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This paper deals with a scalarI ~d! process$ yj % ,where the integration orderd is any
real number+ Under this setting, we first explore asymptotic properties of various
statistics associated with$ yj % , assuming thatd is known and is greater than or equal
to 1

2
_ + Note that$ yj % becomes stationary whend , 1

2
_ , whose case is not our concern

here+ It turns out that the case ofd 5 1
2
_ needs a separate treatment fromd . 1

2
_ +We

then consider, under the normality assumption, testing and estimation ford, allow-
ing for any value ofd+ The tests suggested here are asymptotically uniformly most
powerful invariant, whereas the maximum likelihood estimator is asymptotically
efficient+ The asymptotic theory for these results will not assume normality+ Unlike
in the usual unit root problem based on autoregressive models, standard asymptotic
results hold for test statistics and estimators, whered need not be restricted tod $
1
2
_ + Simulation experiments are conducted to examine the finite sample performance
of both the tests and estimators+

1. INTRODUCTION

The unit root problem is usually discussed in connection with autoregressive
~AR! models+ In formulating a nonstationary AR model, it is implicitly assumed
that there exists a positive integerd such that differencing the seriesd times
produces a stationary AR process+

In this paper we consider a scalarI ~d! process$ yj % ,where the integration order
d is any real number+More specifically we deal with the process$ yj % defined by

~12 L!dyj 5 «j , ~ j 5 1, + + + ,T !, (1)

whereL is the lag operator and$«j % is an independent and identically distributed
~i+i+d+! ~0,s2! sequence that we shall extend to the stationary case later+ It is
known ~e+g+, Hosking, 1981! that $ yj % becomes stationary ifd , 1

2
_ , whose case

with the additional restrictiond . 2 1
2
_ has been studied to a large extent in the

literature+ Beran~1994! gives a good survey for this case+
The model~1! may be related to the usual integrated process of integer order

in the following way+ Let d 5 Nd 1 d*, where Nd is an integer closest tod+ By
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taking Nd 5 d 1 1
2
_ when the decimal part ofd is 1

2
_ , this decomposition is unique,

and it holds that2 1
2
_ # d* , 1

2
_ + Thus the preceding model may be rewritten as

~12 L! Ndyj 5 vj , ~12 L!d*vj 5 «j + (2)

It is seen that the fractionalI ~d! process$ yj % with an independent error term is
equivalent to the usualI ~ Nd! process with a long-range dependent error term$vj % +
The model~2! with Nd 5 1 was discussed by Sowell~1990!, whereas the general
case is considered in Chan and Terrin~1995!,where the AR unit root asymptotics
discussed in Chan and Wei~1988! are extended to the fractional case+ Jeganathan
~1996! developed inference on fractionally cointegrated systems+ It is noticed
that the integration orderd* of the error process is restricted to6d* 6 , 1

2
_ in these

studies+
We return to the model~1! that allows for any value ofd+ The present model

and its extended version with stationary error terms are analyzed in a paper by
Robinson~1994!, who considered testing hypotheses ford in the frequency do-
main, claiming that the analysis is more amenable to the frequency domain ap-
proach than to the usual time domain approach+We, however, find the latter still
effective and consider the estimation and also testing problems ford in the time
domain+

In Section 2 we first explore asymptotic properties of various statistics asso-
ciated with$ yj % , assuming thatd is known and is greater than or equal to1

2
_ + Note

that$ yj % becomes stationary whend , 1
2
_ , whose case is not our concern here+ It

turns out that the case ofd5 1
2
_ needs to be treated separately from the case ofd .

1
2
_ + Section 3 considers testing ford without restricting the parameter space ofd+
We suggest a locally best invariant~LBI ! test equivalent to the Lagrange multi-
plier ~LM ! or Rao’s score test+ It turns out that the resulting statistic tends to
normality, unlike in testing for an AR unit root+ The preceding result is parallel to
the one obtained in Robinson~1994! by the frequency domain approach+We shall
show that the LBI test is asymptotically uniformly most powerful invariant~UMPI!
in the sense that the test achieves asymptotically the highest power or power
envelope of all the invariant tests under a sequence of local alternatives+

Section 4 discusses estimation ofd, where any value ofd is allowed for+ It is
shown that the maximum likelihood estimator~MLE ! of d tends to normality and
is asymptotically efficient+ We then suggest the Wald test based on the MLE,
which is also asymptotically UMPI+ Section 5 examines, via simulations, the
finite sample behavior of the LBI or LM and Wald tests and the MLE+ Section 6
concludes+ Proofs of theorems and corollaries are given in the Appendix+

2. ASYMPTOTIC PROPERTIES OF VARIOUS STATISTICS

In this section we explore asymptotic properties of various statistics associated
with $ yj % in ~1! whend$ 1

2
_ +Because$ yj % becomes nonstationary whend$ 1

2
_ ,we

need to impose restrictions onyk for k # 0 to initiate the process$ yj % + Here we
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assume, for simplicity, thatyk 5 0 for k # 0, although the other initializations are
possible~see Diebold and Rudebusch, 1991! and the behavior of$ yj % does de-
pend on the initial condition+ Then, $ yj % is assumed to be generated by

~12 L!dyj 5 (
k50

j21 G~k 2 d!

G~2d!G~k 1 1!
yj2k 5 «j + (3)

It can be checked that~3! is equivalent to

(
k50

j21

Ak yj2k 5 «j , A0 5 1, Ak 5
k 2 d 2 1

k
Ak21 ~k $ 1!+ (4)

Alternatively, we can rewrite~3! and~4! as

yj 5 ~12 L!2d«j 5 (
k50

j21 G~k 1 d!

G~d!G~k 1 1!
«j2k 5 (

k50

j21

Bk«j2k, (5)

whereB0 51 andBk 5 ~k1 d21!Bk210k for k $ 1+ This last expression is useful
for simulating$ yj % +Because, by Stirling’s formula, G~k1d!0G~k11!5O~kd21!
ask r `, we have

yT 5 HOp~#log T ! ~d 5 2
12!,

Op~Td2102! ~d . 2
12!+

(6)

(7)

It is seen that$ yj % becomes nonstationary ifd$ 1
2
_ and that the behavior of$ yj % is

different betweend5 1
2
_ andd . 1

2
_ + Because of this, the case ofd5 1

2
_ is discussed

in Section 2+1, whereas the case ofd . 1
2
_ is treated in Section 2+2+ Some of the

limiting distributions obtained in these two subsections are graphically presented
in Section 2+3+

2.1. Case of d = 1
2
_

We first construct a partial sum processXT 5 $XT~t!% defined on@0, 1# , which is
given by

XT~t! 5
1

sT

yj 1
tsT

2 2 sj
2

sj
2 2 sj21

2

1

sT

~ yj 2 yj21!, S sj21
2

sT
2 # t #

sj
2

sT
2D, (8)

whereXT~0! 5 0, XT~1! 5 yT0sT , and

sj
2 5 V~ yj ! 5 V~~12 L!2102«j ! 5

s2

p (
k50

j21 G2~k 1 2
12!

G2~k 1 1!
+ (9)

The process$XT~t!% belongs to the function spaceC that is the space of all real-
valued continuous functions defined on@0, 1# + Note thatsj

2 5 O~ log j !, as is
described in~6!+
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The following weak convergence for$XT~t!% holds because of the functional
central limit theorem~FCLT! due to Brown~1971!+

THEOREM 2+1+ Let $ yj % be given by~1! whose generating process is defined
in ~5!,where d5 1

2
_ and$«j % is an i+i+d+ ~0,s2! sequence+ Then, for the partial sum

process XT 5 $XT~t!% defined in~8!, it holds that, as Tr `,

L~XT! r L~w!,

whereL~X ! denotes the probability law of X,whereas w5 $w~t!% is the standard
Brownian motion defined on@0, 1# +

The following results are a consequence of the preceding theorem+

COROLLARY 2+1+ Under the same conditions as in Theorem2+1, it holds
that, as Tr `,

1

#log T
yT r NS0,

s2

p
D, (10)

plim
1

T (
j52

T

~ yj 2 yj21!2 5
4s2

p
+ (11)

The result in~10! is an immediate consequence of Theorem 2+1, whereas~11!
comes from the variance of the stationary process$ yj 2 yj21% 5 $~12 L!102«j % +

Extensions to the case where the error term is dependent are straightforward+
Suppose that~1! is replaced by

~12 L!dyj 5 uj , ~ j 5 1, + + + ,T !, (12)

whered 5 1
2
_ and

uj 5 (
,50

`

f, «j2, , (
,50

`

,6f, 6 , `, f [ (
j50

`

fj Þ 0, (13)

with $«j % ; i+i+d+~0,s2!+ Then we apply the Beveridge–Nelson~BN! decompo-
sition ~Phillips and Solo, 1992! to get

uj 5 f«j 2 ~12 L! I«j , (14)

where$ I«j % is a stationary process defined by

I«j 5 (
,50

`

Ef, «j2, , Ef, 5 (
k5,11

`

fk+ (15)

We now have

yj 5 ~12 L!2102uj 5 f~12 L!2102«j 1 Op~1!,

~12 L!yj 5 ~12 L!102uj 5 Op~1!+
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Then, for the partial sum process$XT~t!% in ~8! with sj
2 5 V~~12 L!2102«j ! de-

fined in ~9!, we have

L~XT ! r L~fw!+

Asymptotic results described in Corollary 2+1 are modified accordingly in the
following corollary+

COROLLARY 2+2+ Let$ yj % be given by~12! and~13! with d5 1
2
_ + Then it holds

that, as Tr `,

1

#log T
yT r NS0,

f2s2

p
D, (16)

plim
1

T (
j52

T

~ yj 2 yj21!2 5 4E
0

p

fu~l!sin
l

2
dl, (17)

where fu~l! is the spectrum of$uj %+

2.2. Case of d . 1
2
_

Weak convergence results ford . 1
2
_ can be studied in two ways+One is based on

$XT~t!% defined in~8!, and the other is based on another partial sum process in
function spaceC constructed later+

Let us deal with$ yj % defined in~12! and~13!, with d . 1
2
_ +Again using the BN

decomposition, we obtain

yj 5 ~12 L!2duj 5 f~12 L!2d«j 2 ~12 L!2d11 I«j

5 f~12 L!2d«j 1 op~T d2102 !+

Thus it can be shown thatL~XT! r L~fw!, where we now have

sj
2 5 V~~12 L!2d«j ! 5

s2

G2~d! (
k50

j21 G2~k 1 d!

G2~k 1 1!
>

s2

G2~d!

j 2d21

2d 2 1
+ (18)

Proceeding in the same way as in the case ofd 5 1
2
_ , we obtain the following

results ford . 1
2
_ that specialize to well-known results ford 5 1+

COROLLARY 2+3+ Let$ yj % be given by~12! and~13! with d. 1
2
_ + Then it holds

that, as Tr `,

1

T d2102 yT r NS0,
f2s2

~2d 2 1!G2~d!
D, (19)

and, for d $ 1,

LS 1

T 4d22 (
j51

T

j 2d22yj
2Dr LS f2s2

~2d 2 1!2G2~d!
E

0

1

w2~t! dtD+ (20)
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The result in~19! is an immediate consequence ofL~XT! r L~fw!, whereas
~20! follows from

LS(
j51

T

XT
2S sj

2

sT
2D sj

2 2 sj21
2

sT
2 Dr LSf2E

0

1

w2~t! dtD,
which is valid ford $ 1+

The other approach is based on the partial sum process

YT~t! 5
1

sT d2102 yj 1 TSt 2
j

T
D yj 2 yj21

sT d2102 , S j 2 1

T
# t #

j

T
D, (21)

whereyj is defined in~12! and~13! with d . 1
2
_ +Whend is a positive integer, it can

be shown~see Chan and Wei, 1988; Tanaka, 1996! that

L~YT ! r L~fFd21!, (22)

whereFg 5 $Fg~t!% is theg-fold integrated Brownian motion defined by

Fg~t! 5E
0

t

Fg21~s! ds, F0~t! 5 w~t!, ~g 5 1,2, + + + !+ (23)

Whend is any real number greater than1
2
_ , ~22! still holds with

Fg~t! 5
1

G~g 1 1!
E

0

t

~t 2 s! g dw~s!, g . 2
1

2
+ (24)

We haveE~Fg~t!! 5 0 andV~Fg~t!! 5 t 2g110~~2g11!G2~g11!! for each fixedt+
Note that~23! and~24! are equivalent wheng is a positive integer+

The following properties can be derived on the basis of the FCLT described in
~22! with Fg~t! defined in~24!+

COROLLARY 2+4+ Under the same conditions as in Corollary2+3, it holds
that, as Tr `,

LS 1

T d2102 yTDr L~fsFd21~1!! ; NS0,
f2s2

~2d 2 1!G2~d!
D, (25)

LS 1

T 2d (
j51

T

yj
2Dr LSf2s2E

0

1

Fd21
2 ~t! dtD, (26)

L~T2d21~ [r 2 1!! r LS 2M~d!02

f2s2E
0

1

Fd21
2 ~t! dtD ~2

12 , d , 1!, (27)
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L~T~ [r 2 1!! r 5
L1

~w2~1! 2 r !02

E
0

1

w2~t! dt 2 ~d 5 1!,

L1
Fd21

2 ~1!02

E
0

1

Fd21
2 ~t! dt 2 ~d . 1!,

(28)

(29)

where r5 (j50
` fj

20f2, [r 5 (j52
T yj21 yj 0(j52

T yj21
2 , and

M~d! 5E
2p

p

612 eil 6222dfu~l! dl, (30)

with fu~l! being the spectrum of$uj %+

The statistic [r in ~27!–~29! can be interpreted as the least squares estimator
~LSE! of r applied to the following model:

yj 5 ryj21 1 vj , ~12 L!d21vj 5 uj , ~ j 5 1, + + + ,T !, (31)

where the true value ofr is 1 andd is greater than1
2
_ and $uj % is a stationary

process defined in~13!+
Noting that

[r 2 1 5 ~AT 2 BT !Y(
j51

T

yj21
2 ,

where

AT 5 yT
202 5 Op~T 2d21 ! ~d . 2

12!,

BT 5 (
j52

T

~ yj 2 yj21!202 5 5
O~T ! ~2

12 , d , 2
32!,

O~T log T ! ~d 5 2
32!,

Op~T 2d22 ! ~d . 2
32!,

it is seen thatAT dominatesBT whend . 1, whereasBT dominatesAT when 1
2
_ ,

d , 1+Whend51, AT andBT have the same stochastic orderT+ This is the reason
why [r behaves differently depending on the value ofd+This fact is also discussed
in Sowell ~1990! whend takes values between12

_ and 3
2
_ , where$uj % in ~31! is

assumed to be i+i+d+ ~0,s2!+ In that case,M~d! in ~30! becomes the variance of the
stationary process$~12 L!12d«j % , and we have

M~d! 5 V~~12 L!12d«j ! 5 s2 (
k50

` G2~k 1 d 2 1!

G2~d 2 1!G2~k 1 1!

5
s2

2p
E

2p

p

612 eil 6222d dl 5 s2
G~3 2 2d!

G2~2 2 d!
, ~2

12 , d , 2
32!+
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2.3. Graphs of Some Limiting Distributions

In this subsection we present graphically some of the limiting distributions ob-
tained in the previous subsections+ For this purpose we derive the characteristic
function~c+f+! of the limiting distribution and then invert it numerically+

Let us first deal with the quantity appearing in~26!:

Gd 5E
0

1

Fd21
2 ~t! dt 5E

0

1E
0

1

Kd21~s, t! dw~s! dw~t!, (32)

whered . 1
2
_ and

Kd21~s, t! 5
1

G2~d!
E

max~s, t!

1

~~u 2 s!~u 2 t!!d21 du+

Note thatGd is a limit in distribution of the sample second moment arising from
the I ~d! process+ It is clear that

E~Gd! 5E
0

1

Kd21~t, t! dt 5
1

2d~2d 2 1!G2~d!
,

which tends to 0 asd r `+We also have

V~Gd! 5 2E
0

1E
0

1

Kd21
2 ~s, t! ds dt,

which is 1
3
_ for d51, 1+3131022 for d5 2, 1+3631024 for d5 3, 4+8731027 for

d 5 4, and so on+
Figure 1 draws the probability density ofG1 5 *0

1 w2~t! dt and Figures 2 and 3
those ofG2 andG3, respectively+ These were computed by numerical integration
via inversion of the c+f+’s of Gd ~for details, see Tanaka, 1996,Ch+ 6!+ In Figures 2
and 3,we also present approximate distributions ofGd,where the approximations
are based on the distributional relation

L~Gd! 5 LS(
n51

` 1

ln~d!
Zn

2D,
where$Zn% is i+i+d+ normal with common mean 0 and variance 1, which is abbre-
viated as$Zn% ; NID ~0,1! and 0, l1~d! , l2~d! ,{{{, are the eigenvalues of
the integral equation

f ~t! 5 lE
0

1

Kd21~s, t! f ~s! ds+

Then Gd is approximated asZ1
20l1~d!, wherel1~2! 5 12+36236 andl1~3! 5

121+259~Tanaka, 1996,Ch+ 6!+ It is seen thatG2 andG3 are well approximated by
a constant multiple ofx2~1!+ Note thatG1 cannot be well approximated in this
way because of its nonmonotonic distributional nature+ The reason may be partly
explained by considering the ratio ofE~Z1

20l1~d!! to E~Gd!:
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R~d! 5 10l1~d!Y(
n51

`

10ln~d!,

which is 0+8106 ford 5 1, 0+9707 ford 5 2, and 0+9896 ford 5 3+
We also consider the quantity appearing in~29!:

Hd 5
Fd21

2 ~1!02

E
0

1

Fd21
2 ~t! dt

, (33)

Figure 1. Probability density ofG1+

Figure 2. Probability density ofG2+

NONSTATIONARY FRACTIONAL UNIT ROOT 557



which is well defined ford . 1
2
_ and is a limit in distribution of

HTd 5
T

2
yT

2Y(
j52

T

yj21
2 ,

where~12 L!dyj 5 uj with the stationary process$uj % defined in~13!+
Figure 4 draws probability densities ofHd for d 5 1, 2, and 3+ Note thatH1 5

1
2
_w2~1!0*0

1 w2~t! dt+ These densities were also computed by numerical integra-

Figure 3. Probability density ofG3+

Figure 4. Probability densities ofHd+
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tion+We can show by numerical integration thatE~Hd! 5 d for d51, 2, and 3+ It
is conjectured that this holds for anyd~. 1

2
_!+We also obtainV~Hd! 5 0+891 for

d 5 1, 1+313 ford 5 2, and 1+716 ford 5 3+

3. TESTING FOR d

This section discusses testing for the integration orderd without restricting the
parameter space ofd+ For this purpose we consider the model

zj 5 xj
'b 1 yj , ~12 L!d1uyj 5 uj , ~ j 5 1, + + + ,T !, (34)

where$xj % is a sequence ofK 31 fixed, nonstochastic variables andb is aK 31
unknown vector, whereasd is any preassigned value and$uj % is a stationary
process defined in~13!+Note that$ yj % becomes stationary whend1u , 1

2
_ ,whose

case is also treated here+
Then the testing problem considered here is, as in Robinson~1994! ~see also

Diebold and Rudebusch, 1991!,

H0:u 5 0 against H1:u . 0 or H2:u , 0+ (35)

Note that$zj % becomes more nonstationary underH1:u . 0, whereas the re-
verse is true underH2:u , 0+ This is a very general testing problem, allowing
for a test of the stationary hypothesis~d , 1

2
_!, the nonstationary unit root hy-

pothesis~d 5 1!, and theI ~0! hypothesis~d 5 0!+
In Section 3+1 we deal with the simplest case where$uj % in ~34! is an i+i+d+

~0,s2! sequence,whereas the stationary case is discussed in Section 3+2+Our test
can be easily adapted to deal with the model

zj 5 xj
'b 1 yj , yj 5 ~12 L!d1uuj , ~ j 5 1, + + + ,T !+ (36)

This case will also be discussed as a by-product of the original test+

3.1. i.i.d. Case

Let us putuj 5 «j in ~34! and assume that$«j % ; NID ~0,s2!, though the asymp-
totic theory developed later will not assume normality+ Because$ yj % is generated
by ~5! with d replaced byd 1 u, it follows that

z 5 Xb 1 y ; N~Xb,s2V~u!!, (37)

wherez5 ~z1, + + + ,zT!', X 5 ~x1, + + + , xT!', y 5 ~ y1, + + + , yT!' , andV~u! 5 V~ y!0s2

with rank~X ! 5 K~,T !+ Note thatd is a given constant and the testing problem
~35! is invariant under the group of transformations:

zr az1 Xb and ~u,b,s2! r ~u, ab 1 b,a2s2 !,

where 0, a , ` andb is aK 3 1 vector+
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For the model~37!, the log-likelihoodL~u,b,s2! is given by

L~u,b,s2 ! 5 2
T

2
log~2ps2! 2

1

2s2 ~z2 Xb!'V21~u!~z2 Xb!

5 2
T

2
log~2ps2 ! 2

1

2s2 (
j51

T

$~12 L!d1u~zj 2 xj
'b!%2+ (38)

Note that the second line in~38! is an approximated version of the exact log-
likelihood given in the first line ifd 1 u , 1

2
_ because of introducing an explicit

conditioning on initial values+We, however, use the approximated version as the
true log-likelihood, which does not affect the asymptotic theory developed sub-
sequently+ Then the LBI test is shown to be equivalent to the LM test~Tanaka,
1996, Ch+ 9!+ Thus the LBI test forH0:u 5 0 againstH1:u . 0 rejectsH0 when

ST1 5
]L~u,b,s2 !

]u *
H0:u50,b5 Zb,s25 [s2

5 2
1

[s2 (
j51

T

$log~12 L! 3 ~12 L!d~zj 2 xj
' Zb!%~12 L!d~zj 2 xj

' Zb! (39)

becomes large,where Zb 5 ~ FX ' FX !21 FX ' Izwith FX5 ~ Ix1, + + + , IxT!', Ixj 5 ~12 L!dxj , Iz5
~ Iz1, + + + , IzT!' , and Izj 5 ~12 L!dzj , whereas [s2 5 ~ Iz2 FX Zb!'~ Iz2 FX Zb!0T+ The LBI
test forH0:u 5 0 againstH2:u , 0 rejectsH0 whenST1 becomes small+

If we define [«j 5 ~12 L!d~zj 2 xj
' Zb! 5 Izj 2 Ixj

' Zb and consider the expansion

2log~12 L! 5 L 1
1

2
L2 1

1

3
L3 1 {{{ 1,

ST1 can be rewritten more compactly as

ST1 5
1

[s2 (
j52

T S(
k51

j21 1

k
[«j2kD [«j 5 T (

k51

T21 1

k
[rk, (40)

where [rk 5 (j5k11
T [«j2k [«j 0(j51

T [«j
2 is thekth order autocorrelation of residuals

[«1, + + + , [«T + It is noticed that the statisticST1 has some similarity to the portmanteau
Q statistic~Box and Pierce, 1970! for diagnostic checking of time series models,
althoughQ takes the form of an unweighted sum of squares of[rk’s+

The finite sample distribution ofST1 is intractable even underH0; so we con-
sider the limiting distribution ofST1 under a sequence of local alternatives+

THEOREM 3+1+ Underu 5 d0#T with d fixed, it holds that, as Tr `,

1

#T
ST1 5 #T (

k51

T21 1

k
[rk r NSp2

6
d,

p2

6
D+
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It can be checked that

lim
Tr`

ES2
1

T

]2L~u,b,s2 !

]u2 *
u5d0#T,b5 Zb,s25 [s2

D 5
p2

6
,

which is the limiting value of the normalized Fisher information+ Thus it is seen
that standard results apply to the present problem, unlike in the AR unit root test
case+ In practice we compute

ST1
' 5

1

#T
ST1Y!p2

6
5 #T (

k51

T21 1

k
[rkY!p2

6
(41)

and compare this with the upper or lower 100a% point ofN~0,1!,which gives the
right-sided~H1 : u . 0! or left-sided~H2 : u , 0! LBI test of approximate sizea+

The limiting power of the LBI test underu 5 d0#T can be easily computed+

COROLLARY 3+1+ Let za be the upper100a% point of N~0,1!+ Then, it holds
that, as Tr ` underu 5 d0#T,

P~ST1
' . za! r FS2za 1 d!p2

6
D for d . 0,

P~ST1
' , 2 za! r FS2za 2 d!p2

6
D for d , 0,

whereF~z! is the distribution function of N~0,1!+

We next show, following Elliott, Rothenberg, and Stock~1996! and Tanaka
~1996!, that the LBI test obtained previously is asymptotically UMPI in the sense
that its power attains the highest power of all the invariant tests asTr ` under
u 5 d0#T+ For this purpose we assume that the data generating process~DGP! is

zj 5 xj
'b 1 yj , ~12 L!d1u0yj 5 «j , ~ j 5 1, + + + ,T !, (42)

whereu0 5 c0#T with c~.0! fixed+
We now consider testing for

H0 : u 5 0 against H1 : u 5 d0#T, (43)

whered~.0! is a known constant+ This is a test of a simple null against a simple
alternative with nuisance parametersb ands2 that can be eliminated by invari-
ance arguments+ Then we have that the test that rejectsH0 when

MT 5 T 3

(
j51

T

[«j
2 2 (

j51

T

I«j
2

(
j51

T

[«j
2

(44)

becomes large is MPI,where [«j and I«j are residuals underH0 andH1, respectively+
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The limiting distribution ofMT in ~44! asTr` underu05c0#Tandu5d0#T
is given by the following theorem+

THEOREM 3+2+ TheMPI statistic MT in ~44! has the following limiting dis-
tribution as Tr ` underu0 5 c0#T andu 5 d0#T:

L~MT ! r L~M~c,d!! 5 LSdS2!p2

6
Z 1 ~2c 2 d!

p2

6
DD, (45)

where Z; N~0,1!+

Let xa~d! be the upper 100a% point ofM~0,d!+ Then, the highest power of all
the invariant tests of sizea is given asymptotically byP~M~d,d! . xa~d!!+ Then
it turns out that the power envelope coincides with the power of the LBI test+

COROLLARY 3+2+ The power envelope of all the invariant tests of sizea for
u 5 0 againstu 5 d0#T is given asymptotically byF~2za 1 d%p206! for d . 0
andF~2za 2 d%p206! for d , 0+ Thus each LBI test is asymptoticallyUMPI+

The fact that the LBI test ford is asymptotically UMPI contrasts with the LBI
tests for anAR unit root~Elliott et al+, 1996! and a moving average~MA ! unit root
~Tanaka, 1996, Ch+ 10!+ It holds that

yT
2Y(

j51

T

~ yj 2 yj21!2

is the LBI statistic for testingH0:r 51 againstH1:r , 1 in the AR~1! model: yj 5
ryj21 1 «j , wherey0 5 0 and$«j % ; NID ~0,s2!+ It also holds that

(
j51

T S(
k51

j21

~ j 2 k!yk 2
j

T 1 1 (
k51

T

~T 2 k 1 1!ykD2

(
j51

T 1

j ~ j 1 1!S(
k51

j

kykD2

is the LBI statistic for testing H0:a 5 1 againsta , 1 in the MA~1! model: yj 5
«j 2 a«j21, where«0,«1, + + +; NID ~0,s2!+ The fact that the LBI test ford attains
the power envelope,whereas the LBI test for the unit root in the AR~1! or MA ~1!
model does not, reflects the standard nature of the present problem+

The present test can be easily adapted to test for the integration order in the MA
part+ For this purpose we deal with the model

zj 5 xj
'b 1 yj , yj 5 ~12 L!d1u«j , ~ j 5 1, + + + ,T !, (46)

whered is any preassigned value and$«j % ; NID ~0,s2!, for which the same
testing problem as in~35! is considered+
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The log-likelihood is now given by

L~u,b,s2 ! 5 2
T

2
log~2ps2 ! 2

1

2s2 (
j51

T

$~12 L!2d2u~zj 2 xj
'b!%2,

so that

]L~u,b,s2 !

]u *
H0

5 2T (
k51

T21 1

k
[rk, (47)

where [rk is the kth order autocorrelation of residuals[«1, + + + , [«T with [«j 5
~1 2 L!2d~zj 2 xj

' Zb!+ Note the similar form in~47! to ~40! except for the
negative sign, which leads us to the following result+

COROLLARY 3+3+ For the model~46!, the test that rejects H0:u 5 0 against
H1:u . 0 ~H2:u , 0!, when DST1

' , 2za~ DST1 . za!, is anLBI test of approximate
sizea, where DST1

' is the same as ST1
' in ~41! with [rk defined in~47!+ The limiting

power of the DST1
' -test, as Tr ` underu 5 d0#T, is given byF~2za 1 d%p206!

for d . 0, andF~2za 2 d%p206! for d , 0+ Moreover, each DST1
' -test is asymp-

totically UMPI+

3.2. Stationary Case

Here we consider the model~34!, where$uj % is assumed to follow an autoregres-
sive moving average~ARMA ~ p,q!! process, namely, a~L!uj 5 b~L!«j , where
$«j % ; NID ~0,s2! and

a~L! 5 12 a1L 2 {{{ 2 apLp , b~L! 5 1 2 b1L 2 {{{ 2 bqLq,

with a~x! Þ 0 andb~x! Þ 0 for 6x6# 1+
The log-likelihood is now given by

L~u,b,c,s2 ! 5 2
T

2
log~2ps2 ! 2

1

2s2 (
j51

T

3 $a~L!b21~L!~12 L!d1u~zj 2 xj
'b!%2,

wherec 5 ~a1, + + + ,ap,b1, + + + ,bq!' , and the LM principle yields the same statistic
asST1 in ~40! but with [«j defined in the present case by

[«j 5 [a~L! Zb21~L!~12 L!d~zj 2 xj
' Zb!, (48)

where Zb is the MLE ofb underH0, whereas [a~L! and Zb~L! are estimated from
a~L!uj 5 b~L!«j with uj 5 ~1 2 L!d~zj 2 xj

'b! replaced by [uj 5 ~1 2 L!d~zj 2
xj
' Zb!+
Then we obtain the following result+

NONSTATIONARY FRACTIONAL UNIT ROOT 563



THEOREM 3+3+ Consider the statistic

ST2 5
]L~u,b,c,s2 !

]u *
H0

5 T (
k51

T21 1

k
[rk, (49)

where [rk is the kth order autocorrelation of residuals[«1, + + + , [«T defined in~48!+
Then it holds that, as Tr ` underu 5 d0#T with d fixed,

1

#T
ST2 5 #T (

k51

T21 1

k
[rk r N~dv2,v2 !,

where

v2 5
p2

6
2 ~k1, + + + ,kp,l1, + + + ,lq!F21~k1, + + + ,kp,l1, + + + ,lq!', (50)

ki 5 (
j51

` 1

j
cj2i , li 5 2 (

j5i

` 1

j
dj2i , (51)

with cj and dj the coefficients of Lj in the expansion of10a~L! and 10b~L!,
respectively, andF the Fisher information matrix for a and b+

Note that this theorem reduces to Theorem 3+1 whenuj 5 «j and no estimation
of c is attempted+ BecauseST2 depends onv2 that is a function ofc, we suggest
as a test statistic

ST2
' 5

1

#T
ST20 [v,

where [v is the MLE ofv underH0,which can be computed from~50! by inserting
Zc into theki ’s andGp1q+ Then it holds thatST2

' r N~dv,1! asT r ` underu 5
d0#T+

The computation of [v in the preceding way will become much involved as
p 1 q gets large+ A computationally simpler method will be suggested in Sec-
tion 5+ For the simplest case where$uj % follows an AR~1! process: uj 5
auj21 1 «j or an MA~1! process: uj 5 «j 2 a«j21, however, [v is easily com-
puted+ We havevj 5 avj21 1 «j in both cases so thatcj 5 a j and

k1 5 (
j51

` 1

j
a j21 5 2

1

a
log~12 a!, F21 5 1 2 a2+

Thus we have

v2 5
p2

6
2

12 a2

a2 ~ log~12 a!!2, (52)

and [v can be computed using[a+
Because of estimatingc, the limiting power of theST2

' -test is lower than that of
theST1

' -test+ In particular, if we suppose that$uj % followsAR~1! or MA ~1! and the
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DGP of $uj % is $«j % , the asymptotic efficiency of theST2
' -test isv20~p206! 5

0+392+
The ST2

' -test possesses asymptotic properties similar to theST1
' -test; namely,

the power function of the former is asymptotically the one given in Corollary 3+1
with %p206 replaced byv+ Moreover, the power function coincides asymptoti-
cally with the power envelope of all the invariant tests for the model~34!+

The present test can also be implemented to test for the integration order in the
MA part, as in the i+i+d+ case+ The model now takes the form in~36!, and we can
easily conduct a test similar to theST2

' -test+
The finite sample performance of theST1

' -test discussed in the previous sub-
section and theST2

' -test discussed here will be examined in Section 5+

4. ESTIMATION OF d

Here we discuss the asymptotic theory for the ML estimation ofd whend takes
any value+ The discussion is divided into two subsections by considering first the
i+i+d+ case followed by the stationary case, as in the testing problem+ For simplic-
ity of presentation, however, we concentrate on models without any regressor,
and discussions are given on an intuitive basis+ Formal proofs for the asymptotic
properties of the MLE are much more involved~see Hosoya, 1997!+

4.1. i.i.d. Case

Let us consider the model

~12 L!dyj 5 «j , ~ j 5 1, + + + ,T !, (53)

whered is any value and$«j % ; NID ~0,s2!+ The parameters estimated here ared
ands2, and the concentrated log-likelihood ford is given, except for constants,
by

,~d! 5 2
T

2
logF(

j51

T

$~12 L!dyj %
2G+

Let d0 be the true value ofd+ Then the maximization of,~d! is equivalent to
that of

g~d! 5 ,~d! 2 ,~d0! 5 2
T

2
logF(

j51

T

$~12 L!dyj %
2Y(

j51

T

$~12 L!d0yj %
2G

5 2
T

2
log312

1

T

(
j51

T

$~12 L!d0yj %
2 2 (

j51

T

$~12 L!dyj %
2

1

T (
j51

T

$~12 L!d0yj %
2 4 + (54)
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Here it holds that

plim
1

T (
j51

T

$~12 L!d0yj %
2 5 plim

1

T (
j51

T

«j
2 5 s2+

Moreover, if there exists a constantd such thatd5 d0 1 d0#T, then we have the
following theorem+ The existence of such ad asT r ` will be proved shortly+

THEOREM 4+1+ For the model~53!, it holds that, as Tr ` under d5 d0 1
d0#T,

L~g~d!! r L~W~d!! 5 LS d

2
S2!p2

6
Z 2

p2

6
dDD,

LS ]g~d!

]d
Dr L~W '~d!! 5 LS!p2

6
Z 2

p2

6
dD,

plimS ]2g~d!

]d2 D 5 2
p2

6
,

where Z; N~0,1!+

Note thatL~W~d!! 5L~M~d,d!02!, whereM~d,d! appeared in~45! when we
derived the MPI test+

We now prove that there exists an MLEZd of d0 such that#T~ Zd 2 d0! 5 Zd 5
Op~1!+ We first show the existence of a local MLEDd such that#T~ Dd 2 d0! 5
Op~1!+ For this purpose it is sufficient to show that, for any« . 0 and for allT $
T0 with T0 fixed, there exists a positive constantd0 such that

PS6 Dd 2 d06 #
d0

#T
D $ 1 2 «+ (55)

This can be proved along the same lines as in Sargan and Bhargava~1983!, and it
is sufficient to show that

P~g'~d0 1 d10#T ! $ 0! 5 PS ]g~d0 1 d10#T !

]d1
$ 0D # «,

P~g'~d0 1 d20#T ! # 0! 5 PS ]g~d0 1 d20#T !

]d2
# 0D # «,

for all T $ T0 by taking suitablyd1~.0!, d2~,0!, and a correspondingT0+
In fact, for d5 d0 1 d10#T . d0 with d 5 d1 . 0, it follows from Theorem 4+1

that

PS ]g~d!

]d
$ 0Dr P~W '~d! 2 E~W '~d!! $ 2E~W '~d!!!

#
V~W '~d!!

~E~W '~d!!!2 5
6

p2d2 , (56)
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by Chebyshev’s inequality+ Similarly, for d5 d0 1 d20#T , d0 with d 5 d2 , 0,

PS ]g~d!

]d
# 0Dr P~2W '~d! 1 E~W '~d!! $ E~W '~d!!!

#
6

p2d2 + (57)

Thus it is ensured that the probabilities in~56! and~57! can be made smaller than
« by takingd0 5 max~d1, 6d26,%60~p2«!!+ ThenT0 can be chosen so that~55!
holds for allT $ T0+

Returning to Theorem 4+1, we can assert that a local maximizerDd of g~d! is
asymptotically the MLE ofd0 becauseW~d! has a unique maximum that occurs
at Zd 5 Z0%p206+ Thus we have the following result+

THEOREM 4+2+ Let Zd be theMLE of d0 for the model~53!+ Then it holds
that, as Tr `,

#T~ Zd 2 d0! r N~0,60p2 !+

Note thatp206 is the limiting value of the normalized Fisher information ford+
Hence the preceding result turns out to be quite standard, on the basis of which we
can also suggest a test ford; namely, for the right-sided alternativeH1:d . d0,we
can rejectH0:d5 d0 when#T~ Zd2 d0!0%60p2 exceeds the upper 100a% point of
N~0,1!+ The test may be called the Wald test, and it is a test of asymptotic sizea+
It holds that the limiting local power of the Wald test is the same as that of the LBI
test+ The left-sided Wald test can also be conducted similarly+

4.2. Stationary Case

We next consider the model

~12 L!da~L!yj 5 b~L!«j , ~ j 5 1, + + + ,T !, (58)

where$«j % ; NID ~0,s2!, a~L! 51 2 a1L 2 {{{ 2 apLp, andb~L! 51 2 b1L 2
{{{2bqLq with a~x!Þ0 andb~x!Þ0 for 6x6#1+The parameters to be estimated
ared, c 5 ~a1, + + + ,ap,b1, + + + ,bq!' , ands2+ The concentrated log-likelihood ford
andc is now given, except for constants, by

,~d,c! 5 2
T

2
logF(

j51

T

$a~L!b21~L!~12 L!dyj %
2G + (59)

If we considerg~d,c! 5 ,~d,c! 2 ,~d0,c0! as in the i+i+d+ case, whered0 and
c0 are the true values ofd andc, respectively, it can be checked thatg~d,c! is
asymptotically a concave function ofd5#T~d2d0! andg5#T~c2c0!+Hence
the MLE’s of d0 andc0 are asymptotically unique, with an asymptotic distribu-
tion given by the following theorem+
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THEOREM 4+3+ Let [t 5 ~ Zd, Zc ' !' be theMLE of t0 5 ~d0,c0
' !' for the model

~58!+ Then it holds that, as Tr `,

#T~ [t 2 t0! r N~0,J21 !,

where

J 5 Sp206 k '

k FD (60)

with k 5 ~k1, + + + ,kp,l1, + + + ,lq!' andF defined in Theorem3+3+

The preceding result is also standard becauseJ turns out to be the limiting
matrix of the normalized Fisher information ford andc+ Thus Zd and Zc are as-
ymptotically efficient+ Because we have

#T~ Zd 2 d0! r N~0,v22 ! 5 N~0,~p206 2 k 'F21k!21 !,

it is recognized that the asymptotic efficiency ofZd is decreased in the present case
wherec is estimated+ The same is true forZc+ This is becauseZd and Zc are asymp-
totically correlated+

It can also be checked that

J 5
1

4p
E

0

2p ] log h~l,t!

]t

] log h~l,t!

]t '
dl, (61)

whereh~l,t! is the spectrumlike quantity foryj 5 b~L!«j 0~a~L!~1 2 L!d! de-
fined by

h~l,t! 5
6b~eil !62

612 eil 62d 6a~eil !62
+

The expression in~61! is well known~Walker, 1964!, except for the first column
and row+

To justify ~61!, consider

] log h~l,t!

]d
5 2log612 eil 62 5 22 logS2 sin

l

2D
5 (

n51

` 2

n
cosnl, ~0 , l , 2p!+ (62)

It is known ~see, e+g+, Zygmund, 1968, p+ 180!, that, for any square integrable
function f ~l!,

1

4p
E

0

2p ] log h~l,t!

]d
f ~l! dl 5 2

1

2p
E

0

2p

logS2 sin
l

2D f ~l! dl

5 (
n51

` 1

2n
cn, (63)
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wherecn’s are coefficients in the Fourier expansion off ~l!:

f ~l! ;
1

2
c0 1 (

n51

`

~cn cosnl 1 dn sinnl!+

In particular, if f ~l! 5 ] log h~l,t!0]d, then~62! yieldscn 5 20n so that~63!
gives us(n51

` 10n2 5 p206, which is the ~1,1! element of J+ If f ~l! 5
] log h~l,t!0]cj ~ j 5 1, + + + , p 1 q!, the computation in~63! yieldsk in ~60!, al-
though it is much involved in general+

We can also devise a test based on the MLE ofd, as in the i+i+d+ case+ The
right-sided~left-sided! Wald test rejectsH0:d 5 d0 when#T [v~ Zd 2 d0! exceeds
the upper~lower! 100a% point ofN~0,1!+ It holds that the Wald test has the same
limiting local power as the LM test, as in the i+i+d+ case+ The finite sample per-
formance of these tests and the MLE ofd will also be examined in the next
section+

5. SIMULATION EXPERIMENTS

In this section we examine, by simulations, the finite sample performance of the
LBI or LM and Wald tests suggested in previous sections+ In the course of the
simulations the behavior of the MLE can also be examined+

The models employed here are

Model A: ~12 L!dyj 5 «j , ~ j 5 1, + + + ,T !,

Model B: ~12 L!d~12 aL!yj 5 «j , ~ j 5 1, + + + ,T !,

where$«j % ; NID ~0,s2!+ For both models we consider testing forH0:d 5 d0

againstH1:d . d0 or H2:d , d0+ Throughout simulations, we fix the sample size
at T 5 100, the number of replications at 1,000, and the significance level at the
nominal 5% based onN~0,1!+

Let us first deal with Model A+ Table 1 reports percentage powers of various
tests forH0:d 5 1

2
_ againstH1:d . 1

2
_ , where

ST1
' 5 #T (

j51

T21 1

j
[rjY!p2

6
,

ST1
'' 5 2#T (

j51

T

[«j

] [«j

]d
Y!(

j51

T

[«j
2 (

j51

T S ] [«j

]d
D2 *

H0

,

WT1
' 5 #T~ Zd 2 d0!0%60p2,

WT1
'' 5 #T~ Zd 2 d0! 3 !(

j51

T S ] [«j

]d
D2Y(

j51

T

[«j
2*

H1

+
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Here the statisticsST1
' andWT1

' are, respectively, the original LBI and Wald
statistics suggested before, whereasST1

'' and WT1
'' are their modified versions,

which can be justified by observing that

(
j

[«j

] [«j

]d
5 (

j

[«j $log~12 L! 3 [«j % 5 2(
j

[«j (
k

1

k
[«j2k

5 2(
k

1

k (
j

[«j2k [«j 5 2(
k

1

k
[rk (

j

[«j
2,

plim (
j
S ] [«j

]d
D2Y(

j

[«j
2 5

p2

6
underH0+

To computeST1
'' andWT1

'' we need the partial derivative] [«j 0]d, which can be
computed numerically from

] [«j

]d
5
[«j ~d 1 Dd! 2 [«j ~d!

Dd
,

where [«j ~d! is computed under the assumption that the integration order isd+ The
value ofDd5 0+001 has been used in our simulation studies+Note that the partial
derivative should be computed underH0 for ST1

'' and underH1 for WT1
'' + The MLE

of d has been obtained from the Gauss–Newton procedure:

Zd~i ! 5 Zd~i21! 2 (
j

[«j

] [«j

]d
Y(

j
S ] [«j

]d
D2

~i 5 1,2, + + + !+

To initiate the iterative scheme we need an initial valueZd~0!, for which we used the
true value ofd+

In Table 1 we also report under the heading “Limit” the theoretical limiting
powers derived from Corollary 3+1+ It is seen that the power of each test is
reasonably well approximated by the limiting power+ In particular, the ST1

' -test
seems to behave best in the present case+ Note that the column entries corre-
sponding tod 5 0+50 are type I errors+ Table 2 reports percentage powers of
the left-sided tests for the same model as in Table 1+ The ST1

' -test does not
behave well in the present case because of size distortion toward 0+ Robinson

Table 1. Percentage powers of the LBI and Wald tests forH0:d5 0+5
againstH1:d . 0+5 at the 5% level~Model A, T 5 100!

d 0+50 0+55 0+60 0+65 0+70

ST1
' 5+7 17+4 36+2 62+9 81+4

ST1
'' 3+9 13+2 30+0 57+9 76+5

WT1
' 3+9 12+8 30+7 57+6 78+9

WT1
'' 3+5 12+2 29+3 56+3 77+6

Limit 5+0 15+8 35+9 61+0 82+1
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~1994! also dealt with Model A and reported powers of the tests derived from
the frequency domain approach+ Overall the present tests behave better, in terms
of size and power, than the frequency domain–based tests+

Tables 3–6 are concerned with Model B, with an AR coefficient ofa 5 0+6+
Tables 3 and 4 present results for the test ofH0:d 5 1, whereas Tables 5 and 6
present results forH0:d 5 1+5+ Tables 7 and 8 deal with Model B witha 5 20+8
and present results forH0:d51+ The statisticsST2

' andWT2
' , are, respectively, the

LM and Wald statistics defined by

ST2
' 5 #T (

k51

T21 1

k
[rk0 [v0, WT2

' 5 #T [v1~ Zd 2 d0!,

where [v0 and [v1 are the estimators ofv underH0 andH1, respectively, with
v2 defined in~52!+ The statisticsST2

'' andWT2
'' are defined in the same way as

ST1
'' andWT1

'' , respectively+ Theoretical limiting powers derived from Theorem
3+3, namely, F~2za 1 #Tv~d 2 d0!!, are also reported under the heading
“Limit ,” where T 5 100, za 5 1+645, andv2 is given in ~52!+

The general feature of Tables 3–6 is that size distortion is serious+Hence there
is much discrepancy between finite sample and limiting powers+ On the other
hand, in Tables 7 and 8, the finite sample powers are well approximated by the
limiting powers+This is closely related to the fact that the estimators ofaanddare
negatively correlated and the correlation is much higher fora 5 0+6, as Table 9

Table 2. Percentage powers of the LBI and Wald tests forH0:d5 0+5
againstH2:d , 0+5 at the 5% level~Model A, T 5 100!

d 0+50 0+45 0+40 0+35 0+30

ST1
' 2+5 8+3 18+9 34+6 58+3

ST1
'' 5+6 15+8 32+9 53+7 75+2

WT1
' 8+3 22+6 40+2 63+5 86+8

WT1
'' 8+1 21+7 39+7 61+4 85+4

Limit 5+0 15+8 35+9 61+0 82+1

Table 3. Percentage powers of the LM and Wald tests forH0:d 5 1
againstH1:d . 1 at the 5% level~Model B, a 5 0+6, T 5 100!

d 1+0 1+2 1+4 1+6 1+8

ST2
' 13+3 36+0 53+1 58+6 52+8

ST2
'' 1+9 14+5 30+2 41+0 37+0

WT2
' 0+9 15+7 40+3 58+0 72+0

WT2
'' 12+1 52+0 78+6 92+2 97+4

Limit 5+0 19+4 46+7 75+7 93+0
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shows+ Thus the inference ond is affected by the confusing impact ofa, though
the degree of influence depends on the value ofa+ It is also noticed that the
limiting powers are quite low in Tables 3–6, in comparison with those in Tables 7
and 8+ For example, the theoretical power of the test forH0:d51 againstd5 0+8
is 19+4% in the former, whereas it is 77+8% in the latter+Given the sample sizeT,
the significance levela, and the distance fromH0, 6d2 d06, the theoretical power
depends only onv and becomes higher asv gets larger orv21 gets small+ Note
thatv21 is the standard error of the limiting distribution of#T~ Zd2 d!, where Zd
is the MLE ofd+ The value ofv21 will also be reported in Table 9+

Figures 5–8 draw histograms of the normalized MLE#T~ Zd2d! obtained from
the same simulations as previously and the corresponding limiting densities of
N~0,60p2! or N~0,v22!+ Figure 5 is for the i+i+d+ case, whereas the others are for
stationary cases+ The behavior of the MLE for the i+i+d+ case agrees quite well
with the asymptotic theory,whereas that for stationary cases varies depending on
the value ofa+ In particular, the performance of the MLE’s in Figures 6 and 7 is
very poor,wherea50+6 is assumed,whereas the MLE in Figure 8 performs well,
wherea 5 20+8 is assumed+

To see why, Table 9 reportsv21, the standard error of the limiting distribution
of #T~ Zd2 d!, for various values ofa+ The correlation coefficient of the limiting
distributions of#T~ Zd 2 d! and#T~ [a 2 a! is also reported under the heading

Table 4. Percentage powers of the LM and Wald tests forH0:d 5 1
againstH2:d , 1 at the 5% level~Model B, a 5 0+6, T 5 100!

d 1+0 0+8 0+6 0+4 0+2

ST2
' 1+4 10+8 56+6 89+5 99+6

ST2
'' 2+2 6+4 31+1 63+7 89+3

WT2
' 9+8 30+0 52+9 80+5 98+0

WT2
'' 16+1 28+9 50+2 90+6 99+3

Limit 5+0 19+4 46+7 75+7 93+0

Table 5. Percentage powers of the LM and Wald tests forH0:d51+5
againstH1:d . 1+5 at the 5% level~Model B, a 5 0+6, T 5 100!

d 1+5 1+7 1+9 2+1 2+3

ST2
' 15+2 32+6 45+0 55+8 65+9

ST2
'' 2+8 16+4 28+0 39+2 52+0

WT2
' 0+2 6+2 11+9 19+0 22+2

WT2
'' 8+6 24+7 34+1 47+6 57+3

Limit 5+0 19+4 46+7 75+7 93+0
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Table 6. Percentage powers of the LM and Wald tests forH0:d51+5
againstH2:d , 1+5 at the 5% level~Model B, a 5 0+6, T 5 100!

d 1+5 1+3 1+1 0+9 0+7

ST2
' 41+6 48+7 77+6 93+4 99+9

ST2
'' 23+7 25+6 41+9 69+5 92+7

WT2
' 4+1 11+7 36+1 77+1 97+9

WT2
'' 29+3 39+3 68+8 94+9 99+9

Limit 5+0 19+4 46+7 75+7 93+0

Table 7. Percentage powers of the LM and Wald tests forH0:d 5 1
againstH1:d . 1 at the 5% level~Model B, a 5 20+8, T 5 100!

d 1+0 1+1 1+2 1+3 1+4

ST2
' 5+4 35+1 73+3 90+1 94+4

ST2
'' 3+0 28+8 70+1 89+1 95+1

WT2
' 4+9 32+0 76+8 94+8 99+0

WT2
'' 4+3 29+5 74+8 92+8 97+4

Limit 5+0 33+0 77+8 97+5 99+9

Table 8. Percentage powers of the LM and Wald tests forH0:d 5 1
againstH2:d , 1 at the 5% level~Model B, a 5 20+8, T 5 100!

d 1+0 0+9 0+8 0+7 0+6

ST2
' 1+0 14+0 47+8 84+2 96+8

ST2
'' 3+6 25+4 66+1 93+8 99+3

WT2
' 5+9 31+2 75+7 97+5 100+0

WT2
'' 5+3 29+5 74+5 97+0 100+0

Limit 5+0 33+0 77+8 97+5 99+9

Table 9. Standard errors and correlations associated with the limiting distribu-
tions of #T~ Zd 2 d! and#T~ [a 2 a!

a 20+8 20+4 0 0+6 0+7 0+8 0+9 0+95

v21 0+830 0+976 1+245 2+562 2+709 2+307 1+579 1+217
Corr 20+344 20+601 20+780 20+953 20+958 20+941 20+870 20+768
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“Corr+” It is seen thatv21 increase witha up toa5 0+7 and then decreases+ Thus
dcan be estimated much better fora520+8 than fora50+6+ It is also noticed that
the correlation coefficient is negative for all values ofa+ It increases in absolute
value witha up toa5 0+7 and then decreases+ This is another source of the poor
performance of the MLE in Figures 6 and 7+ The source of the size distortion in
the Wald test is also evident+ The nonmonotonic behavior ofv21 and “Corr”
beyonda 5 0+7 seems to reflect the AR unit root situation asa approaches 1+

Figure 5. Distribution of the MLE~i+i+d+ case; d 5 0+5, T 5 100!+

Figure 6. Distribution of the MLE~stationary case; d 5 1, a 5 0+6, T 5 100!+
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6. CONCLUDING REMARKS

In this paper we dealt with a fractionalI ~d! process$ yj % with any real numberd+
After investigating asymptotic properties of various statistics associated with
$ yj % whend is known and is greater than or equal to1

2
_ , we discussed, under the

normality assumption, testing and estimation ford without restricting the param-
eter space ofd+ It was shown that standard asymptotic results hold for tests and

Figure 7. Distribution of the MLE~stationary case; d 5 1+5, a 5 0+6, T 5 100!+

Figure 8. Distribution of the MLE~stationary case; d 5 1, a 5 20+8, T 5 100!+
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estimators; namely, the LBI and Wald tests are asymptotically UMPI, and the
MLE of d is asymptotically efficient+ These asymptotic results hold without the
normality assumption+ The finite sample behavior of the tests and estimators was
examined by simulations, and the source of different behavior was made clear in
terms of the asymptotic theory+

This paper discussed nonseasonal time series only, but the discussion may be
extended, as in Chung~1996!, to deal with seasonality by considering

~12 2 cosl L 1 L2 !dyj 5 uj ,

wherel~0 , l , p! is the seasonal frequency+
The analysis can also be extended to deal with fractional cointegration, as in

Jeganathan~1996!, where variables followI ~d! processes withd greater than or
equal to1

2
_ + As an example, we can consider the following fractionally cointe-

grated system:

yj 2 5 byj1 1 uj 2, ~12 L!dyj1 5 uj1, ~ j 5 1, + + + ,T !,

where$uj1% and $uj 2% are stationary processes+ As was observed in Section 1,
inference onb requires a separate treatment of the two casesd5 1

2
_ andd . 1

2
_ + If

Zb is the LSE ofb, it holds that%T log T~ Zb 2 b! converges to a nondegenerate
distribution whend 5 1

2
_ , whereasT d~ Zb 2 b! has a nondegenerate limiting dis-

tribution whend . 1
2
_ + The same is true for the MLE ofd+ A detailed analysis is

currently being undertaken+
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APPENDIX
Proof of Theorem 2.1. We first rewrite~5! asyj 5 (k51

j akj «k, whereakj 5 G~ j 2
k 1 d!0~G~d!G~ j 2 k 1 1!! with d 5 1

2
_ + Because$akj «k% is an independent sequence for

eachj, Theorem 2+1 is established by Brown’s~1971! FCLT if we show that the Lindeberg
condition holds, namely,

1

sT
2 (

k51

T

E @akT
2 «k

2 I ~6akT«k6 . dsT !# r 0 for everyd . 0,

whereI ~A! is the indicator function of the setA+ BecausesT
25 s2 (k51

T akT
2 , 6akT6#1, and

E @akT
2 «k

2 I ~6akT«k6 . dsT !# # akT
2 E @«1

2 I ~6«16 . dsT !# ,

the Lindeberg condition is seen to hold, which establishes Theorem 2+1+ n

Proof of Corollary 2.1. The result in~10! is an immediate consequence of Theorem
2+1+ To prove~11!, we note thatyj 2 yj21 5 ~12 L!102«j may be expressed as(,50

` a, «j2,

with (,50
` 6a,6,`+ Then the sampling variance of$ yj 2 yj21% converges in probability

to V~ yj 2 yj21! by the result of Hannan and Heyde~1972!+ Thus we have

V~ yj 2 yj21! 5 V~~12 L!102«j ! 5
s2

2p
E

2p

p

612 eil 6 dl 5
4s2

p
+ n

Proof of Corollary 2.2. The result in~16! is a consequence ofL~XT! r L~fw!+ To
prove~17!, we note that$ yj 2 yj21% 5 $~12 L!102uj % is a second-order stationary process
that may be expressed as(,50

` b, «j2, with (,50
` 6b, 6 , `+ Thus the sample variance of

$ yj 2 yj21% converges in probability to

E
2p

p

612 eil 6 fu~l! dl 5 4E
0

p

fu~l!sin
l

2
dl+ n

Proof of Corollary 2.3. It follows fromL~XT!rL~fw! thatXT~1!5yT0sT rN~0,f2!,
where

sT
2 5

s2

G2~d! (
k50

T21 G2~k 1 d!

G2~k 1 1!
>

s2

G2~d!

T 2d21

2d 2 1
,
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which proves~19!+The result in~20! comes from the continuous mapping theorem~CMT!+
Whend 5 1, it is well known+ Suppose thatd . 1 and consider

QT 5E
0

1

XT
2~t! dt 1 RT ,

where

RT 5 (
j51

T

XT
2S sj

2

sT
2D sj

2 2 sj21
2

sT
2 2E

0

1

XT
2~t! dt

5 (
j51

T E
sj21

2 0sT
2

sj
20sT

2 FXT
2S sj

2

sT
2D2 XT

2~t!G dt+

We have

6RT 6 # 2 sup
t
6XT~t!6

1

sT

max
j
6yj 2 yj216,

where supt 6XT~t!65 Op~1! andsT
2 5 O~T 2d21!+ It holds that

PS 1

sT

max
j
6yj 2 yj216 . dD5 PS 1

sT
2 (

j52

T

~ yj 2 yj21!2I ~6yj 2 yj216 . dsT ! . d2D
for anyd . 0, and plim(j51

T ~ yj 2 yj21!20sT
2 5 0 for d . 1+ Thus maxj 6yj 2 yj2160sT r 0

in probability so that plimRT 5 0, which yields~20! by the CMT and the fact that

(
j51

T

XT
2S sj

2

sT
2D sj

2 2 sj21
2

sT
2 >

~2d 2 1!2G2~d!

s2T 4d22 (
j51

T

j 2d22yj
2+ n

Proof of Corollary 2.4. The results in~25! and~26! are an immediate consequence of
L~YT! r L~fFd21!+ To prove~27!, we first have

T 2d21~ [r 2 1! 5
1

2T HyT
2 2 (

j52

T

~ yj 2 yj21!2JY 1

T 2d (
j52

T

yj21
2

5 H2
1

2
V~~12 L!12duj ! 1 op~1!JY 1

T 2d (
j52

T

yj21
2 ,

whereyT
2 5 Op~T 2d21! andyj 2 yj21 5 ~12 L!12duj + Then~27! follows from ~26! and the

CMT+ The result in~28! is well known in the unit root problem+ To prove~29!, we have

T~ [r 2 1! 5
1

2T 2d21 yT
2YS 1

T 2d (
j52

T

yj21
2 D 1 op~1!,

which leads us to~29! by the CMT+ n

Proof of Theorem 3.1. We first prove the theorem whenu50 and there is no regressor
so that [«j 5 «j + Then it is known~Anderson, 1971, p+ 489! that the joint distribution of
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#T [r1, + + + ,#T [rm with m fixed tends toN~0, Im!,whereIm is them3 m identity matrix+ Thus
#T(k51

m [rk0k tends toN~0,(k51
m 10k2 !, from which it follows thatST10#Tr N~0,p206!

because(k51
` 10k2 5p206+Consider next the case foru5d0#T and with no regressor+We

have

[«j 5 ~12 L!dyj 5 ~12 L!2u«j 5 «j 1
d

#T (
k51

j21 1

k
«j2k 1 OpS 1

T
D,

plim
1

T (
j51

T

[«j
2 5 s2, ES 1

#T (
k51

T21 1

k (
j5k11

T

[«j2k [«jDr
p2

6
ds2,

from which we establish thatST10#T r N~p2d06,p206!+Whenu 5 d0#T and there is a
regressor, we have [«j 5 Izj 2 Ixj

' Zb 5 ~12 L!2u«j 2 Ixj
'~ Zb 2 b!+ Following the arguments of

Robinson~1994! it can be shown that the existence of the regressor does not affect the
limiting distribution ofST10#T, which establishes the theorem+ n

Proof of Corollary 3.1. It follows from Theorem 3+1 thatST1
' r N~d%p206,1! asTr

` underu 5 d0#T, which immediately yields the corollary+ n

Proof of Theorem 3.2. Let us first consider the case where there is no regressor+ Then
it holds that

[«j 5 ~12 L!dyj 5 ~12 L!2u0«j 5 «j 1
c

#T (
k51

j21 1

k
«j2k 1 OpS 1

T
D,

I«j 5 ~12 L!d1uyj 5 ~12 L!u2u0«j 5 «j 1
c 2 d

#T (
k51

j21 1

k
«j2k 1 OpS 1

T
D+

Because it can be checked that

plim
1

T (
j51

T

[«j
2 5 s2,

(
j51

T

[«j
2 2 (

j51

T

I«j
2 5

2d

#T (
k51

T21 1

k (
j5k11

T

«j2k«j 1
d~2c 2 d!

T (
j52

T S(
k51

j21 1

k
«j2kD2

1 op~1!,

which converges in distribution tos2M~c,d!+ Thus we establish the theorem for the case
with no regressor+When there is a regressor, the limiting distribution ofMT is unaffected,
as in the proof of Theorem 3+1, which proves the theorem+ n

Proof of Corollary 3.2. It follows from Theorem 3+2 that, for d . 0 andZ ; N~0,1!,

P~M~d,d! . xa~d!! 5 PSdS2!p2

6
Z 1

p2

6
dD . xa~d!D

5 PSZ . S1

d
xa~d! 2

p2

6
dDY2!p2

6
D +
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Becausexa~d! satisfies

a 5 P~M~0,d! . xa~d!! 5 PSZ . S dp2

6
1

xa~d!

d
DY2!p2

6
D,

it must hold that

xa~d! 5 dS2!p2

6
za 2

dp2

6
D+

Thus P~M~d,d! . xa~d!! 5 P~Z . za 2 d%p206!+ The case ofd , 0 can be proved
similarly+ n

Proof of Corollary 3.3. Whenu 5 d0#T and there is no regressor, we have

[«j 5 ~12 L!2dyj 5 ~12 L!u«j 5 «j 2
d

#T (
k51

j21 1

k
«j2k 1 OpS 1

T
D,

plim
1

T (
j51

T

[«j
2 5 s2, ES 1

#T (
k51

T21 1

k (
j5k11

T

[«j2k [«jDr 2
p2

6
ds2+

Then it holds that DST1
' r N~2d%p206,1!+ The rest of the proof proceeds in much the same

way as before+ n

Proof of Theorem 3.3. We first consider the case whereu50 and there is no regressor+
Then [rk is thekth order autocorrelation of residuals[«j 5 [a~L!uj 0 Zb~L!, ~ j 51, + + + ,T !, and
it follows from Box and Pierce~1970! that the joint distribution of#T [r1, + + + ,#T [rm with
m~.p 1 q! fixed tends toN~0, Im 2 KmF21 Km

' !, where

Km 5 1
1 0 + + + 0 21 0 + + + 0

c1 1 + 2d1 21 +

c2 c1 L 0 2d2 2d1 L 0

+ + 1 + + 21

+ + + + + +

+ + + + + +

+ + + + + +

cm21 cm22 + + + cm2p 2dm21 2dm22 + + + 2dm2q

2 +
Thus#T(k51

m [rk0k tends toN~0,vm
2 !, where

vm
2 5 (

k51

m 1

k2 2 ~km1, + + + ,kmp,lm1, + + + ,lmq!F21~km1, + + + ,kmp,lm1, + + + ,lmq!
',

km, 5 (
k5,

m 1

k
ck2, , lml 5 2 (

k5l

m 1

k
dk2l ,

from which it follows thatST20#T r N~0,v2!+ The same asymptotic result holds for the
case whereu 5 0 and there is a regressor~for the proof by the frequency domain approach,
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see Robinson, 1994!+ Whenu 5 d0#T and there is no regressor, we have, following the
idea of Box and Pierce~1970!,

[rk > Irk 2 u
] Irk

]d
1

] Irk

]c9
$~ Ec 2 c! 1 ~ Zc 2 Ec!%,

where Irk is thekth order autocorrelation for$«j %, and Zc and Ec are the estimators ofc under
H0 andH1, respectively+ Then it can be checked after some manipulations thatST20#Tr

N~dv2,v2!+ This result is unaffected if there is a regressor+ n

Proof of Theorem 4.1. It follows from the proof of Theorem 3+2 that, underd5 d0 1
d0#T,

(
j51

T

$~12 L!d0yj %
2 2 (

j51

T

$~12 L!dyj %
2

5 (
j51

T

«j
2 2 (

j51

T

$~12 L!d2d0«j %
2

5
2d

#T (
k51

T21 1

k (
j5k11

T

«j2k«j 2
d2

T (
j52

T S(
k51

j21 1

k
«j2kD2

1 op~1!,

which converges in distribution to 2s2W~d!+ Because

g~d! 5 2
T

2
logF12

1

T
~2W~d! 1 op~1!!G5 W~d! 1 op~1!,

the first statement in the theorem is established+ Because it can be checked that

]g~d!

]d
5 2

1

#T (
j51

T

$log~12 L! 3 ~12 L!dyj %~12 L!dyjYF 1

T (
j51

T

$~12 L!dyj %
2G

5
1

s2 F 1

#T (
k51

T21 1

k (
j5k11

T

«j2k«j 2
d

T (
j52

T S(
k51

j21 1

k
«j2kD2G1 op~1!,

the second statement is established+ The last statement can also be proved similarly+ n

Proof of Theorem 4.2. It follows from Theorem 4+1 and the subsequent arguments that
Zd 5 #T~ Zd 2 d0! is asymptotically the unique maximizer ofW~d!, which is given by Zd 5

Z0%p206+ This leads us to the conclusion+

Proof of Theorem 4.3. For simplicity of presentation, we consider the case where
a~L! 5 1 2 aL andb~L! 5 1+ Let us putd 5 d0 1 d0#T anda 5 a0 1 g0#T and consider
g~d,a! 5 ,~d,a! 2 ,~d0,a0!, whered0 anda0 are the true parameter values ofd anda,
respectively, whereas,~d,a! is the concentrated log-likelihood given in~59! with c re-
placed bya+ Proceeding in the same way as in the i+i+d+ case, it is not hard to deduce that

g~d,a! 5 2~d,g!UT 2
g2

Ts2 (
j51

T

uj21
2 2

2dg

Ts2 (
j52

T S(
k51

j21 1

k
«j2kDuj21

2
d2

Ts2 (
j52

T S(
k51

j21 1

k
«j2kD2

1 op~1!,
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whereuj 5 «j 0~12 a0L! and

UT 5
1

#Ts2 S(
k51

T21 1

k (
j5k11

T

«j2k«j ,(
j51

T

uj21«jD'+
Then it holds thatL~g~d,a!! r L~W~d,g!! asT r `, where

W~d,g! 5 2~d,g!U 2 ~d,g!JSd

gD, U ; N~0,J!,

J 5 1
p2

6
2

1

a0

log~12 a0!

2
1

a0

log~12 a0!
1

12 a0
2

2 +
Thusg~d,a! is asymptotically a concave function ofd 5#T~d2 d0! andg 5#T~a2 a0!,
and the MLE’s ofd andg are asymptotically the unique solution toJ~d,g!' 5 U, which
establishes the theorem whena~L! 512 aL andb~L! 51+ The general case can be proved
similarly+ n
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