choose I.

In Case 1, the level of the public good is zero unless more than p̃ agents choose I.

The followings are analogous properties to Lemma 2.2.

Lemma 2.5 The payoffs to participants satisfy the following two conditions:

(P.1) For all p ∈ {0, . . . , n}, if p ≤ p̃ − 1, then u(p, I) = 0.
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(P.2) For all p, p̂ ∈ {p̃, . . . , n}, if p > p̂, then u(p, I) > u(p̂, I).

The payoffs to non-participants satisfy conditions (N.1) and (N.2):

(N.1) For all p ∈ {0, . . . , n}, if p ≤ p̃, then u(p,O) = 0.

(N.2) For all p, p̂ ∈ {p̃ + 1, . . . , n}, if p > p̂, then u(p,O) > u(p̂, O).

Conditions (P.1) and (N.1) are immediate. We can show (P.2) and (N.2) in a similar

way to Lemma 2.2.

Lemma 2.6 Let s∗ be a Nash equilibrium and let p∗ be the number of agents that

choose I in s∗. If p∗ > p̃, then s∗ Pareto dominates every strategy profile in which the

number of participants is p̃ or less.

Lemma 2.6 can be shown in a way that is similar to Lemma 2.3.

Lemma 2.7 There is a Nash equilibrium in which more than p̃ agents choose I.

Proof. If u(n − 1, I) ≥ u(n − 1, O), then n agents choose I in a Nash equilibrium.

Otherwise, we have u(n − 1, I) < u(n − 1, O). If u(n − 2, I) ≥ u(n − 2, O), then this

inequality, together with u(n−1, I) < u(n−1, O), implies that there is a Nash equilibrium

in which n−1 agents choose I. Otherwise, we obtain u(n−2, I) < u(n−2, O). Applying

the same argument iteratively, if we have u(p̃ + 1, I) < u(p̃ + 1, O), then this inequality,

together with u(p̃, I) ≥ u(p̃, O) = 0, indicates that p̃ + 1 agents choose I in a Nash

equilibrium. Hence, this game has Nash equilibria at which more than p̃ choose I. ¥

Proposition 2.3 Let pmax denote the maximal number of participants in the set of Nash

equilibria. Then, the set of coalition-proof equilibria coincides with the set of Nash equi-

libria in which pmax agents choose I in Case 1.

40



Proof. By Lemma 2.7, we have pmax ≥ p̃ + 1. Using Lemmas 2.5 and 2.6, we can show

the statement in a similar way to Proposition 2.1. ¥

Case 2. v′(0) ≤ c′(0)/(p̃ + 1) for all p̃ ≤ n − 1.

Finally, let us consider Case 2. In this case, no public goods are provided regardless of

the number of participants. Thus, it is clear that all strategy profiles are coalition-proof.

However, the various numbers of participants are supported as coalition-proof equilibria.

2.3.4 Non-existence of strong equilibria

In the participation game, there is not necessarily a strong equilibrium. The following is

such an example.

Example 2.3 (Non-existence of strong equilibria) Consider a game with five agents.

Each agent has the same preference relation as that in Example 2.1. There are two types

of Nash equilibria in this game. Every Nash equilibrium with participation of one agent

is not a strong equilibrium because it is Pareto dominated by Nash equilibria with partic-

ipation of two agents. In every Nash equilibrium with two participants, non-participants

receive the payoff α2. When the number of participants is five, payoffs of all the agents

are 5α2/4. Hence, three non-participants in the Nash equilibrium can gain higher payoffs

if all of the non-participants jointly deviate from O to I. Therefore, no Nash equilib-

ria with two participants are strong equilibria, which indicates that there is no strong

equilibrium in the game.

We characterize the set of strong equilibria in the participation game.

Proposition 2.4 Let pmax be the number of participants that is attained in the set of

Nash equilibria. A Nash equilibrium of the participation game is a strong equilibrium if
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and only if (i) it is a Nash equilibrium in which pmax agents choose I and (ii) no subset

of agents can deviate from it in a way in which the number of participants is greater

than pmax and all members of this coalition are not worse off and at least one member is

better off.

Proof. (sufficiency) Let smax be a Nash equilibrium of the participation game in which

pmax agents choose I. Suppose that smax satisfies condition (ii). By Lemma 2.3, no

deviation after which the number of participants is less than or equal to pmax improves

the payoffs of its members. Therefore, smax is a strong equilibrium in this game.

(necessity) Let s∗ denote a strong equilibrium in this game. If s∗ does not satisfy con-

dition (i), then it is not coalition-proof. This is a contradiction. If s∗ does not satisfy

(ii), then a subset of agents can deviate profitably. This contradicts the idea that s∗ is

a strong equilibrium of this game. Hence, s∗ must satisfy (i) and (ii). ¥

We confirm from Propositions 2.1 and 2.4 that, in the participation game, a coalition-

proof equilibrium is a strong equilibrium if and only if it satisfies condition (ii). Note

that condition (ii) is not satisfied in many cases when the number of agents is large,

since the payoff function of participants and that of non-participants are increasing with

respect to the number of participants. In this game, it is less possible that a strong

equilibrium exists as n gets larger, while a coalition-proof equilibrium exists regardless

of the number of agents.
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Chapter 3

Coalition-proof Equilibria in

Participation Games:

Heterogeneous Agents

We extend the analyses in Chapter 2 to a case of heterogeneous agents in this chapter.

Let vi(·) = αiv(·) for all i ∈ N , where αi > 0, v(0) = 0, and v(·) is twice continuously

differentiable and strictly concave. The values αi may be different for each agent in this

chapter. The cost function c(·) satisfies c
′
> 0 and c

′′ ≥ 0. Assume that v
′
(0) > c

′
(0).

The mechanism is assumed to implement the ratio allocation rule, as in Chapter 2.

Since the function v(·) is common to every agent, it can be interpreted that this

setting of heterogeneity is close to the case of identical agents. However, the number of

participants achieved at a coalition-proof equilibrium is not necessarily unique in this

case.

Example 3.1 (The multiple numbers of participants in coalition-proof equi-

libria) Consider a game with three agents. Let α1, α2, and α3 be such that α1 > α2 = α3
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and α1 < α2+α3, say α1 = 5, and α2 = α3 = 3. In this example, we assume that one unit

of the private good yields one unit of the public good and that the mechanism implements

the Lindahl allocation rule. The payoff matrix of this game appears in Table 3.1. In this

example, there are two coalition-proof equilibria. One is s = (s1, s2, s3) = (O, I, I) and

the other is s′ = (s′1, s
′
2, s

′
3) = (I, O,O). Two agents participate in the mechanism at s,

while one agent enters the mechanism at s′. Thus, the number of participants attained

at coalition-proof equilibria is not unique in this example.

I O

I 13.75, 8.25, 8.25 10, 12, 6

O 15, 4.5, 4.5 7.5, 4.5, 2.25

I

I O

I 10, 6, 12 6.25, 7.5, 7.5

O 7.5, 2.25, 4.5 0, 0, 0

O

Table 3.1: Payoff matrix of Example 3.1

In the following sections, we investigate sufficient conditions under which the number

of participants is unique in coalition-proof equilibria.

3.1 Basic properties: Heterogeneous agents

3.1.1 Properties of payoff functions

We first introduce the payoff function that associates a real number with each set of

participants.
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Definition 3.1 A payoff function of i ∈ N , ui : 2N → R+, is defined as follows:

For any set of participants P, ui(P ) =


αiv(yP ) − αi∑

j∈P αj

c(yP ) if i ∈ P,

αiv(yP ) otherwise.

Lemma 3.1 proves that the level of the public good gets higher as the sum of the

marginal willingness to pay of participants increases.

Lemma 3.1 For all sets of participants P, Q ⊆ N , if
∑

i∈P αi >
∑

i∈Q αi, then yP > yQ.

Proof. Let P, Q ⊆ N be such that
∑

j∈P αj >
∑

j∈Q αj. Let yP and yQ be levels of

the public good when the set of participants are P and Q, respectively. The public good

provision yP and yQ satisfy the following conditions

v′(yP ) =
c′(yP )∑

j∈P αj

and v′(yQ) =
c′(yQ)∑

j∈Q αj

.

Suppose, on the contrary, yQ ≥ yP . Then, the following inequalities are satisfied:

v′(yP ) =
c′(yP )∑

j∈P αj

<
c′(yP )∑

j∈Q αj

≤ c′(yQ)∑
j∈Q αj

= v′(yQ).

Hence, we have v′(yP ) < v′(yQ). Since v′ is strictly decreasing, yP > yQ. This is a

contradiction. ¥

Lemma 3.2 For all sets of participants P , Q ⊆ N , if
∑

i∈P αi >
∑

i∈Q αi, then condi-

tions (3.1) and (3.2) are satisfied:

ui(P ) > ui(Q) for all i /∈ P ∪ Q, and (3.1)

ui(P ) > ui(Q) for all i ∈ P ∩ Q. (3.2)

Proof. It is immediate from Lemma 3.1 that (3.1) holds. We show (3.2). Let P, Q ⊆ N

be such that
∑

j∈P αj >
∑

j∈Q αj, and let i ∈ P ∩Q. Since yP maximizes the sum of the

utilities of agents in P ,
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∑
j∈P

uj(P ) = v(yP )
∑
j∈P

αj − c(yP ) ≥ v(yQ)
∑
j∈P

αj − c(yQ). (3.3)

Multiplying the both sides of (3.3) by αi/
∑

j∈P αj, together with
∑

j∈P αj >
∑

j∈Q αj,

yields

αi v(yP ) − αi∑
j∈P αj

c(yP ) ≥ αi v(yQ) − αi∑
j∈P αj

c(yQ)

> αi v(yQ) − αi∑
j∈Q αj

c(yQ).

Hence, we obtain ui(P ) > ui(Q). ¥

Lemma 3.2 is a basic property of our model. It shows that the payoff functions of

both participants and non-participants are increasing with respect to the sum of the

marginal willingness to pay for the public good of participants.

3.1.2 Nash equilibria and Pareto domination

Let s ∈ Sn be a strategy profile and let P be the set of participants at s. Define R(s)

as the set of strategy profiles that can be reached from s by deviations of agents in P s.

Formally, we define this in the next definition.

Definition 3.2 Let s be a profile of strategies and let P be the set of agents that choose

I. The subset of strategy profile R(s) is defined as

{
ŝ ∈ Sn|there exists D ∈ 2P s\{∅} such that ŝi = O for all i ∈ D and ŝi = si for all i /∈ D

}
.

For example, R((I, . . . , I)) is equivalent to the set Sn\{(I, . . . , I)} and R((O, . . . , O))

is empty.

Lemma 3.3 Let s ∈ Sn be a Nash equilibrium. Then, s Pareto dominates all the

strategy profiles ŝ ∈ R(s).
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Proof. Let s be a Nash equilibrium of G in which P is the set of participants, and let

ŝ ∈ R(s) be a strategy profile in which P̂ is a set of participants. Note that P̂ ( P by

the definition of R(s). Thus, it follows that
∑

i∈P αi >
∑

i∈ bP αi. By
∑

i∈P αi >
∑

i∈ bP αi,

(3.1), (3.2), and the definition of Nash equilibrium yields, we have the following three

conditions:

ui(P ) > ui(P̂ ) for all i ∈ P̂ , (3.4)

ui(P ) > ui(P̂ ) for all i ∈ N\P , and (3.5)

ui(P ) ≥ ui(P\{i}) ≥ ui(P̂ ) for all i ∈ P\P̂ . (3.6)

Conditions (3.4) and (3.5) are immediate from
∑

i∈P αi >
∑

i∈ bP αi, (3.1) and (3.2).

The first inequality of (3.6) follows from the definition of Nash equilibrium, and the

second follows from (3.1) and holds with equality if P̂ = P\{i}. By (3.4), (3.5) and

(3.6), ŝ is Pareto dominated by s. ¥

3.2 Coalition-proof equilibria and the number of par-

ticipants

We consider the situation in which the game G has multiple self-enforcing strategy pro-

files. Hence, coalition-proof equilibria may support various numbers of participants. The

main purpose of this section is to establish a sufficient condition under which the number

of participants supported as coalition-proof equilibria is unique.

Let pmax be the maximal number of participants in the set of self-enforcing strategy

profiles of G. Let smax ∈ Sn be a self-enforcing strategy profile in which pmax agents

choose I. Let us denote the set of participants at smax by Pmax.

Condition 3.1 αi ≥ αj for all i ∈ Pmax and all j ∈ N \ Pmax.
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Condition 3.1 means that all agents in Pmax have at least as high marginal willingness

to pay for the public good as the agents in N \Pmax. Note that Condition 3.1 is satisfied

in the case of identical agents. The following proposition generalizes uniqueness of the

number of participants in the set of coalition-proof equilibria in the case of identical

agents.

Proposition 3.1 Let pmax denote the maximal number of participants attained in the set

of self-enforcing strategy profiles in G. Let Pmax be a set of participants with #Pmax =

pmax that is supported as a self-enforcing strategy profile of G. If Pmax satisfies Condition

3.1, then pmax is the unique number of participants that is achieved in the set of coalition-

proof equilibria.

Before proving Proposition 3.1, we show the following lemma.

Lemma 3.4 Let smax be a self-enforcing strategy profile at which Pmax is the set of

participants and pmax agents choose I. Suppose that Pmax satisfies Condition 3.1. Then,

(i) smax is not Pareto dominated by any strategy profile with participation of pmax agents

and (ii) smax Pareto dominates every strategy profile with participation of less than pmax

agents.

Proof of Lemma 3.4. Let ŝ ∈ Sn be a profile of strategies. Let P̂ be a set of

participants that is attained in ŝ, and let p̂ be the number of agents in P̂ . We consider

the following two cases: one is the case of pmax = p̂ and the other is the case of pmax > p̂.

We first consider the first case and show the statement (i). If P̂ = Pmax, then ŝ

does not Pareto dominate smax trivially. Let us consider the case of P̂ 6= Pmax. Since

pmax = p̂ and P̂ 6= Pmax, we have #[Pmax \ P̂ ] = #[P̂ \ Pmax] > 0. For every agent
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i ∈ P̂ \ Pmax, we have

ui(P
max) ≥ ui(P

max ∪ {i}) > ui(P̂ ). (3.7)

The first inequality follows from the definition of Nash equilibrium, and the second

inequality holds since ∑
j∈P max∪{i}

αj =
∑

j∈P max∩ bP

αj +
∑

j∈P max\ bP

αj + αi

≥
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj + αi

>
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj

=
∑
j∈ bP

αj.

(3.8)

Note that Condition 3.1 implies that αk ≥ αl for all k ∈ Pmax\P̂ and all l ∈ P̂ \Pmax.

Hence, we obtain
∑

j∈P max\ bP αj ≥
∑

j∈ bP\P max αj. The second inequality of (3.8) follows

from this, and the third inequality of (3.8) follows from αi > 0. It follows from (3.7)

that every agent i ∈ P̂ \ Pmax is worse off by switching from smax to ŝ. This completes

the proof of (i).

We second consider the case of p̂ < pmax. Note that #[Pmax \ P̂ ] > #[P̂ \ Pmax]

must be satisfied in this case. If ŝ ∈ R(smax), then smax dominates ŝ by Lemma 3.3. If

ŝ /∈ R(smax), then the following claim is satisfied.

Claim 3.1 It follows that #[Pmax \ P̂ ] > #[P̂ \ Pmax] ≥ 1.

Proof of Claim 3.1. Since ŝ /∈ R(smax), P̂\Pmax is non-empty. Thus, #[P̂\Pmax] ≥ 1.

We obtain #[Pmax \ P̂ ] > #[P̂ \ Pmax] because pmax > p̂. ¥
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Claim 3.2 Every agent that selects the same strategy at both smax and ŝ is worse off:

ui(P
max) > ui(P̂ ) for all i ∈ Pmax ∩ P̂ , and

ui(P
max) > ui(P̂ ) for all i ∈ N \ (Pmax ∪ P̂ ).

(3.9)

Proof of Claim 3.2. We first show
∑

j∈P max αj >
∑

j∈ bP αj. Note that

∑
j∈P max

αj =
∑

j∈P max∩ bP

αj +
∑

j∈P max\ bP

αj. (3.10)

It follows from Condition 3.1 that αk ≥ αl for all k ∈ Pmax \ P̂ and all l ∈ P̂ \Pmax. By

this condition and Claim 3.1, we have
∑

j∈P max\ bP αj >
∑

j∈ bP\P max αj. Hence,

(3.10) >
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj

=
∑
j∈ bP

αj.

Therefore, we obtain
∑

j∈P max αj >
∑

j∈ bP\P max . By Lemma 3.2 and this condition, we

have (3.9).

¥

Claim 3.3 Every agent that chooses I in smax and O in ŝ is worse off: For all i ∈

Pmax \ P̂ , ui(P
max) ≥ ui(P̂ ).

Proof of Claim 3.3. Let i ∈ Pmax \ P̂ . By the definition of Nash equilibrium,

ui(P
max) ≥ ui(P

max \ {i}). We first operate
∑

j∈P max\{i} αj in the following way:

∑
j∈P max\{i}

αj =
∑

j∈P max

αj − αi

=
∑

j∈P max∩ bP

αj +
∑

j∈(P max\ bP )\{i}

αj.

(3.11)

50



By Condition 3.1 and #[Pmax \ P̂ ]−1 ≥ #[P̂ \Pmax], we obtain
∑

j∈(P max\ bP )\{i} αj ≥∑
j∈ bP\P max αj. Therefore,

(3.11) ≥
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj

=
∑
j∈ bP

αj.

It is straightforward from Lemma 3.2 to show ui(P
max) ≥ ui(P

max \ {i}).

¥

Claim 3.4 Every agent that chooses O in smax and I in ŝ is worse off: For all i ∈

P̂ \ Pmax, ui(P
max) > ui(P̂ ).

Proof of Claim 3.4: Let i ∈ P̂ \ Pmax. By the definition of Nash equilibrium,

ui(P
max) ≥ ui(P

max∪{i}). We show
∑

j∈P max∪{i} αj >
∑

j∈ bP αj to prove ui(P
max∪{i}) >

ui(P̂ ). Note that

∑
j∈P max∪{i}

αj = αi +
∑

j∈P max∩ bP

αj +
∑

j∈P max\ bP

αj. (3.12)

It follows from Condition 3.1 and Claim 3.1 that
∑

j∈P max\ bP αj >
∑

j∈ bP\P max αj.

Thus,

(3.12) >
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj + αi

>
∑

j∈P max∩ bP

αj +
∑

j∈ bP\P max

αj

=
∑
j∈ bP

αj.

Therefore, we have ui(P
max) ≥ ui(P

max ∪ {i}) > ui(P̂ ). ¥
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By Claim 3.2, 3.3, and 3.4, smax Pareto dominates every strategy profile with partic-

ipation of less than pmax agents. Therefore, (ii) is satisfied. (End of Proof of Lemma

3.4)

Proof of Proposition 3.1. Since pmax is the maximal number of participants that is

supportable as self-enforcing strategy profiles, participation of more than pmax agents is

not achieved at coalition-proof equilibria. Profile smax is self-enforcing and no strategy

profiles with participation of less than pmax agents Pareto dominate smax by Lemma 3.4.

Thus, smax is not Pareto dominated by any other self-enforcing strategy profile, which

indicates that participation of pmax agents is supportable as a coalition-proof equilibrium.

By Lemma 3.4, no strategy profile supporting participation of less than pmax agents are

coalition-proof because such strategy profiles are Pareto dominated by smax, which is

self-enforcing.

¥

3.3 Concluding Remarks

In Chapter 2 and Chapter 3, we have investigated the coalition-proof equilibria in the

voluntary participation game in a public good mechanism. We have proved that the

Nash equilibrium with the maximal number of participants is the unique coalition-proof

equilibrium when agents’ preferences are identical. In the case of heterogeneous agents,

there may exist multiple coalition-proof equilibria and they support various numbers of

participants. But if each of participants has at least as high marginal willingness to

pay for the public good as non-participants in a self-enforcing strategy profile with the

maximal number of participants, then the number of participants is unique. It follows
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from these results that coalition-proof equilibrium offers a much shaper prediction on

the number of participants than Nash equilibrium in the cases of identical agents or

heterogeneous agents under our sufficient condition. However, in this chapter, we did

not provide the existence and characterizations of the set of coalition-proof equilibria

when agents’ preferences are heterogeneous because of the difficulty of them. For a

future work, we characterize the set of coalition-proof equilibria in the case where agents

are heterogeneous by assuming additional conditions.

We consider that agents collude only on participation in the mechanism. Hence,

agents in a coalition do not offer side payments, or do not negotiate on the strategies

in the mechanism. This form of coalition is weak. For another future research, we

investigate the relationship between the set of participants in the public good mechanism

and stronger forms of coalitions.
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Chapter 4

Coalition-proofness and Dominance

Relations

This chapter examines the relationship between coalition-proof equilibria based on differ-

ent dominance relations. The notion of a coalition-proof equilibrium was introduced by

Bernheim, Peleg, and Whinston (1987) and is known as a refinement of Nash equilibria

based on the stability against credible coalitional deviations. However, there are two

ways for a coalition to improve payoffs to its members. We consider the following two

dominance relations:

(i) Strategy profile x strictly dominates strategy profile y if there exists a coalition

S such that all members of S can be better off by switching y to x, taking the

strategies of the players outside S as given.

(ii) Strategy profile x weakly dominates strategy profile y if there exists a coalition S

such that all members are not worse off and at least one member of the coalition

is better off by deviating from y to x, holding the strategies of the others fixed.
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Under the notion of strict domination, all of the deviating players are better off,

while, under that of weak domination, all members of a coalition are at least as well off,

and at least one of them is better off. Thus, the set of equilibria under weak domination

may be a subset of that under strict domination. This indeed applies to the strong Nash

equilibrium and the core.

However, the set of coalition-proof equilibria under strict domination does not contain

that under weak domination. Konishi, Le Breton, and Weber (1999) provided an example

in which the set of coalition-proof equilibria under weak domination and that under

strict domination are both non-empty and their intersection is empty. They also showed

that, in the class of common agency games, any coalition-proof equilibria under weak

domination is that under strict domination.

In this study, we consider the class of games with n players in which the strategy

space of each player is a subset of the real line.1 We show that, if a game satisfies

the conditions of anonymity, monotone externality, and strategic substitutability, then

the set of coalition-proof equilibria under weak domination is included in that under

strict domination. It is interesting to point out that the same three conditions yield

the equivalence of the set of coalition-proof equilibria under strict domination and the

weakly Pareto efficient frontier of the set of Nash equilibria (Yi (1999)). The inclusion

relation between the sets of coalition-proof equilibria under the two different dominance

relations holds for the games that have interested economists, such as standard Cournot

oligopoly games and voluntary participation games in a mechanism producing public

goods.

1Note that common agency games do not belong to this class.
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4.1 The Model

We consider a strategic game G = [N, (Xi)i∈N , (ui)i∈N ], where N is a finite set of

players, Xi is the set of pure strategies of player i that is a subset of real numbers, and

ui :
∏

j∈N Xj → R is the payoff function of player i. In this dissertation, we focus solely

on pure strategy equilibria.

The notions of coalition-proof equilibria are defined under strict domination and weak

domination. In Definition 1.4 on page 16, the coalition-proof equilibria was defined under

weak domination, which is called a coalition-proof equilibrium under weak domination in

this chapter. The coalition-proof equilibria that are defined under strict domination are

called a coalition-proof equilibria under strict domination.

The main difference between the two notions of coalition-proof equilibria lies in the

notions of coalitional deviations. The idea behind the coalition-proof equilibria under

weak domination is that a coalition deviates if all members in the coalition are at least

as well off and at least one of them is better off. On the other hand, under strict

domination, a coalition deviates only if every member of the coalition is better off. Note

that, under either of the dominance relations, coalition-proof equilibria and self-enforcing

strategy profiles are Nash equilibria. In games with two players, the set of self-enforcing

strategy profiles coincides with that of Nash equilibria, since coalitions consist of only

two or fewer players. Hence, the set of coalition-proof equilibria under weak domination

coincides with the (strictly) Pareto efficient frontier of the set of Nash equilibria, and so

does the set of coalition-proof equilibria under strict domination with the weakly Pareto

efficient frontier of that of Nash equilibria. Therefore, the set of coalition-proof equilibria

under weak domination is a subset of that under strict domination in two-player games.

However, the inclusion relation between the sets of coalition-proof equilibria under the
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two different dominance relations does not necessarily hold in games with more than two

players. Konishi, Le Breton, and Weber (1999) presented an example in which the sets

of coalition-proof equilibria under strict and weak dominations are disjoint.

Example 4.1 (Konishi, Le Breton, and Weber, 1999) Consider the game with three

players depicted in Table 4.1, in which agent 1 chooses rows, agent 2 chooses columns,

and agent 3 chooses matrices. The first entry in each box is agent 1’s payoff, the second

is agent 2’s, and the third is agent 3’s. There exist two pure strategy Nash equilibria,

(a1, b1, c2) and (a2, b2, c1), where the former is a coalition-proof equilibrium under weak

domination but not that under strict domination, and the latter is a coalition-proof equi-

librium under strict domination but not that under weak domination. In this example,

the set of coalition-proof equilibria under weak domination is not a subset of that under

strict domination.

b1 b2

a1 1, 0, −5 −5, −5, 0

a2 −5, −5, 0 0, 0, 10

c1

b1 b2

a1 −1, −1, 5 5, −5, 0

a2 −5, −5, 0 −2, −2, 0

c2

Table 4.1: The payoff matrix of the example presented by Konishi, Le Breton, and Weber

(1999). (Example 4.1)

4.2 The Main Result

In this section, we establish sufficient conditions under which the set of coalition-proof

equilibria under weak domination is a subset of that of a coalition-proof equilibrium
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under strict domination.

The first condition is that of anonymity.

Anonymity. For all i ∈ N , all xi ∈ Xi, and all x−i, x̂−i ∈
∏

j 6=i Xj, if
∑

j 6=i xj =∑
j 6=i x̂j, then ui(xi, x−i) = ui(xi, x̂−i).

The anonymity condition means that the payoff function of every player depends on

his strategy and on the aggregate strategy of all other players.

The next condition is that of monotone externality. The condition states that the

payoffs to every player are either non-increasing or non-decreasing with respect to the

sum of strategies of the other players.

Monotone externality. (i) For all i ∈ N , all xi ∈ Xi, and all x−i and x̂−i ∈
∏

j 6=i Xj,

if
∑

j 6=i xj >
∑

j 6=i x̂j, then ui(xi, x−i) ≥ ui(xi, x̂−i) holds. (ii) For all i ∈ N , all xi ∈ Xi,

and all x−i and x̂−i ∈
∏

j 6=i Xj, if
∑

j 6=i xj >
∑

j 6=i x̂j, then ui(xi, x−i) ≤ ui(xi, x̂−i)

holds. If (i) holds, the condition means positive externalities, and it represents negative

externalities if (ii) is satisfied. We define that a game satisfies the condition of monotone

externality if either (i) or (ii) holds.

The third condition is that of strategic substitutability. Under this condition, the

incentive of every player to reduce his strategy gets higher as the sum of the other

players’ strategies increases.

Strategic substitutability. For all i ∈ N , all xi, x̂i ∈ Xi, and all x−i, x̂−i ∈
∏

j 6=i Xj,

if xi > x̂i and
∑

j 6=i xj >
∑

j 6=i x̂j, then ui(xi, x−i)−ui(x̂i, x−i) < ui(xi, x̂−i)−ui(x̂i, x̂−i).

Proposition 4.1 Suppose that a game satisfies anonymity, monotone externality, and
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strategic substitutability. Then, any coalition-proof equilibrium under weak domination

is a coalition-proof equilibrium under strict domination.

Proof. If the set of coalition-proof equilibria under weak domination is empty, then the

statement of proposition is vacuously true. Hence, we consider the case in which there

is a coalition-proof equilibria under weak domination in the game. Let us assume that a

game satisfies anonymity, positive externality, and strategic substitutability.2 We show

by induction that the set of coalition-proof equilibria under weak domination is a subset

of that under strict domination. Clearly, the statement is true for all games with a single

player. In any two-player game, under either dominance relations, the set of self-enforcing

strategy profiles coincides with that of Nash equilibria. Hence, the set of coalition-proof

equilibria under weak domination coincides with the Pareto efficient frontier of the set of

Nash equilibria, and so does the set of coalition-proof equilibria under strict domination

with the weakly Pareto efficient frontier of that of Nash equilibria. As a result, the set of

coalition-proof equilibria under strict domination contains that under weak domination

in every two-player game.

Let n ≥ 3, and suppose that any coalition-proof equilibrium under weak domination

is a coalition-proof equilibria under strict domination for any game with fewer than n

players as an induction hypothesis. Let x∗ denote a coalition-proof equilibrium under

weak domination of a game with n players. We need to show that x∗ is a self-enforcing

strategy profile under strict domination and that there is not other self-enforcing strategy

profile under strict domination x̃ where ui(x̃) > ui(x
∗) for every i ∈ N .

Lemma 4.1 Any self-enforcing strategy profile under weak domination is that under

strict domination.

2We can similarly show the statement in the case of negative externality.
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The lemma above can be shown in the following way. Let x be a self-enforcing

strategy profile under weak domination of G. Then, by definition, xC is a coalition-proof

equilibrium under weak domination in the restricted game G|x−C for every proper subset

C of N . By the induction hypothesis, xC is also a coalition-proof equilibrium under

strict domination in G|x−C . That is, for all proper subsets C of N, xC is a coalition-

proof equilibrium under strict domination of G|x−C . Hence, x is a self-enforcing strategy

profile under strict domination of G.

By Lemma 4.1, x∗ is a self-enforcing strategy profile under strict domination.

Lemma 4.2 There is no other self-enforcing strategy profile under strict domination x̃

such that ui(x̃) > ui(x
∗) for all i ∈ N .

Proof of Lemma 4.2. Let us suppose, on the contrary, that there is a self-enforcing

strategy profile under strict domination x̃, at which ui(x̃) > ui(x
∗) for all i ∈ N . Then,

x̃ must satisfy the following condition.

Claim 4.1 It follows that
∑

j 6=i x
∗
j <

∑
j 6=i x̃j for all i ∈ N .

Proof of Claim 4.1. Let us suppose, on the contrary, that there is player i ∈ N

such that
∑

j 6=i x
∗
j ≥

∑
j 6=i x̃j. If

∑
j 6=i x

∗
j =

∑
j 6=i x̃j, then we have ui(x

∗) ≥ ui(x̃i, x
∗
−i) =

ui(x̃) by the definition of Nash equilibrium and the condition of anonymity, which is a

contradiction. If
∑

j 6=i x
∗
j >

∑
j 6=i x̃j, then we have ui(x

∗) ≥ ui(x̃i, x
∗
−i) by the definition

of Nash equilibrium and ui(x̃i, x
∗
−i) ≥ ui(x̃) by positive externality. Therefore, we obtain

ui(x
∗) ≥ ui(x̃). This is a contradiction. ‖

Claim 4.2 The strategy profile x̃ is not a Nash equilibrium of G.
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By Claim 4.1, it is satisfied that
∑

k∈N

∑
j 6=k x∗

j <
∑

k∈N

∑
j 6=k x̃j. Hence,

∑
k∈N x∗

k <∑
k∈N x̃k. Therefore, i ∈ N exists such that x̃i > x∗

i . By strategic substitutability, for

player i, we have ui(x
∗
i , x̃−i)−ui(x̃) > ui(x

∗)−ui(x̃i, x
∗
−i). Since x∗ is a Nash equilibrium,

ui(x
∗) − ui(x̃i, x

∗
−i) ≥ 0. Therefore, ui(x

∗
i , x̃−i) > ui(x̃), which implies that x̃ is not a

Nash equilibrium of G. This contradicts the idea that x̃ is a self-enforcing strategy profile

under strict domination. Thus, there is no self-enforcing strategy profile under strict

domination that dominates x∗, which implies that x∗ is a coalition-proof equilibrium

under strict domination in the n-person game. ¥

Remark 4.1 We use none of three conditions in the proof of Lemma 4.1. Thus, Lemma

4.1 holds true in every game. Note that we use the conditions only when we prove

Lemma 4.2.

Many interesting games in economics satisfy the conditions above. For instance,

Cournot oligopoly games and the other games that have been studied as a part of indus-

trial organization theory satisfy the conditions. For details, refer to Yi (1999). Here, we

give an example in the context of the provision of pure public goods.

Example 4.2 Let us reconsider Example 2.1 on page 28. In this example, when p

agents choose I, each of p agents receives u(p − 1, I) = α2p/4 and other agents obtain

u(p,O) = α2p/2. Table 4.2 is a payoff matrix that is reproduced from Table 2.1. In

this example, the anonymity condition is satisfied, since payoffs to both participants

and non-participants depend on the number of participants. The participation deci-

sion game satisfies the positive externality condition because the utilities of participants

and non-participants get higher as the number of participants increases. The difference

u(p − 1, I) − u(p − 1, O) = α2(−p + 2)/4 is decreasing with respect to the number of

participants p, which implies that the incentive to participate in the mechanism de-
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creases as the number of participants increases. Therefore, the strategic substitutability

condition holds in this example. From Proposition 4.1, the set of coalition-proof equi-

libria under strict domination contains that under weak domination. In fact, two agents

choose participation in every coalition-proof equilibrium under weak domination, while

one agent or two agents participate in the mechanism in coalition-proof equilibria under

strict domination in this example.

I O

I 3α2

4
, 3α2

4
, 3α2

4
α2

2
, α2, α2

2

O α2, α2

2
, α2

2
α2

2
, α2

2
, α2

4

I

I O

I α2

2
, α2

2
, α2 α2

4
, α2

2
, α2

2

O α2

2
, α2

4
, α2

2
0, 0, 0

O

Table 4.2: Payoff matrix of Example 4.2

Remark 4.2 The conditions of anonymity, monotone externality, and strategic sub-

stitutability do not necessarily guarantee equivalence between coalition-proof equilibria

under the two different dominance relations. In fact, the participation decision game

in Example 4.2 satisfies all of the conditions, but there is a coalition-proof equilibrium

under strict domination that is not that under weak domination.

Remark 4.3 Let us reconsider Example 4.1. Let a1 = b1 = c1 = 0 and a2 = b2 = c2 = 0.

Then, all of the three conditions do not hold in this example. Participation games

with a public project considered in Chapters 5 and 6 do not necessarily satisfy the

three conditions. However, the set of coalition-proof equilibria under weak domination

is included in that under strict domination. The three conditions are not necessary

conditions.
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4.3 Concluding Remarks

In this chapter, the relationship between coalition-proof equilibria under strict and weak

dominations was examined. In many equilibrium concepts, such as the core and strong

Nash equilibria, the set of equilibria under weak domination is a subset of that under

strict domination. However, the set of coalition-proof equilibria under strict domination

and that under weak domination are not necessarily related by inclusion. We showed

that, if a game satisfies the properties of anonymity, monotone externality, and strategic

substitutability, then the set of coalition-proof equilibria under weak domination is a

subset of that of coalition-proof equilibria under strict domination. This implies that

the inclusion relation between the two sets of coalition-proof equilibria holds true in

such interesting games studied in economics as the participation game in a public good

mechanism and the standard Cournot oligopoly game.

The coalition-proof equilibrium is well known as a refinement of the Nash equilib-

rium. However, little is known about the structure of the equilibria. This chapter has

focused on the relationship between coalition-proof equilibria and dominance relations.

Although different strategies may be used in coalition-proof equilibria under the differ-

ent dominance relations, their relationship had not been studied so far. The objective of

this chapter was to give an answer to this problem. Clarifying other properties of this

equilibrium concept may be left for future researches.
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Part II

Participation Games with Discrete

Public Goods
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Chapter 5

Participation Problems in Public

Projects

This chapter considers a participation game in a mechanism to implement a public

project. We consider a mechanism that implements the following allocation rules: (i)

the public project is undertaken if and only if the joint benefit of participants from it

is more than its cost, (ii) the sum of payments from participants is equal to the cost

of producing the public project, (iii) every participant bears a positive cost share, and

(iv) the cost share of each participant is less than his willingness to pay for the public

project. This kind of allocation rule includes many cost-sharing rules. A proportional

cost-sharing rule is an example of such cost-sharing rules.

We first characterize the set of participants at strict Nash equilibria. We show that

there exists a strict Nash equilibrium and that every strict Nash equilibrium supports an

efficient allocation in the participation game. Secondly, we characterize strong equilibria

and show that there is a strong equilibrium in the participation game. Our main result is

that the set of strict Nash equilibria, that of strong equilibria, and that of coalition-proof

equilibria coincide and that the sets of these three equilibria are not empty. Moreover,
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there are efficient allocations that are supportable as the three notions of equilibria, and

all the equilibrium allocations are Pareto efficient.

We also extend our model to the case with a multi-unit public good and that with

multiple projects. In these cases, the set of strict Nash equilibria, and that of strong

equilibria, and that of coalition-proof equilibria do not necessarily coincide.

5.1 A participation game in a mechanism implement-

ing a public project

We consider the case of Y = {0, 1}, vi(y) = θiy where θi > 0 for every i ∈ N , and

c(y) = cy where c > 0. Define θP :=
∑

i∈P θi for all P ⊆ N . We assume that there exists

a mechanism that implements a Pareto efficient and individually rational allocation rule.

Assumption 5.1 For every set of participants P , the allocation to the participants

(yP , (xP
j )j∈P ) satisfies

(i) θP > c if and only if yP = 1,

(ii) if yP = 1, then
∑

i∈P xP
i = c,

(iii) θi > xP
i for every i ∈ P , and

(iv) xP
i > 0 for every i ∈ P if and only if yP = 1.

Condition (i) means that the public project is undertaken if and only if the sum that

the participants are willing to pay for the project exceeds the project cost. Condition (ii)

requires that the expenses paid by the participants be equal to the project cost when the

project is undertaken. This is called the budget balance condition. Clearly, conditions (i)

and (ii) imply that (yP , (xP
j )j∈P ) is a Pareto efficient allocation only for the preferences
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of agents in P . Item (iii) is the individual rationality condition, which means that the

payoff of every participant after entering the mechanism is greater than 0, when the

project is undertaken. Condition (iv) requires that every participant bear a positive cost

share if and only if the public project is undertaken.

Several desirable allocation rules satisfy the conditions. The proportional cost-sharing

rule under condition (i) is such an example: for all sets of participants P and for all i in

P ,

xP
i =


θi

θP

c if yP = 1,

0 otherwise.

Note that this model is a generalization of that of Dixit and Olson (2000).

In this dissertation, we are not concerned with the implementation problem of an

allocation rule that satisfies (i), (ii), (iii), and (iv) in Assumption 5.1. However, there

is a mechanism in which the above allocation rule is attainable in equilibria. For ex-

ample, Jackson and Moulin (1992) constructed mechanisms which implement a class of

cost-sharing rules satisfying all the above conditions in subgame perfect equilibria and

undominated Nash equilibria.

The following is an example of the participation game in a mechanism that undertakes

a public project.

Example 5.1 Let N = {1, 2, 3}, θ1 = θ2 = θ3 = 3/4, and c = 1. The cost is distributed

among participants in proportion to their willingness to pay for the project. The payoff

matrix of this example is depicted in Table 5.1, where agent 1 chooses rows, agent 2

chooses columns, and agent 3 chooses matrices. The first entry in each box is agent 1’s

payoff, the second is agent 2’s, and the third is agent 3’s. There are two types of Nash

equilibria. One is the Nash equilibrium with two participants, and the other is the Nash
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equilibrium with no participants. Only the Nash equilibria with participation of two

agents are strict and strong.

I O

I 5
12

, 5
12

, 5
12

1
4
, 3

4
, 1

4

O 3
4
, 1

4
, 1

4
0, 0, 0

I

I O

I 1
4
, 1

4
, 3

4
0, 0, 0

O 0, 0, 0 0, 0, 0

O

Table 5.1: Payoff matrix of Example 5.1

5.2 Nash equilibria of the participation game

In this section, we characterize the sets of participants attained at Nash equilibria. Since

the payoffs to agents depend on the sets of participants, we introduce the following

notations that are similar to those in Definition 3.1 for the sake of convenience.

Definition 5.1 A payoff function of i, ui : 2N → R+, is defined as follows:

For all sets of participants P ∈ 2N , ui(P ) =


(θi − xP

i )yP if i ∈ P,

θiy
P otherwise.

The set of feasible allocations of the economy is defined as A:

A =

{
(y, (xj)j∈N) | y ∈ {0, 1}, xi ≥ 0 for all i ∈ N, and

∑
i∈N

xi ≥ cy

}
.

Assumption 5.2 θN > c.

Definition 5.2 An allocation (y, (xj)j∈N) is called Pareto efficient if there is no alloca-

tion (ŷ, (x̂j)j∈N) ∈ A such that Vi(ŷ, x̂i) ≥ Vi(y, xi) for all i ∈ N and Vi(ŷ, x̂i) > Vi(y, xi)

for some i ∈ N .
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We, hereafter, consider a case in which Assumption 5.2 holds. By Assumption 5.2,

the public project is undertaken at all Pareto efficient allocations. In the next Lemma,

we characterize the sets of participants supported as strict Nash equilibria.

Lemma 5.1 A set of participants P is supported as a strict Nash equilibrium of the

participation game if and only if θP > c and θP − θi ≤ c for all i ∈ P .

Proof. Let P be a set of participants that satisfies θP > c and θP − θi ≤ c for all i ∈ P ,

and let (yP , (xP
j )j∈N) denote the allocation when P is the set of participants. Then, the

following conditions are satisfied:

ui(P ) = θi − xP
i > 0 = ui(P \ {i}) for all i ∈ P , and

ui(P ) = θi > θi − x
P∪{i}
i = ui(P ∪ {i}) for all i /∈ P.

Therefore, P can be supported as a strict Nash equilibrium.

Secondly, we suppose that P is a set of participants at a strict Nash equilibrium.

Then, we have ui(P ) > ui(P \ {i}) for all i ∈ P and ui(P ) > ui(P ∪ {i}) for all i /∈ P .

If θP ≤ c, then we have ui(P ) = ui(P \ {i}) = 0 for all i ∈ P , which is a contradiction.

Thus, it must be satisfied that θP > c. Since θP > c, ui(P ) = θi − xP
i for all i ∈ P . If

θP − θj > c for some j ∈ P , then the agent j has an incentive to deviate from I to O

because uj(P \ {j}) = θj > θj − xP
i = uj(P ). This is a contradiction. Therefore, we

must have θP − θi ≤ c for all i ∈ P . ¥

In the following lemma, we verify that there is a strict Nash equilibrium in the

participation game.

Lemma 5.2 There exists a strict Nash equilibrium in the game G under Assumption

5.2.
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Proof. By Lemma 5.1, we show the existence of a set of participants P ⊆ N that

satisfies the condition

θP > c and θP − θi ≤ c for all i ∈ P, (5.1)

in order to prove this statement. Let T be a set of participants such that:

T ∈ arg min
Q⊆N

θQ such that θQ > c. (5.2)

Note that there is at least one set of participants R satisfying θR > c by Assumption

5.2. Now, suppose that θT − θi > c for some i ∈ T . Since θT > θT\{i} > c, θT is not the

minimal number, which contradicts (5.2). Therefore, it holds true that θT − θi ≤ c for

all i ∈ T . ¥

In the participation game, there may be a non-strict Nash equilibrium. For example, a

Nash equilibrium at which no agents choose I is obviously not strict in Example 5.1. Note

that, if non-strict Nash equilibria exist, then the project is not done in the equilibrium,

and the allocations supported as the non-strict Nash equilibria are Pareto-dominated by

that attained at a strict Nash equilibrium. The following proposition shows that the set

of strict Nash equilibria coincides with the set of Nash equilibria that support efficient

allocations.

Proposition 5.1 In the participation game, a strategy profile is a strict Nash equilibrium

if and only if it is a Nash equilibrium at which an efficient allocation is attained.

Proof. First, we prove that every strict Nash equilibrium is a Nash equilibrium that

supports an efficient allocation. Obviously, every strict Nash equilibrium is a Nash

equilibrium. Hence, we need to show that every allocation achieved at a strict Nash

equilibrium is Pareto efficient. Assume that (yP , (xP
j )j∈N) is the allocation attained at a
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strict Nash equilibrium. Note that Vi(y
P , xP

i ) = θi − xP
i for all i ∈ P and Vi(y

P , xP
i ) =

θi for all i /∈ P . Suppose, on the contrary, a feasible allocation (ŷ, (x̂j)j∈N) Pareto

dominates (yP , (xP
j )j∈N). It must be satisfied that Vi(ŷ, x̂i) = θi for all i /∈ P because

θi is the greatest payoff of agent i in A. Hence, there is at least one participant j ∈ P

such that Vj(ŷ, x̂j) > Vj(y
P , xP

j ). Let J ⊆ P be a set of such participants and let

εj = Vj(ŷ, x̂j) − Vj(y
P , xP

j ) > 0 for all j ∈ J . Since Vj(y
P , xP

j ) = θj − xP
j > 0 for

every j ∈ J , we must have ŷ = 1: otherwise, Vj(ŷ, x̂j) = 0. Then, we learn that

Vj(ŷ, x̂j) = θj − xP
j + εj for all j ∈ J . By the argument above,

x̂j = 0 for all j /∈ P ,

x̂j = xP
j − εj for all j ∈ J , and

x̂j = xP
j for all j ∈ P \ J .

Summing up x̂j for all j ∈ N yields
∑

j∈N x̂j =
∑

j∈P xP
j −

∑
j∈J εj = c −

∑
j∈J εj < c,

which contradicts the feasibility of (ŷ, (x̂j)j∈N). Hence, (yP , (xP
j )j∈N) is Pareto efficient.

Secondly, each Nash equilibrium that supports an efficient allocation is a strict Nash

equilibrium. Let s ∈ Sn be a Nash equilibrium that attains an efficient allocation. Denote

the set of participants at s by P s. Since the project is done at efficient allocations, we

have θP s > c. Furthermore, it is satisfied that θP s − θi ≤ c for all i ∈ P s: if there is

an agent j ∈ P s such that θP s − θj > c, then agent j has an incentive to deviate from

s because uj(P
s \ {j}) = θj > θj − xP s

j = uj(P
s). This contradicts the idea that s is a

Nash equilibrium. It follows from Lemma 5.1 that s is a strict Nash equilibrium. ¥
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5.3 Strong equilibria in the participation game

5.3.1 Equivalence between strict Nash equilibrium and strong

equilibrium

First, we show that the set of strong equilibria coincides with that of strict Nash equi-

libria.

Proposition 5.2 In the participation game with a public project, a strategy profile is a

strong equilibrium if and only if it is a strict Nash equilibrium.

Proof. (⇐) Let s∗ ∈ Sn denote a strict Nash equilibrium. Let P ∗ be the set of

participants at s∗. Let T ⊆ N be a coalition and sT ∈ S#T be a strategy profile of T .

We show that some members of T are worse off by jointly deviating from s∗T to sT .

We take a partition of T consisting of four sets: T ∗
I ∩ TI , T ∗

I \TI , TI\T ∗
I , and T\ (T ∗

I ∪ TI),

where T ∗
I ≡ {i ∈ T |s∗i = I} and TI ≡ {i ∈ T |si = I}. The set of participants in (sT , s∗−T )

is (P ∗ \ (T ∗
I \TI))∪ (TI\T ∗

I ). We denote this set by P̃ . In the strict Nash equilibrium s∗,

ui(P
∗) = θi − xP ∗

i > 0

for all i ∈ P ∗, and

ui(P
∗) = θi > 0

for all i /∈ P ∗. We calculate the payoffs of the members of T after the deviation. To do

so, we need to consider the following two cases: θ
eP ≤ c, and θ

eP > c.

First, consider the case in which θ
eP ≤ c. In this case, the public project is not

undertaken at (sT , s∗−T ). Since the payoffs of the members of T at (sT , s∗−T ) are given by
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ui(P̃ ) = 0 for all i ∈ T , we obtain the following four inequalities:

ui(P
∗) > ui(P̃ ) for all i ∈ T ∗

I ∩ TI ,

ui(P
∗) > ui(P̃ ) for all i ∈ T ∗

I \TI ,

ui(P
∗) > ui(P̃ ) for all i ∈ TI\T ∗

I , and

ui(P
∗) > ui(P̃ ) for all i ∈ T\ (T ∗

I ∪ TI).

Therefore, the deviation cannot raise the members’ payoffs.

Next, let us consider the case in which θ
eP > c. Note that the public project is

undertaken at (sT , s∗−T ). If T ∗
I \TI is not empty, then it follows from Lemma 5.1 that

θP ∗ − θi ≤ c for all i ∈ T ∗
I \ TI . Thus, we have θP ∗ − θT ∗

I \TI
≤ c. Because θ

eP =

θP ∗ − θT ∗
I \TI

+ θTI\T ∗
I

> c, we must obtain θTI\T ∗
I

> 0. This implies that TI\T ∗
I is non-

empty. It is satisfied that ui(P
∗) > ui(P̃ ) for all i ∈ TI\T ∗

I because ui(P̃ ) = θi − x
eP
i

for every i ∈ TI\T ∗
I . Therefore, if T ∗

I \TI is not empty, the deviation does not improve

the members’ payoffs. If T ∗
I \TI and TI\T ∗

I are empty sets, then P ∗ = P̃ holds. Clearly,

no member of T is better off by the deviation. If T ∗
I \TI is empty and TI\T ∗

I is non-

empty, then none of the agents in TI\T ∗
I can improve their payoffs by the deviation since

ui(P
∗) = θi > θi−x

eP
i = ui(P̃ ) for all i ∈ TI\T ∗

I . Consequently, s∗ is a strong equilibrium

of G.

(⇒) Let s∗ be a strong equilibrium, and let P ∗ be the set of participants at s∗. If

θP ∗ ≤ c holds, then we have ui(P
∗) = 0 for all i ∈ N . When all agents jointly choose I,

then every agent i has the payoff ui(N) = θi − xN
i , which is positive by Assumption 5.1

and 5.2. This is a contradiction. Hence, we have θP ∗ > c. It also holds that θP ∗ − θi ≤ c

for all i ∈ P ∗: if there exists an agent j ∈ P ∗ such that θP ∗ − θj > c, then agent j

has an incentive to deviate from s because uj(P
∗ \ {j}) = θj > θj − xP ∗

j = uj(P
∗).

This contradicts the idea that s∗ is a strong equilibrium. Therefore, s∗ is a strict Nash
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equilibrium. ¥

Although the sets of strict Nash equilibria and strong equilibria are subsets of that

of Nash equilibria, it is not evident whether the two sets coincide. The two-player

game depicted in Table 5.2 shows that the set of strong equilibria does not necessarily

coincide with that of strict Nash equilibria. In this game, (B1, B2) is the only strict Nash

equilibrium, and a strong equilibrium is uniquely determined by (A1, A2). Hence, the

two sets have an empty intersection, and both of them exist. However, from Proposition

5.2, the set of strict Nash equilibria coincides with that of the strong equilibria in the

participation game. An implication of Proposition 5.2 is that the two non-cooperative

equilibrium concepts based on different types of stability coincide in the participation

game with a public project.

Note that a weakly dominated strategy may be used at a strong equilibrium.1 In

the example in Table 5.2, A1 is weakly dominated by B1, and so is A2 by B2. However,

(A1, A2) is a strong equilibrium of the game. In the participation game with a public

project, every strong equilibrium is a strict Nash equilibrium, which implies that the

strong equilibrium does not consist of weakly dominated strategies in the participation

game.

1\2 A2 B2

A1 2, 2 0, 2

B1 2, 0 1, 1

Table 5.2: The set of strong equilibria and that of strict equilibria do not necessarily

coincide.

1For every agent i, a strategy si ∈ S is weakly dominated in the game G if there exists another

strategy s′i ∈ S such that Ui(s′i, s−i) ≥ Ui(si, s−i) for all s−i with strict inequality for some s−i.
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By Lemma 5.2, Proposition 5.1, and Proposition 5.2, the set of strong equilibria

and the set of Nash equilibria that support efficient allocations coincide, and a strong

equilibrium exists in the participation game.

Corollary 5.1 The set of strong equilibria coincides with the set of Nash equilibria that

support an efficient allocation in the participation game.

Corollary 5.2 The participation game has a strong equilibrium.

These results contrast with those of a participation game with a perfectly divisible

public good. Saijo and Yamato (1999) introduced a model of voluntary participation

in a mechanism to provide a perfectly divisible public good. We find from their results

that the Nash equilibria of the game are not always Pareto efficient. Hence, if agents

have the right to decide either participation or non-participation in the mechanism, then

efficient allocations are not necessarily attained even if the mechanism is constructed to

implement efficient allocations in its equilibrium. It is also proven in Chapter 2 that the

game does not always have a strong equilibrium. In contrast, in a participation game

with a public project, there exist strong equilibria, and an efficient allocation of the

economy can be supported as the equilibrium.

5.3.2 Coalition-proof equilibria and strong equilibria

Proposition 5.3 In the participation game with a public project, a strategy profile is a

strong equilibrium if and only if it is a coalition-proof equilibrium.

Proof. By the definitions of coalition-proof equilibria and strong equilibria, every strong

equilibrium is a coalition-proof equilibrium. We show that a coalition-proof equilibrium

s ∈ Sn is a strong equilibrium. Suppose, on the contrary, that s is not a strong equilib-
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rium. Since the profile s is a coalition-proof equilibrium, it must be a Nash equilibrium.

If s is a strict Nash equilibrium, then it is also a strong equilibrium by Proposition 5.2.

Therefore, s must be a non-strict Nash equilibrium. By Proposition 5.1, s does not sup-

port an efficient allocation. Because of this, we have Ui(s) = 0 for all i ∈ N . By Lemma

5.2, there is at least one strict Nash equilibrium in this game. Denote a strict Nash equi-

librium by s∗. Note that s∗ must be a coalition-proof equilibrium; hence, it must also

be a self-enforcing strategy profile. By Proposition 5.2, s∗ is a strong equilibrium, and

we have Ui(s
∗) > 0 for every i ∈ N . Since s is Pareto-dominated by the self-enforcing

strategy profile s∗, s is not coalition-proof, which is a contradiction. Therefore, s is a

strong equilibrium. ¥

Konishi et al. (1997a, 1997b, 1997c) studied the no-spillover game, in which the

strategy spaces of all players are common. In the no-spillover game, for each player i, his

payoff is not affected by the choices of those players who choose strategies different from

i.2 These authors established sufficient conditions for the existence of strong equilibria

and the equivalence between coalition-proof equilibria and strong equilibria in the game.

One of the sufficient conditions is the condition of positive population monotonicity: the

payoff of every player i increases if more players choose the same strategy as players i.3

Konishi et al. (1997a) proved that, if the population monotonicity condition is satisfied,

the set of coalition-proof equilibria coincides with that of strong equilibria in every no-

spillover game. Konishi et al. (1997b) also showed that strong equilibria exist in games in

which the set of pure strategies for each player consists of two alternatives. Although the

2The no-spillover game is formally defined as follows: a game is called a no-spillover game if, for all

pairs of agents i, j ∈ N , for all strategy profiles s ∈ Sn, and for all strategies for i, ŝi, if sj 6= si and

sj 6= ŝi, then Uj

(
si, sj , sN\{i,j}

)
= Uj

(
ŝi, sj , sN\{i,j}

)
.

3The game satisfies positive population monotonicity if, for all i, j ∈ N and for all s ∈ Sn, if si 6= sj ,

then Uj(si, sj , sN\{i,j}) ≤ Uj(sj , sj , sN\{i,j}).
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participation game is a no-spillover game, it does not satisfy positive population mono-

tonicity because the payoffs of non-participants decrease when a participant switches to

non-participation and the project is then not undertaken. It was also proven by Konishi

et al. (1997c) that, if a no-spillover game satisfies negative population monotonicity4

and anonymity5, then the game has a strong equilibrium. The participation game with

a public project does not satisfy negative population monotonicity. Furthermore, the

participation game is not anonymous because agents are heterogeneous and the payoffs

of participants depend not on the number of participants but on their composition in our

model. Although the conditions of Konishi et al. are not sufficiently met in our game,

the set of strong equilibria coincides with that of coalition-proof equilibria and is not

empty. The existence of strong equilibria has also been studied in the context of conges-

tion games, which can be interpreted as a sort of a participation game in mechanisms

providing local public goods with congestion effects. The congestion games satisfying

some conditions have a strong equilibrium (Holzman and Yone, 1997). Although the

participation game studied in this chapter is not a congestion game, it has a strong

equilibrium.

The following theorem summarizes the results that have been obtained so far.

Theorem 5.1 In the participation game, the set of strict Nash equilibria, that of strong

equilibria, that of coalition-proof equilibria, and the set of Nash equilibria that support

efficient allocations coincide.

4The game satisfies negative population monotonicity if, for all i, j ∈ N , for all s ∈ Sn, if si 6= sj ,

then Uj(si, sj , sN\{i,j}) ≥ Uj(sj , sj , sN\{i,j}).
5The condition of anonymity requires that the payoff of a player depend only on the number of

players who choose the same strategy. The formal definition is as follows: a game is anonymous if, for

all s, ŝ ∈ Sn and all i ∈ N , if si = ŝi and #{j ∈ N |sj = s̄} = #{j ∈ N |ŝj = s̄} for all s̄ ∈ S, then

Ui(s) = Ui(ŝ).
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Remark 5.1 Let us consider an allocation rule that satisfies (ii), (iv), and the following

conditions:

(i)′ For all sets of participants P , θP ≥ c if and only if yP = 1.

(iii)′ For all P ⊆ N and for all i ∈ P , θi ≥ xi. (weakly individual rationality)

In the participation game in a mechanism to implement this allocation rule, the set of

strong equilibria contains that of strict Nash equilibria, and they do not always coincide.

Furthermore, a strict Nash equilibrium does not necessarily exist in the game. However,

the game has a Nash equilibrium at which efficient allocations are attained, and every

set of participants at Nash equilibria that support efficient allocations is characterized

as P ⊆ N with θP ≥ c and θP − θi < c for all i ∈ P . We can show that the set of

Nash equilibria that support efficient allocations, that of strong equilibria, and that of

coalition-proof equilibria coincide in a similar way to Propositions 5.2 and 5.3. Therefore,

the equivalence between a strong equilibrium and a coalition-proof equilibrium can be

obtained in a case in which the allocation rule satisfies (i)′ and (iii)′ instead of (i) and

(iii).

5.4 More general participation games: examples

In Section 5.3, we prove that the set of strong, strict Nash, and coalition-proof equilibria

coincide in the participation game with a public project. In this section, we consider

two natural generalizations of the participation game with a public project: participation

games with a multi-unit public good and participation games with multiple public projects.

The purpose of this section is to investigate whether or not the results in Section 5.3 can

be extended to the more general participation games.
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5.4.1 Participation games with a multi-unit public good

There is one private and one public good. We assume that the public good is produced

in the units of integers only. Let l > 1 be a natural number. Let Y be a subset of Rl
+

such that Y =
{
(y1, . . . , yl) ∈ {0, 1}l| y1 ≥ y2 ≥ · · · ≥ yl}: in this model, at most l units

of the public good can be produced. Let c > 0 be the cost of producing one unit of the

public good. Each agent i has a preference relation that is represented by the utility

function Vi : Y ×R+ → R+, which associates a real value Vi(y, xi) =
∑

k∈{1,2,...,l} θk
i yk−xi

with each element (y, xi) in Y × R+, where θk
i > 0 denotes agent i’s willingness to pay

for the k-th unit of the public good.

Example 5.2 Let N = {1, 2, 3, 4}. Let l = 2. Suppose that θ1
i = 2 and θ2

i = 0.8 for

all i ∈ N and c = 1. Assume that a mechanism implements the equal cost-sharing rule.

Let P be a set of participants. Note that one unit of the public good is produced if

#P = 1, and two units of the public good are provided if #P ≥ 2. Table 5.3 shows

the payoffs to participants and non-participants in this example. From the table, we

can easily find that one and only one agent enters the mechanism at all strict Nash and

coalition-proof equilibria. However, these Nash equilibria are not strong equilibria, since

three non-participants at the Nash equilibrium can gain higher payoffs if all of them

jointly deviate from non-participation to participation; thus, a strong equilibrium does

not exist in this example. Therefore, the set of strict Nash equilibria and that of strong

equilibria do not necessarily coincide in the participation game with a multi-unit public

good.
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The number of participants Payoffs to participants Payoffs to non-participants

0 - 0

1 1 2

2 1.8 2.8

3 32
15

2.8

4 2.3 -

Table 5.3: Payoffs of Example 5.2

5.4.2 Participation games with multiple public projects

Let us consider an economy with two public projects (A and B) and their corresponding

mechanisms. The set of strategies of every agent is denoted by S = {A,B,O}: A

means participation in the mechanism undertaking the public project A, B designates

participation in the mechanism implementing the public project B, and O represents

participation in neither mechanism. The public project A is produced from c units of

the private good, and B is produced from αc units of the private good, where α > 0. The

production costs of public projects A and B are shared by participants equally. Every

agent i has a preference relation that is represented by the quasi-linear utility function

θA
i yA + θB

i yB −xi, where yA ∈ {0, 1} and yB ∈ {0, 1} represent the public projects A and

B, and θA
i and θB

i denote the willingness to pay for public projects A and B, respectively.

Example 5.3 Assume that θA
1 = θB

1 = θA
2 = θB

2 = θ > 0, 2θ > αc > θ > c, and

1 < α < 2, say α = 1.5, c = 1, and θ = 1.25. The payoff matrix is depicted in Table

5.4. In this example, the cost of project B is higher than that of project A. Project A is

undertaken if one or two agents choose A, and project B is undertaken only if two agents

choose B. Thus, it is a Nash equilibrium for the two agents to select B. This strategy
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profile is also coalition-proof, because (A,A) is the only deviation that improves payoffs

of the two agents, but the deviation is not self-enforcing. However, strategy profile

(B,B) is not strong since the deviation from (B,B) to (A,A) is profitable. Hence, in the

participation game with two projects, there may be a coalitional deviation that increases

payoffs of its members but is not self-enforcing. Therefore, the set of strong equilibria

does not always coincide with that of coalition-proof equilibria.

1\2 A B O

A 0.75, 0.75 0.25, 1.25 0.25, 1.25

B 1.25, 0.25 0.5, 0.5 0, 0

O 1.25, 0.25 0, 0 0, 0

Table 5.4: A participation game with two public projects

The above examples indicate that the equivalence among the three sets of equilibria

does not always hold in the games with a discrete public good and multiple public

projects. Therefore, it is an essential assumption to the equivalence result that there is

one and only one public project in the economy.

Remark 5.2 Konishi et al. (1997a) showed that the set of coalition-proof equilibria

and that of strong equilibria coincide in many games of the provision of local public

goods. (Refer to Greenberg and Weber (1993) and Konishi et al. (1998) for games

of the provision of local public goods.) However, in games of the provision of non-

excludable public goods, the equivalence rarely holds. The above results show that the

two equilibrium sets coincide in the participation game with a public project, while they

may fail to coincide if the public good can be provided in multiple units or if there are

multiple projects.
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5.5 Concluding Remarks

We have investigated a participation game in a mechanism providing a public project. We

characterized the strict Nash, strong, and coalition-proof equilibria of the participation

game. We showed that the set of strict Nash, strong, and coalition-proof equilibria

coincide and that all of the equilibria exist. We find from the result that the participation

in a public project is in a class of games in which the three different non-cooperative

equilibria coincide. Furthermore, an efficient allocation of the economy can be achieved

as various notions of equilibria, and only the efficient allocations are supportable as the

equilibria. These results are contrasted with those in the models of providing a perfectly

divisible public good, such as a participation game with a perfectly divisible public

good in Chapter 2 and the voluntary contribution of a perfectly divisible public good.

The equivalence between the sets of coalition-proof and strong equilibria is established,

although the conditions of the earlier literature have not been sufficiently satisfied in our

model. This chapter clarified the conditions that the set of coalition-proof equilibria and

that of strong equilibria coincide in the game of the provision of non-excludable public

goods.

Although efficient allocations are attained at the equilibria, the allocations are less

desirable from the viewpoint of equity. In Example 5.1 on page 67, there exist strict Nash

equilibria at which two agents enter the mechanism. Obviously, these Nash equilibria

support efficient allocations. However, in these equilibria, only two agents bear the cost

for the public project, and the other agent enjoys the project at no cost. To achieve

more equitable allocations, it is desirable that all agents participate in the mechanism.

It is left for future researches to study the possibility of constructing the mechanism, in

which all agents participate at equilibria.
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Chapter 6

Participation Games with

Multiple-choice Public Goods

In this chapter, a participation game in a mechanism to implement a proportional cost-

sharing rule is examined. We first consider the participation game in the case of a public

project, which is similar to the case of Chapter 5. However, unlike in Chapter 5, we

assume that agents in a coalition can freely transfer their utilities among the members

of the coalition. We prove that a strong equilibrium exists in this game under the

assumption and that the set of strict Nash equilibria contains that of strong equiibria.

Second, we extend our analysis to the case of a multi-unit public good. In particular,

we focus on the participation game in which the public good is discrete and at most two

units of the public good. In this case, Nash equilibria of the game do not necessarily

support efficient allocations. We show that no Nash equilibrium supports an efficient

allocation if agents are identical and some conditions hold.
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6.1 A participation game in a mechanism implement-

ing the proportional cost-sharing rule

In this chapter, we assume that a public good mechanism implements the proportional

cost-sharing rule, which appears in the following assumption.

Assumption 6.1 Let P denote a set of participants. The allocation to participants

(yP , (xP
j )j∈P ) that satisfies the following conditions is attained in the equilibrium of the

mechanism:

if θP > c, then xP
i =

θi

θP

c for all i ∈ P and yP = 1, and

if θP ≤ c, then xP
i = 0 for all i ∈ P and yP = 0.

Definition 6.1 (Strong equilibrium) A strategy profile s∗ ∈ Sn is a strong equilib-

rium of G if there exist no coalition T ⊆ N and its strategy profiles̃T ∈ S#T such that∑
i∈T Ui(s̃T , s∗−T ) >

∑
i∈T Ui(s

∗) for all i ∈ T .

In this chapter, we assume that members of a coalition can coordinate their partici-

pation decision through monetary transfers. A strong equilibrium is a strategy profile in

which no coalitions can jointly deviate in a way that increases the sum of the payoffs to

the members in the coalitions. Note that the set of strong equilibria without monetary

transfers contains the set of strong equilibria with monetary transfers. But the con-

verse is not always true. Therefore, existence of a strong equilibrium without monetary

transfers does not necessarily imply that of a strong equilibrium with monetary transfers.

Finally, we assume that θN > c.
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6.2 Strong equilibria of the participation game

Note that the proportional cost-sharing allocation rule in Assumption 6.1 is included in

the class defined in Assumption 5.1. Thus, from Lemma 5.1, Lemma 5.2 and Proposition

5.1, a strict Nash equilibrium exists in this participation game and the set of strict Nash

equilibria coincides with that of Nash equilibria that support efficient allocations.

From Theorem 5.1, the set of strong equilibria and the set of strict Nash equilibria

exist and coincide in the absence of monetary transfers. However, it is unclear that the

strong equilibrium exists and this equivalence between the two equilibria holds when

members in a coalition can transfer their utilities because the set of strong equilibria

with monetary transfers is included in that without monetary transfers. The following

example shows that not every strict Nash equilibrium is a strong equilibrium in the

presence of monetary transfers.

Example 6.1 Let N = {1, 2, 3} and let θ1 = θ2 = 8, θ3 = 4, and c = 10. Table 6.1

shows the payoff matrix of this example. This game has three strict Nash equilibria:

(s1, s2, s3) = (O, I, I), (I, O, I) and (I, I, O). All the strict Nash equilibria support

efficient allocations. We now focus on the strategy profile s∗ = (I, I, O). The payoffs at

s∗ are U1(s
∗) = U2(s

∗) = 3, and U3(s
∗) = 4. Suppose a coalition C = {2, 3} is formed and

deviate from s∗C to s̃C = (O, I). Note that the public project is undertaken at (s∗1, s̃C).

The payoffs of agent 2 and 3 at (s∗1, s̃C) are U2(s
∗
1, s̃C) = 8 and U3(s

∗
1, s̃C) = 2/3. Hence,

the aggregate payoff for C at (s∗1, s̃C) is 26/3, which is greater than the sum of payoffs

of C at s∗. Therefore, the strategy profile s∗ is not a strong equilibrium, while the other

strict Nash equilibria are strong equilibria.

In Example 6.1, the sum of the benefits that participants receive from the project

is 12 in all strong equilibria, which is the smallest sum of the benefits of participants
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I O

I 4, 4, 2 4
3
, 8, 2

3

O 8, 4
3
, 2

3
0, 0, 0

I

I O

I 3, 3, 4 0, 0, 0

O 0, 0, 0 0, 0, 0

O

Table 6.1: Payoff matrix of Example 6.1

that can be attained in the set of strict Nash equilibria. In the following subsection, we

identify which strict Nash equilibrium is a strong equilibrium in the participation game.

6.2.1 A characterization of strong equilibria

Proposition 6.1 Let s∗ ∈ Sn denote a strict Nash equilibrium and let P ∗ be the set of

participants at s∗. The strict Nash equilibrium s∗ is a strong equilibrium of G if and only

if there is not coalition T and its strategy profile ŝT ∈ S#T such that

T ∗
I ( P ∗, θT ∗

I \bTI
> θ

bTI\T ∗
I

> 0, and θP ∗ − θT ∗
I \bTI

+ θ
bTI\T ∗

I
> c, (6.1)

where T ∗
I = {i ∈ T |s∗i = I} and T̂I = {i ∈ T |ŝi = I}.

Proof. Let s∗ denote a strict Nash equilibrium. Denote the set of participants by P ∗.

Let T denote a coalition and let ŝT denote a profile of strategies for T . The set of

participants at (ŝT , s∗−T ) is denoted by P̂ . If we define T ∗
I = P ∗ ∩ T and T̂I = P̂ ∩ T ,

then P̂ = (P ∗ \ (T ∗
I \ T̂I)) ∪ (T̂I \ T ∗

I ). Note that θ
bP = θP ∗ − θT ∗

I \bTI
+ θ

bTI\T ∗
I
.

We first show the following lemma.

Lemma 6.1 Only the deviations that satisfy (6.1) improve the sum of the payoffs that

members of T obtain.
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Proof of Lemma 6.1.

Claim 6.1 If θ
bP ≥ θP ∗ , then the sum of the payoffs that agents in T obtain before the

deviation is greater than or equal to the sum of the payoffs that members of T receive

before the deviation.

Proof of Claim 6.1. The sum of the payoffs of agents in T at s∗ is

θT −
θT ∗

I

θP ∗
c, (6.2)

and that at (ŝT , s∗−T ) is

θT −
θ

bTI

θ
bP

c. (6.3)

Subtracting (6.3) from (6.2) yields

−
θT ∗

I

θP ∗
c +

θ
bTI

θ
bP

c

=
c

θP ∗θ
bP

(θP ∗θ
bTI
− θ

bP θT ∗
I
)

=
c

θP ∗θ
bP

(
θP ∗θ

bTI
− θT ∗

I

(
θP ∗ − θT ∗

I \bTI
+ θ

bTI\T ∗
I

))
=

c

θP ∗θ
bP

(
θP ∗

(
θ

bTI
− θT ∗

I

)
− θT ∗

I

(
θ

bTI\T ∗
I
− θT ∗

I \bTI

))
.

Using the equation θ
bTI
− θT ∗

I
= θ

bTI\T ∗
I
− θT ∗

I \bTI
, we obtain

c

θP ∗θ
bP

(
θP ∗ − θT ∗

I

) (
θ

bTI\T ∗
I
− θT ∗

I \bTI

)
. (6.4)

We have θP ∗ − θT ∗
I
≥ 0 because T ∗

I ⊆ P ∗. Since θ
bP ≥ θP ∗ , we obtain θ

bTI\T ∗
I
≥ θT ∗

I \bTI
.

Therefore, (6.4) is greater than or equal to zero. (End of Proof of Claim 6.1)

By Claim 6.1, the deviations by T satisfies θP ∗ > θ
bP only if the deviations result in

improvements. Since θP ∗ > θ
bP , we obtain θT ∗

I \bTI
> θ

bTI\T ∗
I
.

Claim 6.2 If θ
bP ≤ c, the deviation does not increase the sum of payoffs of agents in T .
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Proof of Claim 6.2. Note that the project is not undertaken at (ŝT , s∗−T ); thus, the

sum of the payoffs that members of T receive after the deviation is zero. Since (6.2) is

more than zero, the deviations after which θ
bP ≤ c is satisfies are not profitable. (End

of Proof of Claim 6.2)

Combining Claim 6.1 and Claim 6.2 gives θP ∗ > θ
bP > c. By Lemma 5.1 on page

69, θP ∗ − θi ≤ c for all i ∈ P ∗. Therefore, θP ∗ − θT ∗
I \bTI

≤ c. By Claim 6.2, θ
bP =

θP ∗ − θT ∗
I \ bTI

+ θ
bTI\T ∗

I
> c. Thus, we have θ

bTI\T ∗
I

> 0. Accordingly, it follows that

θP ∗ > θ
eP > c and θT ∗

I \bTI
> θ

bTI\T ∗
I

> 0.

Claim 6.3 If T ∗
I = P ∗, then the total payoff of T at s∗ is equal to that at (ŝT , s∗−T ).

Proof of Claim 6.3. Note that the difference between the total payoff of T at s∗ and

that at (ŝT , s∗−T ) is equal to (6.4). Therefore, if T ∗
I = P ∗, then (6.4) is equal to zero.

(End of Proof of Claim 6.3)

By Claims 6.1, 6.2, and 6.3, the statement of Lemma 6.1 is proven. (End of Proof

of Lemma 6.1)

It is clear from Lemma 6.1 that a strict Nash equilibrium is a strong equilibrium in

the participation game if and only if there are no coalitional deviations that satisfies

(6.1). ¥

Proposition 6.1 says that a deviation from a strict Nash equilibrium results in im-

provements if and only if there exists the following situation: at the strict Nash equi-

librium, a proper subset of the set of participants and non-participants form a coalition

and they can coordinate in a way in which the sum of the benefits from the project of

participants decreases and the project is undertaken. In this situation, members of the
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coalition changing their strategies I to O get benefits, and those who alter O to I suffer

losses. However, by transferring part of the benefits to the agents altering O to I, the

members switching I to O can make up for the losses. As a result, all members of the

coalition can improve their payoffs after this deviation.

From Proposition 6.1, we confirm that no deviations after which the total benefits

from the project of participants increases are profitable. Therefore, it is not profitable

that participants at a strict Nash equilibrium commit themselves to choose participation

and induce non-participants at the equilibrium to select participation by transferring

money to the non-participants. Since we can interpret that allocations are more equitable

as the number of participants increases, we conclude that the coalitional deviations from

a strict Nash equilibrium to attain more equitable allocations are not profitable.

The following corollary shows that every strict Nash equilibrium at which only one

agent chooses I is a strong equilibrium.

Corollary 6.1 If there is an agent i ∈ N such that θi > c, then {i} is a set of participants

at a strong equilibrium.

Proof. Suppose that there is an agent i ∈ N be such that θi > c. Then, the set {i}

is supportable as a strict Nash equilibrium in the game. Let s∗ ∈ Sn be the strict Nash

equilibrium at which {i} is the set of participants. By Proposition 6.1, s∗ is a strong

equilibrium if and only if no coalitions deviate from s∗ in a way that satisfies (6.1).

Because the proper subset of {i} is empty, it is clear that no deviations from s∗ satisfy

(6.1). Therefore, {i} is attained at a strict Nash equilibrium. ¥

Finally, we mention multiplicity of strong equilibria. In Example 6.1, the sum of the

benefits that participants receive at strong equilibria is unique. However, this does not

hold true in some cases. By Corollary 6.1, every strict Nash equilibrium with only one
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participant is a strong equilibrium even if the benefit of the participant is more than

θP min . For example, consider an example where n = 3, c = 10, θ1 = 5, θ2 = 6, and

θ3 = 12. Then, {1, 2} and {3} are the sets of participants that are supportable as a

strong equilibrium. Hence, strong equilibria may support multiple sums of the benefits

of participants.

6.2.2 Existence of a strong equilibrium

Proposition 6.2 A strong equilibrium exists in the participation game.

Proof. Let Pmin denote a set of participants such that θP min is the smallest sum of

the benefits that participants receive in the set of strict Nash equilibria. Let smin ∈ Sn

be a strict Nash equilibrium at which Pmin is the set of participants. We show that

smin is a strong equilibrium. By Proposition 6.1, it is sufficient to show that there is

no deviation that satisfies (6.1). Suppose, on the contrary, that there is a coalition

T and its strategy profile sT such that Tmin
I ( Pmin, θT min

I \TI
> θTI\T min

I
> 0, and

θP min − θT min
I \TI

+ θTI\T min
I

> c, where Tmin
I = {i ∈ T |smin

i = I} and TI = {i ∈ T |si = I}.

Note that the set of participants at (sT , smin
−T ) is (Pmin ∪ (TI\Tmin

I ))\(Tmin
I \TI). Let us

describe this set of participants by P̃ .

First of all, note that θP min > θ
eP . Since θP min is the smallest sum of the benefits

that participants receive from the project at a strict Nash equilibrium, P̃ can not be

supported as a strict Nash equilibrium. Thus, by Lemma 5.1, there is at least one agent

i ∈ P̃ such that θ
eP − θi > c .

Claim 6.4 Let i ∈ P̃ be such that θ
eP − θi > c. Then, i ∈ P̃\Pmin.
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Proof of Claim 6.4. Let i ∈ P̃ be such that θ
eP − θi > c. Suppose, on the contrary,

i ∈ P̃ ∩ Pmin. Then, θP min − θi ≤ c holds. From this condition and θT min
I \TI

> θTI\T min
I

,

we obtain θP min − θi − θT min
I \TI

+ θTI\T min
I

< c. As θ
eP = θP min − θT min

I \TI
+ θTI\T min

I
, we

obtain that θ
eP − θi < c, which contradicts θ

eP − θi > c. Therefore, we have i ∈ P̃\Pmin.

(End of Proof of Claim 6.4)

Note that P̃\Pmin = TI\Tmin
I . From the conditions θ

eP = θP min−θT min
I \TI

+θTI\T min
I

>

c and θP min−θT min
I \TI

≤ c, we obtain θTI\T min
I

> 0. Thus, TI\Tmin
I is not empty. Suppose,

without loss of generality, that the set TI \ Tmin
I consists of h agents. Denote this set

by {j1, . . . , jh}. In addition, let us assume that θj1 ≤ θj2 ≤ · · · ≤ θjh
. First, consider

the set P̃ \ {j1}. Since P̃ is not supported as strict Nash equilibria, we have θ
eP\{j1} > c:

otherwise, we have

c ≥ θ
eP − θj1 ≥ θ

eP − θk for all k ∈ TI \ Tmin
I , and

c ≥ θP min − θk > θ
eP − θk for all k ∈ P̃ ∩ Pmin,

which means that P̃ is supportable as a strict Nash equilibrium. This is a contradiction.

If θ
eP\{j1} − θj2 ≤ c, then P̃ \ {j1} is supportable as a strict Nash equilibrium since

θ
eP\{j1}− θj ≤ c for all j ∈ P̃ \{j1}. This contradicts the idea that θ

eP is the smallest sum

of the benefits of participants that is attained at strict Nash equilibria. If θ
eP\{j1}−θj2 > c,

then consider the set of participants P̃ \ {j1, j2}. If θ
eP\{j1,j2} − θj3 ≤ c, then the set

P̃ \ {j1, j2} is supportable as a strict Nash equilibrium, which is a contradiction by the

same reason above. If else, consider the set P̃ \ {j1, j2, j3}. Applying the same argument

and using the facts that θP min − θT min
I \TI

≤ c and θP min − θT min
I \TI

+ θTI\T min
I

> c, we can

find the set K ⊆ TI \ Tmin
I such that θ

eP\K > c and θ
eP\K − θj ≤ c for all j ∈ P̃ \K. This

implies that P̃ \ K is supportable as a strict Nash equilibrium. This is a contradiction.

Therefore, coalition T can not deviate in a way that satisfies (6.1). ¥
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From Proposition 6.1, the set of strict Nash equilibria contains that of strong equilib-

ria, but the converse is not always true. However, in the case of identical agents, every

strict Nash equilibrium is a strong equilibrium.

Corollary 6.2 Suppose that agents are identical: θi = θj for all pairs of agents {i, j}.

Then, all strict Nash equilibria are strong equilibria in the participation game.

Proof. Let θ = θi for all i ∈ N and let P be a set of participants that is supported as

a strict Nash equilibrium. By Lemma 5.1, P satisfies #P θ > c and (#P − 1)θ ≤ c, or

c/θ < #P ≤ (c/θ) + 1. Since #P is a natural number, we find from these inequalities

that #P is unique. Therefore, #P θ is the smallest sum of the benefits that participants

receive from the project in the set of strict Nash equilibria. In the proof of Proposition

6.2, we show that a strict Nash equilibrium in which the sum of the benefits of the

participants is the smallest in the set of strict Nash equilibria is strong. Thus, P is

attained at a strong equilibrium of the game. ¥

In the participation game, strict Nash and strong equilibria are both non-empty and

the set of strong equilibria is included in that of strict Nash equilibria. This is an

interesting respect of our model, because strict Nash equilibria and strong equilibria are

based on different stability and there is not always the inclusion relation between the

two sets of equilibria. It follows from Lemma 5.2 that there exists an efficient allocation

which is supportable as a Nash equilibrium. Moreover, some of the efficient allocations

are also supported as a strong equilibrium of the participation game.

The following theorem summarizes the results that have been obtained so far.

Theorem 6.1 In the participation game with a public project, (i) there is a Nash equi-

librium at which the efficiency of an allocation is achieved, (ii) the set of Nash equilibria
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that supports efficient allocations coincides with the set of strict Nash equilibria, (iii) a

strong equilibrium exists, and (iv) the set of strict Nash equilibria includes that of strong

equilibria, but the converse inclusion relation does not necessarily hold.

6.3 Participation games with a multi-unit public good

6.3.1 A participation game in which at most two units of the

public good can be produced

In this section, we consider a participation game in a mechanism that implements the

proportional cost-sharing rule in which at most two units of the public good can be

provided. Let Y be a public good space such that Y = {(y1, y2) ∈ {0, 1}2|y1 ≥ y2}: if

y1 = y2 = 1, then two units of the public good are produced; if y1 = 1 and y2 = 0, then

one unit of the public good is produced; if y1 = y2 = 0, then zero units of the public good

are produced. Let c > 0 be the cost of producing one unit of the public good. Each agent

i has a preference relation that is represented by the utility function Vi : Y ×R+ → R+,

which associates a real value Vi(y, xi) =
∑

k∈{1,2} θk
i yk − xi with each element (y, xi) in

Y ×R+, where θk
i > 0 denotes agent i’s marginal benefit from the k-th unit of the public

good. We denote θk
P =

∑
j∈P θk

j for all k ∈ {1, 2} and for all P ⊆ N . Let us assume that

θ1
i > θ2

i for all i ∈ N and θ2
N > c. Thus, at every Pareto efficient allocation, two units of

the public good are produced.

Assumption 6.2 There exists a mechanism that implements the following allocation

rule. Let P denote a set of participants and (yP , (xP
j )j∈P ) be the allocation that is

93



implemented by the mechanism. Then,

yP = max{k ∈ {0, 1, 2} | θk
P − c > 0}, and

for all i ∈ P , xP
i =


0 if yP = 0,∑yP

k=1 θk
i∑yP

k=1 θk
P

yP c otherwise.

Example 5.2 on page 79 indicates that a Nash equilibrium does not always support an

efficient allocation and strong equilibria do not necessarily exist in the participation game

with a multi-unit public good. In Example 5.2, two units of the public good are provided

at every efficient allocation. However, one unit of the public good is produced at every

Nash equilibrium and no strong equilibrium exists. Therefore, no efficient allocations are

supportable as Nash equilibria. This is a remarkable difference between the participation

game with a public project and that with a multi-unit public good.

6.3.2 Non-existence of equilibria that support efficient alloca-

tions

In this subsection, we investigate whether or not a Nash equilibrium supports an Pareto

efficient allocation in the participation game in which at most two units of the public

good can be produced. For this, we first characterize the set of Nash equilibria at which

two units of the public good are produced.

Proposition 6.3 Two units of the public good are produced at a Nash equilibrium in the

participation game if and only if there is a set of participants P ⊆ N that satisfies (i)

θ2
P > c, (ii) θ2

P −θ2
i ≤ c for all i ∈ P , and (iii) if there is an agent i ∈ P such θ1

P −θ1
i > c,

then θ2
i ≥

∑2
k=1 θk

i∑2
k=1 θk

P

(2c).
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Proof. (sufficiency) Suppose that there is a set P that satisfies the conditions (i), (ii),

and (iii). By (i), two units of the public good are produced if P is a set of participant.

By conditions (ii) and (iii), no agent i ∈ P have an incentive to switch I to O. Clearly,

no agents i /∈ P do not have an incentive to participate in the mechanism, given the

participation of P . Hence, P is a set of participants that is supportable as a Nash

equilibrium.

(necessity) Let us assume that there exists a Nash equilibrium at which two units

of the public good are produced. Let P be the set of participant attained at the Nash

equilibrium. Since two units of the public good are provided, condition (i) must be

satisfied. If P do not satisfy (ii), then there exists agent i such that θ2
P − θ2

i > c. Hence,

agent i has an incentive to deviate from I to O, which is a contradiction. Suppose that

there is an agent i ∈ P such that θ1
P − θ1

i > c and θ2
i <

∑2
k=1 θk

i∑2
k=1 θk

P

(2c). Then, he obtains

the payoff θ1
i if he chooses O, and, in the case of participation, he receives the payoff∑2

k=1 θk
i −

∑2
k=1 θk

i∑2
k=1 θk

P

(2c). Since θ2
i <

∑2
k=1 θk

i∑2
k=1 θk

P

(2c), he has an incentive to switch from I

to O. This is a contradiction. Therefore, P satisfies (i), (ii), and (iii). ¥

We examine whether two units of the public good are produced at a Nash equilibrium

or not. First consider the following case.

Case 1. For all P ⊆ N , if P satisfies θ2
P > c, then θ1

P\{i} > c for some i ∈ P .

The following is the result in this case:

Proposition 6.4 Suppose that, for all P ⊆ N , if P satisfies θ2
P > c, then θ1

P\{i} > c

for some i ∈ P . Suppose that agents are identical. Then, Nash equilibria do not support

efficient allocations at almost all values θ2 in Case 1.

Proof. Let P ∗ be a set of participants such that θ2
P ∗ > c and θ1

P ∗\{i} > c for some
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i ∈ P ∗. If all agents in P ∗ participate in the mechanism, then two units of the public

good are produced. But, one unit of the public good is provided if agent i ∈ P ∗ deviates

from participation to non-participation. Since θ1
P ∗\{i} > c, we have #P ≥ 2. We focus

on a case of identical agents: let θ1 = θ1
i and θ2 = θ2

i for all i ∈ N . By Proposition 6.3,

the set P ∗ is supportable as a Nash equilibrium if and only if it satisfies (i), (ii), and

(iii). By condition (i),

#P ∗θ2 > c. (6.5)

By condition (ii), we have (#P ∗ − 1)θ2 ≤ c. Therefore,

θ2 ≤ c

#P ∗ − 1
. (6.6)

By condition (iii),

θ2 ≥ 2c

#P ∗ . (6.7)

Note that it is sufficient to focus solely on equations (6.6) and (6.7). Subtracting
2c

#P ∗

from
c

#P ∗ − 1
yields

c

#P ∗(#P ∗ − 1)
(2 − #P ∗). (6.8)

Since #P ∗ ≥ 2, we have (6.8) ≤ 0 with equality if #P ∗ = 2. Therefore, it is impossible

for a Nash equilibrium to support the provision of two units of the public good if #P ∗ > 2.

When #P ∗ = 2, two units of the public good are produced only in the case of θ2 = c.

Therefore, in this case, two units of the public good are hardly provided when agents are

identical. ¥

Proposition 6.4 confirms that the strategic behavior on the participation decisions

often leads to the inefficiency of the allocations, even though a mechanism is constructed

in a way that implements an efficient allocation rule. Hence, the implication that is

similar to Saijo and Yamato (1999) can be obtained even in the participation game
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in which the public good is discrete and at most two units of the public good can be

produced.

The following example indicates that Nash equilibria may support the efficient allo-

cation if agents’ preferences are heterogeneous.

Example 6.2 Let N = {1, 2} and let θ1
1 = 21, θ2

1 = 9, θ1
2 = 7, θ2

2 = 6.9, and c = 10.

In this example, two units of the public good are produced only if two agents choose I,

and one unit of the public good is provided only when agent 1 chooses I and agent 2

chooses O. Table 6.2 is the payoff matrix of this example. In this example, there is a

Nash equilibrium at which two agents enter the mechanism and two units of the public

good are provided.

1\2 I O

I 16.33, 7.29 11, 7

O 0, 0 0, 0

Table 6.2: The payoff matrix of Example 6.2

Proposition 6.5 In the participation game in which at most two units of the public good,

if a strategy profile is a strong equilibrium, then it is a Nash equilibrium that supports an

efficient allocation.

Proof. Suppose, on the contrary, that there is a strong equilibrium s ∈ Sn that supports

an inefficient allocation. If zero units of the public good is produced at s, then every

agent receives the payoff zero, and if one units of the public good is produced, then every

participant i obtains θ1
i − θ1

i

θ1
P

c and every non-participant j receives θ1
j . Note that the

sum of the payoffs of all agents is zero, when no public good is provided; the sum of the
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payoffs to all agents is θ1
N − c > 0, when one unit of the public good is supplied. On the

other hand, when all agents choose I, the sum of the payoffs to all agents is
∑2

k=1 θk
N −2c,

which is greater than θ1
N − c. Therefore, if the grand coalition forms and every member

chooses I, then all members of N are better off, which is a contradiction. ¥

Obviously, every strong equilibrium is Pareto efficient within the set of strategy pro-

files. However, in this model, it is not clear that a strong equilibrium supports an efficient

allocation, because the strategy sets of all agents consists of two alternatives. Proposi-

tion 6.5 shows that two units of the public good is provided at every strong equilibrium

of this game. It follows from Propositions 6.4 and 6.5 that a strong equilibrium does not

necessarily exist in the participation game with a multiunit public good.

Finally, we briefly mention the case in which Case 1 is not satisfied: there exists a

set of participants P such that θ1
P − θ1

i ≤ c for all i ∈ P and θ2
P > c. Note that, for all

D ⊆ N , if D is not empty, then θ1
D > θ2

D. Thus, the above P satisfies θ2
P\{i} < θ1

P\{i} ≤ c

for all i ∈ P and θ2
P > c. If all agents in P choose participation, then two units of the

public good is provided. By Proposition 6.3, P can be supported as a Nash equilibrium.

Thus, two units of the public good are produced at a Nash equilibrium in this case.

6.4 Concluding Remarks

We have investigated the participation game in the mechanism implementing the pro-

portional cost-sharing rule. First, we considered the case of a public project. We have

shown that, in this case, strict Nash equilibria exist, the set of strict Nash equilibria

and the set of Nash equilibria that supports an efficient allocation coincide, there are

strong equilibria, and the set of strict Nash equilibria contains that of strong equilibria.

Secondly, we have considered the case in which at most two units of the public good
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can be provided. In this case, there is not always a Nash equilibrium that supports an

efficient allocation and there is not necessarily a strong equilibrium. We have found from

these results that the assumption that only one unit of the public good can be produced

is essential to the existence of a Nash equilibrium that supports the efficient allocation

and that of a strong equilibrium. We also found that the strategic behavior on the par-

ticipation decisions leads to the inefficiency of the allocations even in the participation

game in which the public good is discrete and at most two units of the public good can

be produced.

99



Chapter 7

Conclusion

We have examined the participation game under various equilibrium concepts and various

forms of the provision of a public good. In the real world, the participation problem

in a public good mechanism is one of the most important issues, as is shown by many

examples. However, the participation problem has not been studied adequately so far. In

this dissertation, considering the possibility that agents form a coalition and coordinate

their actions, we studied the participation problem in a public good mechanism.

In Part I, we considered the participation game in a mechanism to produce a per-

fectly divisible public good. In Chapter 2, we considered the case in which agents’

preferences are identical and examined the coalition-proof equilibria of this game, which

are stable against the self-enforcing deviations. We provided an example in which the

participation game has multiple Nash equilibria that support the different numbers of

participants. However, we showed that the coalition-proof equilibria exist and only the

maximal number of participants in the set of Nash equilibria is supportable as a coalition-

proof equilibrium. We further showed that the set of coalition-proof equilibria coincides

with the Pareto-efficient frontier of the set of Nash equilibria. Therefore, the possibil-

ity of coalition deviations guarantees the improvement of the allocative efficiency in the
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economy. We also considered a strong equilibrium of this game, which is stable against

all possible coalitional deviations. Since the coalition-proof equilibrium is stable only

against the self-enforcing deviations, the notion of strong equilibria is stronger than that

of coalition-proof equilibria. However, a strong equilibrium does not necessarily exist in

this game. We characterized the set of strong equilibria and proved that this equilibrium

is less likely to exist as the number of agents increases. In the participation game, all

members of a coalition can be better off only if the coalitional deviation increases the

number of participants, but this type of deviation is not self-enforcing. Thus, coalition-

proof equilibria exist, but strong equilibria do not. This is the difference between the two

equilibrium concepts in the participation game. Since the definition of coalition-proof

equilibria is very complicated, little is known about the properties of this equilibrium.

Furthermore, it is difficult to examine the coalition-proof equilibria under general cir-

cumstances. The contribution of this chapter is to show the existence of coalition-proof

equilibria and to clarify the properties of this equilibrium in the participation game under

the assumption of identical agents.

In Chapter 3, we extended the analysis in Chapter 2 to the case of heterogeneous

agents. In this chapter, we investigated the number of participants that is attained at

coalition-proof equilibria. When agents’ preferences are heterogeneous, the number of

participants in coalition-proof equilibria may be multiple, differently from the case of

identical agents. The main result of this chapter was to provide a sufficient condition

under which the number of participants in the coalition-proof equilibria is unique. As a

result, we confirmed that a unique number of participants can be achieved not only in

the case of identical agents but also in some cases of heterogeneous agents. Although

we generalized the uniqueness result regarding the number of participants to the case of

heterogeneous agents, we did not show the existence of coalition-proof equilibria when
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agents’ preferences are heterogeneous. The coalition-proof equilibria are defined with

recursion of the number of agents in a coalition, and it is quite complicated to show the

existence of the coalition-proof equilibria in the case of heterogeneous agents. This task

will be undertaken in future research.

In Chapter 4, we studied coalition-proof equilibria based on two different dominance

relations: strict dominations and weak dominations. A coalition deviates only if all mem-

bers of the coalition can be better off by switching their strategies under the notion of

strict domination, while a coalition deviates if all members of the coalition are not worse

off and at least one of the members is better off by changing their strategies under the

notion of weak domination. In equilibrium concepts based on coalition deviations such

as the core and strong equilibria, a set of equilibria under weak domination is included in

that under strict domination. However, the set of coalition-proof equilibria under strict

domination and that under weak domination are not necessarily related by inclusion.

We showed that, if a game satisfies the conditions of anonymity, monotone externality,

and strategic substitutability, then the set of coalition-proof equilibria under strict dom-

ination contains that under weak domination. Since this class of games contains many

interesting games, such as the participation games in the case of identical agents, which

were studied in Chapter 2, and the Cournot oligopoly game, the inclusion relation holds

in many games studied in economics. However, there is a game that does not satisfy

the three conditions but in which the inclusion relation between the two coalition-proof

equilibria holds. For example, in Example 3.1 on page 42, the two sets of coalition-proof

equilibria coincide. This game does not satisfy the condition of anonymity because agents

have heterogeneous preferences. The inclusion relation between the two coalition-proof

equilibria probably holds when agents’ preferences are heterogeneous. A further direc-

tion of this study will be to find other classes of games in which the inclusion relation
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holds and to generalize a sufficient condition.

In Part II, we considered the participation game in a mechanism to produce a discrete

public good. First, we considered the participation game in a mechanism to implement a

public project in Chapter 5. The mechanism implements the allocation rule that satisfies

the following requirements: (i) the public project is undertaken if and only if the joint

benefit of participants from it is greater than its cost; (ii) the sum of payments from

participants is equal to the cost of the project; (iii) every participant bears a positive

cost burden; and (iv) the cost burden of every participant is less than his willingness

to pay for the project. There may be multiple Nash equilibria, and both efficient and

inefficient allocations are supportable as the equilibria in this game.

We first examined strict Nash equilibria of the participation game. The strict Nash

equilibria are those in which every agent is worse off if he deviates unilaterally. We

showed that this game has a strict Nash equilibrium, and the set of strict Nash equilibria

coincides with the set of Nash equilibria to support efficient allocations. This result is

in contrast with that of Saijo and Yamato (1999), who showed that there are no Nash

equilibria to support the efficient allocations when the public good is perfectly divisible in

many cases. However, in this chapter, we showed that the efficient allocation is achieved

in a Nash equilibrium if the level of the public good is fixed.

Next, we proved that, in this game, both coalition-proof and strong equilibria exist,

and the set of coalition-proof equilibria and that of strong equilibria coincide. We fur-

ther showed that the two sets of equilibria coincide with the set of strict Nash equilibria.

Combining these results with those above, we determined that the three different sets of

equilibria are not empty and coincide. These are new findings in the two following re-

spects. First, in Chapter 2, we pointed out that a strong equilibrium does not necessarily

exist in the participation game if the public good is perfectly divisible. In contrast, the
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strong equilibrium is shown to exist if the level of the public good is of a fixed size. The

existence of strong equilibria has been studied in the cases of the provision of local public

goods. However, this dissertation provided sufficient conditions for a strong equilibrium

to exist in the case of non-excludable public goods. Second, we establish sufficient con-

ditions for the sets of coalition-proof and strong equilibria to coincide. As in the case of

the existence of strong equilibria, the equivalence between the two equilibria has been

studied in the field of local public good provision and not in the case of non-excludable

public goods.

Although efficient allocations are achieved in a Nash equilibrium, not all agents par-

ticipate in the mechanism. Therefore, there may be agents that benefit from the public

project at no cost. It is desirable from the viewpoint of equity that all beneficiaries share

the cost of the project. A solution to this free-ride problem is to construct mechanisms

in which all agents voluntarily participate. It is left for future studies to determine the

possibilities for constructing such mechanisms.

In Chapter 6, we studied the relationship between the allocative efficiency and the

forms of public good provision. We considered the participation game in a mechanism to

implement the proportional cost-sharing rule and the following two multiple-choice public

goods: one is a public project, and the other is a discrete public good that is produced

in either one or two units. As we proved in Chapter 6, there are Nash equilibria in which

the efficient allocations are achieved, and such Nash equilibria are strong equilibria in

the participation game in the public project. In addition to the previous chapter, we

considered the possibility that members of a coalition transfer their utilities among the

members, and we examined the strong equilibria of this game. We showed that there is a

strong equilibrium and some efficient allocations are supportable as a strong equilibrium

in this game. In contrast, there is not necessarily a Nash equilibrium that supports
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an efficient allocation in the participation game to produce a discrete public good. We

showed that no Nash equilibria support efficient allocations if agents are identical and

a mild condition is satisfied. These findings indicate that the results in the case of a

multi-unit public good differ greatly from those in the case of a public project. We

concluded from these results that the inefficiency stemming from the agents’ strategic

behavior with respect to the participation decision often occurs when the level of public

good takes more than one positive value.

Table 7.1 on page 107 is a summary of the main results of this dissertation regarding

the existence of equilibria. In this table, each column represents a form of the provision

of a public good, and each row represents the notion of equilibria. We confirmed from

Table 7.1 that Nash equilibria supporting efficient allocations and strong equilibria do

not exist in the case of a perfectly divisible public good and that of a discrete and multi-

unit public good. The results in the two cases indicate a similar tendency. On the other

hand, both equilibria exist in the case of a public project. In conclusion, the inefficiency

of Nash equilibria and the non-existence of strong equilibria are due to the setting that

the level of public good can take multiple positive values.

In the cases of a perfectly divisible public good and a discrete and multi-unit public

good, the coalition-proof equilibria exist, although there is no strong equilibrium. From

the results of Chapter 2, the set of coalition-proof equilibria coincides with the Pareto-

efficient frontier of the set of Nash equilibria. This indicates that agents have an incentive

to coordinate their participation decisions at an inefficient Nash equilibrium when agents

can form a coalition. As a result, the coordination leads to the Pareto-efficient frontier of

the set of Nash equilibria, and the allocative efficiency is improved. The same applies to

the cases of a perfectly divisible public good and a discrete and multi-unit public good.

Thus, we conclude that the possibility of coalition deviations improves the efficiency of
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equilibrium allocations in the class of participation games. Note that the improvement of

payoffs to members of coalitions does not necessarily imply the improvement of efficiency

in allocations. It will, therefore, be worthwhile to emphasize this point.

Finally, we hope that the findings in this dissertation will serve as the foundations for

future studies of the participation problem in public good mechanisms and the solution

to the participation problem in the real world.
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Nash equilibrium
achieving the efficiency

Coalition-proof equilibrium

Strong equilibrium

R+ {0, 1}
{0, 1, 2}
(identical agents)

+− −

+

(identical agents)

−

+

+ −

+ (∗1)

Table 7.1: Existence of equilibria. Symbol + means the existence of the equilibrium,

and − indicates non-existence of the equilibrium. (∗1) Although we have not provide a

proof of existence of coalition-proof equilibria in the case of a discrete public good, the

existence can be shown in a way that is similar to the proof of Proposition 2.1.
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