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THE LIMITING PROPERTIES OF THE
CANOVA AND HANSEN TEST
UNDER LOCAL ALTERNATIVES

Ely1 Kurozumi
Hitotsubashi University

This paper investigates the limiting properties of the Canova and Hansen test
testing for the null hypothesis of no unit root against seasonal unit,ronter a
sequence of local alternatives with the model extended to have seasonal dummies
and trends or no deterministic term and also only seasonal dumwigeslerive

the limiting distribution of the test statistic and its characteristic function under
local alternativesWe find that the local limiting power is an inverse function of
the spectral density at frequenay (77/2) when we test against a negative unit
root (annual unit roots We also theoretically show that the local limiting power

of the Canova and Hansen test against a negative unit(eswitual unit roots
does not increase when the true process has annual unit (@oisgative unit
roof) but not a negative unit rogannual unit roots which has been observed in
Monte Carlo simulations in such research as C4608 Journal of Business
and Economic Statisticks, 349—-356, Canova and Hans€995 Journal of Busi-

ness and Economic Statistit8, 237-252, and Hylleberg 1995 Journal of Econo-
metrics69, 5-25.

1. INTRODUCTION

This paper deals with the seasonal model with unit robiskey, Hasza and
Fuller (1984 consider the model such &— BY%)y, = e ford =1,2,4, and 12
whereB denotes the backshift operatdhey develop the asymptotic theory of
the least squares estimator of the coefficient associatedywighFor the quar-
terly seasonal modgl1l — B*) can be decomposed intd — B)(1 + B) X
(1 + B2), and we can consider four roots1 and +i wherei = V—1. The
roots—1 and+i are called seasonal unit ropend we call the root-1 a neg-
ative unit root andti annual unit roots

Tests for seasonal unit roots are considered in the literafintela and Tiao
(1987 and Chan and We(1988 investigate the limiting distributions of the
least squares estimators of the autoregressive model with complexUsatg
their results Hylleberg Engle Grangeyand Yoo(1990 investigate the testing
procedure for seasonal unit roofhis test may be seen as an extension of the
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augmented Dickey—Fuller testthereas Breitung and Fransg€998 consider
seasonal unit root tests by extending the test of Phillips and Pétas8.

As in the preceding literaturenany unit root tests consider the test for the
null hypothesis of nonstationarity against the alternative of stationartythen
if the null hypothesis is not rejectede cannot have much confidence in the
existence of a unit rootOn the other handKwiatkowski, Phillips, Schmidt
and Shin(1992 consider the test for stationarity against a unit rddteir test
is derived as the Lagrange multiplietM ) test which is equivalent to the lo-
cally best invariantLBI) test under some conditionseybourne and McCabe
(1999 also investigate the LBI test for stationarifihe difference between these
two tests is that Kwiatkowski et a{1992 correct autocorrelation nonparamet-
rically as do Phillips and Perrdid988, whereas Leybourne and McCald®94
correct it parametricallyit is shown in Leybourne and McCal§£994) that the
former test is consistent in the ord€fl wherel indicates the lag truncation
number used in estimating the long-run variance in a nonparametricwhayeas
the latter test is of ordef under the alternative hypothesis

The preceding two tests were generalized to the seasonal n@ateva and
Hansen(1995 investigate the testing procedure for the null of stationarity with
seasonal dummies against the alternative of seasonal unit roots by extending
the Kwiatkowski et altest Hylleberg(1995 compares the Canova and Hansen
test with the Hylleberg et akest and concludes thanh a practical analysjs
“the best advice is to apply both tests they complement each other in sev-
eral respects In a similar way as Canova and Hans€tD95, Caner(1998
generalizes the test of Leybourne and McCéati#94 assuming the parametric
structure in serial correlation

In this paperwe investigate the limiting power properties of the Canova and
Hansen test with the model extended to have seasonal dummies and trends or no
deterministic term and only seasonal dummiscause many economic time se-
ries seem to be trending variablé@sclusion of seasonal trends may be seen as
an important model specificatioiVe derive the limiting distribution of the
Canova and Hansen test against a negative unit(eog¢asonal unit root at fre-
quencyrr) or against annual unit rootseasonal unit roots at frequengy?2) un-
der a sequence of local alternatives using the Fredholm appreddbh is
extensively developed in Nabeya and Tanék88 and Tanak#1990a 1990h
1996. By deriving the local limiting distributionwe will see that the power of
the test depends not only on the local parametdyut also on the reciprocal of
the spectral density of the stationary component of the time series at frequency
7 or /2. We also derive the characteristic function of the limiting distribution
In addition to its theoretical interedt can be used to calculate the asymptotic
power by the inversion formula as in Tanald®96 with high accuracy saving
computational time compared with the simulation methdyg deriving explic-
itly the asymptotic power curveve can see the effects of the departure from the
null hypothesis on the power and also the effects of the parameters in the. model

This paper proceeds as follows Section 2 we present the model and nota-
tion and briefly review the Fredholm approadh Section 3 we investigate the
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Canova and Hansen test for the null of stationarity against the alternative of
seasonal unit root§ he limiting distribution and its characteristic function will

be derived under a sequence of local alternatiGestion 4 studies the finite
sample performance of the test statistic for the model with seasonal dummies
and trendsSection 5 concludes the pap&H proofs are given in the Appendix

2. THE MODEL AND NOTATION
Consider the following seasonal model

yI:X'[’ﬁ+rt+ul (t:]-’""T)’

A.B)ry=¢, U= auv_;, witha,=1 >ilaj| < oo, >a #0
i=0 i=0 i=0

1)

for m = 7 and 7/2, whereA,(B) =1 + B andA,»(B) = 1 + B?, x, is a
deterministic componenand{uv,, .}’ is jointly independently and identically
normally distributed with mean zero at{vZ] = 02 > 0, E[e2] = 02 = 0,
andE[v;e ] = 0. We setro = r_; = 0 and assume th&d = T/4 is an integer
Note that{r,} has a negative unit roga seasonal unit root at frequeney
whenm = 77 whereas it has annual unit rodiseasonal unit roots at frequency
7/2) whenm = 7/2.

Stacking each variable fromn= 1 to T, we have

y=XB+r+u, r=_>Lpye,

where eg., ¥ = [VY4,..., yr] and

Qmo 0
L= | 20t O (2
Qni -+ Qmi Qmo
for m = 7 andw/2 with
1 0 00 1 -1 1 -1
-1 1 00 -1 1 -1 1
Qo= 1 1 10 7| 1 1 1 -1
| -1 1 -1 1 -1 1 -1 1
1 00 1 -1 0
0 1 00 0 1 0 -1
Qr/20= -1 1 ol Qr/21= 1 0
| 0 -1 0 1 0 -1 1
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Note thatL;;' corresponds té\,(B). In the following discussion we abbreviate
Lm, Qmo, andQp; asL, Qy, andQ, respectivelyunless there is confusion
We specify the deterministic terix as follows

Case A No deterministic term

Case B Seasonal dummies

X = [|4"-"|4]/,
wherel; denotes thg X j identity matrix
Case C Seasonal dummies and trends
x _ |4 |4 e |4 "
i, 2l, ... Nl
It follows that the dimension o8 varies according to the definition of.
Our model(1) is slightly different from that of Canova and Hansgr895

and Caner(1998. In their modeJ e.g., the nonstochastic component at fre-
quencyr, {r*}, is defined as

re = COS(Wt)m, M="M-17T €.

Then assuminge, = 0 fort = 0O, r* can be expressed ag = (—1)‘2}=1 g,
whereas the corresponding component in our mo@deh B)r, = €, is ex-
pressed as, = }:1(—1)“iej. If {e} is independentlyidentically and sym-
metrically distributedsuch as an independently and identically distribited.)
normal distribution {(—1)'e,} has the same distribution d4e}, and then the
distribution of{r;} is the same aé-1)' =|_,(—1)/g = 3j_;(~1)' g, which
is the same expression gsn our model In this sensgour model may be seen
to be equivalent to that in Canova and Hange#05 and Canef1998. How-
ever because the nonstochastic component at frequenisyoften defined as
(1 — B)r; = ¢ in the literature as in Hylleberg et al(1990 and Breitung and
Franseq1998, our definition of the seasonal unit root process directly corre-
sponds to theirsSimilarly, the equivalence between the models with annual
unit roots can also be shown

Here we briefly review the Fredholm approaegthich will be used to inves-
tigate the limiting properties of the Canova and Hansen test in the next section
Let us consider the quadratic foyig; = T Eka=1 K(j/T,k/T)u;uy, where
{u;} ~i.i.d.(0,1) andK (s, t) ( 0) is a symmetriccontinuous and nearly def-
inite function We also consider the integral equation of the second,kind

1
f(t) = /\fo K(st)f(s)ds ®3)

and denote a sequence of eigenvalues associated3yiéis{A,} and an ortho-
normal sequence of eigenfunctions{es(t)}. Using Mercer’s theoremit can
be shown that
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1 L/&1 i k
S=7 (2l )07 un
T j,k=1\ n=1 )\n " T " T :

for T' — oo asT — 0. BecauseT Y23, f,(j/T)u, converges to a standard

normal distribution by Lemma 1 of Nabeya and Tan&ka88), we haveS; LN
>® . £2/A, where{Z,} ~ NID(0,1) and-%> signifies convergence in distribu-
tion. Then because the limiting distribution is the weighted sum of indepen-
dent y?(1) distributions its characteristic function is given by

TIim E[e?S] = [ﬁ (1— ﬁ)}_l/z. (4)

n=1 )‘n

Now we introduce the Fredholm determinant Kfs,t). Let us consider
fr = (A/T)K;f; as an approximation of the integral equati®), wheref; =
[f(1/T),f(2/T),...,f(T/T)]’ andKy is aT X T matrix with the( j, k) element
K(j/T,k/T). The Fredholm determinant is defined as

A
D(/\) = I|m IT I— KT .
T—oo T

Moreover according to Hochstadtl973 p. 251), the Fredholm determinant
can be expressed as

mm=ﬁ@—i)

n=1 /\n

and applying this result to the characteristic functidh we have
lim E[e’Sr] = [D(2i9)] Y2
T—oo

Then the characteristic function of the limiting distribution 8f can be ex-
pressed using the Fredholm determinatd it may be used to calculate the
percentage point of the limiting distribution and also the limiting power by
Lévy’'s inversion formulaSeeg e.g., Hochstad{1973 for the integral equation
and Nabeya and Tanakd988 and Tanaka1996 for its application to the
statistical problems

3. THE LIMITING PROPERTIES OF THE CANOVA AND HANSEN TEST
UNDER LOCAL ALTERNATIVES

Let us consider the testing problem
CZ

HO:pZOV.SH{“:p=§, (5)
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wherep = g2/c? cis a constantandH" (m = 7 and/2) denotes the par-
ticular alternative withA(B), i.e,, Hf denotes the alternative of a negative
unit root whereasH7/2 denotes that of annual unit roofghen (5) signifies
the testing problemthe null hypothesis of no unit roots against a sequence of
local alternatives of the particular seasonal unit roots

It can be shown thafor a stylized model in whichy;, = v, is assumegdthe
LM test for (5) is given by

~2(y XB)'LmLin(y = XB) (6)

as rejectingH, when(6) takes large valugsvheref3 andé2? are the maximum
Iikelihood estimators o ando? underH, and given by3 = (X’X) X'y and
62=T7ly'Mywith M = |1 for Case AandM = I+ — X(X’X)™X’ for Cases B
and C Note that the LM test6) or (7) (which follows) for Cases B and C is
equivalent to the Canova and Hansen test as shown in the Appeadik we
call (7) the Canova and Hansen test statisgithough the calculation df7) for
Case A is different from Canova and Hangé895.
For the general mod€ll) we define the test statistic as

St = y'MLp LMy (7)

G T2
for m= 7 and#/2, where
€ 1 €
4, = > w(j,0cosjm)y(j), Qo= 2 > w(j,€)cos(jm/2)7(j) (8)
j=—¢ j=—¢

are the estimators of the constant multiple of the spectral densify;pfat
frequencieswr and 7/2, respectively where y(j) = T 13, Yivj Ve with %,
regression residuals of; on x, and w(-,€) is a kernel function such as
Bartlett Parzen or quadratic spectral witlf = O(TY®) as used in Canova
and Hanser(1995. Here ¢, is essentially the same as the diagonal element
of Of = 3, w(j, )T 13, % i % in Canova and Hansefl995, where

= [cos(trr/2),sin(tw/2),cos(tr)]’. Noting that co$(t + j)m)cos(tr) =
{cod((2t + j)ar) + cos jm)}/2 = cod j), the third diagonal element dbf
can be expressed as

4

> w(j, 0 = ZCOS((t+J)7r)Vt+J cos(tm)$;

j=¢
€

= > w(j,€)cos jm) — Eytﬂ Yts

j=—¢

which is the same a§,.. Similarly, using the relation of cd$t + j)m/2) X
cos(tw/2) = cos(jm/2)(1 + (—1)Y)/2 and sirf(t + j)a/2)sin(tm/2) =
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cos jm/2)(1 — (—1)')/2, the sum of the first two diagonal elements of
becomes

€
2 w07 E (cos((t + ) 7/2)§,.; cosltm/2)F,
e
+ sin((t +j)7/2)§,4 sin(tr/2) ;)
€

. 1

i=¢

1+ (-1 1-
5> <% cod jm/2) + % COS(j7T/2)>S7t+j %t

€

2 w( ], €)COS_ 2yt+j Vi

j=—¢

which is the same &§,.

Remark 1 Spectral densities at frequenciesand /2 are related to the
long-run variance matrix of the annualized proces$upf, which is defined as
{Uj} = [Ugj-3,Ug5—2,Ug5—1,Ug]" for j =1,...,N. From the definition oi in (1),
U; can be expressed as

1 0 0 O a, az a,
© a, 1 0 O as a, az a,
2 AV, i—l> A= s A= yeees
=0 a, a; 1 0 ag as a, as

a; a, a; 1 a; ag as a4y

whereV is defined adJ;. Then the long-run variance matrix g}, 3, is ex-
pressed as

S5 S8 S S
S = 02AA, whereA= > A = % %% ,
=0 S S S S
S S S S
with § = E}’io ay for i =0, 1, 2, and 3 Direct calculations show

thatP'sP = o?diagi(ss + 81 + $ + %)%5(S — 81 + & — )35 (5 — ) +
(51— $3)% (S0 — 52)? + (51 — 53)°}, Where

1 -1 0 —v2
1 1 —v2 o0

21 -1 0o N2 |
1 1 42 0

9)
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and becausd (w) = (27) 02|22, a;€'“|?, we have
of=2mf(0)=o?(+s+5+)3
or=2mf(m) =0 (-8 +5 %)
0fp=2mt(m/2) = 0¥{(s— ) + (8, — 8%}

Thus the diagonal elements &f'SP consist of 2r times spectral densities at
frequencies 0w, and 7r/2. Notice thatY appears in the Canova and Hansen
test because we can easily show thatin Canova and Hanse1995 is equal

to R32R1/4 = diag{a'ﬁ/z/Z,aﬁ/z/Z,aﬁ} WhereRl = [ fl, f2, f3, f4]’.

BecauseS" is equivalent to the Canova and Hansen,test purpose is to
investigate the limiting behavior of the Canova and Hansen test under a se-
guence of local alternatives

The following theorem gives the limiting distribution 8f" underH;" and its
characteristic function fom = 7 and#/2. For the expression of the character-
istic function we use the following Fredholm determinants

Da(A) = cosva,
sinVA
Dg(A) = B

Dc(A) = i—f (2 — \AsimVA — 2 cosVa),

associated with the kernels

Ka(st) = 1—max(s, t),

Kg(st) = min(s,t) — st

Kc(s t) = min(s,t) — 4st+ 3st(s+t) — 3s%t2

See e.g., Theorem 6 of Nabeya and Tanake988 and equation$5.34) and
(9.94) of Tanaka(1996. We denote a sequence of eigenvalues associated with
Ki(s t) as{Ajy} for j = A, B, andC. Note that every zero db;(A) is an eigen-
value ofK; for eachj. For examplethe eigenvalues df, are((n — 3))? and
those ofKg aren?72 for n =1,2,..., whereas we cannot explicitly express the
eigenvalues oKc.

THEOREM 1

(i) Under Hf,

0 2 .2/.2
S?$2<i+cg/a”)§f,

2
n=1 )‘jn /\jn
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and its characteristic functionp..(6;c), is given by

¢.(0;0) = [D;(i0 + /-0 + 2ic?020/02)

X D;(i0 — \[—6% + 2ic%a20/02)| V2

forj = A, B, and C according to Cases A, B, and C, respectively, whgie~
NID(0,1) and {Aj,} and O(-) are a sequence of eigenvalues and the Fredholm
determinant, respectively.

(i) Under Hf/2,

5} 1 020.2 oo 1 C20'2
/2 _d 2 2
SPS 2 —+ Gat 2|+ o
n=1\ Ajn 40’3/2/\12n Lo n=1 /\jn 4073/2Aj2n 20

J

and its characteristic functionp,,,»(0;c), is given by

b,2(0;0) = [D;(i0 + \[—0% +ic2520/(202,))

X Dy(i0 — =02 +ic2020/(2025))) 2

for j = A, B, and C according to Cases A, B, and C, respectively, wharg}
and{{, n} are independent and NI@,1) and{A;,} and DQ(-) are a sequence of
eigenvalues and the Fredholm determinant, respectively.

Remark 2 UnderHg, ¢ = 0 so that

ﬁgﬂ—lﬁ;ﬁ, LN E% ) Ai (10)
and their characteristic functions are given by

$.(6;0) = Dj(2i0) V% ,/2(6;0) = D;(2i6) (11)
for j = A, B, andC, respectively

From the preceding theoreme can obtain the null distribution function by
inverting the characteristic functidiil). In general when the nonnegative ran-
dom variableY has the characteristic functief(6), we have using Lévy’s in-
version formula

1 =] 1— eﬂex
P(Y=x) = = fo Re{ ¢>(0)] de.

Table 1 shows percentage points of the limiting null distributionsSpfand
Sr/2, which are calculated by numerical integrati¢itom each tablewe can
see that the limiting null distribution &7 is located to the left compared with
that of S7/2. On the other handhe more complicated the deterministic term is
the further the limiting null distribution 08" is shifted to the left for a fixed
m. For examplethe 95% point ofS7 is 166, 0.46, and Q15 for Cases AB,
and G respectively
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TaBLE 1. Percentage points of limiting null distributions

0.01 005 01 0.5 0.9 0.95 099

s7

Case A 0034460 (0056460 0076536 (0290476 1195820 1655739 2787459

Case B (024798 (0036562 0046015 0118880 (0347305 (461361 (0743459

Case C  (M17269 0023409 0027886 0055548 0119220 0147890 (0217747
S]zr/z

Case A 0126913 0199049 (0260318 0757496 2062210 2624054 3928615

Case B (078830 0109425 0132220 (0277571 0607037 0747520 1073664
Case C (049118 (0062648 0071843 0120873 0210670 (0246535 0328622

We also calculate the limiting power using the upper 5% points in Table 1
Note that from Theorem 1 the asymptotic local power only depends on the model
parameters through the ratido %/ a2 To illustrate how these parameters affect
the power of the testve consider the case whe¢un,} obeys an AR1) process
Uy = au_q + vy with {v;} ~ NID(0,1). In this casec?s? 2 = c¢%c2, and we
can easily check that? = (1+ a) 2 ando 2, = (1+ a?)~*. Using these rela-
tions we can calculate the limiting power as a functioncdbr a fixed a.

Figures la—c are the limiting powers 8f for Cases AB, and C fora =
—0.8, —0.4, 0.0, 0.4, and Q8, which correspond ter? = 25, 2.78, 1, 0.51, and
0.31, respectivelyIn each casethe closer to—1 the value ofa becomesthe
less powerful is the test statistimtuitively this may be explained as follows
whena = —0.8, u; = —0.8u,_; + vy and this process is difficult to distinguish
from the negative unit root process, = —u,_1 + v, so that the power in-
creases slowly as a function ofcompared with the other cases suchaas
0.8. We also note thaffor a fixed value ofa, the power of Case AFigure 1a
dominates that of Case 8-igure 1H and the latter dominates that of Case C
(Figure 19. That is the more complicated the deterministic term becanttes
less powerful is the test

Figures 2a—c are the limiting powers 8f’2. In this caseo?, = 1, 0.86,
and 061 fora = 0, £0.4, and £0.8, respectivelyFrom the figuresthe power
function corresponding to the larger absolute valua diominates that corre-
sponding to the smaller absolute valueafOn the other handthe relation
between the power and the deterministic term is the same as in Figures la—c

Next we investigate the limiting properties 8" underH] for i,m= 7, /2
(i # m); i.e,, we examine the asymptotic behavior@f when the true process
has seasonal unit roots different from those we assumed under the alternative

COROLLARY 1. SF and §/2 converge in distribution to the null distribu-
tions (10) under H/2 and Hf, respectively.

The preceding corollary indicates that the local limiting poweBpf(S7/?)
underH7/2 (H7) does not increase from the significance lgved., the test
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Ficure 1. The limiting powers ofS7. (a) Case A (b) Case B (c) Case C
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FiGuRE 2. The limiting powers 0fS7/2. (a) Case A (b) Case B (c) Case C
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statistic against a negative unit ro@nnual unit rootshas only trivial power
under the alternative of annual unit rogegsnegative unit rogt This tendency
has been observed in Car@®98, Canova and Hans€i995, and Hylleberg
(1995 by Monte Carlo simulationsand our investigation of the power func-
tion supports their results theoreticalve can also show that botg7 and
S7/? also have only trivial asymptotic power under the alternative of a unit root
in the same way as Corollary @lthough we do not prove it to save space

4. FINITE SAMPLE PERFORMANCE

In this section we investigate the finite sample performance of the test statis-
tics in the previous section for Case See Cane(1998, Canova and Hansen
(1995, and Hylleberg(1995 for the model with seasonal dummies

We consider the following model as the data generating prod@&%):

Vi =X{B+r + Uy, A.(B)r,=¢, U, = au_q + vy, (12)

whereA,, = (1 + B) and (1 + B2?) for m = 7 and 7/2, respectively{e} ~
NID(0, p), {v;} ~ NID(0,1), and they are independerf@ecausesy" is invariant
to B, we setB = 0 without loss of generalityin the simulation studywe set
a=0, £0.4, £0.8 andp = 0 and 01, and the sample size I5= 50 and 150
For the estimation of},,, we use the Bartlett kernel and seléct €1 = 3 when
T =50 and¢ = €1 =5 whenT = 150 as in Canova and HansétR95. We
also consider the case when the longer lag truncation parameter is selected
(€ = €2 =6 whenT =50 and{ = €2 = 8 whenT = 150. The number of
replications is 1000 in all experimentsand the level of significance is set equal
to 0.05.

We also report the results of the Hylleberg ettakt for comparisonCon-
sider the following regression

D(B)Yar = Y1 Yi1 + ¥oYoro1 t ¥a3Yao1 T Y2 T X B+ &,

whereyy = (1 + B + B? + By, Ya = —(1 — B + B> — B%)y;, y5 =
—(1 — B2y, yx = (1 — BYy,;, X consists of seasonal dummies and trends
and¢(B) is selected as the sixth-order lag polynomial as in Canova and Hansen
(1995. The Hylleberg et altest rejects the null of a negative unit root when
the t-statistic fory, = 0 is small and rejects the null of annual unit roots when
the F-statistic foriy; = ¢, = 0 is large Critical values of the Hylleberg et al
test whenx; contains seasonal dummies and trends are given in Table 1 of
Smith and Taylon1998.

Table 2 reports the case when= 0, and then the entries in Table 2 are the
size of the Canova and Hansen test and the power of the Hyllebergtestal
As in the table ST tends to overreject the null hypothesis of no unit root when
a goes to—1, whereas there is a tendency of underrejectionSio? when|a|
becomes largeThe power performance of the Hylleberg et t@st for annual
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TABLE 2. The size and power of the Canova and Hansen test and the Hylle-
berg et altest(p = 0)

sr sr HEGY  Sr/2 Sz HEGYa

a (€1) (€2) () (€1 (€2) (7/2)

T =150 Q8 0009 Q010 Q904 Q004 Q010 0994
04 0026 Q027 0881 Q031 Q034 Q975

0 0042 Q043 0823 Q051 Q053 Q956

-04 0.075 Q060 Q717 Q033 Q036 Q974
-0.8 0.292 0166 0349 Q002 Q005 Q993

T=50 08 0.005 Q013 Q0149 Q009 0021 Q0163
0.4 0.009 Q015 Q116 Q025 Q043 Q114
0 0.027 Q029 Q080 Q045 Q061 Q090

-04 0.082 Q049 Q068 Q032 Q053 Q104
-0.8 0.303 0133 Q059 Q009 Q016 Q0162

aHylleberg Engle Grangeyand Yoo(1990.

unit roots seems good whéin= 150 and so does the test for a negative unit
root except for the case when= —0.8, although they have very low power
when the sample size is 50

Table 3 shows the case whpn= 0.1. The power of the Canova and Hansen
test against a negative unit root seems to be affected by the valjevbereas
that of the test against annual unit roots is not greatly affe@edliscussed in
Corollary 1, the rejection frequency o7 (S7/?) does not increase when the
DGP has only annual unit roota negative unit rogt We can also see that the
selection of the longer lag truncation parameter entails the reduction of the,power
although the size of the test tends to be stabte the Hylleberg et altest the
case wherp = 0.1 corresponds to the null hypothes@nd the rejection fre-
quency of the Hylleberg et allest in Table 3 is the empirical siZ€he rejection
frequency of the Hylleberg et aest for a negative unit rogannual unit roots
is very high when the DGP has annual unit ré@inegative unit rogtandT =
150, although some other cases have empirical size very close to the nominal
size Similar results have been already obtained by Canova and H&ah385
for the case without seasonal trends

5. CONCLUDING REMARKS

We have investigated the Canova and Hansen test for the null hypothesis of no
seasonal unit root against the alternative hypothesis of seasonal unit@oots
analysis shows that the local asymptotic power depends only on the ratio of the
squared local alternative to the spectral density at the tested freqWge@iso
showed that the local limiting power of the Canova and Hansen test against a
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TaBLE 3. The size and power of the Canova and Hansen test and the Hylle-
berg et altest(p = 0.1)

s7 s7 HEGY  S72  S7/2  HEGYa
a (€1 (€2 () (€1) (€2 (7/2)
= —r-1+te
T =150 Q8 0.837 Q708 Q043 Q000 Q005 Q992
0.4 0.829 Q703 Q044 Q011 Q019 Q982
0 0.808 Q680 Q056 Q015 Q036 Q970

—-04 0.730 0621 Q107 Q012 Q0020 Q985
-0.8 0.605 Q462 Q155 Q000 Qoo7 Q996

T=50 08 0.385 Q275 Q057 Q013 Q0026 Q131
0.4 0.375 Q274 Q055 Q025 Q046 Q100
0 0.337 0230 Q048 Q047 Q062 Q100

-04 0.274 Q167 Q054 0022 Q041 Q137
—-0.8 0.345 Q156 Q050 Q012 Q0020 Q164

N = —re2>+t €
T =150 Q8 0.004 Q007 Q899 Q820 Q792 Q186
0.4 0.013 Q020 Q897 Q866 Q810 Q189
0 0.026 Q029 Q894 Q873 Q800 Q166

-0.4 0.058 Q053 0820 Q879 0819 Q160
-0.8 0.282 0162 Q0452 0832 Q0803 Q164

T=50 08 0.003 Q009 Q0133 Q179 0202 Q076
0.4 0.016 Q018 Q120 0232 0235 Q057
0 0.026 Q029 Q091 0288 Q247 Q056

-0.4 0.077 Q051 Q073 Q237 Q0233 Q072
-0.8 0.309 0121 Q070 0188 Q0186 Q092

aHylleberg Engle Grangey and Yoo(1990.

negative unit roofannual unit rootsdoes not increase when the true process
has annual unit root& negative unit rogt

NOTE

1. We thank a co-editor who pointed out this relatiétart of the proof is due to him
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APPENDIX

LEMMA A. Suppose that the statistig $s defined by

1 Y N . N .
SN:NZ'BNZ-F FZ,B’%Z: E (BN(J,k)+ EBN(JJ)BN(LK))ijky
= =1

Z =

1
N

1

(A1)

where z=[z,,...,zn]’, {z} ~i.i.d.(0,1), and B, satisfies

lim max

N—oo  j, k

By (j, k) K(j k) -0
NJ7 N’N - Y%

with K(s, t) (# 0) a symmetric, continuous, and nearly definite function. Then,

/1 b%
d 2
SRS + ,
n_l()\n /ti)é/n
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where{Z,} ~ NID(0,1) and{A,} is a sequence of eigenvalues of K repeated as many
times as their multiplicities, with its characteristic function is given by

: = 1 y\] v
lim E(eS) = ] [1— 2i0<— + —2)]
N—oo /\n

n=1 An
= [D(i6 + V=6 + 2iy0)D(i6 — V=67 + 2iy0)] "2
where D(A) is the Fredholm determinant of K.
Proof. See Theorem .43 of Tanaka 1996 p. 175).

Proof of equivalence of SI" to the Canova and Hansen testThe Canova and
Hansen test is defined as

M-

1 R R A
&I’:nH = -I-2 Ft,Ym(YmeYm)ilYm Ft
t=1

for m = 7 and#/2, whereF, = 3;_; f,, with f; = [cos( jm/2),sin( jm/2),cod jm)]’
andY, = diag{0,0,1} when testing against a negative unit root afg, = diag{1,1,0}
when testing against annual unit roots

Form = o, we have

1 T T ) 2
st = 2( (—1)1‘%-)
t=1\ j=t

G, T2
_ 1
- G,T?

<_E (—DJ’*VJ-)
j=1

l T t ) 2
- iy
QWT21—21<§1( Y y,),

M-

which is the same as the Canova and Hansen test bedausey’, QY. as shown in
Section 3 The second equality is established becaﬁg{gl(—l)i‘tyj = 0, which holds
becausey; are regression residuals wafon x;, seasonal dummies

Similarly for m = 7/2, we have

1 T2(/T12 i 2 T2 . z
- i (S + (B )
j=t =t

q'n—/ZT2 t=1

1 T/2 t _ 2 t _ 2
8l T ($eun))
/2 t=1 j=1 ji=1

which is equivalent to the Canova and Hansen test if we dge,4or the construction
of the Canova and Hansen test as the spectral density estimator at fregt/@nayth
information that the off-diagonal elements @f are zergi.e, if we useY,,/zflfY,,/z =
diag{2q7/2y2q”n’/2}- u

Proof of Theorem 1. In the proof we omit the subscript unless there is confusion
First we show thag,, is consistent unded ] for Case B Becausey; = G, + f; where(;
andr, denote regression residualswgfandr; on x;, respectivelyq,. can be expressed as
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i 1
= Z w( j,€)cod jr) ? E Oy O;
j=—+¢ t

+ E w(j,¢)cos jm) = E(0t+] Fi + Og Py + Py fe). (A.2)

Because the first term converges &g in probability as discussed in Canova and
Hansen(1995, it is enough to show that the second term(Af2) converges to zero in
probability.

Noting thatr, = r, — x,(Z; %, x/)"* 2, x; r; we have

T -1 T -1 T
E[f2] = ZE[rf + X < > X xj’> X X{ ( > X xj’> > X1 } (A.3)
i=1 =1 =1 i=1

UnderH7 ry = 3j_1(=1)"J¢; wheree; ~ NID(0,¢?0%/T?2) becausep = ¢%T? and
then

22t

Elr?] = “5= = O(T™) (a4

for all t. Similarly, because; is seasonal dummies for Case B aho; x/ = N X I,
becausel = 4N, we have

T T -1 T -1 T
’ ’ ’ ’
E[Elrj X, _Elxj X | XX Elxj X; Elxj rj}
1= = 1= 1=

1 r T T
WE Z xxlxtz‘,xr}

(B (B o (B o (3

1 N N N N
N2 E NYrZ2 s+ N r2 ,+N> r}j_1+NErf,-]
| =1 j=1 j=1 j=1

\/\

I/\

_ —O(T1) (A.5)

for all t. Then by(A.3), (A.4), and(A.5), E[f2] = O(T 1) for all t and by the Cauchy—
Schwarz inequality

|7 3er|-
El = f,

T = t+j
so thatT ~* 3, ., is Op(T ~1) for a fixed|. Because the range pfs —¢ to € and¢ =
Op(T*®), we have

¢ 1
> w(j,€)cos(jm) = Ert+] fYt4>0 (A.6)

j=—¢

1
N

1T
= — Er_2_
Nj;l (7]

1 T
= 2 E[r2,V2E[r2)¥2 = O(T %),

where-%> denotes convergence in probability
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Similarly T3, 0. is On(T ¥2) for fixed j because |[E[Oyf]] =
E[02,]1Y2E[r2]¥2 = O(T ~¥/2), and then we have

€

S wj,0c0s m) = 38y, 0. (A7)

==

With (A.6) and(A.7), we conclude thad),. converges tar2 in probability under local
alternatives

In a similar way convergence for Cases A and C and convergengg, ofo o2,,/4
can be provedAccording to this resujtwe can investigate the limiting distribution of
St with qm, the probability limit of §,, instead ofg,.

Hereaftey we will use the vectorized expression suchuasr the annualized vector
series such ait);}, not the original seriefu;}. Notice the relation that = [Uj,...,U{]
because we assumie= T/4 is an integer

Here we decompose the annualized progebsinto three termsBy the Beveridge—
Nelson decompositigrwe have

U =AY + V" — V5,

whereV* = X7 AV, with Af = 312,,; A and in the vectorized form
u=(Iy®Av+v:, —v*

where e.g., v* = [V;",...,Vi']’. Then we have

=XB+Le+ (Iy®Av+0v" v

so that
Sn = o1’ y'MLL'My
= ® A vYMLLM{Le + (Iy ® Av}
2
+ 3 T2{Le+(|N®A)v}’MLL'M(v*;1—v*)
+ . TZ( 1= 0")YMLL'M(v*; —v¥). (A.8)

Here we show that the last two terms awg(1). Let us consider Case,Bvhere
X = [lg,...,14]". Note that in the annualized vector forjthe typicaljth block of
M(v*, — v*) can be expressed as

'MZ

Z|+=

Vit~

1 N ) 1 * *
l\/J 17 ]_Ng —1_Vj)_N(VO_VN)y

]
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and then the typicglth block of L’'M(v*, — v*) becomes

N . 1 .
Qo1 =V + Q1 X (Vi — W) — = Qo(Ve — W) — 2 Qi(Vo = W)
k=j+1 N N k=j+1
1
= Qo(Vi 1 — V") + Qu(V; = V) — = Qo(Vo' — W) — Ql(Vo W)

N
=R, say

Becausg A} is absolutely summabl¢V,*} is a second-order stationary sequeraed
thenR; is Oy(1) for all j. This shows that

(v:, —v*)MLL'M(v*, —v*) =

T ZRR 0.

Un T2 =

For the second term dfA.8), note thatin general (a’b)? = (a’a)(b’b) for the vec-
torsa andh. Then the square of the second term divided by 4 is bounded above by
the product of the first term and the third terBecause the first term will be shown to
be Oy(1) later and the third term converges to zero in probability as shown prevjously
the second term ofA.8) is op(1).

Similarly the same result is obtained for Cases A an@@ we omit the proof

Now we are ready to consider the first term(8£8) as far as the limiting distribution
is concernedUnder the assumption of normalitye + (Iy ® A)v ~ N(0,0%(pLL’ +
(1/0?) Iy ® 3)) becauser?AA = 3 ande andv are independeniThen definingz =
[Z1,...,Z1]) =0 (pLL' + (1/0?) Iy ® 3) Y2(Le + (Iy ® A)v ~ N(0, 1), we have

o 1
S T

® Av}MLL'M{Le + (Iy ® Ao}

2 1/2

o ’ ’ l 1/2 ’ ’ l
g7’ PLL+ I @) MLLUM(pLL + =1, ®3) 2

2

lla

o 1
T Z’L’M<pLL’+—2|N @E)MLZ
m o
2 2

16N?

= F]-NZZ’{L’M(IN ® X)ML + (L’ML)(L’ML)}Z

= 16qm JkElZ {—[L(|N®E)ML](J k)

CZ 2 N 1
+ — 16N |21N[L ML](j, |)—[|_ ML, k)}Zk, (A.9)

where 2 denotes equality in distributiory; = [Zs_3, Z4j—2, Zaj—1, Z4j]" ~ NID(0, 1)
forj=1,...,N,and[H](},k), j,k=1,...,N, for the T X T matrix H denotes thé j, k)
block of H when we partitiorH into N X N blocks with each block a & 4 matrix as
we divideL in (2). For example[Ly](L1) = Qmno and[X](N,2) = NI, for Case C
The second equality holds from the definition afand the third equality is due to
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the relationT = 4N and p = ¢%T2. The equality in distribution is established using
the relation thaz’HH'z 2 zHH'z for any T X T matrix H, which holds becausklH’
andH’H have the same eigenvalues and a standard normal distributiohe last
equality holds becausk; ® ¥ and M are commutative andil is idempotenti.e.,
(In® M =M(ly ® 3), andM? = M.

To derive the limiting distribution oS", we examine the terms in braces (@.9),
such aN [L'(Iy ® 2)ML](j,k). Here we consider Case, @ which the model has
seasonal dummies and trentiote that

Qo Ql[= 07[ Qo 0
Qé : 3 Q1 Qo
Ly ®3)L = , . T
Ql . : . .
| O QLo SLQ v Q Q

[ QXQo+ (N-DQi3Q; Qi3Qo+(N—-2)Q13Q; ... Q13Q
Qo2Q: + (N—2Q12Q; Qo2Q+(N—2)Q12Q; ... Qi2Q

L QIQy Q2Q; o Qo2Q
Then the( j, k) block of L’(Iy & )L becomes

QoXQy + (N=[)Qi3Q; = (N—j)Q12Q, + O(1) forj>Kk,

Q12Q; + (N=K)Q12Q; = (N-KQi2Q, + O(1) forj <Kk,

Q02Qo + (N—j)Q12Q; = (N—[)Q12Q; + O(1) forj =k

Then in general we can write

[L'(In ®@2)L](], k) = (N —max(],k)Q12Q, + O(1). (A.10)
Similarly, the jth row block ofL'(ly &® X)X is expressed as

N
[L'(Ily ®3)X1(j,+) = [Q()E +(N—)Qi%,jQes + X QiE]

i=j+1

2 _i2
= [(N — i3, 5 QiE] +[0(1),0(N)], (A.11)
and thekth column block ofX'L is given by
_Q0+ (N— k)Ql_
X'L](-,k) = N
XHICH kQ+ >
L i=k+1 .
— _ ('\21 ) k)ZQl | O(l) A.12
B %Ql +_o(|\|)}’ (A.12)
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where we deflneE, . =0fora>band

4 6
Nl TREl| ToNE) oY
6 12 ON3) O(NH|

N2|4 N3|4

(X'X)™t = (A.13)

Then by the equationgA.10)—(A.13), the (j,k) block of N"*L'(Iy ® =)ML can be
expressed as

1
LIy @MLK

1 1
N E v @ 2L k) — T (I ® XX X) XL, k)

1 1
N [L'(Ily ® 2)L](j, k) — N [L'(In ® 2)X](J, ) (X X) XL (-, k)
e man ) o)1) -l ) ()
max N°N N N N? N
kz j2 k2 )
—3( )(1—m)+3<1—m><l—N—>]}Q12Q1+O(N )
= [mn() o o () o oo
= ymin N,N — m+3m N-l‘ﬁ —3F Q12Q1+O( )

~ ke @ixa, +omN ),

|
Z|—

where the fourth equality is established using the factghiat — max(s,t) = min(s, t).
Completely in the same wawe have

—[L ML](j, k)*Kc< >Q1Q1+0(N b).

Then it is enough to consider
1 N i c%g?2 N il
UL - 71K = —
5" TegN ,-El { °< >Q12Q1 16N Z <N’N

|
X Kc( )(QlQl) }Zk,

as far as the limiting distribution is concerndmtcauséS!" — S™| converges to zero in
probability.

Here note thafP'Z;} has the same distribution 4%;}, NID(0, 14), because the ma-
trix P is orthonormal wheré is defined in(9), and thenby redefiningz; = P'Z;, we
have
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1 N i k
s = » Z{Kc(,i N)ququ

160, N ;i
S | l K l 5 (P'QyQ,P)2tZ
= N N C N’ N QlQl k

(i) When m = 7, we can easily calculate tha®'Q;Q,P = P'Q,,Q,,P =
diag{0,16,0,0} andP'Q;2Q,P = P'Q, ;P(P'2P)P'Q, ;P = diag{0,4,0,0} X
P’3P diag{0,4,0,0} = diag{0,1602,0,0}. Then S™ can be expressed as

e _ A ik
S = _;lzj Kel+y ) diagi0.1602,0,0}
o=

%K le lkd 0,16,0,0
16N & CAN’N/ CIN’N 12g{0,16,0,0}*

c?e? N i | k
+0'3N |:1KC N'N Ke N'N 2222k

(A.14)

wherez, ; is the second element .
Now we apply Lemma A to the last expression(Af14). Noting thatKc( j/N,
k/N) andc?o?/a 2 correspond t@By ( j, k) andy in (A.1), respectivelywe obtain
Theorem 1i) for Case C
(i) Whenm = 7/2, we can easily calculate th&'Qi;Q,P = P'Q.,,1Q,/2.P =
diag{0,0,4,4} and P'Q{3Q;P = P'Q,,21P(P'SP)P'Q,,2.1P = diag{0,0,
402,,402,,}. Then S™ can be expressed as

4
S = E Z {Kc< ) )diag{0,0,40§/2,4a,f/2}

16025N jics N’
> j 1 lok\ .
2} N N ) Kel oy ) (diagl0.0,4.4)2 ¢ 2,
1 XN ik 202 N P -
= — K —,— |+ K — — |Ke| =, =
Nj,gl{ C<N N) 405/2N,:21 C<N N el NN (2%

Kjk-i-CZUZ%KjIKlk
AN N 402,N & c\ NN/ elN'N Z4,iZa ks

(A.15)

wherezs ; andz, ; are the third and fourth elements Bf.
Becauses j andz, j are independentve can apply Lemma A to the two terms
in (A.15) separatelyand then we obtain Theorentiil) for Case C
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For Case AM = |1 so that

1 1 j
SILMUIGK = 1000 = (1= max o )i+ o)
k(o x Ja@ir o,
. |
S0 @ DML = ke, )iz, + onn ),

Similarly to Case Cwe have for Case B

S ool ) ()3
N[ ](19 )_ max N,N N N
X Q1Q; +O(N™)

{mln(j k>—£}Q’Q +O(N™1)
N’ N N2 [ et

ko[ 330 J@r@u o,

. _
SN @ ML) = Ky (,i N>Q12Q1+O(N 1,

Then completely in the same way as Casgwe can establish Theorem 1 for Cases A
and B |

Proof of Corollary 1. The proof is similar to that of Theorem Completely in the
same way asA.9), it can be shown that

1
sy = 16q kzlz{ Lin(In ® 2)ML] (1. K
m'Y
Ni mML 'IiL’ML k) Z
;N I](Ji)N[I m](a) k
Pl oSl (LK
_16qu;,§12'{ (N N) Ona*Qms

N i "
16N < < )K'<N’N>(Q;n,1Qi,l)(Qi/,lQm,1)}Zk7

underHj for i,m = #,7/2 (i # m), but we can easily check th&, ;Q,,,, = 0 and
then the second term in braces vanistsesthatS{" converges in distribution to the null
distribution (10). |



