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THE NONSTATIONARY
FRACTIONAL UNIT ROOT

KATSUTO TANAKA
Hitotsubashi University

This paper deals with a scalieid) procesg y; }, where the integration ordelis any

real numberUnder this settingwe first explore asymptotic properties of various
statistics associated wifly; }, assuming thad is known and is greater than or equal
to 3. Note that{y;} becomes stationary wheh< 1, whose case is not our concern
here It turns out that the case df= 3 needs a separate treatment frdm 3. We

then considemunder the normality assumptigiesting and estimation fat, allow-

ing for any value ofl. The tests suggested here are asymptotically uniformly most
powerful invariant whereas the maximum likelihood estimator is asymptotically
efficient The asymptotic theory for these results will not assume normalitlike

in the usual unit root problem based on autoregressive matatedard asymptotic
results hold for test statistics and estimatorbered need not be restricted th=

3. Simulation experiments are conducted to examine the finite sample performance
of both the tests and estimators

1. INTRODUCTION

The unit root problem is usually discussed in connection with autoregressive
(AR) models In formulating a nonstationary AR modéis implicitly assumed
that there exists a positive integdrsuch that differencing the seriestimes
produces a stationary AR process

Inthis paper we consider a scaléd) procesgy, }, where the integration order
dis any real numbeMore specifically we deal with the procegg} defined by

1-L)% =g, (j=1...,T) (1)

whereL is the lag operator an; } is an independent and identically distributed
(i.i.d.) (0,02) sequence that we shall extend to the stationary case laisr
known (e.g., Hosking 1981) that{y;} becomes stationary & < 1, whose case
with the additional restrictionl > — % has been studied to a large extent in the
literature Beran(1994) gives a good survey for this case

The model(1) may be related to the usual integrated process of integer order
in the following way Let d = d + d*, whered is an integer closest td. By
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takingd = d + 3 when the decimal part af is 3, this decomposition is unique
and it holds that-3 = d* < 3. Thus the preceding model may be rewritten as

(1-0)%; =y, (1-L)%0 =¢. (2)

It is seen that the fraction&ld) process y;} with an independent error term is
equivalent to the usuald) process with a long-range dependent error tgrfn
The model2) with d = 1 was discussed by Sow&ll990, whereas the general
case is considered in Chan and Te(i895, where the AR unit root asymptotics
discussed in Chan and Wdi988 are extended to the fractional cadeganathan
(1996 developed inference on fractionally cointegrated systdims noticed
that the integration ordet* of the error process is restricted|w’| < 3 in these
studies

We return to the modefl) that allows for any value afl. The present model
and its extended version with stationary error terms are analyzed in a paper by
Robinson(1994), who considered testing hypotheses dian the frequency do-
main claiming that the analysis is more amenable to the frequency domain ap-
proach than to the usual time domain appro&tf howeverfind the latter still
effective and consider the estimation and also testing problentsifiothe time
domain

In Section 2 we first explore asymptotic properties of various statistics asso-
ciated with{y;}, assuming thad is known and is greater than or equaktdNote
that{y;} becomes stationary wheh< 1, whose case is not our concern hdte
turns out that the case df= 3 needs to be treated separately from the caseof
1. Section 3 considers testing fdwithout restricting the parameter spacedof
We suggest a locally best invariaiiiBl ) test equivalent to the Lagrange multi-
plier (LM) or Rao’s score testt turns out that the resulting statistic tends to
normality unlike in testing for an AR unit roof he preceding result is parallel to
the one obtained in Robins@h994) by the frequency domain approatfkie shall
show that the LBI testis asymptotically uniformly most powerful invariaiiPl)
in the sense that the test achieves asymptotically the highest power or power
envelope of all the invariant tests under a sequence of local alternatives

Section 4 discusses estimationdhyfwhere any value ofl is allowed for It is
shown that the maximum likelihood estimatdiLE ) of d tends to normality and
is asymptotically efficientWe then suggest the Wald test based on the MLE
which is also asymptotically UMPISection 5 examinewia simulations the
finite sample behavior of the LBI or LM and Wald tests and the MBEction 6
concludesProofs of theorems and corollaries are given in the Appendix

2. ASYMPTOTIC PROPERTIES OF VARIOUS STATISTICS

In this section we explore asymptotic properties of various statistics associated
with{y;} in (1) whend = 3. Becausdy;} becomes nonstationary whee= 3, we
need to impose restrictions gnfor k = 0 to initiate the procesgy;}. Here we
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assumegfor simplicity, thaty, = 0 for k = 0, although the other initializations are
possible(see Diebold and Rudebusctf9]) and the behavior ofy;} does de-
pend on the initial conditiaThen {y;} is assumed to be generated by

i1 r(k—d)

— )9y, = [ A R —
A=D% = > S U

It can be checked th&8) is equivalent to

k—d-1

j—1
A= e, A=l A= —— A (k=) (4)
k=0

Alternatively, we can rewritg3) and(4) as

B 4 ' T(k+d) =
A Y ST ©

whereBy =1 andB, = (k+ d — 1) B,_,/kfor k= 1. This last expression is useful
for simulating{y; }. Becausgby Stirling’s formula I’ (k+d)/T'(k+1) = O(k® 1)
ask — oo, we have

_ [OuVIogT)  (d=3), (6)
T oymv2) (d> ). ©)

Itis seen thafy;} becomes nonstationarydf= 1 and that the behavior ¢t} is
different betweem = 3 andd > 3. Because of thighe case ofl = 3 is discussed

in Section 21, whereas the case df> 3 is treated in Section.2. Some of the
limiting distributions obtained in these two subsections are graphically presented
in Section 23.

2.1.Case of d=3
We first construct a partial sum process= {X(t)} defined o0, 1], which is

given by
), (8)

(9)

tst—s 1
§ sty s
whereX+;(0) = 0, X1(1) = y¢/sr, and

_ 1 S-1
XT(t)—;ijr (Y = ¥i-1), ?Sti

7?2k )
P=V(y) = V(-0 V)= — 3
3 : : T kgo r2(k+1)
The proces$X+(t)} belongs to the function spaczthat is the space of all real-
valued continuous functions defined & 1]. Note thats® = O(log j), as is
described in6).
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The following weak convergence f¢K+(t)} holds because of the functional
central limit theoren{FCLT) due to Brown(1971).

THEOREM 21. Let{y;} be gven by(1) whose generating process is defined
in (5), where d= % and{e;}is anii.d. (0,0?) sequenceThen for the partial sum
process % = {X;(t)} defined in(8), it holds that as T— oo,

L(X7) = L(w),

whereL (X) denotes the probability law of Xvhereas w= {w(t)} is the standard
Brownian motion defined o}, 1].

The following results are a consequence of the preceding theorem

COROLLARY 21. Under the same conditions as in Theor@rh, it holds
that as T— oo,

! N(O Uz) 10
WyT_) » . ) ( )
1T 402
plim T _EZ(yj —V1)?= — (11)
i<

The result in(10) is an immediate consequence of Theorefy ®@hereag11)
comes from the variance of the stationary prodgss- y;_1} = {(1 — L)"?¢;}.

Extensions to the case where the error term is dependent are straightforward
Suppose thatl) is replaced by

(1_L)dyj:ujv (J:L~7T)7 (12)

whered = 3 and

U= > begi—e, D el < o, ¢Ez¢j¢0, (13)
€=0 =0 j=0

with {g;} ~i.i.d.(0,0%). Then we apply the Beveridge—Nels¢BN) decompo-
sition (Phillips and So0lp1992) to get
Uj = ¢8j - (1 - L)éj, (14)

where{§;} is a stationary process defined by

g = Zo 0y Ej—¢» b= k%l by (15)

We now have
yj=(@1- L)‘l/zuj =¢(1- L)‘l/zsj + 0,(2),
1-Dy=@1- L)l/zu,- =0,(1).
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Then for the partial sum procedX+(t)} in (8) with s? = V((1 — L) ¥?¢;) de-
fined in(9), we have
L(X7) — L(PW).

Asymptotic results described in Corollaryl?zare modified accordingly in the
following corollary

COROLLARY 22. Let{y;} be gven by(12) and(13) with d= 3. Thenit holds
that, as T— oo,

= N<O ¢2‘72> (16)
T % b ’
VlogT i T
] 1 T T ) A
plim = X (y; —yi-1)? =4 | fu(A)sin dA, (17)
T j=2 0 2

where {(A) is the spectrum ofu; }.

2.2. Case of d> 3

Weak convergence results foe> 5 can be studied in two way®ne is based on
{X+(t)} defined in(8), and the other is based on another partial sum process in
function spaceC constructed later

Let us deal witH y;} defined in(12) and(13), with d > 3. Again using the BN
decompositionwe obtain

y=Q-L) % =¢1-L) % —(1-L) %"

= ¢(1—L) % + 0,(T4V2).
Thus it can be shown thd(X;) — L(¢$w), where we now have
o? 13T12(k+d) g% j2T

>

%2 = V((l— L)idaj) = Fz(d) = Fz(k+1) = Fz(d) 2d—1

(18)

Proceeding in the same way as in the casd of%, we obtain the following
results ford > 1 that specialize to well-known results fdr= 1.

COROLLARY 23. Let{y;} be gbenby(12) and(13) withd> 3. Thenitholds
that as T— oo,

Ta-17297 7 B\ P o - r2(a) ) (19)

and ford=1,

L b20? 1
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The result in(19) is an immediate consequence®fX) — L(pw), whereas
(20) follows from

T 2 2_ &2 1
S\S ~ S5
L X2 = L Zf w2(t) dt],
which is valid ford = 1.
The other approach is based on the partial sum process

1 J\Yi Y i—-1 j
Y-r(t)=myj+-|—<t—?>a__rd_l/2, ( T StS? s (21)

wherey; is defined in(12) and(13) with d > 3. Whendiis a positive integeit can
be shown(see Chan and Wel988 Tanaka 1996 that

L(Yr) = L($Fg-1), (22)

whereFy = {F4(t)} is theg-fold integrated Brownian motion defined by

Fg(t) = fo Fg-i(s)ds  Fo() =w(t), (g=12,...). (23)

Whend is any real number greater than(22) still holds with

1
r(g+1

t 1
Fy(t) = fo (t—s)9dw(s), g> 5 (24)
We haveE(F4(t)) = 0 andV(F4(t)) = t297Y/((2g + 1)I'?(g + 1)) for each fixed.
Note that(23) and(24) are equivalent wheg is a positive integer
The following properties can be derived on the basis of the FCLT described in
(22) with Fy(t) defined in(24).

COROLLARY 2.4. Under the same conditions as in Corolla®y3, it holds
that as T— oo,

£<; > L(boFy 4(1 ~N<OL> 25
Tdfl/zyT — L(¢poFy-1(1) " (2d—)red) )’ (25)
1T 1
E(Ezﬁ>—>£<¢202f0 Fdz_l(t)dt>, (26)
j=1
—M(d)/2

L(TH Y p—-1)>L (1<d<1y), (27)

1
¢202f F2_.(t) dt
0
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( 2 _
(W02 (d=1), (28)
fwz(t)dt
LT(p—1)— ’,
'::Ld;(l)/z (d > 1)’ (29)
f F3_.(t)dt
\ 0

where r= 372, ¢?/¢% p = 22 Y-1Y /22 ¥ 1, and
M(d) = f 11— ™[22, () da, (30)

with f,(A) being the spectrum diu;}.

The statisticp in (27)—(29) can be interpreted as the least squares estimator
(LSE) of p applied to the following model

Yj zp)/j_l+vj7 (l_L)dilvjzuj’ (JZL'vT)y (31)

where the true value g is 1 andd is greater tharg and{u;} is a stationary
process defined ifil3).
Noting that

.
p—1=(Ar—Br)/> ¥’ 1
=1

where
Ar = y3/2 = 0,(T21) (d>3),

. o(T) (<d<3y),
BT=J§2(yj —y-1)%2=10(TlogT)  (d=3),

Oy(T242)  (d> 3,

it is seen thaf\r dominates; whend > 1, wherea$3; dominatesAr when; <

d < 1.Whend =1, A; andB; have the same stochastic ordeT his is the reason

why p behaves differently depending on the valué.drhis fact is also discussed

in Sowell (1990 whend takes values betweehand 3, where{u;} in (31) is

assumed to beiid. (0,0°2). In that caseM (d) in (30) becomes the variance of the

stationary proces§1 — L)'~ %;}, and we have

®  I?k+d-1)

M(d) = V((1 - L)* %) = o2

,T(3—2d)
r22-dy’

o )
:EJ‘ [1-e > dr =0 E<d<?i).
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2.3. Graphs of Some Limiting Distributions

In this subsection we present graphically some of the limiting distributions ob-
tained in the previous subsectiof®r this purpose we derive the characteristic
function(c.f.) of the limiting distribution and then invert it numerically

Let us first deal with the quantity appearing(26):

Gy :Jo F& 1(1) dIZJ; J; Ka-1(s t) dw(s) dw(t), (32)

whered > 1 and

1

Fz(d) max(s, t)

Note thatGy is a limit in distribution of the sample second moment arising from
thel (d) processlt is clear that

Kg-1(st) = (u=s)(u—1t)%*du

E(Gy) = fo Koalb A= o d2d— r)

which tends to 0 ad — co. We also have

1 1
V(Gy) = 2f f K& 1(st)dsdt
0o J0

whichisiford=1,1.31x10 ?ford=2,1.36 X 10 *ford=3,4.87x 10 7 for
d=4, and soon

Figure 1 draws the probability density Gf = [ w?(t) dtand Figures 2 and 3
those ofG, andGs, respectivelyThese were computed by numerical integration
via inversion of the d.’s of G, (for details see Tanaka 996 Ch. 6). In Figures 2
and 3 we also present approximate distribution§&gf where the approximations
are based on the distributional relation

© 1
E(Gd)=£(2 : (d)Z“%)’

n=1

where{Z,} is i.i.d. normal with common mean 0 and variangevhich is abbre-
viated a§Z,} ~NID(0,1) and 0< A,(d) < A,(d) < --- < are the eigenvalues of
the integral equation

1
f(t) = )\fo Kqg_1(s t)f(s)ds

Then Gy is approximated aZ?/A,(d), whereA,(2) = 12.36236 andr,(3) =
121.259(Tanakal1996 Ch. 6). Itis seen thaG, andG; are well approximated by
a constant multiple of ?(1). Note thatG, cannot be well approximated in this
way because of its nonmonotonic distributional natlires reason may be partly
explained by considering the ratio BfZZ/A,(d)) to E(Gy):
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0 T T
0 1 2 3

Ficure 1. Probability density of5;.

R(d) = 1/A1(d)/2 1/An(d),
n=1
which is 08106 ford = 1, 0.9707 ford = 2, and Q9896 ford = 3.
We also consider the quantity appearind29):
F§1(1)/2

d =~ 1 ’ (33)
f FZ .(t)dt
0

10 -
\ ——  Exact
1\ B Approximate
5 .
O T T T
0.0 0.1 0.2 0.3 0.4

FiGcuUre 2. Probability density of5,.
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100
—  Exact
~~~~~ Approximate
50 -
0 T T
0.0 0.01 0.02 0.03

Ficure 3. Probability density of;.

which is well defined ford > 3 and is a limit in distribution of
T T
Hrq = > ¥8/ > ¥
=2

where(1 — L)%; = u; with the stationary proceds;} defined in(13).
Figure 4 draws probability densities Bif; for d = 1, 2, and 3 Note thatH; =
Iw?(1)/f3w?(t) dt. These densities were also computed by numerical integra-

0.6
. — d=1
7\
/ \\ _____________ d=2
0.4 - // | —
v \
y \
F, !
/) \
i ’ / ‘ \
:: / \\
1 /
0.2 \l / \\
- . v ‘ )
\ g )
\ - o
0 2 ) 6

FiGURE 4. Probability densities offly.
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tion. We can show by numerical integration th#&tHy) = dford =1, 2, and 3 It
is conjectured that this holds for ady> ). We also obtaiV(Hy) = 0.891 for
d=1,1.313ford= 2, and 1716 ford = 3.

3. TESTING FOR d

This section discusses testing for the integration oddeithout restricting the
parameter space of For this purpose we consider the model

z=xp+y, (Q-L*y=u, (j=1...T), (34)

where{x;} is a sequence df X 1 fixed, nonstochastic variables apds aK X 1
unknown vectarwhereasd is any preassigned value afd;} is a stationary
process defined ifl.3). Note that y;} becomes stationary whei- 6 < 1,whose
case is also treated here

Then the testing problem considered heteasin Robinsor{1994) (see also
Diebold and Rudebusch991),

Hp:0 = 0 against H;:6 >0 or H,:0 <O. (35)

Note that{z} becomes more nonstationary und¢r:6 > 0, whereas the re-
verse is true undet,:0 < 0. This is a very general testing probleallowing
for a test of the stationary hypothe$i$< %), the nonstationary unit root hy-
pothesis(d = 1), and thel (0) hypothesigd = 0).

In Section 31 we deal with the simplest case whdtg} in (34) is an ii.d.
(0,02) sequencgnvhereas the stationary case is discussed in Secto@8r test
can be easily adapted to deal with the model

z =% B+Y,, y; = (1— L)%, (j=1...,T). (36)

This case will also be discussed as a by-product of the original test

3.1.i.i.d. Case

Let us puty; = ¢; in (34) and assume thét;} ~ NID (0,0°2), though the asymp-
totic theory developed later will not assume normalgcausdy;} is generated
by (5) with d replaced byd + 6, it follows that

z=XB +y~ N(XB,020(0)), (37)

Wherez = (Zl’ (ERE) ZT)/, X= (Xla ey XT)Ia y = (y17 LR} yT)ly andQ(e) = V(Y)/U'Z
with rank(X) = K(<T). Note thatd is a given constant and the testing problem
(35) is invariant under the group of transformations

z—az+Xb and (6,8,02%) — (0,88 + b,a%c?),

where 0< a < oo andbis aK X 1 vector
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For the mode(37), the log-likelihoodL (6, 8, o?) is given by

T 1
L(6,B,0%) = ) log(27o?) — 292 (z—XB)Q~(0)(z— XB)

T 2 1S d+0 2
—5 100(2mo®) = 53 2= (g —x B} (38)
i=1

Note that the second line if88) is an approximated version of the exact log-
likelihood given in the first line ifd + # < 3 because of introducing an explicit
conditioning on initial values\Ve, however use the approximated version as the
true log-likelihood which does not affect the asymptotic theory developed sub-
sequentlyThen the LBI test is shown to be equivalent to the LM t€&naka
1996 Ch. 9). Thus the LBI test foHy:60 = 0 againsH,:6 > 0 rejectsHy when

oL(6,B,a?)
1 = -
96 Ho:0=0,=p,02=52

1 J R «
—— X f{log(1—-L) X (1-L)%z —x B)H1- L)%z — % B) (39)
g j=1

becomes largavheres = (X'X) *X'zwith X = (%y,..., %7), % = (1 L)%, 2=
(23,...,271),andz = (1 - L)%, whereasi? = (2 — XB) (z— XB)/T. The LBI
test forHO =0 agalnst 0 < 0 rejectsHy whenS;, becomes small

If we defines; = (1— L)%z — x/ B) = 2 — %/ 8 and consider the expansion

1 1
—Iog(l—L):L+5L2+§L3+ ey

Sr, can be rewritten more compactly as

i-11
<2 k81 k)sj TE kpk’ (40)

k=1

wherepy, = 31188, /2]-1 87 is thekth order autocorrelation of residuals
£4,...,&7. Itis noticed that the statistis;, has some similarity to the portmanteau
Q statistic(Box and Piercgl970 for diagnostic checking of time series models
althoughQ takes the form of an unweighted sum of squareg, (.

The finite sample distribution d¥;4 is intractable even undet,; so we con-
sider the limiting distribution o, under a sequence of local alternatives

THEOREM 31. Under@ = §/JT with § fixed it holds that as T— oo,

1 TZ N<7726772>
N PN o)



NONSTATIONARY FRACTIONAL UNIT ROOT 561

It can be checked that

: 1 9%L(0,B,0%)
lim El —= 2
a0

a=5/ﬁ/3=;§,<;2=[r2> 6

which is the limiting value of the normalized Fisher informati@hus it is seen
that standard results apply to the present problertike in the AR unit root test
caseIn practice we compute

1 77.2 T-1 1 A 77.2
SleﬁsTl/\/;:ﬁZlEpk/\/; (41)

and compare this with the upper or lower 00 point ofN(0,1), which gives the
right-sided(H;: 8 > 0) or left-sided(H,: 6 < 0) LBI test of approximate size.
The limiting power of the LBI test undet = §/V/'T can be easily computed

T—>w

COROLLARY 3.1. Let z, be the uppefl00a% point of N(0,1). Then it holds
that as T— oo underd = §/4T,

2
P(S’Tl>za)—>¢><—za+6 /%) for 6 > 0,

77.2
P(S1<—2,)>®|—2,— 6 I foré <O,

whered®(z) is the distribution function of K0,1).

We next showfollowing Elliott, Rothenbergand Stock(1996 and Tanaka
(1996, that the LBI test obtained previously is asymptotically UMPI in the sense
that its power attains the highest power of all the invariant tests-aso under
6 = 8/\T. For this purpose we assume that the data generating prd2€s? is

Zj :Xj’B—ij’ (1_|—)d+0°yj:8]‘, (J:L,T)’ (42)

wheref, = ¢/T with ¢(>0) fixed.
We now consider testing for

Ho:0 =0 against Hy:6 =8/4T, (43)

wheres(>0) is a known constanThis is a test of a simple null against a simple
alternative with nuisance paramet@ando ? that can be eliminated by invari-
ance argument3hen we have that the test that rejeldswhen

T T

228

i=1 =1
My=Tx ——1— (44)

.
> &
=1

becomes large is MPWvhereg; andg; are residuals undétf, andH,, respectively
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The limiting distribution oM+ in (44) asT — co underg, = ¢/VTandf = 5/VT
is given by the following theorem

THEOREM 32. TheMPI statistic Mr in (44) has the following limiting dis
tribution as T— oo underé, = ¢/JT andd = §/VT:

2 2
L(MT)—>£(M(C,8))=£(6<2\/§Z+(2C—6)%>), (45)

where Z~ N(0,1).

Letx,(8) be the upper 10 point ofM(0,5). Then the highest power of all
the invariant tests of sizeis given asymptotically b{?(M(8,5) > x,(5)). Then
it turns out that the power envelope coincides with the power of the LBI test

COROLLARY 32. The power evelope of all the inariant tests of size for
6 = 0 againstd = §/VT is gven asymptotically byp (—z, + 8+ 7%/6) for 6 > 0
and®(—z, — 8y 7?/6) for § < 0. Thus each LBI test is asymptoticaliMPI.

The fact that the LBI test fad is asymptotically UMPI contrasts with the LBI
tests foran AR unitrodiElliott et al, 1996 and a moving averag@&lA ) unit root
(Tanaka 1996 Ch. 10). It holds that

.
y%/Z(yj —¥j-1)?
j=1

is the LBl statistic for testingy:p = 1 againsH;:p < 1inthe AR(1) modet y; =
pYi—1 + &, whereyo = 0 and{e;} ~ NID (0,0-?). It also holds that

T /j-1 2
Z(Z(J— )yk——Z(T k+1)yk>

k= T+1kl

a2

is the LBI statistic for testing bla = 1 againstv < 1 in the MA(1) modet y; =
g — agj_q, Whereeg, g1,... ~ NID (0,0°2). The fact that the LBI test fod attains
the power envelopevhereas the LBI test for the unit root in the AB or MA (1)
model does noteflects the standard nature of the present problem
The present test can be easily adapted to test for the integration order in the MA
part For this purpose we deal with the model

Z=xB+y, y=0-L%%, (j=1..T), (46)

whered is any preassigned value afigf} ~ NID (0,0-2), for which the same
testing problem as i(B5) is considered
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The log-likelihood is now given by
T 1 J
L(6,8,0%) = = log(2mo?) — 5— 21— L)% (z = xB)}?
2 20 j=1

so that

aL(8,B,02)

=T 47
90 Ho E k pk7 ( )

where p, is the kth order autocorrelation of residuals,...,&ér with & =
1-1L)¢ (z — X/ B). Note the similar form in(47) to (40) except for the
negative sighwhich leads us to the following result

COROLLARY 3.3. For the model46), the test that rejects §16 = 0 against
Hq:0 > 0 (H,:0 < 0), whenS}, < —z,(Sr, > z,), is anLBlI test of approximate
sizea, whereS}; is the same as{$in (41) with p, defined in(47). The limiting
power of theS;;-test as T— oo underd = §/4/T, is given byd(—z, + 6V 7%/6)
for 8 > 0, and®(—z, — 8V 7?/6) for 6§ < 0. Morewer, eachS};-test is asymp
totically UMPI.

3.2. Stationary Case

Here we consider the mod4), where{u;} is assumed to follow an autoregres-
sive moving averagéARMA (p,q)) processnamely a(L)u; = b(L)e;, where
{&} ~ NID(0,0?) and

a(l)=1-aL— - —alP, Db(L)=1-DbL— - —byLY
with a(x) # 0 andb(x) # 0 for |x| = 1.

The log-likelihood is now given by

.
L(0,B,¢,02) = —-IE— log(2mo?) — Zi 2

x{a(L)b™ (L) - L)*(z — %/ B)}3

wherey = (ay,...,a,,by,...,b,)", and the LM principle yields the same statistic
asSr; in (40) but with ¢ defined in the present case by

& =aL)b 1 (L)1-L)%z - xB), (48)
whereg is the MLE of 8 underH,, whereasi(L) andb(L) are estimated from

a(L)u; = b(L)e; with uj = (1 — L)%(z — x/ B) replaced byg; = (1 - L)4(z —
X B).

Then we obtain the following result
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THEOREM 33. Consider the statistic

IL(8,B,¢,0?) o1
=—| =T = Pk 49
2 90 " Zl kPk (49)

wherepy is the kth order autocorrelation of residuads, ..., & defined in(48).
Then it holds thatas T— oo underd = 8/4/T with § fixed

1 11

-— =T = b= N(bw? w?),

\/TSTZ kglkpk ( )

where
2

2 _ ™ -1 ’

1) —g_(Kl,...,Kp,/\l,...,/\q)(I’ (K1yeeosKpy Ayeeis Ag)), (50)
> 1 * 1

KiZZTCj,i, )‘i:_E-_djfi’ (51)

j=1] i=i J

with g and g the coefficients of Lin the expansion ofil/a(L) and 1/b(L),
respectiely, and ® the Fisher information matrix for a and.b

Note that this theorem reduces to Theoref8henu; = g and no estimation
of ¢ is attemptedBecauses;, depends om ? that is a function of, we suggest
as a test statistic

1
Srp = \/_T Sro/0,

whered is the MLE ofw underHy, which can be computed frofb0) by inserting
J into thek;’s andl}q. Then it holds thatr, — N(éw,1) asT — oo underf =
S/NT.

The computation oy in the preceding way will become much involved as
p + q gets largeA computationally simpler method will be suggested in Sec-
tion 5 For the simplest case whefe;} follows an AR(1) process u; =
au_, + g or an MA(1) processu; = g — agj_,, however @ is easily com-
puted We havev; = av;_; + ¢; in both cases so that = a’ and

i 1
Klzz.—a“l:—alog(l—a), P t=1-a2
=1

Thus we have

5 w2 1-—a? )
w?= = g (og1l-a)% (52)
anda can be computed usirgy

Because of estimating, the limiting power of theSt ,-test is lower than that of

theSr;-test In particular if we suppose thdu; } follows AR(1) or MA (1) and the
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DGP of {u;} is {g;}, the asymptotic efficiency of th&;,-test isw?/(7?/6) =
0.392

The Sto-test possesses asymptotic properties similar tdSthdest namely
the power function of the former is asymptotically the one given in Corollaty 3
with +72/6 replaced byw. Moreover the power function coincides asymptoti-
cally with the power envelope of all the invariant tests for the m@aél.

The present test can also be implemented to test for the integration order in the
MA part, as in the ii.d. case The model now takes the form {86), and we can
easily conduct a test similar to tigg,-test

The finite sample performance of ti;-test discussed in the previous sub-
section and th&; ,-test discussed here will be examined in Section 5

4. ESTIMATION OF d

Here we discuss the asymptotic theory for the ML estimatiod whend takes

any valueThe discussion is divided into two subsections by considering first the
i.i.d. case followed by the stationary cass in the testing problenfor simplic-

ity of presentationhowever we concentrate on models without any regressor
and discussions are given on an intuitive baS@mal proofs for the asymptotic
properties of the MLE are much more involveste Hosoyal997).

4.1.i.i.d. Case
Let us consider the model
(1_L)dyj:8j’ (j:L-~-5T)’ (53)

whered is any value andle;} ~ NID (0,0-%). The parameters estimated heredre
ando?, and the concentrated log-likelihood fdis given except for constants

by
T T
€(d) = 3 |09[2 {1- L)dy,-}z}.
j=1

Let dy be the true value odl. Then the maximization of (d) is equivalent to
that of

T T T
9(d) = €(d) = £(do) = =3 log[Zl{(l— L)dyj}z/El{(l— L)d"yj}z}
1= 1=

T T
DA=L)%y} = S {1 - L)%}
T 1 j=1 =1
=—§Iog l—? - . (54)
3 (0 L)y
i=

—A| =
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Here it holds that
17 17

plim = > {(1 - L)%y;}? = plim = > &’ = o2
T= T=

Moreover if there exists a constaatsuch thad = dy + 8/V/T, then we have the
following theorem The existence of such&asT — oo will be proved shortly

THEOREM 41. For the model53), it holds that as T— co under d= d, +
ST,

6 6

(59) w20
s ) o Lwen=cl [Toz-"8).

I.m<azg(d)> o
PIM\ 752 ) = "5

where Z~ N(0,1).

Note thatZ(W(5)) = L(M(85,56)/2), whereM(8,5) appeared iti45) when we
derived the MPI test

We now prove that there exists an Mldf d, such that/T(d — do) = & =
O,(1). We first show the existence of a local MLdsuch thatyT(d — dy) =
Op(1). For this purpose it is sufficient to show thé&tr anye > 0 and for allT =
To with T fixed, there exists a positive constaitsuch that

6 2 a2
L£(g(d)) — L(W(S)) = E(E (2 —7Z— — 5)),

~ 8
P(d—d0|S\/—%>21—s. (55)
This can be proved along the same lines as in Sargan and Bhad®8a and it
is sufficient to show that

P(g(do + 8:/NT) = 0) = P<M _ o) —e

96,

ag(do + 6,/VT) <0> —.

P(g'(do + 8,/VT) = 0) = P(
96,

for all T = T, by taking suitablys,(>0), §,(<0), and a corresponding,.
In fact, for d = do + 8,/N T > dy with § = 8, > 0, it follows from Theorem 4L
that

p ag(d) 0 ’ ’ !
—5 =0) 2 PW(8) —EW'(8)) = —E(W'(9))

_ vwe) 6 -
= EW(0)? 2% (56)
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by Chebyshev’s inequalitBimilarly, for d = dy + 8,/VT < do with § = 8, < 0,

ag(d) ’ ’ 4
P(=5 =0 > PCW(®) + E(W'(8)) = E(W'(5)))

6

= m (57)

Thus itis ensured that the probabilities §6) and(57) can be made smaller than
€ by taking 8, = max(84,|8,|,76/(7%¢)). ThenT, can be chosen so thés5)
holds for allT = T,.

Returning to Theorem.4, we can assert that a local maximizof g(d) is
asymptotically the MLE ofl, becaus&V(5) has a unique maximum that occurs
at$ = z/\w%6. Thus we have the following result

THEOREM 42. Letd be theMLE of d, for the model(53). Then it holds
that as T— oo,

JT(d — dy) = N(0,6/72).

Note thatr %/6 is the limiting value of the normalized Fisher informationdor
Hence the preceding result turns out to be quite standarithe basis of which we
can also suggest a test filymamelyfor the right-sided alternativid,:d > d,, we
can rejecHy:d = do whenyT(d — dy)/+6/72 exceeds the upper 189 point of
N(0,1). The test may be called the Wald tesid it is a test of asymptotic size
It holds that the limiting local power of the Wald test is the same as that of the LBI
test The left-sided Wald test can also be conducted similarly

4.2. Stationary Case

We next consider the model

(1—-L)%(L)y, = b(L)egj, (j=1...,7T), (58)

where{g;} ~NID(0,0?),a(L) =1—a;L — --- —a,LP,andb(L) =1—b,L —

.-+ — by L9 with a(x) # 0 andb(x) # O for |x| = 1. The parameters to be estimated
ared, y = (ay,...,ap,by,...,by)", ando 2. The concentrated log-likelihood far
andy is now given except for constantdy

T T
t(dy) = —3log El{a(L)b’l(L)(l— L)%y} |- (59)
j=

If we considerg(d, ) = €(d,) — €(do,¥o) as in the ii.d. case whered, and
o are the true values af andy, respectivelyit can be checked that(d, ) is
asymptotically a concave function®&= v T (d — dy) andy = VT (i — ¢,). Hence
the MLE’s of d, andir are asymptotically uniqyevith an asymptotic distribu-
tion given by the following theorem
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THEOREM 43. Let7 = (G,zﬁ')’ be theMLE of 7o = (dg, )’ for the model
(58). Then it holds thatas T— oo,

ﬁ(f- - TO) - N(O’Eil )

where

_ 736 K’ 60
= . @ (60)

with k = (k1,...,Kkp, A1,...,Aq)" @and® defined in Theorer8.3.

The preceding result is also standard becatigarns out to be the limiting
matrix of the normalized Fisher information fdrand. Thusd andy are as-
ymptotically efficient Because we have

VT(d — dy) = N(0,w2) = N(0,(7%/6 — k' ® 1k)™1),

itis recognized that the asymptotic efficiencydi§ decreased in the present case
wherey is estimatedThe same is true fap. This is becausd andys are asymp-
totically correlated

It can also be checked that

1 (2" 9glogh(A,7) dlogh(A,
= J gh(A,7) gh( T)d)\
0

- E or i’

; (61)

whereh(A,7) is the spectrumlike quantity fof = b(L)e;/(a(L)(1 — L)?) de-
fined by
[b(e")|?
|1_ ei/\|2d|a(ei/\)|2'
The expression if61) is well known(Walker, 1964), except for the first column

and row
To justify (61), consider

dlogh(A,7) . ( ,A>
d = —log|1—€e"|?*= —2log 23|n2

h(A,7) =

SN

Ms

COSNA, (0< A< 2m). (62)

n=1

It is known (see e.g., Zygmund 1968 p. 180, that for any square integrable
functionf (A),

ifﬂ—a'ogh()‘”)f()\)m— ijzﬁ (2 i A)f()\)d)t
am J, ad om ), 09\ <%N5

© 1
-3 ¢ 63
Zﬂn n (63)
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wherec,’s are coefficients in the Fourier expansionfoh):
1 & .
f(A) ~ 5 Co + > (c,cosnA + d, sinnp).
n=1

In particular if f(A) = dlogh(A,7)/0d, then(62) yieldsc, = 2/n so that(63)
gives us>_,1/n? = 72/6, which is the (1,1) element of E. If f(A) =
dlogh(A,7)/d¢;(j =1,...,p + ), the computation ir{63) yields « in (60), al-
though it is much involved in genetal

We can also devise a test based on the MLEl,odis in the ii.d. case The
right-sided(left-sided Wald test reject$ly:d = d, whenyTa(d — do) exceeds
the uppeflower) 1002% point ofN(0,1). It holds that the Wald test has the same
limiting local power as the LM tesas in the ii.d. case The finite sample per-
formance of these tests and the MLE afwill also be examined in the next
section

5. SIMULATION EXPERIMENTS

In this section we examin®y simulationsthe finite sample performance of the
LBI or LM and Wald tests suggested in previous sectidnghe course of the
simulations the behavior of the MLE can also be examined

The models employed here are

Model A: (1— L)%, = ¢, (j=1,...,T),
Model B: (1—L)%1—aL)y; = g, (j=1...,T),

where{g;} ~ NID(0,02). For both models we consider testing fids:d = d
againstH;:d > dy or H,:d < do. Throughout simulationsve fix the sample size
atT =100 the number of replications atd0Q, and the significance level at the
nominal 5% based oN(0,1).

Let us first deal with Model ATable 1 reports percentage powers of various
tests forHy:d = 1 againstH,:d > 3, where

T711 77.2
S’le\/TE Tﬁj/ | T~
j=1] 6

T A

no= —JT a 1
Srl \/712‘,181 ad
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TaBLE 1. Percentage powers of the LBl and Wald testsHgrd = 0.5
againstH,:d > 0.5 at the 5% leve(Model A, T = 100

d 0.50 055 060 065 Q70
1 5.7 174 362 629 814
1 3.9 132 300 57.9 765

r 3.9 128 307 57.6 789
1 3.5 122 293 563 776
Limit 5.0 158 359 610 821

Here the statistic$r, and Wy, arg respectivelythe original LBl and Wald
statistics suggested befonehereasSy,; and Wy, are their modified versions
which can be justified by observing that

€ 1
28] — =E§j{|og(l_|—)x‘§j}=_E‘éJEEéj_k
i

j i k

1 1
_2 EE Ej—k& = —Z E sz 812,
4 = ;
plim 2<ad> /2 8% = — underH,.

To computeSy; andW; we need the partial derivativig;/od, which can be
computed numerically from
98 g(d+ Ad) — g(d)

ad Ad

whereg;(d) is computed under the assumption that the integration ordefise
value ofAd = 0.001 has been used in our simulation studiste that the partial
derivative should be computed und#yfor Sf; and undeH, for W',. The MLE
of d has been obtained from the Gauss—Newton procedure

d-di-y-Sa s [S(B)] a1z
]

To initiate the iterative scheme we need an initial valig for which we used the
true value ofd.

In Table 1 we also report under the heading “Limit” the theoretical limiting
powers derived from Corollary.B. It is seen that the power of each test is
reasonably well approximated by the limiting powler particular the St,-test
seems to behave best in the present chlete that the column entries corre-
sponding tod = 0.50 are type | errotsTable 2 reports percentage powers of
the left-sided tests for the same model as in Tahl@He Spi-test does not
behave well in the present case because of size distortion tow#&dhinson
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TaBLE 2. Percentage powers of the LBl and Wald testsHgrd = 0.5
againstH,:d < 0.5 at the 5% leve(Model A, T =100

571

d 0.50 045 040 035 030
1 2.5 8.3 189 346 583
1 5.6 158 329 537 752
r 8.3 226 402 635 868
1 8.1 217 397 614 854

Limit 5.0 158 359 610 821

(1994 also dealt with Model A and reported powers of the tests derived from
the frequency domain approaddverall the present tests behave befteterms
of size and powerthan the frequency domain—based tests

Tables 3—6 are concerned with ModelBith an AR coefficient ofa = 0.6.
Tables 3 and 4 present results for the testgfd = 1, whereas Tables 5 and 6
present results fdfy:d = 1.5. Tables 7 and 8 deal with Model B with= —0.8
and present results féty:d = 1. The statisticSr, andW ,, are respectivelythe
LM and Wald statistics defined by

T-1 1 .

Srp = VT kZl E Pr/ o, Wr, = ﬁé)l(d — do),
wherewy and @, are the estimators ab underHy andH,, respectivelywith
w? defined in(52). The statisticsS}, andW/, are defined in the same way as
St, and Wy, respectively Theoretical limiting powers derived from Theorem
3.3, namely ®(—z, + VTw(d — dy)), are also reported under the heading
“Limit,” where T = 10Q, z, = 1.645 andw? is given in(52).

The general feature of Tables 3—6 is that size distortion is setiterece there
is much discrepancy between finite sample and limiting pow@rsthe other
hand in Tables 7 and 8he finite sample powers are well approximated by the
limiting powers This is closely related to the fact that the estimatosarfidd are
negatively correlated and the correlation is much higheafer0.6, as Table 9

TaBLE 3. Percentage powers of the LM and Wald testsHigrd = 1
againstH,:d > 1 at the 5% leve(Model B, a= 0.6, T = 100

d 1.0 12 14 16 18
L 133 360 531 586 528
" 1.9 145 302 410 370

R 0.9 157 403 580 720

WY, 121 520 786 922 974

Limit 5.0 194 467 757 930
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TaBLE 4. Percentage powers of the LM and Wald testsHigrd = 1

againstH,:d < 1 at the 5% leve(Model B, a= 0.6, T = 100

d 1.0 0.8 0.6 0.4 0.2
T2 14 108 566 895 996
2 2.2 6.4 311 637 893
2 9.8 300 529 805 980

Wt 161 289 502 906 993

Limit 5.0 194 467 757 930

shows Thus the inference od is affected by the confusing impact afthough
the degree of influence depends on the valuev.df is also noticed that the
limiting powers are quite low in Tables 3+i6 comparison with those in Tables 7
and 8 For examplethe theoretical power of the test felp:d = 1 againstd = 0.8
is 194% in the formerwhereas it is 7.8% in the latterGiven the sample siZg
the significance levet, and the distance frotd,, |d — dy|, the theoretical power
depends only ow and becomes higher asgets larger ot ~* gets smallNote
thatw 1 is the standard error of the limiting distribution 6T (d — d), whered
is the MLE ofd. The value ofw ! will also be reported in Table.9

Figures 5—-8 draw histograms of the normalized MI"E(d — d ) obtained from
the same simulations as previously and the corresponding limiting densities of
N(0,6/72) or N(0,w ~2). Figure 5 is for the.i.d. casewhereas the others are for
stationary case§ he behavior of the MLE for theiid. case agrees quite well
with the asymptotic theoryvhereas that for stationary cases varies depending on
the value ofa. In particular the performance of the MLE’s in Figures 6 and 7 is
very poorwherea= 0.6 is assumedvhereas the MLE in Figure 8 performs well
wherea = —0.8 is assumed

To see whyTable 9 reports 1, the standard error of the limiting distribution
of VT(d — d), for various values o& The correlation coefficient of the limiting
distributions ofyT(d — d) andyT(& — a) is also reported under the heading

TaBLE 5. Percentage powers of the LM and Wald testsHgrd = 1.5
againstH,:d > 1.5 at the 5% leve(Model B, a= 0.6, T = 100

d 15 17 19 21 23
T2 152 326 450 558 659
T2 2.8 164 280 392 520

r2 0.2 6.2 119 190 222
o 8.6 247 341 476 573
Limit 5.0 194 467 757 930
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TaBLE 6. Percentage powers of the LM and Wald testsHgrd = 1.5
againstH,:d < 1.5 at the 5% leve(Model B, a= 0.6, T = 100

d 15 13 11 0.9 0.7
T2 416 487 776 934 999
2 237 256 419 695 927

2 4.1 117 361 771 97.9

Wt 293 393 688 949 999

Limit 5.0 194 467 757 930

TaBLE 7. Percentage powers of the LM and Wald testsHigrd = 1
againstH,:d > 1 at the 5% leve(Model B, a= —0.8, T = 100

d 1.0 11 12 13 14
T2 54 351 733 901 944
T2 3.0 288 701 891 951

r2 4.9 320 768 948 990
r2 4.3 295 748 928 974
Limit 5.0 330 778 97.5 999

TABLE 8. Percentage powers of the LM and Wald testsHgrd = 1
againstH,:d < 1 at the 5% leve(Model B,a= —0.8, T =100

d 1.0 0.9 0.8 0.7 0.6
T2 1.0 140 478 842 968
T2 3.6 254 661 938 993

F2 5.9 312 757 97.5 10Q0
2 5.3 295 745 97.0 1000
Limit 5.0 330 778 97.5 999

tions of VT(d — d) andVT(4— a)

a -0.8 -04 0 06 0.7 0.8 0.9 0.95
ot 0.830 Q976 1245 2562 2709 2307 1579 1217
Corr —0.344 -0601 —-0.780 —-0.953 —-0.958 —-0941 -0.870 -—0.768
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FIGURE 5. Distribution of the MLE(i.i.d. cased = 0.5, T = 100).

“Corr.” Itis seen thatn ~! increase witha up toa = 0.7 and then decreaséhus
dcan be estimated much better o+ —0.8 than fora= 0.6. Itis also noticed that
the correlation coefficient is negative for all valuesaoft increases in absolute
value witha up toa = 0.7 and then decreasékhis is another source of the poor
performance of the MLE in Figures 6 andThe source of the size distortion in
the Wald test is also eviderithe nonmonotonic behavior @~* and “Corr”
beyonda = 0.7 seems to reflect the AR unit root situationaaapproaches.1

0.20

0.15

0.10

0.05

0.0

-10 -5 0 5 10
Ficure 6. Distribution of the MLE(stationary cased = 1, a= 0.6, T = 100).
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Ficure 7. Distribution of the MLE(stationary cased = 1.5, a = 0.6, T = 100).

6. CONCLUDING REMARKS

In this paper we dealt with a fractionkld) procesgy;} with any real numbed.

After investigating asymptotic properties of various statistics associated with
{y;} whend is known and is greater than or equalitove discussedinder the
normality assumptigrtesting and estimation fatwithout restricting the param-
eter space odl. It was shown that standard asymptotic results hold for tests and

0.6
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0.4

0.3

0.2

0.1

0.0
-4 -2 0 2 4
Ficure 8. Distribution of the MLE(stationary cased =1, a= —0.8, T = 100).
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estimators namely the LBI and Wald tests are asymptotically UMRNd the
MLE of d is asymptotically efficientThese asymptotic results hold without the
normality assumptiarThe finite sample behavior of the tests and estimators was
examined by simulationsind the source of different behavior was made clear in
terms of the asymptotic theary

This paper discussed nonseasonal time series batythe discussion may be
extendedas in Chung1996), to deal with seasonality by considering

(1—2cosAL+L?%)%, = u;,

whereA(0 < A < 7) is the seasonal frequency

The analysis can also be extended to deal with fractional cointegratian
Jeganathafi1996), where variables follow(d) processes witk greater than or
equal to3. As an examplgwe can consider the following fractionally cointe-
grated system

Yi2=BYi1t+ Uz  (1-L)%i=uj,  (j=1...,T),

where{u;;} and{u;,} are stationary processess was observed in Section 1
inference orB requires a separate treatment of the two cdses andd > 3. If

B is the LSE ofB, it holds thaty T log T(3 — 8) converges to a nondegenerate
distribution whend = %, whereasT (3 — ) has a nondegenerate limiting dis-
tribution whend > 3. The same is true for the MLE af. A detailed analysis is
currently being undertaken
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APPENDIX

Proof of Theorem 2.1. We first rewrite(5) asy; = ELzlak,- ek, Whereay; = T'(j —
k+d)/(T(d)(j— k+ 1) withd= 3. Becausday sy} is an independent sequence for
eachj, Theorem 21 is established by Brownid 971 FCLT if we show that the Lindeberg
condition holdsnamely

.
> El[aZrell (|agre] > 8sp)] — 0 for everys > 0,
k=1

Pl

wherel (A) is the indicator function of the sét Becausa? = o2 X, aZr, |aqr| =1, and
Elagref| (|arec| > 8sr)] = agrE[ef1(|ea| > bs7)],
the Lindeberg condition is seen to holghich establishes Theoremi12 |

Proof of Corollary 2.1. The result in(10) is an immediate consequence of Theorem
2.1.To prove(11), we note thay; — yj—1 = (1— L)¥?¢; may be expressed &/_oa ¢
with 3720 | a¢| < co. Then the sampling variance ff; — y;—1} converges in probability
to V(y; — y;-1) by the result of Hannan and Hey(972. Thus we have

2 T ) 4 2
V(yj—yj_1)=V((l—L)l/28j)=U—J 11— e |dr = —. m
27 J_, T
Proof of Corollary 2.2. The result in(16) is a consequence @ (Xt) — L(¢w). To
prove(17), we note thafy; — y;—1} = {(1 — L)2u;} is a second-order stationary process
that may be expressed 25" B¢ &j ¢ With 27_| B¢| < co. Thus the sample variance of

{y; — yj-1} converges in probability to

4 ) 7’ A
J 11— e f,(A) dA = 4f fu(M)sin da. n

T 0
Proof of Corollary 2.3. Itfollows from £(X1) — L(¢w) thatX(1) = yr /st — N(0, $?),
where
0_2 T-1 Fz(k‘i‘ d) _ 0_2 T2d71
r2d) & r3k+1 r23d)2d-1’

2 =
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which proveg19). The resultin20) comes from the continuous mapping theof&mT).
Whend = 1, it is well known Suppose thad > 1 and consider

1
Qr =f XZ(t) dt+ Ry,
0

2 2 _ o2 1
2—%>ng1—£ X2(t) dt

T 2,2 2
-> [ [x%(j—%) - X%(t)] dt.

1
|Rr| = 2sup X (t)] — max|y; — V-l
t St
where sup Xt (t)| = Op(1) ands? = O(T2¢°1). It holds that
1 17X 5 5
Pl—maxy —y 1l >8) =P[5 2V~ y- 02y, —¥j1| >8s5)>8
Sr | ST j=2

for anys > 0, and plimX_,(y; — y;_1)%s? = 0ford > 1. Thus mayy; — yj—|/sr — O
in probability so that plinRy = 0, which yields(20) by the CMT and the fact that

T 22 T
S\ -5t Rd-DT2d) &,y
; ( ) = T g j:112d 2yj2' ]

Proof of Corollary 2.4. The results in25) and(26) are an immediate consequence of
L(Yr) = L(PFq-1). To prove(27), we first have

1 T
T2-1(5—1) = E{y%—jEz(yj _yjl)z} Tzd E ¥

1
{_EV((J- - L)ty + Op(l)} E V21,

T2d

whereyZ = Op(T2%%) andy; — yj—1 = (1 — L)* %;. Then(27) follows from (26) and the
CMT. The result in(28) is well known in the unit root problenTo prove(29), we have

1 1 T
T(p—1) = =51 2/<_ y'2>+0(1),
p oT2d YT T2d 2:2 i-1 b

which leads us t§29) by the CMT n

Proof of Theorem 3.1. We first prove the theorem wheén= 0 and there is no regressor
so thatg; = g;. Then it is known(Anderson 1971, p. 489 that the joint distribution of
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Tp1,... N Tpmwith mfixed tends taN(0, I,,), wherel ,,is them x midentity matrix Thus
VTS, p/ktends taN(0, S, 1/k?), from which it follows thatSr1/v'T — N(0, 7%/6)
becaus& ;> 1/k? = 7w%/6. Consider next the case fér= 5/4/ T and with no regressowe
have

p 0 s 111 1
:(1_L)yjz(1_|_) SJ:8J+_T ESJ,k"FOp _I__ 5
) 1 T A 11 T A 77_2
plim _l—_j§181-2=0'2, ( g Ezg k8j> —>?50'2,
from which we establish th&r,/VT — N(7256/6,72/6). Whend = §/4/T and there is a
regressqmwe haveg; =z — X/ 8 = (1— L) %g — X/(B — B). Following the arguments of
Robinson(1994) it can be shown that the existence of the regressor does not affect the

limiting distribution of Sy, /+/T, which establishes the theorem |

Proof of Corollary 3.1. It follows from Theorem 3l thatS;; — N(6v7%/6,1) asT —
oo underd = §//T, which immediately yields the corollary n

Proof of Theorem 3.2. Let us first consider the case where there is no regreshen
it holds that

:(1—L)dy-:(l—L)’(’Oa-:a-+LJ§ES-,k+O S
] ] ] T k:1k ] p T ’
c—-d81 11 1
1-L dﬂ; 1- L)V bg =g + —— —&_xt = .
( ) ( ) € = &j \/T zlksj k Op<T>

Because it can be checked that

1 T
lim=> &82=02
pim ,gl !
T T~ 5T11 T 5(20_8) T jfll 2
2 28122 T E K, > gkt T 2(2 E%‘k) +0p(2),
= = k=1 Kj=k+1 j=2 \ k=1

which converges in distribution ®@2M(c,8). Thus we establish the theorem for the case
with no regressoiVhen there is a regressdtine limiting distribution oM+ is unaffected
as in the proof of Theorem.B which proves the theorem n

Proof of Corollary 3.2. It follows from Theorem 2 that for 6 > 0 andZ ~ N(0,1),

2 2
P(M(5,8) > x,,(8)) = P<8<2\/§Z+ %3) > xﬂ(5)>
(> (x50 %)
=plz>(Zx.0)- Z5)/2 =)
5 6 6
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Because,(8) satisfies

= P(M(0,56) > x,(6 —P<Z><6LZ+L®>/2/E>
a = ( (7) Xa( ))_ 6 S 6 ’

it must hold that

w2 om?
X, (8) = 5(2\/;2(1— T)

ThusP(M(5,8) > Xx,(8)) = P(Z > z, — 6V 7%/6). The case ob < 0 can be proved
similarly. |

Proof of Corollary 3.3. When# = §/JT and there is no regressave have

1
g =(1-L) %Y =1-L)%=¢— 2 5 k+o<T>

T 1 T-1 1 T 77_2
pllm .z‘iélz = E \/» Z K z éjfkéj - —— 802
i=

k=1 N j=k+1

=l

Then it holds tha§}; — N(—8v7%6,1). The rest of the proof proceeds in much the same
way as before |

Proof of Theorem 3.3. We first consider the case whete- 0 and there is no regressor
Thengy is thekth order autocorrelation of residuas= é(L)uj/B(L), (j=1,...,T),and
it follows from Box and Piercg1970 that the joint distribution o/ Tpy, ...,V Tpm with
m(>p + q) fixed tends taN(0, I, — K@ 1K/, where

1 o ... 0 -1 0 0
(o) 1 . —d; -1
C, C, 0 —d, —d; 0
-1
Km:
Cn-1 Cm—2 -+ Cmep —On1 —Onp ... —Ongq

ThusyT > 1 p/k tends toN(0, w?), where

ol

(1)% = k§: P - (Kmb-~~7Kmp»/\m17-~~7/\mq)q)7l(’<ml,~~~7Kmpy/\m1,-~'7/\mq)/,
=1
o1

Km€=2ECk—(ﬁ 2 dk I

from which it follows thatS;,/VT — N(0,w?). The same asymptotic result holds for the
case wher@ = 0 and there is a regresddor the proof by the frequency domain approach



NONSTATIONARY FRACTIONAL UNIT ROOT 581

see Robinsanl994. Whend = §/JT and there is no regressave have following the
idea of Box and Pierc€1970,

Jp _ N -
ﬁkzﬁkfe—ua—:f{(wfw)ﬂww},

wherepy is thekth order autocorrelation fdg;}, andy andy are the estimators gf under
Ho andH,, respectivelyThen it can be checked after some manipulations$hatyT —
N(dw? w?). This result is unaffected if there is a regressor n

Proof of Theorem 4.1. It follows from the proof of Theorem.2 that underd = do +

ST,

%{(1— L)y, }2 — El{(l— L)%y;}?
1= 1=

T T
= 2 8]' Z {(1 L)d doS }2

Il
[y
0
s

25 =11 T 52 T j—1 1 2
=T Ak 2 &kg = > ( > K 81k> +0p(1),

j=k+1 T j=2 \ k=1

which converges in distribution tooZW(5). Because
T 1
g(d) = 5 log| 1— T (2W(3) + 0,(1)) | = W(8) + 0,(D),

the first statement in the theorem is establisi&etause it can be checked that

ogd) 1 17
Sk rEﬂog(l L) X (1= L)fy}a L) y,/[;jzl{(l—LWyj}Z]

1 1 Tll T ) T '711 2
|: -I—kzlk 2 8] kSJ 2<EE8jk> :|+Op(1)a

j=k+1 T j=2 \ k=1
the second statement is establishEuk last statement can also be proved similarl§l

Proof of Theorem 4.2. It follows from Theorem 4L and the subsequent arguments that
6 =T(d - dy) is asymptotically the unique maximizer @(8), which is given bys =
Z/Jm?/6. This leads us to the conclusion

Proof of Theorem 4.3. For simplicity of presentatignwe consider the case where
a(L) =1—alLandb(L) =1. Let us putd = dy + 6/J/T anda = a, + y/4T and consider
g(d,a) = €(d,a) — €(dy,a0), whered, andag are the true parameter valuescéanda,
respectivelywhereas((d, a) is the concentrated log-likelihood given (89) with ¢ re-
placed bya. Proceeding in the same way as in thedi caseit is not hard to deduce that

2 T T
b% 257 1
g(d,a) = 2(6,y)Ur — To? _Elujz—l_ To2 E(E &j— k) Ui—1
i= =

52 T [/i-11 2
——2(2 ) +oy(1),

Ta'J
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whereu; = /(1 — apL) and

T-1q T
Ur (2 K 2 g ksJ,EU] 181)

j=k+1

Then it holds thatZ(g(d,a)) — £(W(8,y)) asT — oo, where

o

a2 1I 1 )
— ——log(1- a,
_ 6 a g 0
- 1 @ a0 1
— ~loa(l-a -
ap ¢ 0 1— a3

Thusg(d, a) is asymptotically a concave function®t= v T(d — do) andy = VT (a— ayp),
and the MLE's ofs andy are asymptotically the unique solution®¢s,y)’ = U, which
establishes the theorem wha(l.) =1 — al andb(L) = 1. The general case can be proved
similarly. u



