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This paper investigates the limiting properties of the Canova and Hansen test,
testing for the null hypothesis of no unit root against seasonal unit roots, under a
sequence of local alternatives with the model extended to have seasonal dummies
and trends or no deterministic term and also only seasonal dummies+ We derive
the limiting distribution of the test statistic and its characteristic function under
local alternatives+ We find that the local limiting power is an inverse function of
the spectral density at frequencyp ~p02! when we test against a negative unit
root ~annual unit roots!+ We also theoretically show that the local limiting power
of the Canova and Hansen test against a negative unit root~annual unit roots!
does not increase when the true process has annual unit roots~a negative unit
root! but not a negative unit root~annual unit roots!, which has been observed in
Monte Carlo simulations in such research as Caner~1998, Journal of Business
and Economic Statistics16, 349–356!, Canova and Hansen~1995, Journal of Busi-
ness and Economic Statistics13, 237–252!, and Hylleberg~1995, Journal of Econo-
metrics69, 5–25!+

1. INTRODUCTION

This paper deals with the seasonal model with unit roots+ Dickey, Hasza, and
Fuller ~1984! consider the model such as~12 Bd!yt 5 et for d 5 1,2,4, and 12
whereB denotes the backshift operator+ They develop the asymptotic theory of
the least squares estimator of the coefficient associated withyt2d+ For the quar-
terly seasonal model, ~1 2 B4! can be decomposed into~1 2 B!~1 1 B! 3
~1 1 B2!, and we can consider four roots, 61 and6i where i 5 M21+ The
roots21 and6i are called seasonal unit roots, and we call the root21 a neg-
ative unit root and6i annual unit roots+

Tests for seasonal unit roots are considered in the literature+ Ahtola and Tiao
~1987! and Chan and Wei~1988! investigate the limiting distributions of the
least squares estimators of the autoregressive model with complex roots+ Using
their results, Hylleberg, Engle, Granger, and Yoo~1990! investigate the testing
procedure for seasonal unit roots+ This test may be seen as an extension of the
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augmented Dickey–Fuller test, whereas Breitung and Franses~1998! consider
seasonal unit root tests by extending the test of Phillips and Perron~1988!+

As in the preceding literature, many unit root tests consider the test for the
null hypothesis of nonstationarity against the alternative of stationarity, and then
if the null hypothesis is not rejected, we cannot have much confidence in the
existence of a unit root+ On the other hand, Kwiatkowski, Phillips, Schmidt,
and Shin~1992! consider the test for stationarity against a unit root+ Their test
is derived as the Lagrange multiplier~LM ! test, which is equivalent to the lo-
cally best invariant~LBI ! test under some conditions+ Leybourne and McCabe
~1994! also investigate the LBI test for stationarity+ The difference between these
two tests is that Kwiatkowski et al+ ~1992! correct autocorrelation nonparamet-
rically as do Phillips and Perron~1988!, whereas Leybourne and McCabe~1994!
correct it parametrically+ It is shown in Leybourne and McCabe~1994! that the
former test is consistent in the orderT0l where l indicates the lag truncation
number used in estimating the long-run variance in a nonparametric way, whereas
the latter test is of orderT under the alternative hypothesis+

The preceding two tests were generalized to the seasonal model+ Canova and
Hansen~1995! investigate the testing procedure for the null of stationarity with
seasonal dummies against the alternative of seasonal unit roots by extending
the Kwiatkowski et al+ test+ Hylleberg~1995! compares the Canova and Hansen
test with the Hylleberg et al+ test and concludes that, in a practical analysis,
“the best advice is to apply both tests, as they complement each other in sev-
eral respects+” In a similar way as Canova and Hansen~1995!, Caner~1998!
generalizes the test of Leybourne and McCabe~1994! assuming the parametric
structure in serial correlation+

In this paper, we investigate the limiting power properties of the Canova and
Hansen test with the model extended to have seasonal dummies and trends or no
deterministic term and only seasonal dummies+ Because many economic time se-
ries seem to be trending variables, inclusion of seasonal trends may be seen as
an important model specification+ We derive the limiting distribution of the
Canova and Hansen test against a negative unit root~a seasonal unit root at fre-
quencyp! or against annual unit roots~seasonal unit roots at frequencyp02! un-
der a sequence of local alternatives using the Fredholm approach, which is
extensively developed in Nabeya and Tanaka~1988! and Tanaka~1990a, 1990b,
1996!+ By deriving the local limiting distribution, we will see that the power of
the test depends not only on the local parameter, c, but also on the reciprocal of
the spectral density of the stationary component of the time series at frequency
p or p02+We also derive the characteristic function of the limiting distribution+
In addition to its theoretical interest, it can be used to calculate the asymptotic
power by the inversion formula as in Tanaka~1996! with high accuracy saving
computational time compared with the simulation method+ By deriving explic-
itly the asymptotic power curve, we can see the effects of the departure from the
null hypothesis on the power and also the effects of the parameters in the model+

This paper proceeds as follows+ In Section 2 we present the model and nota-
tion and briefly review the Fredholm approach+ In Section 3 we investigate the
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Canova and Hansen test for the null of stationarity against the alternative of
seasonal unit roots+ The limiting distribution and its characteristic function will
be derived under a sequence of local alternatives+ Section 4 studies the finite
sample performance of the test statistic for the model with seasonal dummies
and trends+ Section 5 concludes the paper+ All proofs are given in the Appendix+

2. THE MODEL AND NOTATION

Consider the following seasonal model:

yt 5 xt
'b 1 rt 1 ut ~t 5 1, + + + ,T !,

Am~B!rt 5 et , ut 5 (
i50

`

ai vt2i , with a0 5 1, (
i50

`

i 6ai 6 , `, (
i50

`

ai Þ 0

(1)

for m 5 p and p02, whereAp~B! 5 1 1 B and Ap02~B! 5 1 1 B2, xt is a
deterministic component, and $vt , et %

' is jointly independently and identically
normally distributed with mean zero andE @vt2# 5 s2 . 0, E @et

2# 5 se
2 $ 0,

andE @vt et # 5 0+ We setr0 5 r21 5 0 and assume thatN 5 T04 is an integer+
Note that$rt % has a negative unit root~a seasonal unit root at frequencyp!
whenm5 p whereas it has annual unit roots~seasonal unit roots at frequency
p02! whenm 5 p02+

Stacking each variable fromt 5 1 to T, we have

y 5 Xb 1 r 1 u, r 5 Lme,

where, e+g+, y' 5 @ y1, + + + , yT# and

Lm 5 3
Qm,0 0

Qm,1 Qm,0

I L L

Qm,1 J Qm,1 Qm,0

4 (2)

for m 5 p andp02 with

Qp,0 5 3
1 0 0 0

21 1 0 0

1 21 1 0

21 1 21 1
4 , Qp,1 5 3

1 21 1 21

21 1 21 1

1 21 1 21

21 1 21 1
4 ,

Qp02,0 5 3
1 0 0 0

0 1 0 0

21 0 1 0

0 21 0 1
4 , Qp02,1 5 3

1 0 21 0

0 1 0 21

21 0 1 0

0 21 0 1
4 +
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Note thatLm
21 corresponds toAm~B!+ In the following discussion we abbreviate

Lm, Qm,0, andQm,1 asL, Q0, andQ1, respectively, unless there is confusion+
We specify the deterministic termX as follows+

Case A+ No deterministic term+

Case B+ Seasonal dummies+

X 5 @I4, + + + , I4# ',

whereIj denotes thej 3 j identity matrix+

Case C+ Seasonal dummies and trends+

X 5 F I4 I4 J I4

1I4 2I4 J NI4
G '+

It follows that the dimension ofb varies according to the definition ofX+
Our model~1! is slightly different from that of Canova and Hansen~1995!

and Caner~1998!+ In their model, e+g+, the nonstochastic component at fre-
quencyp, $rt

*% , is defined as

rt
* 5 cos~pt !ht , ht 5 ht21 1 et +

Then, assuminget 5 0 for t # 0, rt
* can be expressed asrt

* 5 ~21!t (j51
t ej ,

whereas the corresponding component in our model, ~1 1 B!rt 5 et , is ex-
pressed asrt 5 (j51

t ~21!t2jej + If $et % is independently, identically, and sym-
metrically distributed, such as an independently and identically distributed~i+i+d+!
normal distribution, $~21!tet % has the same distribution as$et %, and then the
distribution of$rt

*% is the same as~21!t (j51
t ~21! jej 5 (j51

t ~21!t2jej , which
is the same expression asrt in our model+ In this sense, our model may be seen
to be equivalent to that in Canova and Hansen~1995! and Caner~1998!+ How-
ever, because the nonstochastic component at frequencyp is often defined as
~1 2 B!rt 5 et in the literature, as in Hylleberg et al+ ~1990! and Breitung and
Franses~1998!, our definition of the seasonal unit root process directly corre-
sponds to theirs+ Similarly, the equivalence between the models with annual
unit roots can also be shown+

Here we briefly review the Fredholm approach, which will be used to inves-
tigate the limiting properties of the Canova and Hansen test in the next section+
Let us consider the quadratic form, ST 5 T21 (j, k51

T K~ j0T, k0T !uj uk, where
$ut % ; i+i+d+~0,1! andK~s, t ! ~Ó 0! is a symmetric, continuous, and nearly def-
inite function+ We also consider the integral equation of the second kind,

f ~t ! 5 lE
0

1

K~s, t ! f ~s! ds, (3)

and denote a sequence of eigenvalues associated with~3! as$ln% and an ortho-
normal sequence of eigenfunctions as$ fn~t !% + Using Mercer’s theorem, it can
be shown that
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ST 5
1

T (
j, k51

T S(
n51

` 1

ln

fnS j

T D fnS k

T DDuj uk

5 (
n51

T ' 1

ln
S 1

MT (
j51

T

fnS j

T DujD2

1 op~1!

for T ' r ` asT r `+ BecauseT2102 (j51
T fn~ j0T !uj converges to a standard

normal distribution by Lemma 1 of Nabeya and Tanaka~1988!, we haveST
d
&&

(n51
` zn

20ln where$zn% ; NID~0,1! and d
&& signifies convergence in distribu-

tion+ Then, because the limiting distribution is the weighted sum of indepen-
dentx2~1! distributions, its characteristic function is given by

lim
Tr`

E @eiuST # 5 H)
n51

` S12
2iu

ln
DJ2102

+ (4)

Now we introduce the Fredholm determinant ofK ~s, t !+ Let us consider
fT 5 ~l0T !KT fT as an approximation of the integral equation~3!, wherefT 5
@ f ~10T !, f ~20T !, + + + , f ~T0T !# ' andKT is aT 3 T matrix with the~ j, k! element
K~ j0T, k0T !+ The Fredholm determinant is defined as

D~l! 5 lim
Tr` * IT 2

l

T
KT*+

Moreover, according to Hochstadt~1973, p+ 251!, the Fredholm determinant
can be expressed as

D~l! 5 )
n51

` S12
l

ln
D,

and applying this result to the characteristic function~4!, we have

lim
Tr`

E @eiuST # 5 @D~2iu!#2102+

Then, the characteristic function of the limiting distribution ofST can be ex-
pressed using the Fredholm determinant, and it may be used to calculate the
percentage point of the limiting distribution and also the limiting power by
Lévy’s inversion formula+ See, e+g+, Hochstadt~1973! for the integral equation
and Nabeya and Tanaka~1988! and Tanaka~1996! for its application to the
statistical problems+

3. THE LIMITING PROPERTIES OF THE CANOVA AND HANSEN TEST
UNDER LOCAL ALTERNATIVES

Let us consider the testing problem

H0 : r 5 0 v+s+ H1
m : r 5

c2

T 2 , (5)
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wherer 5 se
20s2, c is a constant, andH1

m ~m 5 p andp02! denotes the par-
ticular alternative withAm~B!, i+e+, H1

p denotes the alternative of a negative
unit root, whereasH1

p02 denotes that of annual unit roots+ Then, ~5! signifies
the testing problem, the null hypothesis of no unit roots against a sequence of
local alternatives of the particular seasonal unit roots+

It can be shown that, for a stylized model in whichut 5 vt is assumed, the
LM test for ~5! is given by

1

Is2 ~ y 2 X Db!'LmLm
' ~ y 2 X Db! (6)

as rejectingH0 when~6! takes large values, where Db and Is2 are the maximum
likelihood estimators ofb ands2 underH0 and given by Db 5 ~X 'X !21X 'y and
Isu

2 5 T21y'My with M 5 IT for Case A andM 5 IT 2 X~X 'X !21X ' for Cases B
and C+ Note that the LM test~6! or ~7! ~which follows! for Cases B and C is
equivalent to the Canova and Hansen test as shown in the Appendix,1 and we
call ~7! the Canova and Hansen test statistic, although the calculation of~7! for
Case A is different from Canova and Hansen~1995!+

For the general model~1! we define the test statistic as

ST
m 5

1

[qmT 2 y'MLmLm
' My (7)

for m 5 p andp02, where

[qp 5 (
j52,

,

w~ j,,!cos~ jp! [g~ j !, [qp02 5
1

4 (
j52,

,

w~ j,,!cos~ jp02! [g~ j ! (8)

are the estimators of the constant multiple of the spectral density of$ut % at
frequenciesp and p02, respectively, where [g~ j ! 5 T21 (t Iyt1j Iyt with Iyt

regression residuals ofyt on xt and w~{, ,! is a kernel function such as
Bartlett, Parzen, or quadratic spectral with, 5 O~T 105! as used in Canova
and Hansen~1995!+ Here [qm is essentially the same as the diagonal element
of ZV f 5 (j w~ j,,!T21 (t ft1j Iyt1j ft

' Iyt in Canova and Hansen~1995!, where
ft 5 @cos~tp02!,sin~tp02!,cos~tp!# ' + Noting that cos~~t 1 j !p!cos~tp! 5
$cos~~2t 1 j !p! 1 cos~ jp!%02 5 cos~ jp!, the third diagonal element ofZV f

can be expressed as

(
j52,

,

w~ j,,!
1

T (
t

cos~~t 1 j !p! Iyt1j cos~tp! Iyt

5 (
j52,

,

w~ j,,!cos~ jp!
1

T (
t

Iyt1j Iyt ,

which is the same as[qp+ Similarly, using the relation of cos~~t 1 j !p02! 3
cos~tp02! 5 cos~ jp02!~1 1 ~21! t !02 and sin~~t 1 j !p02!sin~tp02! 5

1202 EIJI KUROZUMI



cos~ jp02!~1 2 ~21! t!02, the sum of the first two diagonal elements ofZV f

becomes

(
j52,

,

w~ j,,!
1

T (
t

~cos~~t 1 j !p02! Iyt1j cos~tp02! Iyt

1 sin~~t 1 j !p02! Iyt1j sin~tp02! Iyt !

5 (
j52,

,

w~ j,,!
1

T

3 (
t
S11 ~21!t

2
cos~ jp02! 1

12 ~21!t

2
cos~ jp02!D Iyt1j Iyt

5 (
j52,

,

w~ j,,!cos
jp

2

1

T (
t

Iyt1j Iyt ,

which is the same as[qp02+

Remark 1+ Spectral densities at frequenciesp and p02 are related to the
long-run variance matrix of the annualized process of$ut % , which is defined as
$Uj % 5 @u4j23,u4j22,u4j21,u4j #

' for j 5 1, + + + ,N+ From the definition ofut in ~1!,
Uj can be expressed as

Uj 5 (
l50

`

Al Vj2l , A0 5 3
1 0 0 0

a1 1 0 0

a2 a1 1 0

a3 a2 a1 1
4 , A1 5 3

a4 a3 a2 a1

a5 a4 a3 a2

a6 a5 a4 a3

a7 a6 a5 a4

4 , + + + ,
whereVj is defined asUj + Then the long-run variance matrix of$Uj % , S, is ex-
pressed as

S 5 s2AA', whereA 5 (
l50

`

Al 5 3
s0 s3 s2 s1

s1 s0 s3 s2

s2 s1 s0 s3

s3 s2 s1 s0

4 ,
with si 5 (j50

` a4j1i for i 5 0, 1, 2, and 3+ Direct calculations show
that P'SP 5 s2 diag$~s0 1 s1 1 s2 1 s3!2, ~s0 2 s1 1 s2 2 s3!2, ~s0 2 s2!2 1
~s1 2 s3!2, ~s0 2 s2!2 1 ~s1 2 s3!2% , where

P 5
1

2 3
1 21 0 2M2

1 1 2M2 0

1 21 0 M2

1 1 M2 0
4 , (9)
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and, becausef ~v! 5 ~2p!21s2 6(j50
` aj e

ijv 62, we have

s0
2 [ 2pf ~0! 5 s2~s0 1 s1 1 s2 1 s3!2,

sp
2 [ 2pf ~p! 5 s2~s0 2 s1 1 s2 2 s3!2,

sp02
2 [ 2pf ~p02! 5 s2$~s0 2 s2!2 1 ~s1 2 s3!2%+

Thus, the diagonal elements ofP'SP consist of 2p times spectral densities at
frequencies 0, p, and p02+ Notice thatS appears in the Canova and Hansen
test because we can easily show thatV f in Canova and Hansen~1995! is equal
to R1

' SR104 5 diag$sp02
2 02,sp02

2 02,sp
2% whereR1 5 @ f1, f2, f3, f4# ' +

BecauseST
m is equivalent to the Canova and Hansen test, our purpose is to

investigate the limiting behavior of the Canova and Hansen test under a se-
quence of local alternatives+

The following theorem gives the limiting distribution ofST
m underH1

m and its
characteristic function form5 p andp02+ For the expression of the character-
istic function we use the following Fredholm determinants:

DA~l! 5 cosMl,

DB~l! 5
sinMl

Ml
,

DC~l! 5
12

l2 ~2 2 MlsinMl 2 2 cosMl!,

associated with the kernels

KA~s, t ! 5 12 max~s, t !,

KB~s, t ! 5 min~s, t ! 2 st,

KC~s, t ! 5 min~s, t ! 2 4st1 3st~s1 t ! 2 3s2t 2+

See, e+g+, Theorem 6 of Nabeya and Tanaka~1988! and equations~5+34! and
~9+94! of Tanaka~1996!+ We denote a sequence of eigenvalues associated with
Kj ~s, t ! as$l jn% for j 5 A, B, andC+ Note that every zero ofDj ~l! is an eigen-
value ofKj for eachj+ For example, the eigenvalues ofKA are~~n 2 1

2
_!p!2 and

those ofKB aren2p2 for n 5 1,2, + + + , whereas we cannot explicitly express the
eigenvalues ofKC+

THEOREM 1+

(i) Under H1
p ,

ST
p d

&& (
n51

` S 1

l jn

1
c2s20sp

2

l jn
2 D zn

2,
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and its characteristic function,fp~u;c!, is given by

fp~u;c! 5 @Dj ~iu 1M2u2 1 2ic2s2u0sp
2!

3 Dj ~iu 2M2u2 1 2ic2s2u0sp
2!#2102

for j 5 A, B, and C according to Cases A, B, and C, respectively, where$zn% ;
NID~0,1! and $l jn% and Dj ~{! are a sequence of eigenvalues and the Fredholm
determinant, respectively.

(ii) Under H1
p02,

ST
p02 d

&& (
n51

` S 1

l jn

1
c2s2

4sp02
2 l jn

2 Dz1,n
2 1 (

n51

` S 1

l jn

1
c2s2

4sp02
2 l jn

2 Dz2,n
2 ,

and its characteristic function,fp02~u;c!, is given by

fp02~u;c! 5 @Dj ~iu 1M2u2 1 ic2s2u0~2sp02
2 !!

3 Dj ~iu 2M2u2 1 ic2s2u0~2sp02
2 !!#21

for j 5 A, B, and C according to Cases A, B, and C, respectively, where$z1, n%
and $z2, n% are independent and NID~0,1! and $l jn% and Dj ~{! are a sequence of
eigenvalues and the Fredholm determinant, respectively.

Remark 2+ UnderH0, c 5 0 so that

ST
p d

&& (
n51

` 1

l jn

zn
2, ST

p02 d
&& (

n51

` 1

l jn

z1, n
2 1 (

n51

` 1

l jn

z2, n
2 , (10)

and their characteristic functions are given by

fp~u;0! 5 Dj ~2iu!2102, fp02~u;0! 5 Dj ~2iu!21 (11)

for j 5 A, B, andC, respectively+

From the preceding theorem, we can obtain the null distribution function by
inverting the characteristic function~11!+ In general when the nonnegative ran-
dom variableY has the characteristic functionf~u!, we have, using Lévy’s in-
version formula,

P~Y # x! 5
1

p
E

0

`

ReF 12 e2iux

iu
f~u!G du+

Table 1 shows percentage points of the limiting null distributions ofST
p and

ST
p02, which are calculated by numerical integration+ From each table, we can

see that the limiting null distribution ofST
p is located to the left compared with

that ofST
p02+ On the other hand, the more complicated the deterministic term is,

the further the limiting null distribution ofST
m is shifted to the left for a fixed

m+ For example, the 95% point ofST
p is 1+66, 0+46, and 0+15 for Cases A, B,

and C, respectively+
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We also calculate the limiting power using the upper 5% points in Table 1+
Note that from Theorem 1 the asymptotic local power only depends on the model
parameters through the ratioc2s20sm

2+ To illustrate how these parameters affect
the power of the test, we consider the case when$ut % obeys an AR~1! process,
ut 5 aut21 1 vt with $vt % ; NID~0,1!+ In this case, c2s20sm

2 5 c20sm
2, and we

can easily check thatsp
2 5 ~1 1 a!22 andsp02

2 5 ~1 1 a2!21+ Using these rela-
tions, we can calculate the limiting power as a function ofc for a fixed a+

Figures 1a–c are the limiting powers ofST
p for Cases A, B, and C fora 5

20+8, 20+4, 0+0, 0+4, and 0+8, which correspond tosp
2 5 25, 2+78, 1, 0+51, and

0+31, respectively+ In each case, the closer to21 the value ofa becomes, the
less powerful is the test statistic+ Intuitively this may be explained as follows:
whena 5 20+8, ut 5 20+8ut21 1 vt and this process is difficult to distinguish
from the negative unit root process, ut 5 2ut21 1 vt , so that the power in-
creases slowly as a function ofc compared with the other cases such asa 5
0+8+ We also note that, for a fixed value ofa, the power of Case A~Figure 1a!
dominates that of Case B~Figure 1b! and the latter dominates that of Case C
~Figure 1c!+ That is, the more complicated the deterministic term becomes, the
less powerful is the test+

Figures 2a–c are the limiting powers ofST
p02+ In this case, sp02

2 5 1, 0+86,
and 0+61 for a 5 0, 60+4, and60+8, respectively+ From the figures, the power
function corresponding to the larger absolute value ofa dominates that corre-
sponding to the smaller absolute value ofa+ On the other hand, the relation
between the power and the deterministic term is the same as in Figures 1a–c+

Next, we investigate the limiting properties ofST
m underH1

i for i,m5 p,p02
~i Þ m!; i+e+, we examine the asymptotic behavior ofST

m when the true process
has seasonal unit roots different from those we assumed under the alternative+

COROLLARY 1+ ST
p and ST

p02 converge in distribution to the null distribu-
tions (10) under H1

p02 and H1
p , respectively.

The preceding corollary indicates that the local limiting power ofST
p ~ST

p02!
underH1

p02 ~H1
p! does not increase from the significance level, i+e+, the test

Table 1. Percentage points of limiting null distributions

0+01 0+05 0+1 0+5 0+9 0+95 0+99

ST
p

Case A 0+034460 0+056460 0+076536 0+290476 1+195820 1+655739 2+787459
Case B 0+024798 0+036562 0+046015 0+118880 0+347305 0+461361 0+743459
Case C 0+017269 0+023409 0+027886 0+055548 0+119220 0+147890 0+217747

ST
p02

Case A 0+126913 0+199049 0+260318 0+757496 2+062210 2+624054 3+928615
Case B 0+078830 0+109425 0+132220 0+277571 0+607037 0+747520 1+073664
Case C 0+049118 0+062648 0+071843 0+120873 0+210670 0+246535 0+328622
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Figure 1. The limiting powers ofST
p+ ~a! Case A; ~b! Case B; ~c! Case C+
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Figure 2. The limiting powers ofST
p02+ ~a! Case A; ~b! Case B; ~c! Case C+
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statistic against a negative unit root~annual unit roots! has only trivial power
under the alternative of annual unit roots~a negative unit root!+ This tendency
has been observed in Caner~1998!, Canova and Hansen~1995!, and Hylleberg
~1995! by Monte Carlo simulations, and our investigation of the power func-
tion supports their results theoretically+ We can also show that bothST

p and
ST

p02 also have only trivial asymptotic power under the alternative of a unit root
in the same way as Corollary 1, although we do not prove it to save space+

4. FINITE SAMPLE PERFORMANCE

In this section we investigate the finite sample performance of the test statis-
tics in the previous section for Case C+ See Caner~1998!, Canova and Hansen
~1995!, and Hylleberg~1995! for the model with seasonal dummies+

We consider the following model as the data generating process~DGP!:

yt 5 xt
'b 1 rt 1 ut , Am~B!rt 5 et , ut 5 aut21 1 vt , (12)

whereAm 5 ~1 1 B! and ~1 1 B2! for m 5 p and p02, respectively, $et % ;
NID~0,r!, $vt % ; NID~0,1!, and they are independent+ BecauseST

m is invariant
to b, we setb 5 0 without loss of generality+ In the simulation study, we set
a 5 0, 60+4, 60+8 andr 5 0 and 0+1, and the sample size isT 5 50 and 150+
For the estimation ofqm, we use the Bartlett kernel and select, 5 ,15 3 when
T 5 50 and, 5 ,1 5 5 whenT 5 150 as in Canova and Hansen~1995!+ We
also consider the case when the longer lag truncation parameter is selected
~, 5 ,2 5 6 whenT 5 50 and, 5 ,2 5 8 whenT 5 150!+ The number of
replications is 1,000 in all experiments, and the level of significance is set equal
to 0+05+

We also report the results of the Hylleberg et al+ test for comparison+ Con-
sider the following regression:

f~B!y4t 5 c1 y1t21 1 c2 y2t21 1 c3 y3t21 1 c4 y3t22 1 xt
'b 1 et ,

where y1t 5 ~1 1 B 1 B2 1 B3!yt , y2t 5 2~1 2 B 1 B2 2 B3!yt , y3t 5
2~1 2 B2!yt , y4t 5 ~1 2 B4!yt , xt consists of seasonal dummies and trends,
andf~B! is selected as the sixth-order lag polynomial as in Canova and Hansen
~1995!+ The Hylleberg et al+ test rejects the null of a negative unit root when
the t-statistic forc2 5 0 is small and rejects the null of annual unit roots when
the F-statistic forc3 5 c4 5 0 is large+ Critical values of the Hylleberg et al+
test whenxt contains seasonal dummies and trends are given in Table 1 of
Smith and Taylor~1998!+

Table 2 reports the case whenr 5 0, and then the entries in Table 2 are the
size of the Canova and Hansen test and the power of the Hylleberg et al+ test+
As in the table, ST

p tends to overreject the null hypothesis of no unit root when
a goes to21, whereas there is a tendency of underrejection forST

p02 when 6a6
becomes large+ The power performance of the Hylleberg et al+ test for annual
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unit roots seems good whenT 5 150, and so does the test for a negative unit
root except for the case whena 5 20+8, although they have very low power
when the sample size is 50+

Table 3 shows the case whenr 5 0+1+ The power of the Canova and Hansen
test against a negative unit root seems to be affected by the value ofa, whereas
that of the test against annual unit roots is not greatly affected+ As discussed in
Corollary 1, the rejection frequency ofST

p ~ST
p02! does not increase when the

DGP has only annual unit roots~a negative unit root!+ We can also see that the
selection of the longer lag truncation parameter entails the reduction of the power,
although the size of the test tends to be stable+ For the Hylleberg et al+ test, the
case whenr 5 0+1 corresponds to the null hypothesis, and the rejection fre-
quency of the Hylleberg et al+ test in Table 3 is the empirical size+ The rejection
frequency of the Hylleberg et al+ test for a negative unit root~annual unit roots!
is very high when the DGP has annual unit root~a negative unit root! andT 5
150, although some other cases have empirical size very close to the nominal
size+ Similar results have been already obtained by Canova and Hansen~1995!
for the case without seasonal trends+

5. CONCLUDING REMARKS

We have investigated the Canova and Hansen test for the null hypothesis of no
seasonal unit root against the alternative hypothesis of seasonal unit roots+ Our
analysis shows that the local asymptotic power depends only on the ratio of the
squared local alternative to the spectral density at the tested frequency+We also
showed that the local limiting power of the Canova and Hansen test against a

Table 2. The size and power of the Canova and Hansen test and the Hylle-
berg et al+ test~ r 5 0!

a
ST

p

~,1!
ST

p

~,2!
HEGY

~p!
ST

p02

~,1!
ST

p02

~,2!
HEGYa

~p02!

T 5 150 0+8 0+009 0+010 0+904 0+004 0+010 0+994
0+4 0+026 0+027 0+881 0+031 0+034 0+975
0 0+042 0+043 0+823 0+051 0+053 0+956

20+4 0+075 0+060 0+717 0+033 0+036 0+974
20+8 0+292 0+166 0+349 0+002 0+005 0+993

T 5 50 0+8 0+005 0+013 0+149 0+009 0+021 0+163
0+4 0+009 0+015 0+116 0+025 0+043 0+114
0 0+027 0+029 0+080 0+045 0+061 0+090

20+4 0+082 0+049 0+068 0+032 0+053 0+104
20+8 0+303 0+133 0+059 0+009 0+016 0+162

aHylleberg, Engle, Granger, and Yoo~1990!+
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negative unit root~annual unit roots! does not increase when the true process
has annual unit roots~a negative unit root!+

NOTE

1+ We thank a co-editor who pointed out this relation+ Part of the proof is due to him+
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APPENDIX

LEMMA A + Suppose that the statistic SN is defined by

SN 5
1

N
z'BN z1

g

N2 z'BN
2 z5

1

N (
j, k51

N SBN ~ j, k! 1
g

N (
l51

N

BN ~ j, l !BN ~l, k!Dzj zk,

(A.1)

where z5 @z1, + + + , zN # ', $zt % ; i+i+d+~0,1!, and BN satisfies

lim
Nr`

max
j, k *BN ~ j, k! 2 KS j

N
,

k

N
D* 5 0,

with K~s, t ! ~Ó 0! a symmetric, continuous, and nearly definite function. Then,

SN
d
&& (

n51

` S 1

ln

1
g

ln
2Dzn

2,
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where$zn% ; NID~0,1! and $ln% is a sequence of eigenvalues of K repeated as many
times as their multiplicities, with its characteristic function is given by

lim
Nr`

E~eiuSN ! 5 )
n51

` F12 2iuS 1

ln

1
g

ln
2DG2102

5 @D~iu 1M2u2 1 2igu!D~iu 2M2u2 1 2igu!#2102,

where D~l! is the Fredholm determinant of K.

Proof. See Theorem 5+13 of Tanaka~1996, p+ 175!+

Proof of equivalence ofST
m to the Canova and Hansen test.The Canova and

Hansen test is defined as

SCH
m 5

1

T 2 (
t51

T

ZFt
'Ym~Ym ZV fYm!21Ym ZFt

for m 5 p andp02, where ZFt 5 (j51
t fj Iyj with fj 5 @cos~ jp02!,sin~ jp02!,cos~ jp!# '

andYp 5 diag$0,0,1% when testing against a negative unit root andYp02 5 diag$1,1,0%
when testing against annual unit roots+

For m 5 p, we have

ST
p 5

1

[qpT 2 (
t51

T S(
j5t

T

~21! j2t IyjD2

5
1

[qpT 2 (
t51

T S(
j51

t

~21! j2t IyjD2

5
1

[qpT 2 (
t51

T S(
j51

t

~21! j IyjD2

,

which is the same as the Canova and Hansen test because[qp 5 Yp
' ZV fYp as shown in

Section 3+ The second equality is established because(j51
T ~21! j2t Iyj 5 0, which holds

becauseIyt are regression residuals ofyt on xt , seasonal dummies+
Similarly for m 5 p02, we have

ST
p02 5

1

[qp02T 2 (
t51

T02HS(
j5t

T02

~21! j2t Iy2j21D2

1S(
j5t

T02

~21! j2t Iy2jD2J
5

1

[qp02T 2 (
t51

T02HS(
j51

t

~21! j Iy2j21D2

1S(
j51

t

~21! j Iy2jD2J ,
which is equivalent to the Canova and Hansen test if we use 4[qp02 for the construction
of the Canova and Hansen test as the spectral density estimator at frequencyp02 with
information that the off-diagonal elements ofV f are zero, i+e+, if we useYp02 ZV fYp02 5
diag$2 [qp02,2 [qp02% + n

Proof of Theorem 1. In the proof we omit the subscriptm unless there is confusion+
First we show that [qp is consistent underH1

p for Case B+ BecauseIyt 5 Iut 1 Irt where Iut

and Irt denote regression residuals ofut andrt on xt , respectively, [qp can be expressed as
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[qp 5 (
j52,

,

w~ j,,!cos~ jp!
1

T (
t

Iut1j Iut

1 (
j52,

,

w~ j,,!cos~ jp!
1

T (
t

~ Iut1j Irt 1 Iut Irt1j 1 Irt1j Irt !+ (A.2)

Because the first term converges tosp
2 in probability as discussed in Canova and

Hansen~1995!, it is enough to show that the second term of~A+2! converges to zero in
probability+

Noting that Irt 5 rt 2 xt ~(j xj xj
'!21 (j xj rj we have

E @ Irt
2# # 2EFrt

2 1 (
j51

T

rj xj
'S(

j51

T

xj xj
'D21

xt xt
'S(

j51

T

xj xj
'D21

(
j51

T

xj rjG + (A.3)

Under H1
p rt 5 (j51

t ~21!t2jej whereej ; NID~0,c2s20T 2! becauser 5 c20T 2, and
then

E @rt
2# 5

c2s2t

T 2 5 O~T21! (A.4)

for all t+ Similarly, becausext is seasonal dummies for Case B and(xj xj
' 5 N 3 I4

becauseT 5 4N, we have

EF(
j51

T

rj xj
'S(

j51

T

xj xj
'D21

xt xt
'S(

j51

T

xj xj
'D21

(
j51

T

xj rjG
5

1

N2 EF(
j51

T

rj xj
'xt xt

'(
j51

T

xj rjG
#

1

N2 EFS(
j51

N

r4j23D2

1S(
j51

N

r4j22D2

1S(
j51

N

r4j21D2

1S(
j51

N

r4jD2G
#

1

N2 EFN (
j51

N

r4j23
2 1 N (

j51

N

r4j22
2 1 N (

j51

N

r4j21
2 1 N (

j51

N

r4j
2G

5
1

N (
j51

T

E @rj
2# 5

1

N (
j51

T c2s2j

T 2 5 O~T21! (A.5)

for all t+ Then by~A+3!, ~A+4!, and~A+5!, E @ Irt
2# 5 O~T21! for all t and by the Cauchy–

Schwarz inequality,

*EF 1

T (
t51

T2j

Irt1j IrtG* #
1

T (
t51

T2j

E @ Irt1j
2 #102E @ Irt

2#102 5 O~T21!,

so thatT21 (t Irt1j Irt is Op~T21! for a fixed j+ Because the range ofj is 2, to , and, 5
Op~T 105!, we have

(
j52,

,

w~ j,,!cos~ jp!
1

T (
t

Irt1j Irt
p
&& 0, (A.6)

where
p
&& denotes convergence in probability+
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Similarly T21 (t Iut1j Irt is Op~T2102! for fixed j because 6E @ Iut1j Irt #6 #
E @ Iut1j

2 #102E @ Irt
2#102 5 O~T2102!, and then we have

(
j52,

,

w~ j,,!cos~ jp!
1

T (
t

Iut1j Irt
p
&& 0+ (A.7)

With ~A+6! and~A+7!, we conclude that[qp converges tosp
2 in probability under local

alternatives+
In a similar way convergence for Cases A and C and convergence of[qp02 to sp02

2 04
can be proved+ According to this result, we can investigate the limiting distribution of
ST

m with qm, the probability limit of [qm, instead of [qm+
Hereafter, we will use the vectorized expression such asu or the annualized vector

series such as$Uj % , not the original series$ut % + Notice the relation thatu 5 @U1
' , + + + ,UN

' #
because we assumeN 5 T04 is an integer+

Here we decompose the annualized process$Uj % into three terms+ By the Beveridge–
Nelson decomposition, we have

Uj 5 AVj 1 Vj21
* 2 Vj

*,

whereVj
* 5 (i50

` Ai
*Vj2i with Ai

* 5 (l5i11
` Al and in the vectorized form,

u 5 ~IN J A!v1 v21
* 2 v*,

where, e+g+, v * 5 @V1
*' , + + + ,VN

*'# ' + Then, we have

y 5 Xb 1 Le 1 ~IN J A!v1 v21
* 2 v*,

so that

ST
m 5

1

qmT 2 y'MLL'My

5
1

qmT 2 $Le 1 ~IN J A!v% 'MLL'M$Le 1 ~IN J A!v%

1
2

qmT 2 $Le 1 ~IN J A!v% 'MLL'M~v21
* 2 v* !

1
1

qmT 2 ~v21
* 2 v* !'MLL'M~v21

* 2 v* !+ (A.8)

Here we show that the last two terms areop~1!+ Let us consider Case B, where
X 5 @I4, + + + , I4# ' + Note that, in the annualized vector form, the typical jth block of
M~v21

* 2 v*! can be expressed as

Vj21
* 2

1

N (
j51

N

Vj21
* 2SVj

*2
1

N (
j51

N

Vj
*D 5 ~Vj21

* 2 Vj
*! 2

1

N
~V0
*2 VN

*!,
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and then the typicalj th block of L'M~v21
* 2 v*! becomes

Q0
' ~Vj21

* 2 Vj
*! 1 Q1

' (
k5j11

N

~Vk21
* 2 Vk

*! 2
1

N
Q0
' ~V0

*2 VN
*! 2

1

N (
k5j11

N

Q1
' ~V0

*2 VN
*!

5 Q0
' ~Vj21

* 2 Vj
*! 1 Q1

' ~Vj 2 VN ! 2
1

N
Q0
' ~V0

*2 VN
*! 2

N 2 j

N
Q1
' ~V0

*2 VN
*!

[ Rj , say+

Because$Aj
*% is absolutely summable, $Vj

*% is a second-order stationary sequence, and
thenRj is Op~1! for all j+ This shows that

1

qmT 2 ~v21
* 2 v* !'MLL'M~v21

* 2 v* ! 5
1

qmT 2 (
j51

N

Rj
'Rj

p
&& 0+

For the second term of~A+8!, note that, in general, ~a'b!2 # ~a'a!~b'b! for the vec-
tors a and b+ Then, the square of the second term divided by 4 is bounded above by
the product of the first term and the third term+ Because the first term will be shown to
be Op~1! later and the third term converges to zero in probability as shown previously,
the second term of~A+8! is op~1!+

Similarly the same result is obtained for Cases A and C, and we omit the proof+
Now we are ready to consider the first term of~A+8! as far as the limiting distribution

is concerned+ Under the assumption of normality, Le 1 ~IN J A!v ; N~0,s2~ rLL' 1
~10s2! IN J S!! becauses2AA' 5 S ande andv are independent+ Then, defining z 5
@Z1
' , + + + ,ZN

' # ' [ s21~ rLL' 1 ~10s2! IN J S!2102~Le 1 ~IN J A!!v; N~0, IT!, we have

ST
m 5

1

qmT 2 $Le 1 ~IN J A!v% 'MLL'M$Le 1 ~IN J A!v%

5
s2

qmT 2 z'SrLL' 1
1

s2 IN J SD102

MLL'MSrLL' 1
1

s2 IN J SD102

z

5
d s2

qmT 2 z'L'MSrLL' 1
1

s2 IN J SDMLz

5
1

16qmN2 z' HL'M~IN J S!ML 1
c2s2

16N2 ~L'ML!~L'ML!J z

5
1

16qmN (
j, k51

N

Zj
'H 1

N
@L'~IN J S!ML# ~ j, k!

1
c2s2

16N (
l51

N 1

N
@L'ML# ~ j, l !

1

N
@L'ML# ~l, k!JZk, (A.9)

where5
d

denotes equality in distribution, Zj 5 @z4j23, z4j22, z4j21, z4j #
' ; NID~0, I4!

for j 5 1, + + + ,N, and@H # ~ j, k!, j, k 5 1, + + + ,N, for the T 3 T matrix H denotes the~ j, k!
block of H when we partitionH into N 3 N blocks with each block a 43 4 matrix, as
we divide L in ~2!+ For example, @Lm# ~1,1! 5 Qm,0 and @X # ~N,2! 5 NI4 for Case C+
The second equality holds from the definition ofz, and the third equality is due to
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the relationT 5 4N and r 5 c20T 2+ The equality in distribution is established using
the relation thatz'HH 'z 5

d
zHH'z for any T 3 T matrix H, which holds becauseHH '

and H 'H have the same eigenvalues andz is a standard normal distribution+ The last
equality holds becauseIN J S and M are commutative andM is idempotent, i+e+,
~IN J S!M 5 M~IN J S!, andM 2 5 M+

To derive the limiting distribution ofST
m, we examine the terms in braces of~A+9!,

such asN21@L'~IN J S!ML# ~ j, k!+ Here we consider Case C, in which the model has
seasonal dummies and trends+ Note that

L'~IN J S!L 5 3
Q0
' Q1

' J Q1
'

Q0
' L I

L Q1
'

0 Q0
'
4 3

S 0

S

L

0 S
4 3

Q0 0

Q1 Q0

I L L

Q1 J Q1 Q0

4
5 3

Q0
' SQ0 1 ~N 2 1!Q1

' SQ1 Q1
' SQ0 1 ~N 2 2!Q1

' SQ1 J Q1
' SQ0

Q0
' SQ1 1 ~N 2 2!Q1

' SQ1 Q0
' SQ0 1 ~N 2 2!Q1

' SQ1 J Q1
' SQ0

I I L I

Q0
' SQ1 Q0

' SQ1 J Q0
' SQ0

4 +
Then the~ j, k! block of L'~IN J S!L becomes

Q0
' SQ1 1 ~N 2 j !Q1

' SQ1 5 ~N 2 j !Q1
' SQ1 1 O~1! for j . k,

Q1
' SQ1 1 ~N 2 k!Q1

' SQ1 5 ~N 2 k!Q1
' SQ1 1 O~1! for j , k,

Q0
' SQ0 1 ~N 2 j !Q1

' SQ1 5 ~N 2 j !Q1
' SQ1 1 O~1! for j 5 k+

Then, in general, we can write

@L'~IN J S!L# ~ j, k! 5 ~N 2 max~ j, k!!Q1
' SQ1 1 O~1!+ (A.10)

Similarly, the jth row block ofL'~IN J S!X is expressed as

@L'~IN J S!X # ~ j,{! 5 FQ0
' S 1 ~N 2 j !Q1

' S, jQ0
' S 1 (

i5j11

N

Q1
' SG

5 F~N 2 j !Q1
' S,

N2 2 j 2

2
Q1
' SG1 @O~1!,O~N!# , (A.11)

and thekth column block ofX 'L is given by

@X 'L# ~{, k! 5 3
Q0 1 ~N 2 k!Q1

kQ0 1 (
i5k11

N

Q1 4
5 3

~N 2 k!Q1

N2 2 k2

2
Q1
4 1 FO~1!

O~N!G , (A.12)

CANOVA AND HANSEN TEST UNDER LOCAL ALTERNATIVES 1217



where we define(i5a
b 5 0 for a . b and

~X 'X !21 5 3
4

N
I4 2

6

N2 I4

2
6

N2 I4

12

N3 I4
4 1 FO~N22! O~N23!

O~N23! O~N24!G + (A.13)

Then, by the equations~A+10!–~A+13!, the ~ j, k! block of N21L'~IN J S!ML can be
expressed as

1

N
@L'~IN J S!ML# ~ j, k!

5
1

N
@L'~IN J S!L# ~ j, k! 2

1

N
@L'~IN J S!X~X 'X !21X 'L# ~ j, k!

5
1

N
@L'~IN J S!L# ~ j, k! 2

1

N
@L'~IN J S!X # ~ j,{!~X 'X !21 @X 'L# ~{, k!

5 H12 maxS j

N
,

k

N
D2 F4S12

j

N
DS12

k

N
D2 3S12

j 2

N2DS12
k

N
D

2 3S12
j

N
DS12

k2

N2D1 3S12
j 2

N2DS12
k2

N2DGJQ1
' SQ1 1 O~N21!

5 HminS j

N
,

k

N
D2 4

jk

N2 1 3
jk

N2 S j

N
1

k

N
D2 3

j 2k2

N4 JQ1
' SQ1 1 O~N21!

5 KCS j

N
,

k

N
DQ1

' SQ1 1 O~N21!,

where the fourth equality is established using the fact thats1 t 2 max~s, t ! 5 min~s, t !+
Completely in the same way, we have

1

N
@L'ML# ~ j, k! 5 KCS j

N
,

k

N
DQ1

'Q1 1 O~N21!+

Then it is enough to consider

ST
m* 5

1

16qmN (
j, k51

N

Zj
'HKCS j

N
,

k

NDQ1
' SQ1 1

c2s2

16N (
l51

N

KCS j

N
,

l

ND
3 KCS l

N
,

k

N
D~Q1

'Q1!2JZk,

as far as the limiting distribution is concerned, because6ST
m 2 ST

m* 6 converges to zero in
probability+

Here note that$P'Zj % has the same distribution as$Zj % , NID~0, I4!, because the ma-
trix P is orthonormal whereP is defined in~9!, and then, by redefiningZj 5 P'Zj , we
have
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ST
m* 5

1

16qmN (
j, k51

N

Zj
'HKCS j

N
,

k

N
DP'Q1

' SQ1 P

1
c2s2

16N (
l51

N

KCS j

N
,

l

NDKCS l

N
,

k

ND~P'Q1
'Q1 P!2JZk+

~i! When m 5 p, we can easily calculate thatP'Q1
'Q1 P 5 P'Qp,1

' Qp,1 P 5
diag$0,16,0,0% and P'Q1

' SQ1 P 5 P'Qp,1P~P'SP!P'Qp,1P 5 diag$0,4,0,0% 3
P'SP diag$0,4,0,0% 5 diag$0,16sp

2,0,0% + Then, ST
m* can be expressed as

ST
m* 5

1

16sp
2N (

j, k51

N

Zj
'HKCS j

N
,

k

N
Ddiag$0,16sp

2,0,0%

1
c2s2

16N (
l51

N

KCS j

N
,

l

NDKCS l

N
,

k

NDdiag$0,16,0,0%2J Zk

5
1

N (
j, k51

N HKCS j

N
,

k

ND1
c2s2

sp
2N (

l51

N

KCS j

N
,

l

NDKCS l

N
,

k

NDJ z2, j z2, k,

(A.14)

wherez2, j is the second element ofZj +
Now we apply Lemma A to the last expression of~A+14!+ Noting thatKC~ j0N,

k0N! andc2s20sp
2 correspond toBN~ j, k! andg in ~A+1!, respectively, we obtain

Theorem 1~i! for Case C+
~ii ! When m 5 p02, we can easily calculate thatP'Q1

'Q1 P 5 P'Qp02,1
' Qp02,1 P 5

diag$0,0,4,4% and P'Q1
' SQ1 P 5 P'Qp02,1P~P'SP!P'Qp02,1P 5 diag$0,0,

4sp02
2 ,4sp02

2 % + Then, ST
m* can be expressed as

ST
m* 5

4

16sp02
2 N (

j, k51

N

Zj
'HKCS j

N
,

k

N
Ddiag$0,0,4sp02

2 ,4sp02
2 %

1
c2s2

16N (
l51

N

KCS j

N
,

l

NDKCS l

N
,

k

ND~diag$0,0,4,4%!2J Zk

5
1

N (
j, k51

N HKCS j

N
,

k

ND1
c2s2

4sp02
2 N (

l51

N

KCS j

N
,

l

NDKCS l

N
,

k

NDJ z3, j z3, k

1
1

N (
j, k51

N HKCS j

N
,

k

ND1
c2s2

4sp02
2 N (

l51

N

KCS j

N
,

l

NDKCS l

N
,

k

NDJ z4, j z4, k,

(A.15)

wherez3, j andz4, j are the third and fourth elements ofZj +
Becausez3, j andz4, j are independent, we can apply Lemma A to the two terms

in ~A+15! separately, and then we obtain Theorem 1~ii ! for Case C+
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For Case A, M 5 IT so that

1

N
@L'ML# ~ j, k! 5

1

N
@L'L# ~ j, k! 5 S12 maxS j

N
,

k

N
DDQ1

'Q1 1 O~N21!

5 KAS j

N
,

k

N
DQ1

'Q1 1 O~N21!,

1

N
@L'~IN J S!ML# ~ j, k! 5 KAS j

N
,

k

N
DQ1

' SQ1 1 O~N21!+

Similarly to Case C, we have, for Case B,

1

N
@L'ML# ~ j, k! 5 HS12 maxS j

N
,

k

N
DD2 S12

j

N
DS12

k

N
DJ

3 Q1
'Q1 1 O~N21!

5 HminS j

N
,

k

N
D2

jk

N2JQ1
'Q1 1 O~N21!

5 KBS j

N
,

k

N
DQ1

'Q1 1 O~N21!,

1

N
@L'~IN J S!ML# ~ j, k! 5 KBS j

N
,

k

N
DQ1

' SQ1 1 O~N21!+

Then, completely in the same way as Case C, we can establish Theorem 1 for Cases A
and B+ n

Proof of Corollary 1. The proof is similar to that of Theorem 1+ Completely in the
same way as~A+9!, it can be shown that

ST
m 5

d 1

16qmN (
j, k51

N

Zj
'H 1

N
@Lm
' ~IN J S!MLm# ~ j, k!

1
c2s2

16N (
l51

N 1

N
@Lm
' MLi # ~ j, l !

1

N
@Li
'MLm# ~l, k!JZk

5
p 1

16qmN (
j, k51

N

Zj
'HK{S j

N
,

k

N
DQm,1

' SQm,1

1
c2s2

16N (
l51

N

K{S j

N
,

l

NDK{S l

N
,

k

ND~Qm,1
' Qi,1!~Qi,1

' Qm,1!JZk,

underH1
i for i,m 5 p,p02 ~i Þ m!, but we can easily check thatQp,1

' Qp02,1 5 0 and
then the second term in braces vanishes, so thatST

m converges in distribution to the null
distribution~10!+ n
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