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Abstract

This paper presents a generalized seasonally integrated autoregressive moving average

(SARIMA) model that allows the two di#erencing parameters to take on fractional values.

We examine the asymptotic properties of the estimators and test statistics when the mean of

the model is unknown. The findings show that standard asymptotic results hold for the tests

and that the conditional sum of squares estimators are consistent and tends towards normality.

The paper provides a modelling application using data on total power consumption in Japan.

Keywords: fractional di#erencing, Lagrange multiplier test, long memory, seasonal di#eren-

cing, seasonal persistence.
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I . Introduction

In the past decade, there has been burgeoning interest in time series with strong

dependence properties, especially hydrological and financial time series. These series generally

have the property of slowly declining serial correlations, such that the sum of the absolute

values of these correlations may diverge. In response, new classes of time series that have the

property of strong dependence have been presented by Granger and Joyeux (1980), Hosking

(1981), and Gray et al. (1989), which allow the di#erencing parameters to take on fractional

values. Giraitis and Leipus (1995), Robinson (1994), and Woodward et al. (1998) generalized

Gegenbauer autoregressive moving average (GARMA) models, known as k-factor GARMA

(p, q) models, which allow the spectral density to be unbounded and peak at an arbitrary k

with di#erent frequencies of n�[0, p]:

f(L)(1�L)d1(1�L)dk P
k�1

i�2

(1�2hi L�L2)di(xt�m)�q(L)et (1)

where {et} is iid(0, s2) and E[e4
t ]��. The polynomials f(z)�1�Sp

i�1fi z
i and q(z)�1�
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i have roots outside the unit circle. hi�cos(ni) and 0�n1�n2���nk�1�nk�p. When

k�1, it is known as the fractionally integrated autoregressive moving average model, or

ARFIMA(p, d1, q) for short, by Granger and Joyeux (1980) and Hosking (1981). Giraitis

and Leipus (1995) and Woodward et al. (1998) analyzed the k-factor GARMA(p, q) model

and showed that {xt} is stationary and invertible if �di��1/2 for i�1, ..., k.

This paper investigates a special case of the k-factor GARMA model, which is considered

by Porter-Hudak (1990) and naturally extends the seasonally integrated autoregressive

moving average (SARIMA) model of Box and Jenkins (1976):

f(L)F(Ls)(1�L)d0(1�Ls)ds(xt�m)�q(L)Q(Ls) et (2)

where s is even, F(zs)�1�Sps

i�1Fi z
is, Q(zs)�1�Sqs

i�1Qi z
is and f(z)F(zs)�0, q(z)Q(zs)�0

have no roots in common and all roots are outside the unit circle. Since (1�z)a(1�zs)b�(1�
z)a�b(1�z)bPs/2�1

j�1 (1�2cos(2pj/s) z�z2)b, the model (2) is a (1�s/2)-factor GARMA

model, which allows the integration order to be a real number, and throughout this paper we

refer to the fractional SARIMA(p, d0, q)(ps, ds, qs)s model as the SARFIMA or SARFIMA

(p, d0, q)(ps, ds, qs)s for short.

In Section II, we explain the parameter estimation of the SARFIMA model, using the

conditional sum of squares (CSS) method. It is shown that the CSS estimator is consistent and

tends to normality. In Section III, testing procedures using residual autocorrelations such as

the Lagrange multiplier (LM) test are shown. We also explore the asymptotic properties of the

Wald test statistics. We note that Sections II and III impose the condition {xt�m, t�0} to

simplify the proof of asymptotic normality, but do not impose the conditions of normality of

the model. The finite sample performance of these tests and the CSS estimators is examined in

Section IV. Section V illustrates the use of the SARFIMA model. Section VI concludes.

Throughout this paper, let L be the lag operator, (f(x)/(x�x�y�(f( y)/(x. In addition,

‘RHS’ abbreviates ‘right-hand side’, ‘LHS’ abbreviates ‘left-hand side’, and Ci, i�1, 2, ..., is

used to denote universal appropriate positive constants to economize on notation. All proofs

are given in the Appendix.

II . Asymptotic Results for CSS Estimation

In this section, we examine the asymptotic properties of the estimators of the nonstation-

ary SARFIMA model, which is defined by

(1�L)d0(1�Ls)ds(xt�m)�)(L)et, t�1; xt�m, t�0, (3)

where )(L)�q(L)Q(Ls)/[f(L)F(Ls)]. We make the assumption that {xt�m, t�0} in order

to simplify the proof of asymptotic normality. Following Chung (1996) and Beran (1995), we

use the sample mean as an estimator of m, and the CSS method to estimate d0, ds, SARMA

parameters, and s2. For the process {xt} in (3), we assume:

Assumption 1. (a) {et}
�
t�1 is iid(0, s2) and E[e4

t ]��. (b) s is known and an even integer. (c)

(d0, ds)	Ds
i, j for some i, j�1, 2, 3 where Ds

i, j�{(d»0, d»s)�(d»0�d»s, d»s)	Ds
i
Ds

j}, Ds
1�[t, 1/2�

t], Ds
2�[t�1/4, 1/4�t], Ds

3�[t�1/2,�t], and t	(0, 1/4). (d) Let ) be (f1, ..., fp, q1, ...,

qq, F1, ..., Fps
, Q1, ..., Qqs

)� and D) be a compact space such that, for any )	D), f(z), F(zs),
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q(z), and Q(zs) satisfy conditions given in Section I. In addition, s2 is in the interior of the

compact space contained in ��.

Since the model (3) assumes xt�m for t�0, the SARFIMA model (3) is nonstationary.

However, the model (3), which satisfies Assumption 1, is an approximate version of the

stationary and noninvertible SARFIMA model as t��. This is because, when �d0�ds�, �ds�
�1/2, the model (2) for t�..., �1, 0, 1, ..., is stationary and noninvertible as shown by

Woodward et al. (1999).

Given a process {xt}
T
t�1 defined in (3), which satisfies Assumption 1, let d be a true

parameter vector (d0, ds, )�)�, and let d»�(d»0, d»s, )»�)� be any parameter vector in the parameter

space Ds
i, j�D), where (d»0, d»s)

� is any vector in Ds
i, j, )» is any vector in D), and assume that d»

and d are in the same compact parameter space defined by Assumption 1. Let x̄�ST
t�1 xt/T, and

let pk(d») be defined by S�k�0 pk(d») zk�(1�z)d»0(1�zs)d»s)»(z)�1, where )»(z) be given by replacing

) in )(z) by )»	D) in Assumption 1. Then the CSS estimator (d«�, ŝ2)� of (d�, s2)� is obtained

by maximizing the CSS function:

S(d», s̈2)�� T

2
log 2p� T

2
log s̈2� 1

2s̈2 S
T

t�1

e2
t (d»), (4)

where et(d») is defined by et(d»)�et(d», x̄)�St�1
k�0 pk(d»)(xt�k�x̄).

Assumption 1 (c) is from Yajima (1985) where he proves strong consistency and

asymptotic normality of maximum likelihood estimators (MLE) of the ARFIMA(0, d, 0)

model with d	(0, 1/2). Using the techniques of Yajima’s proof, we can prove the consistency

of the CSS estimators when (d0, ds)	Ds
1, 1 (see Lemmas B 4 to B 8 in Appendix B) and extend

this result to the case of any Ds
i, j (see Lemma B 9 in Appendix B). Note that the deviation of

the asymptotic distributions of d’s CSS estimator d«is independent on that of s2, ŝ2�ST
t�1 e2

t (d«)/

T, which is obtained in the same way as the MLE for the ARMA model of Box and Jenkins

(1976).

Then we have the following result.

Theorem 1. Let d«and ŝ2 be the CSS estimator of the parameter vector (d�, s2)� based on a sample

{xt}
T
t�1 given by (3) and Assumption 1. Then it follows that, as T � �,

d«�
p

d, ŝ2 �
p

s2, (5)

and �� (d«�d) �
d

N(0, Id
�1), �� (ŝ2�s2) �

d

N(0, 2s4�k4), (6)

where k4�E[et]
4�3s4,

Id�S
�

k�1

dkd�k, and
(et(d, m)

(d
�S

t�1

k�1

dk Lket, (7)

and each element of {dk} is given by (38) in the proof of Theorem 1.

The proof of Theorem 1 is given in Appendix B. Note that x̄ �
a.c.

m, E[x̄�m]2�
O(T2(d0�ds)�1) by Lemma B 10, and if m is known and x̄ of et(d») is replaced by m, then d«and

ŝ2 are strongly consistent and asymptotic normality of (6) holds (see Remark 1).

For the simple case of the process in (3) with p�ps�1, q�qs�0, f(L)�1�fL, and

F(Ls)�1�FLs, Id can be written as
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Id�

�
�
�
�
�
�
�
�

p2/6

�
�
�

p2/(6s)

p2/6

�
�

�log(1�f)/f

�log(1�fs)/f

1/(1�f2)

�

�log(1�F)/(Fs)

�log(1�F)/F

fs�1/(1�fsF)

1/(1�F2)

�
	








�
�

. (8)

III . Tests Based on Residual Autocorrelation

This section discusses testing for the integration order, namely, the LM test, which draws

on LM tests for the integration order of the ARFIMA model by Robinson (1991), Robinson

(1994), Agiakloglou and Newbold (1994), and Tanaka (1999). For the purposes of practical

implementation, Godfrey’s (1979) LM approach is also used. Finally, this section shows that

the Wald test statistic has the same limiting local power as the LM test. Let {êt} be the residual

sequence of the CSS estimator and let r̂( j)�ST�j
t�1 êt êt�j/ST

t�1 ê2
t , j�0, 1, ..., T�1.

For the SARFIMA model, {xt}
T
t�1, given by (3), we consider the testing problem of the

null hypothesis H0: SARFIMA(p, d0, q)(ps, ds, qs)s against the alternative

HA, 1: SARFIMA(p, d0�a0, q)(ps, ds, qs)s (9)

or HA, 2: SARFIMA(p, d0, q)(ps, ds�as, qs)s, (10)

where the sets of the integration orders (d0, ds), (d0�a0, ds), and (d0, ds�as) satisfy

Assumption 1. The assumed null model is obtained by imposing the restrictions a0 (as)�0 and

the alternatives are a0 (as)�0 and/or a0 (as)�0.

Under the testing problem H0 against HA, 1, as in Tanaka (1999), let the CSS function be

S(a0, x, s2), where x�(ds, )�)� is unknown vector, whereas d0 is any preassigned value. Then

the score-like test statistic is given by

ST(a0
HA, 1)�
(S(a0, x, s2)

(a0 H0:a0�0, x�x«, s2�ŝ2

� 1

ŝ2 S
T

i�2

�
��
�

S
i�1

j�1

ei�j((d0, x«�)�, x̄)

j

�
	�
�

ei((d0, x«�)�, x̄)�T S
T�1

i�1

r̂(i)

i
(11)

where carets denote CSS estimators with the null hypothesis imposed.

Similarly, under the testing problem H0 against HA, 2, we have the test statistic

ST(as
HA, 2)�
(S(as, x, s2)

(as H0:as�0, x�x«, s2�ŝ2

�T S
[(T�1)/s]

i�1

r̂(is)

i
, (12)

where x�(d0, )�)� is unknown vector, whereas ds is any preassigned value. This implies that

the residuals {êt} are defined di#erently from (11).

To obtain potentially useful measures of power with a fixed significance level, we consider

a sequence of local alternatives. Then we obtain the following results, which generalize Tanaka

(1999, Theorem 3.3).

Theorem 2. Under the testing problem H0 against HA, 1 defined in (9) and a0�c/�� with c fixed,

it follows that, as T � �,
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�
��

ST(a0�HA, 1)

sd0

�
d

N(csd0
, 1) (13)

where ST(a0�HA, 1) is defined in (11), sd0
��s2

d0
, and 1/sd0

2 is the (1, 1) element of Id
�1 defined

in Theorem 1.

Theorem 3. Under the testing problem H0 against HA, 2 defined in (10) and as�c/�� with c

fixed, it follows that, as T � �,

�
��

ST(as�HA, 2)

sds

�
d

N(csds
, 1) (14)

where ST(as�HA, 2) is defined in (12), sds
��s 2

ds
, and 1/sds

2 is the (2, 2) element of I�1
d defined

in Theorem 1.

The proof of Theorem 3 is omitted since it can be obtained similarly to the proof of

Theorem 2 in Appendix C. Note that a consistent estimator of sd0
or sds

(ŝd0
or ŝds

) can be

obtained by inserting the CSS estimator d«into d in Id. In addition, using e�(e1(d), e2(d), ...,

eT(d))� and a T�(2�p�q�ps�qs) matrix X�((e/(d�)�H0
with each (i, j) element of the

partitioned matrix:

�
�
��
�

S
i�1

k�1

êi�k

k
� S

�
�

i�1

s

	



k�1

êi�ks

k
� êi�j

f«(L)
� êi�j

q«(L)
� êi�js

F«(Ls)
� êi�js

Q«(Ls)

�
�

�

T,

1 1 p q ps qs (15)

where (1, j) element is zero and êt�0 for t�0, we can also obtain a consistent estimator of Id,

X�X/(Tŝ2) where ŝ2�ST
t�1 ê2

t /T.

Hence, we suggest the following test statistics:

S�T(a0�HA, 1)�
������	
� ��
�� �d0

, and S�T(as�HA, 2)�
����
�	
� ��
�� �ds

(16)
ˆ ˆ

for the testing problems (9) and (10), respectively, which have a standard normal distribution

under the null hypothesis. Hence, for example, for the testing problem of (9) with a right-sided

alternative (a0�0), we can reject the null hypothesis when S�T(a0�HA, 1) exceeds the upper 100

a% of N(0, 1) for a test of asymptotic size a.

In many situations, researchers may wish to contemplate the following model:

yt�*t. b�xt, (1�L)d0�a0(1�Ls)ds�asxt�)(L)et, t�1, (17)

where {*t.} is a 1�r sequences of fixed, nonstochastic variables, b is a r�1 unknown vector,

(d0, ds) is any preassigned vector (d0, ds��1/2), and {xt} is a mean zero SARFIMA model.

We assume that we observe {( yt, *t.)}T
t�1. The assumed null model H0 is obtained by imposing

the restrictions a	(a0, as)
��0 and the alternative, HA, 3, is a
0.

To deduce the LM statistic, let the “di#erenced” model of (17) be ỹt�* t. b�x̃t(a) and y

�Fb�x(a), where ỹt�(1�L)d0(1�Ls)ds yt, * t.�(1�L)d0(1�Ls)ds*t., x̃t(a)�(1�L)d0

(1�Ls)dsxt, y�( ỹ1, ..., ỹT)�, F�(* �1., ..., * �T.)�, and x(a)�(x̃1(a), ..., x̃T(a))�. Then the
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least-squares estimator (LSE) of b is b«�(F�F)�1F�y�b�(F�F)�1F�x(a) and CSS estimates

of )«and ŝ2 are obtained by maximizing the CSS function S((d0, ds, )»�)�, s̈2) with the residual

et()»)�(1�L)d0(1�Ls)ds)»(L)�1 { yt�*t. b«}�)»(L)�1 { ỹt�* t. b«} under the null model. To in-

vestigate the large sample behaviour of LSE, let the (i, j) element of F be * i, j and DT�diag

{(ST
i�1* 2

i, 1)
1/2, ..., (ST

i�1* 2
i, r)

1/2}�diag{dT11, ..., dTrr}. Let

ST�ST(a�HA, 3)�T
�
��
�

S
T�1

i�1

r̂(i)

i S
[(T�1)/s]

i�1

r̂(is)

i

�
�	



�
(18)

where the {r̂(i)} are obtained by imposing the null hypothesis (i.e., {r̂(i)} are given by the

residuals {et()«)}. We assume:

Assumption 2. For the model in (17), (a) {xt�yt�0, *t.�0, t�0}. (b) Conditions (a), (b) and

(d) in Assumption 1 hold, (d0, ds) is known, and d0, ds��1/2 for the process {xt} in (17). (c)

limT � �dTii��, i�1, 2, ..., r. (d) limT � �D�1
T F�FD�1

T �A, where A is nonsingular.

We make Assumption 2 (a) in order to simplify the proof of asymptotic normality.

Assumption 2 (b) ensures the assignment of any positive integration orders to be tested, e.g.,

a testing problem of a SARIMA model with (d0, ds)�(1, 1). The role of Assumption 1 (c)

corresponds to a, namely, a�Ds
2, 2 under HA, 3 for appropriately small 	a	. In particular,

{x̃t(a)} is a SARMA model under H0. Assumption 2 (c) and (d) are well-known conditions to

investigate the large sample behaviour of b«[see, e.g., Section 9.1 in Fuller (1996)].

Then we obtain the following theorem.

Theorem 4. Under the testing problem H0 against HA, 3 defined in (17) and Assumption 2, for an

LM statistic ST defined in (18) with a�c/�� where c is a 2
1 constant vector, it follows that,

as T � �,

S�TS�1 ST/T �
d

c2(2, c�Sc), (19)

where S�1 is a 2
2 partitioned matrix in the north-west corner of Id
�1 defined in Theorem 1, and

c2(m, t2) denotes a noncentral chi-squared variable with m degrees of freedom and noncentrality

parameter t2. This variable is given by the relation c2(m, t2)�(Z1�t)2�Sm
i�2 Z2

i , where {Zi}
m
i�1

is iid N(0, 1).

The detailed proof of this theorem is given in Appendix C. Results in Theorem 4 not only

generalize Tanaka (Theorem 3.3, 1999) to the seasonal long memory case, but also coincide

with Robinson (Theorem 4, 1994), which considers frequency-domain LM test statistics.

As discussed above, because the consistent estimator of S�1, S«�1 can be obtained, the test

statistic,

lT(a�HA, 3)�S�TS«�1 ST/T (20)

is asymptotically distributed as c2(2) when the null model H0 is correct. Hence for the testing

problem H0 against HA, 3, we can reject the null hypothesis when lT(a�HA, 3) exceeds the upper

100a % of c2(2) for a test of asymptotic size a.

Furthermore, for practical implementation, we can calculate lT(a�HA, 3) by using God-

frey’s auxiliary regression method. First, imposing the integration order of the null hypothesis,

estimate SARMA parameters by the CSS method and calculate the residual vector ê�(ê1, ...,

êT)� as the dependent variable. Next, substitute ê and the CSS estimates for the regressor X as

=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H [June-*



in (15). Then conduct OLS regression and calculate the corresponding T times R2 statistic,

Tê�X(X�X)�1 X� ê/ê� ê, as lT(a�HA, 3).

For an intuitive comparison with the limiting power envelope, we have the following

result for the simplest model.

Corollary 1. For the model, (1�L)d0xt�et , let êt�xt and {xt�0, t�0}. Then it follows that, as

T�� under d0�c/�� , c�0, for an even integer s, and fixed but appropriately large m such

that Sm
i�1 i�2�p2/6,

(A): Pr
�
��
�
�� S

T�1

i�1

r̂(i)

i �� �
�

� �za

�
	

�
� Pr

�
��
�

Z1��za	c�
��
�
�
	

�

,

(B): Pr
�
��
�
�� S

[(T�1)/s]

i�1

r̂(is)

i �� �
�

� �za

�
	

�
� Pr

�
��
�

Z1��za	
c

s �
��
�
�
	

�

,

(C): Pr
�
��
�

1

T
S�TS�1

2 ST�c2
2, a

�
	

�
� Pr

�
��
�

c2
�
��
�

2,
c2p2

6

�
	

�
�c2

2, a

�
	

�

,

(D): Pr
�
��
�

T S
m

i�1

r̂2(i)�c2
m, a

�
	

�
� Pr

�
��
�

c2
�
��
�

m,
c2p2

6

�
	

�
�c2

m, a

�
	

�

,

where Z1�N(0, 1), ST is defined by (18), za is the upper 100a percent point of N(0, 1), c2
m, a is

the upper 100a percent point of a chi-squared variable with m degrees of freedom, and S2 is a 2


2 partitioned matrix in the north-west corner of Id.

Result (A) is due to Tanaka (1999, Corollary 3.1), who also shows that it is the locally

best invariant test under the local alternative d0�c/�� , c�0. We omit the proof since it

follows from a slight modification to the proof of Theorem 2.

Corollary 2. For the model, (1�Ls)dsxt�et, under the same conditions as in Corollary 1, it

follows that, as T�� under ds�c/�� , c�0, for an even integer s, and fixed but appropriately

large m such that S[m/s]
i�1 i�2�p2/6,

(A’): Pr
�
��
�
�� S

T�1

i�1

r̂(i)

i �� �
�

� �za

�
	

�
� Pr

�
��
�

Z1��za	
c

s �
��
�
�
	

�

,

(B’): Pr
�
��
�
�� S

[(T�1)/s]

i�1

r̂(is)

i �� �
�

� �za

�
	

�
� Pr

�
��
�

Z1��za	c�
��
�
�
	

�

,

(C’): Pr
�
��
�

1

T
S�TS�1

2 ST�c2
2, a

�
	

�
� Pr

�
��
�

c2
�
��
�

2,
c2p2

6

�
	

�
�c2

2, a

�
	

�

,

(D’): Pr
�
��
�

T S
m

i�1

r̂2(i)�c2
m, a

�
	

�
� Pr

�
��
�

c2
�
��
�

m,
c2p2

6

�
	

�
�c2

m, a

�
	

�

.

The corollaries above relate to the situation in which a researcher doubts that the process

is iid but cannot clearly determine what kind of long memory process applies. We note that the

LHS of (A) through (D) (and (A’) through (D’)) corresponds to S�T(a�HA, 1), S�T(a�HA, 2),

lT(a�HA, 3), and the (modified) Portmanteau test statistic respectively. It seems that not only

both (A) and (B’) but also (B) and (A’), (C) and (C’), and (D) and (D’) have the same
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F><. 1. RHS D; (A) I=GDJ<= (C) >C CDGDAA6GN 1 C=6C<>C< s 6C9 c L>I= a�0.95

F><. 2. RHS D; (C) 6C9 (D) >C CDGDAA6GN 1 C=6C<>C< m 6C9 c L>I= a�0.95
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limiting distribution.

Figures 1 and 2 illustrate the RHS of (A) through (D) changing s, m and c with a�0.95

by using S-PLUS. For a calculation of (C) and (D), we used Imhof’s (1961) formula. It is

apparent that (A) is uniformly most powerful in c, (C) is higher than various (D)s, (B)

depends on the value of s and tends to (A) as s becomes small. It also indicates, for

appropriately large s, that score-like test statistics from incorrect alternatives cannot detect the

true long memory model, while correct ones can detect it with high power. Furthermore, (D)

decreases as m increases. It also illustrates the di$culty of carrying out the (modified)

Portmanteau test since the approximation of a chi-squared variable needs large m while power

becomes low as m becomes large. On the whole, (C) has stable power compared to (A), (B),

(A’), and (B’) under the condition of Corollaries 1 and 2. Therefore, it seems reasonable to

use LM test statistics to test for the integration order.

We can also derive the Wald test statistics, which have the same limiting local power as

the LM test using the arguments of Remark 3. Let (d 0, d s)
� be the unrestricted CSS estimators

of (d0, ds)
� in (3) by maximizing the CSS function (4). Then it follows that, as T � �,

WT, 0��� sd0
(d 0�d0) �

d

N(csd0
, 1), under HA, 1 with a0�c/�� ,

WT, S��� sds
(d s�ds) �

d

N(csds
, 1), under HA, 2 with as�c/�� , (21)

WT, 0S�T
�
��
�

d 0�d0

d s�ds

�
��
	

�
S
�
��
�

d 0�d0

d s�ds

�
��
	
�

d

c2(2, c�Sc), under HA, 3 with a�c/�� ,

where sd0
, sds

, and S are defined by Theorem 2, Theorem 3, and Theorem 4, respectively. The

finite sample performance of these tests and the CSS estimates will be also be examined in the

next section.

IV . Some Simulations

This section provides some evidence on the simulation results of the CSS estimation of the

SARFIMA processes and the power of modified Portmanteau tests, LM tests, and Wald tests.

All experiments are based on 1000 replications and in each replication, data series of size T�
100 are generated. The calculations were conducted using S-PLUS. Here observations of both

models were generated by Cholesky decomposition of the covariance matrix of the process [see

Sections 11.3.1 and 11.3.5 of Beran (1994)]. We also performed some simulations using the

Levinson-Durbin algorithm and obtained essentially the same results as those using the

Cholesky decomposition. In addition, the Gauss-Newton procedure was used for the maximi-

zation of the CSS functions, the procedures of which are provided in Tanaka (1999, Section

5).

1. Results on CSS Estimates

The models employed here are

DGP 1: (1�fL)(1�L)d0(1�L12)ds(xt�1)�et,

and DGP 2: (1�FL12)(1�L)d0(1�L12)ds(xt�1)�et.
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Tables 1 and 2 examine the finite sample performance of the estimates discussed in Section II.

For each simulated data series, the sample mean, x̄, is calculated and subtracted from the data

points before the CSS method is applied to obtain the other parameter estimates. For each cell

of five columns denoted “Simulation results” in the Tables, the first number is the estimation

bias, the number in parentheses is the square root of the mean squared error (SRMSE), the

number in brackets is the mean of the asymptotic standard squared errors (MASE),1 and the

number in braces is the true asymptotic standard error (TASE). For the CSS estimates, TASE

is computed from Theorem 1. We omitted TASE for some cells since it does not depend on the

integration order. The results are quite similar to those obtained by Chung and Baillie (1993)

for the ARFIMA case. Since x̄�m�Op(Td0�ds�1/2) by Lemma B 10 and Leipus and Viano

(2000, Lemma 9), the rate of convergence of x̄ for true m depends on the value of d0�ds, and

the columns of m reflect this. Estimation bias and SRMSE of x̄ gets smaller as d0�ds gets

smaller. For the CSS estimates, in this case, if f�F, we find that both the Fisher information

matrix of (d«0�d0, f«�f)� and (d«s�ds, F«�F)� have the same elements by (8). It follows that

the value of TASE in Table 1 is comparable to the corresponding TASE in Table 2. It is also

apparent that the MASE and SRMSE in Table 1 and those in Table 2 are similarly

symmetrical. Roughly speaking, if we ignore the elements �log(1�fs)/f and

�log(1�F)/(Fs) in (8), the TASE of d0 in Table 1 and ds in Table 2 correspond to the results

1 Given the estimate aj for the true parameter a from the jth simulation trial and the average ā of aj, j�1, ...,

1000, bias is defined as ā�a, while MASE is the square root of S1000
j�1 (aj�ā)2/1000. The SRMSE is the square root

of S1000
j�1 (aj�a)2/1000, which is equal to the square root of (bias)2�(MASE)2.

T67A: 1. S>BJA6I>DC DC I=: EHI>B6I>DC D; SARFIMA(1, d0, 0)(0, ds, 0)s PGD8:HH:H

True value Simulation results

d0 ds f m d0 ds f s2

0.35 0.10 0.80 �0.2011 �0.0910 �0.0332 0.0177 0.2181

(5.8311) (0.2376) (0.1018) (0.1648) (1.5346)

[0.2195] [0.0962] [0.1638] [1.5190]

{0.2327} {0.0787} {0.1786} {0.1414}

0.35 �0.10 0.80 �0.1471 �0.0923 �0.0075 0.0202 0.4389

(2.1311) (0.2622) (0.0919) (0.1833) (5.3401)

[0.2454] [0.0916] [0.1822] [5.3220]

�0.35 0.30 0.80 �0.0012 �0.0864 0.0352 0.0208 0.8343

(0.1926) (0.2464) (0.0998) (0.1725) (14.7717)

[0.2308] [0.0934] [0.1712] [14.7481]

0.35 0.10 �0.80 0.0094 �0.0604 �0.0276 0.0259 �0.0234

(0.6519) (0.1218) (0.1011) (0.0808) (0.1417)

[0.1058] [0.0973] [0.0765] [0.1398]

{0.0835} {0.0785} {0.0641} {0.1414}

0.35 �0.10 �0.80 �0.0161 �0.0595 �0.0279 0.0320 �0.0290

(0.2259) (0.1192) (0.1031) (0.0827) (0.1418)

[0.1033] [0.0993] [0.0763] [0.1388]

�0.35 0.30 �0.80 �0.0007 �0.0103 0.0282 0.0211 0.0803

(0.0292) (0.1031) (0.0983) (0.0738) (0.1988)

[0.1026] [0.0942] [0.0707] [0.1819]

DGP 1: (m, s2, s)�(1.00, 1.00, 12)
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of Tanaka (1999, Table 9). It reveals not only a poor performance of the CSS estimates

depending on some of the SARMA parameters but also reveals an unstable limiting power of

LM tests for the integration order, which is considered in the next subsection.

2. Testing for the Integration Order

Next we examine testing the AR(1) or SAR(1) model against the following DGP 3-6:

DGP 3: (1�)L)(1�L)a xt�et, DGP 4: (1�)L)(1�L12)a xt�et,

DGP 5: (1�)L12)(1�L)a xt�et, DGP 6: (1�)L12)(1�L12)a xt�et,

where we fixed )�0.8 or�0.8 and assumed E[xt]�0 is known. Tables 3 and 4 are concerned

with the rate of rejection of the null hypothesis a�0 of no long memory.

In Table 3, the statistics ST, 0 and ST, S are, respectively, LM statistics defined from (16):

ST, 0� S
T�1

i�1 �
������
���

r̂(i)

iŝd0

, ST, S� S
[(T�1)/s]

i�1 �
������
����

r̂(is)

iŝds

,

where ŝd0
and ŝds

are computed from (15). These have the same asymptotic results in Theorems

2 and 3 by (40). The statistics lT, 0S are also LM test statistics, obtained using Godfrey’s TR2

statistics, which are asymptotically distributed as (20). The statistics Q�24 and Q�40 denote

modified Portmanteau test statistics, which are assumed to be asymptotically chi-squared with

24 and 40 degrees of freedom, respectively, under the null hypothesis. The number in

parentheses denotes the theoretical limiting power derived from Theorems 2-4. The general

T67A: 2. S>BJA6I>DC DC I=: EHI>B6I>DC D; SARFIMA(0, d0, 0)(1, ds, 0)s PGD8:HH:H

True value Simulation results

d0 ds F m d0 ds F s2

0.35 0.10 0.80 0.0778 �0.0343 �0.0321 �0.0169 0.4140

(5.5191) (0.1201) (0.2923) (0.2453) (1.1311)

[0.1151] [0.2905] [0.2447] [1.0526]

{0.0782} {0.2308} {0.1775} {0.1414}

0.35 �0.10 0.80 0.0194 �0.0264 0.0204 �0.0508 0.2242

(1.7547) (0.1088) (0.3307) (0.2926) (1.2578)

[0.1056] [0.3301] [0.2882] [1.2377]

�0.35 0.30 0.80 �0.0045 �0.0676 �0.1502 0.0427 1.1938

(0.1443) (0.1616) (0.2563) (0.1758) (1.3322)

[0.1468] [0.2077] [0.1705] [0.5912]

0.35 0.10 �0.80 0.0074 �0.0509 �0.0455 0.0163 0.1405

(0.6598) (0.1083) (0.1127) (0.0825) (0.2307)

[0.0956] [0.1031] [0.0809] [0.1830]

{0.0782} {0.0833} {0.0639} {0.1414}

0.35 �0.10 �0.80 �0.0046 �0.0513 0.0142 0.0131 0.2162

(0.2507) (0.1112) (0.0968) (0.0773) (0.2984)

[0.0987] [0.0958] [0.0762] [0.2056]

�0.35 0.30 �0.80 0.0000 �0.0070 0.0036 0.0088 0.1617

(0.0330) (0.0979) (0.1017) (0.0783) (0.2372)

[0.0976] [0.1016] [0.0778] [0.1735]

DGP 2: (m, s2, s)�(1.00, 1.00, 12)
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feature of Table 3 is that the modified Portmanteau test statistics perform poorly. ST, 0 or

ST, S is the most powerful if an alternative model is correctly specified, while the other is the

least powerful. The powers of lT, 0S are monotonically increasing in each case, though it is not

the most powerful. It is similar to the corollaries in Section III. It is also worth noting that, and

as in Tanaka (1999), the discrepancy between the finite sample and limiting powers is related

to the fact that, by (8), the estimators of a and ) are negatively correlated, and the correlation

is much higher for the case of (a, ))�(d0, f) (and�(ds, F)) with )�0.8 than for the other

cases. In these cases, LM statistics have not only quite low limiting powers but also a large

discrepancy between a finite sample and these limiting powers.

Finally, in Table 4, we conducted LM test statistics lT, k assuming alternatives, 7-factor

GARMA models with nj�( j�1)p/6, j�1, ..., 7, which is considered by Silvapulle (2001).

We also conducted the Wald test statistics WT, 0, WT, S and WT, 0S defined from (21). To

compute consistent estimators of sd0
, sds

, and S, we used a Hessian (the second-order

T67A: 3. T=: R6I: D; R:?:8I>DC D; I=: NJAA HNEDI=:H>H a�0 ;DG

DGP 3-6 6I I=: 5% L:K:A

)� 0.8 �0.8

a� 0 0.05 0.10 0.15 0.20 0 0.05 0.10 0.15 0.20

DGP 3

Q�24 6.5 6.5 6.3 7.8 7.6 6.7 7.5 12.6 24.3 40.5

Q�40 6.8 6.1 7.7 8.9 9.9 7.7 9.7 14.0 24.5 39.1

ST, 0 5.3 7.7 14.1 18.4 25.4 3.1 10.7 30.3 51.4 70.9

(5.0) (7.7) (11.3) (16.0) (21.8) (5.0) (14.9) (33.0) (56.4) (77.8)

ST, S 6.5 5.3 7.1 6.0 5.6 6.9 7.5 9.5 15.4 22.1

lT, 0S 4.1 4.4 6.7 8.1 11.2 4.7 5.9 13.8 32.9 51.6

(5.0) (5.4) (6.4) (8.3) (11.1) (5.0) (7.8) (17.4) (34.7) (56.9)

DGP 4

Q�24 6.5 8.5 10.5 19.2 35.0 6.7 8.0 10.9 18.8 33.8

Q�40 6.8 9.7 11.9 20.9 35.2 7.7 10.0 11.5 20.8 34.7

ST, 0 4.7 7.1 8.6 9.1 10.7 2.9 4.1 5.9 6.0 7.9

ST, S 3.8 16.2 34.5 59.0 80.6 3.6 15.3 34.8 58.2 79.9

(5.0) (15.8) (35.8) (60.9) (82.1) (5.0) (15.8) (35.8) (60.9) (82.1)

lT, 0S 4.1 6.2 15.7 31.2 56.6 4.7 5.9 14.1 30.9 57.7

(5.0) (8.2) (19.2) (38.7) (62.6) (5.0) (8.2) (19.2) (38.7) (62.6)

DGP 5

Q�24 6.1 6.8 15.5 26.6 48.8 5.2 5.8 12.1 25.3 40.2

Q�40 6.2 4.8 11.4 22.4 44.5 5.6 5.7 12.9 22.4 35.8

ST, 0 4.7 18.0 37.7 62.3 82.5 5.0 13.3 30.4 53.3 72.3

(5.0) (15.7) (35.7) (60.8) (81.9) (5.0) (15.8) (35.8) (61.0) (82.1)

ST, S 5.5 5.0 6.0 5.4 8.2 5.3 6.8 7.5 11.6 17.4

lT, 0S 5.4 6.4 22.1 40.5 65.8 4.1 6.7 17.0 32.3 53.2

(5.0) (8.2) (19.1) (38.6) (62.4) (5.0) (8.2) (19.2) (38.7) (62.6)

DGP 6

Q�24 6.1 3.8 5.5 6.4 6.9 5.2 5.0 7.5 9.8 20.4

Q�40 6.2 3.5 8.0 4.9 4.7 5.6 4.5 6.1 9.7 19.1

ST, 0 4.7 5.5 6.4 6.6 8.4 5.0 4.1 6.3 7.5 7.4

ST, S 5.5 4.2 4.0 6.0 4.0 5.3 12.1 25.4 42.3 63.6

(5.0) (7.7) (11.3) (16.0) (21.8) (5.0) (14.9) (33.0) (56.4) (77.8)

lT, 0S 5.4 3.3 8.9 7.0 8.5 4.1 4.8 8.9 18.6 36.5

(5.0) (5.4) (6.4) (8.3) (11.1) (5.0) (7.8) (17.4) (34.7) (56.9)
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derivative) matrix from the Gauss-Newton procedure (see Tanaka, 1999, Section 5). The

statistics WT, 0 and WT, S perform similarly to ST, 0 and ST, S, respectively. The statistics WT, 0S

and lT, k also perform similarly to ST, 0S.

It implies that the impact of SARMA parameters on integration orders is quite compli-

cated so that the LM test and the Wald test may perform poorly for testing for the integration

order of the SARFIMA model without strong evidence of SARMA parameters when the

sample size is 100.

V . An Example Using Japanese Total Power Consumption

As an illustration of the use of the SARFIMA model, we consider monthly total power

consumption data in Japan from the Federation of Electric Power Companies (FEPC)

between January 1995 and December 2004 (sum of the 10 electric power companies, unit:

MWh, sample size: 120).2 Since the storage of a large amount of electricity is impossible, we

can regard total power consumption as electric energy demand. A large number of statistical

and numerical methods have been applied to modelling Japanese electric energy demand and

total power consumption data, including, amongst others, (non)linear regression, Box-Jenkins

SARIMA models and neural networks [see Yamamoto (1988) and Honda (2000) and

references therein]. One e$cient method is SARIMA modelling, however residual analysis by

Yamamoto (1988, Section 7.6) and Honda (2000, Section 11.2) provides evidence of cyclical

behaviour around the peak and bottom, and the modelling results are generally unsatisfactory.

Figure 3 displays the total power consumption data, {xt}. Figure 4 displays the autocorre-

lation function (ACF) of the transformed data {xt}. Note that the ACF decays very slowly and

exhibits cyclical behaviour.

To search for the best representation of this data, we first fitted di#erenced data yt�

2 These data are available from the website of the FEPC: http://www.fepc.or.jp/.

T67A: 4. T=: R6I: D; R:?:8I>DC D; I=: NJAA HNEDI=:H>H a�0 ;DG

DGP 3-6 6I I=: 5% L:K:A

)� 0.8 0.8

a� 0 0.05 0.10 0.15 0.20 0 0.05 0.10 0.15 0.2

DGP3 DGP5

WT, 0 7.0 10.4 11.2 16.9 22.7 4.8 15.4 37.7 58.8 80.3

(5.0) (7.7) (11.3) (16.0) (21.8) (5.0) (15.7) (35.7) (60.8) (81.9)

WT, 0S 11.1 11.8 11.4 13.7 14.3 10.6 12.2 26.5 44.5 67.8

(5.0) (5.4) (6.4) (8.3) (11.1) (5.0) (8.2) (19.1) (38.6) (62.4)

lT, k 2.7 3.1 4.8 4.5 5.5 4.3 5.4 13.5 30.4 50.7

(5.0) (5.2) (5.7) (6.6) (7.9) (5.0) (6.5) (11.9) (23.2) (41.2)

DGP4 DGP6

WT, S 3.4 12.0 28.7 47.0 74.5 4.0 4.5 6.5 7.1 9.6

(5.0) (15.8) (35.8) (60.9) (82.1) (5.0) (7.7) (11.3) (16.0) (21.8)

WT, 0S 11.1 14.1 22.1 37.2 59.4 10.6 10.5 11.7 12.1 12.8

(5.0) (8.2) (19.2) (38.7) (62.6) (5.0) (5.4) (6.4) (8.3) (11.1)

lT, k 2.7 4.8 7.4 15.5 32.6 4.3 5.1 5.8 9.3 12.1

(5.0) (6.5) (12.0) (23.3) (41.4) (5.0) (5.2) (5.7) (6.6) (7.9)
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F><. 3. J6E6C:H: TDI6A PDL:G CDCHJBEI>DC D6I6 {xt}, J6CJ6GN 1995 ID

D:8:B7:G 2004 (sum of the ten electric power companies, unit: MWh, sample size: 120)

F><. 4. T=: S6BEA: AJID8DGG:A6I>DC FJC8I>DC (ACF) D; I=: TG6CH;DGB:9

S:G>:H, W=:G: A >H {xt}, B >H {(1�L)xt}, C >H {(1�L12)xt}, 6C9 D >H {(1�L)(1�L12)xt}.

DDII:9 L>C:H 6G: AEEGDM>B6I: 95% CDC;>9:C8: L>B>IH D; I=: ACF D; I=:

W=>I: ND>H: R6C9DB V6G>67A:.
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(1�L)(1�L12) xt by the CSS method, where we used a sample mean of { yt}, ȳ as an estimator

of E[ yt]�m, and set s�12. AIC and BIC criteria are also used under the assumption of

normality [see, e.g., Brockwell and Davis (1991, Section 9.3)]. Calculations of AIC and BIC

are given by �2S(d«, ŝ2)�2 (number of estimated parameters) and �2S(d«, ŝ2)�log(sample

size used for CSS estimation)�(number of estimated parameters), respectively. Fitting

SARFIMA models or SARIMA models is limited to having SARMA parameters with 0�p,

q, ps, qs�3, and where the total number of estimated SARFIMA parameters (d0, ds, SARMA

parameters, and s2) is less than 4. The total number of models is 70. From among these

estimation results, we selected models in terms of AIC and BIC that satisfy the following

conditions: (i) Modified portmanteau tests are not rejected with the significance level 5� and

10 to 30 degrees of freedom. (ii) The estimated SARFIMA parameters all converged and

satisfy Assumption 1 (c) and (d). All calculations were made using S-PLUS.3

Table 5 shows the best six models in terms of AIC model selection with estimators. ID

denotes the model identification within 70 models. NE indicates the corresponding parameter

is not estimated and is set to be 0. The numbers in parentheses in the columns of AIC (BIC)

denote the ranking of models in terms of AIC (BIC). These six models show that similar

models are selected. Our main concern is whether the {xt} is overdi#erenced (ID 50 and ID 49)

or not overdi#erenced (ID 33, ID 29, and ID 32) because the estimator of d0 in ID 50 (ID 49)

appears to relate to the estimator of q1 in ID 33 and f1 in ID 32 (q1 in ID 29). Also, we check

whether the {xt} is seasonally overdi#erenced (ID 54) or not seasonally overdi#erenced (ID 33

and ID 29) because the estimator of ds in ID 52 appears to relate to the estimator of Q1 and

Q2 in ID 33 (F1 and Q1 in ID 29).

Table 6 shows the p-values for testing the integration order corresponding to these six

models using the LM test statistics in Section III. In each cell of three columns denoted

“Alternative hypotheses”, the first number denotes the p-value of the LM test statistics when

E[ yt]�m is estimated by the sample mean and the number in parentheses denotes the p-value

of the LM test statistics when yt is a linear regression model including deterministic seasonality

[see, e.g., Ghysels and Osborn (2001, Section 2.2)]:

yt�m� S
6

k�1

�
�
�

akcos
�
��
	

2pkt

12



��


�bksin

�
��
	

2pkt

12



��



�
�
�
�zt, (22)

where b6�0 and {zt} is the SARFIMA(p, a0, q)(ps, as, qs)s model and m, {ak} and { bk} are

estimated by LSEs. NA denotes a p-value that is not calculated because the estimated SARMA

3 These programs are available on request.

T67A: 5. SJBB6GN D; AIC 6C9 BIC MD9:A S:A:8I>DC 6C9 EHI>B6I:H

ID AIC BIC d0 ds f1 q1 F1 Q1 Q2 s2(�1011)

50 (1) 2933.9 (2) 2944.6 �0.259 NE NE NE NE �0.510 �0.192 1.195

33 (2) 2934.2 (3) 2944.8 NE NE NE �0.298 NE �0.498 �0.196 1.198

49 (3) 2934.8 (4) 2945.5 �0.263 NE NE NE 0.222 �0.769 NE 1.205

29 (4) 2935.1 (5) 2945.8 NE NE NE �0.306 0.230 �0.765 NE 1.209

32 (5) 2935.9 (7) 2946.6 NE NE �0.245 NE NE �0.481 �0.217 1.218

54 (6) 2936.0 (1) 2944.0 NE �0.487 NE �0.305 NE NE NE 1.242

ȳ�697.729
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parameters do not satisfy Assumption 1 (d). In this table, models ID 50, ID 49 and ID 54

correspond to some models in alternative hypotheses of the first, third and sixth rows of

SARFIMA models, and models ID 33, ID 29 and ID 32 correspond to null hypotheses of the

second, fourth and fifth rows of SARFIMA models. Our findings are as follows: (i) Results for

SARFIMA(0, a0, 0)(0, as, 2)s, SARFIMA(0, a0, 0)(1, as, 1)s, and SARFIMA(0, a0, 1)(0, as,

0)s support the estimation of d0 or ds for models ID 50, ID 49 and ID 54. (ii) Except for

SARFIMA(0, a0, 1)(0, as, 0)s, results for SARFIMA models show large p-values for the

alternative a0�0, as�0. (iii) Results for some SARFIMA models show relatively small

p-values for the alternative a0�0, as�0 and a0�0, as�0. Therefore, we cannot conclude that

{xt} is not overdi#erenced and d0 should be set to zero.

Model ID 50 is the best model in terms of AIC among the 70 model candidates. The

estimated model of ID 50 is

(1�L)�0.259( yt�697.729)�(1�0.510L12�0.192L24)et,

yt�(1�L)(1�L12) xt, and ŝ2�1.195�1011.

Figure 5 shows the standardized residuals of Japanese total power consumption data using this

model. The behaviour of this residual sequence resembles a white noise sequence and presents

no cyclical pattern.

In place of the sample mean, we specified the sample median because electric energy

demand can be a#ected by excessive changes in air temperature and the sample median is

robust to additive outliers. In this case, model ID 33 (a SARIMA model) is selected as the best

model in terms of AIC and model ID 54 (a SARFIMA model) is selected as the best model

in terms of BIC among the 70 candidates; here the rankings and estimates are similar to those

in Table 5. We also considered the time series regression model (22), however, most models

are rejected because the estimators do not satisfy Assumption 1 (c) and (d). Nonetheless,

models ID 29 and ID 33 (SARIMA models) and model ID 50 (a SARFIMA model) in Table

5 are selected as the best three models in terms of AIC and BIC among the 70 candidates. Note

that we also conducted other transformed series {(1�L)xt} and {(1�L12)xt}. However, the

best of these were inferior to models by the series {(1�L)(1�L12)xt} in terms of AIC and

BIC.

On this basis, we conclude that the SARFIMA model is e#ective and can be usefully

employed as a substitute for the SARIMA model when fitting Japanese total power consump-

tion data.

T67A: 6. P-K6AJ:H D; T:HI>C< ;DG a0�as�0 D; I=: SARFIMA MD9:AH

Model
Alternative hypotheses

a0�0, as�0 a0�0, as�0 a0�0, as�0

SARFIMA(0, a0, 0)(0, as, 2)s 0.0022 0.8133 0.0162(0.0148)

SARFIMA(0, a0, 1)(0, as, 2)s 0.3787 0.5743 0.7579(0.8703)

SARFIMA(0, a0, 0)(1, as, 1)s 0.0000 0.7751 0.0042(NA)

SARFIMA(0, a0, 1)(1, as, 1)s 0.3814 0.6046 0.2844(0.9282)

SARFIMA(1, a0, 0)(0, as, 2)s 0.1327 0.5775 0.3383(0.3923)

SARFIMA(0, a0, 1)(0, as, 0)s 0.4508 0.0001 0.0001(0.0000)
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VI . Concluding Remarks

This paper has examined a seasonal long memory process, denoted as the SARFIMA

model. The paper provides evidence of the consistency and asymptotic normality of CSS

estimates and the testing procedures of two di#erencing parameters.

This paper is based on parts of Chapters 1 and 2 in the author’s Ph.D. thesis [Katayama

(2004a)]. Sections II and III in this paper are an extension of the results of the author’s Ph.

D. thesis to the case of unknown mean, and can be applied to the k-factor model, though we

must assume that Gegenbauer frequencies, n1, n2, ..., nk in (1), are known.

Section II discussed the estimation problem by using the CSS method. We obtain a unified

approach to fitting traditional SARIMA processes as well as non-stationary (seasonal)

ARFIMA processes [see Box and Jenkins (1976) and Beran (1995)]. However, we cannot

extend the model (2) in Section I to the following linear regression model:

yt�* t.b�xt, (1�L)d0(1�Ls)dsxt�)(L)et, (t�1, 2, ..., T).

In this case, consistency of the least-squares estimator of b, b«, depends on di#erencing

parameters, i.e., Var[DT(b«�b)] is O(T2d) if d�(0, 1/2); and O(1) if d�(�1/2, 0), as T �
�, where d�max{d0�ds, ds} because autocovariances, g( j), is O( j2d�1) as j � � and

Var[DT(b«�b)]�O(ST
j�0�g( j)�), as T�� [see, e.g., Section 9.1 in Fuller (1996) and Section

2 in Yajima (1988)]. But we cannot prove consistency and asymptotic normality of CSS

estimates (d«�, ŝ2). The main di$culty is the case of max{d0�ds, ds}�0 and max{�d0�ds,�
ds}�0, typically, (d0, ds)�Ds

1, 3, which is di#erent from that of the ARFIMA model. In Section

III, we cannot formulate a linear regression model as in (17) under the testing problem H0

F><. 5. SI6C96G9>O:9 R:H>9J6AH ;GDB I=: SARFIMA(0, 1�d0, 0)(0, 1, 2)s MD9:A

(model ID: 50) B6H:9 DC J6E6C:H: TDI6A PDL:G CDCHJBEI>DC D6I6
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against HA, 1 (or HA, 2) because the LM test statistics have a di#erencing parameter ds (or d0)

in nuisance parameters.

AEE:C9>M

A. Results on a Fractional Filter

A recursion formula and asymptotic results for a fractional filter are given by following

results. The proof of Lemma A 1 is obtained by Katayama (2004b, Lemma A 1).

Lemma A 1. Let F(z) be a fractional filter defined in (1) such that

F(z)�(1�z)�d1(1�z)�dk P
k�1

i�2

(1� 2hi z�z2)�di� P
k

i�1

(1� 2hi z�z2)�Di�S
�

j�0

yj z
j, (23)

�z��1, where hi�cos(ni) and 0�n1�n2�	�nk�1�nk�p, and D1�d1/2, Dk�dk/2, Di�di

for i�2, ..., k�1. Then

1. y0�1, and

yj�
2

j S
j�1

i�0
S
k

m�1

Dmcos [( j�i)nm] yi, for j�1, (24)

2. [Asymptotic results by Giraitis and Leipus (1995, Theorem 1), Leipus and Viano (2000,

Lemma 1), and Viano et al. (1995, Proposition 7)].

yj
 S
k

i�1

ki( j)

G(di)
jdi�1, as j � �, (25)

where k1�k1( j)�2�dkPk�1
i�2 (2�cos(ni))�di, kk�kk( j)�2�d1Pk�1

i�2 (2�2cos(ni))�di, and

ki( j)�2
�
�
�

2sin
�
��
�

ni

2

�
	

�

�
�
�

�d1
�
�
�

2cos
�
��
�

ni

2

�
	

�

�
�
�

�dk
�
�
�

2sin
�
��
�

ni

�
	

�

�
�
�

�di

� P
l
i

l�2, ..., k�1

[�2(cos(ni)�cos(nl))�]�dlcos
�


�

ni

�
��
�

d1�dk

2
� S

k�1

m�2

dm�j
�
	

�
� (d1�di)p

2

�
�
�

for i�2, 3, ..., k�1.

3. Let y1, j(d) be defined by (1�z)�d�S�j�0y1, j(d) zj, y1, j(d)�G( j�d)/{G(d)G( j�1)}, and d

�(�1, 0)�(0, 1). Then

S
n

j�0

y1, j(d)� n�1

d
y1, n�1(d)�y1, n(d�1) 
 nd

G(d�1)
, (26)

S
n

j�0

�y1, j(d)��

�
�
�
�
�

S
n

j�0

y1, j(d) 
 nd

G(d�1)
, if d�(0, 1),

(27)

2�y1, n(d�1) 
2� nd

G(d�1)
, if d�(�1, 0),
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where f(n) �g(n) means f(n)/g(n) � 1, as n � �.

4. [The summability of Gegenbauer polynomials by Theorem (2.1) in Zayed (1980)].4 Let

Gegenbauer polynomials be Cd
j (h), j�0, 1, 2, ..., which are defined by the generating relation

(1�2hz�z2 )�d�S�j�0 Cd
j (h) zj, �h��1, �z��1. If d	(�1, 0)
(0, 1), A�S�j�0aj is conver-

gent, B�S�j�0bj, and bj�Sj
k�0 aj�k Cd

k(h) , then C�S�j�0 Cd
j (h) is convergent, and B�AC.

5. Let yk, j(d) be defined by (1�z)�d�S�j�0yk, j(d) zj, yk, j(d)�(�1)jy1, j(d), and d	(�1, 0)


(0, 1), where y1, j(d) is given by 3. Then S�j�0yk, j(d) is convergent.

6. Let, in (23), di	(�1, 0)
(0, 1) for i�1, 2, ..., k. If d1	(�1, 0), then S�j�0yj is convergent,

and

S
n

j�0

yj�k1y1, n(d�1) � k1

G(d1�1)
nd1, as n � �, (28)

where k1 and y1, n(d�1) are given by 2 and 3, respectively. If d1	(0, 1), then Sn
j�0yj�O(nd1),

as n � �.

B. Asymptotic Results Relating to CSS Estimates

In this appendix we present some details of the proof of Theorem 1 and some remarks.

For simplicity we mainly focus on the proof of Theorem 1 with )(z)�1.

From the definitions in Section III, we first introduce some notations. Let d�(d0, ds)
� be

the true parameter vector and let d»�(d»0, d»s)
�, d», d	Ds

i, j for some i, j�1, 2, 3,

et(d»)�et(d», x̄)� S
t�1

k�0

pk(d»0, d»s)(xt�k�x̄), xt�m� S
t�1

k�0

yk(d0, ds) et�k, for t�1, 2, ...,

be the residual process for evaluating the CSS function,

et(d», m)� S
t�1

k�0

pk(d»0, d»s)(xt�k�m), ut(d»)� S
�

k�0

pk(d»0, d»s) vt�k(d), vt(d)� S
�

k�0

yk(d0, ds) et�k,

for t�1, 2, ..., be the counterparts of the residual process,

S(d»)� 1

2s2 S
T

t�1

e2
t (d»), Q(d»)� 1

2s2 S
T

t�1

u2
t (d»), S(2)(d»)� (2 S(d»)

(d»(d»�
, Q(2)(d»)� (2 Q(d»)

(d»(d»�
,

(1�z)a(1�zs)b� S
�

j�0

pj(a, b)zj, and (1�z)�a(1�zs)�b� S
�

j�0

yj(a, b)zj.

We show that d« is a consistent estimator of d by showing that

1

T S
T

t�1

et(d»)2 �
p

E[ut(d»)]2, as T � � uniformly in d»	Ds
i, j (29)

because d« is the estimator of d that minimizes the objective function ST
t�1e

2
t (d»)/T. This is

su$cient condition for weak consistency by Fuller (1996, Lemma 5.5.1 and Lemma 5.5.2)

because E[u2
t (d»)] reaches its minimum at d by the fact that �S�k�1pk(d0, ds)vt�k(d) uniquely

determines the best linear predictor of vt(d) on the basis of the mean squared error based on

4 Theorem (2.1) in Zayed (1980) shows that S�j�0aj C
d
j (h) converges for any d�0, where aj�M ( j�1)P, j�0,

1, 2, ..., for some integers M and P. However, we assume d	(0, 1) for simplicity and modify Zayed’s results

multiplication of summable series.
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the infinite past vt�1(d), vt�2(d), ... (i.e., et�ut(d)�vt(d)�S�k�1pk(d0, ds)vt�k(d)), which

establishes the condition (5.5.7) of Lemma 5.5.2 in Fuller (1996).

We prove the following lemmas that are needed subsequently.

Lemma B 1. Let the {aj} and {bj} satisfy �aj�, �bj��C1( j�1)�(t�1) for some C1, t�0, and any

j�0 and let {cj} be defined by cj�Sj
k�0 ak bj�k, j�0. Then �cj��Cj�(t�1) , for some C�0 and

any j�2.

Proof. By the definition of cj, dividing the inner summation into two: 1�k� [ j/2] and [ j/2]

�1 �k�j, we have

�cj�� S
[ j/2]

k�0

C1�ak�
( j�k�1)t�1 � S

j

k�[ j/2]�1

C1�bj�k�
(k�1)t�1

� C1

( j�[ j/2]�1)t�1 S
[ j/2]

k�0

�ak��
C1

([ j/2]�2)t�1 S
j

k�[ j/2]�1

�bj�k�

�C2( j/2�1)�t�1�Cj�t�1

for j�2 because j/2�1 � [ j/2] �j/2 and {aj} and {bj} are absolutely summable. �

Lemma B 2. Let d»�Ds
1, 1. Then(i) there exist absolutely summable sequences {pj, 0(t)} , which do

not depend on d», and which satisfy �pj(d»0, d»s)��pj, 0(t) for all j�0 and pj, 0(t)�O( j�1�t) as j

	�. And (ii) there exist absolutely summable sequences {pj, i�k(t)}, which do not depend on d»,

and which satisfy �(i�kpj(d»0, d»s)/((di
0(dk

s )��pj, i�k(t) for all j�1, and pj, i�k(t)�O

((log j)i�k/j1�t) as j 	 � for i�k�1, 2, 3.

Proof. By (1�z)a(1�zs)b�(1�z)a�b(1�z)bPs/2�1
j�1 (1�2cos(2pj/s) z�z2)b and Lemma B 1, it

is su$cient to show that absolute value of coe$cients of the expanded series of each factor can

be dominated by some absolutely summable sequences. Let aj be defined by (1�z)d�S�j�0

aj(d)zj. Then, equation (7) of Yajima (1985):

(n�1)t�1� G(n�t)

G(n�1)
�nt�1, for 0�t�1, and n�1, 2, ..., (30)

implies �aj(d»0�d»s)��C1( j�1)�t�1 for j�2. The coe$cients of the expanded series of (1�
z)d»s can be treated similarly. By (1�2cos(q) z�z2 )�n�S�j�0 Cn

j (cosq) zj,

(2n�j) Cn
j (t)�2n[Cn�1

j (t)�tCn�1
j�1 (t)], and �Cn

j (cosq)��21�n
jn�1

(sinq)nG(n)
(31)

for n�(0, 1), q�(0, p) from 8.933.3 of Gradshteyn and Ryzhik (2000) and 22.14.3 of

Abramowitz and Stegan (1974), it immediately follows that �Cn
j (t)��C2( j�1)n�1 for j�2

and n�(�1/2, 0). Hence �C�ds

j (t)��C2( j�1)�t�1 for each t�(0, p) and thereby demon-

strates (i).

We omit the proof of (ii) since these results are obtained in the same way as those in, e.

g., Section 2.11 and (8.8.6) of Fuller (1996). �

Next, consider the lemma for the strong law of large numbers (SLLN) by Yajima (1985,

Lemma 3.3) and Doob (1953, Theorem X 6.2).

Lemma B 3. [SLLN by Yajima (1985) and Doob (1953)]. If random variables {xj} satisfy
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E�xi xj��� for all i, j�0 and E(ST
i�1 xi/T)2�C/Ta for some a, C�0, then, as T � �,

ST
i�1 xi/T almost certainly converges to zero.

Lemma B 4. ST
t�1e

2
t (d», m)/T�ST

t�1 u2
t (d»)/T � 0 a.c. as T � � uniformly in d»�Ds

1, 1.

Proof. Rewriting et(d», m) and ut(d») as

et(d», m)� S
t�1

j�0

pj(d»0, d»s) S
t�j�1

k�0

yk(d0, ds)et�j�k� S
t�1

j�0

pj(d»0, d»s)et�j(d),

ut(d»)� S
t�1

j�0

pj(d»0, d»s)vt�j(d)	 S
�

j�t

pj(d»0, d»s)vt�j(d)

� S
t�1

j�0

pj(d»0, d»s)et�j(d)	 S
t�1

j�0

pj(d»0, d»s)v�t�j(d)	 S
�

j�t

pj(d»0, d»s)vt�j(d)

�et(d», m)	 S
t�1

j�0

pj(d»0, d»s)v�t�j(d)	 S
�

j�t

pj(d»0, d»s)vt�j(d)

�et(d», m)	wt, 1	wt, 2, (say),

where vt(d)�S�k�0yk(d0, ds)et�k�St�1
k�0yk(d0, ds)et�k	S�k�tyk(d0, ds)et�k�et(d)	v�t (d), (say),

by Lemma B 2, we have �et(d», m)��St�1
j�0pj, 0(t)�et�j(d)��zt, 0, (say), �wt, 1��St�1

j�0pj, 0(t)

�v�t�j(d)��zt, 1, (say), �wt, 2��S�j�tpj, 0(t)�vt�j(d)��zt, 2, (say), and

1

T S
T

t�1

e2
t (d», m)� 1

T S
T

t�1

u2
t (d») � 2

T S
T

t�1

zt, 0 zt, 1	
2

T S
T

t�1

zt, 0 zt, 2	
2

T S
T

t�1

zt, 1 zt, 2

	 1

T S
T

t�1

z2
t, 1	

1

T S
T

t�1

z2
t, 2. (32)

Using Lemma B 2 and the Cauchy-Schwarz inequality, we have, as t � �,

E[zt, 1]
4�
�
�
�S

t�1

j�0

pj, 0(t){Ev�t�j(d)4}1/4
�
�
	

4

�O


��



�
�
� S

[t/2]

j�0

pj, 0(t)

(t�j)t

�
�
�

4

	
�
�
� S

t�1

j�[t/2]	1

pj, 0(t)
�
�
�

4�
��
�

�O


��



t�4t
�
�
� S

[t/2]

j�0

pj, 0(t)
�
�
�

4

	
�
�
� S

�

j�[t/2]	1

pj, 0(t)
�
�
�

4�
��
�
�O(t�4t),

E[zt, 2]
4�
�
�
�

S
�

j�t

pj, 0(t)
�
�
�

Evt�j(d)4
�
�
�

1/4�
�
	

4

�O


��



�
�
�S
�

j�t

pj, 0(t)
�
�
�

4�
��
�
�O(t�4t),

and E[zt, 0]
4�O(1). Therefore, using the Cauchy-Schwarz inequality and Lemma B 3, the

RHS of (32) almost certainly converges to zero, which proves the lemma. 


Lemma B 5. ST
t�1 u2

t (d»)/T � E[u2
t (d»)] a.c. as T � � uniformly in d»�Ds

1, 1.

Proof. For fixed d», we have ST
t�1 u2

t (d»)/T � E[u2
t (d»)]. Therefore, the rest of the proof is

devoted to showing uniformity in d»�Ds
1, 1. By Lemma B 2, we have �ut(d»)��wt, 1 and �(ut(d»)/

(d»��wt, 2 where wt, 1�S�j�0pj, 0(t)�vt�j(d)� and wt, 2�S�j�1pj, 1(t)�vt�j(d)�. Let W1�{w�
limT � �ST

t�1 w2
t, i/T�Ew2

t, i, i�1, 2} and D0�{di�i�1, 2, ...} be a countable dense subset of Ds
1, 1.

Put Wd(i)�{w�limT � �ST
t�1 u2

t (di)/T�E[ut(di)]2} and W�W1�iWd(i) , we have Pr (W)�1 since

ut(di) and wt, i’s are ergodic processes. The rest of the proof is obvious from the proof of
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Theorem 1 by Yajima (1985). Hence, the proof is omitted. �

Lemma B 6. ST
t�1e

2
t (d», m)/T � E[u2

t (d»)] a.c. as T � � uniformly in d»�Ds
1, 1.

Proof. Using the triangle inequality, Lemmas B 4 and B 5, we immediately obtain the result.

�

Let u(i)
t (d») and e(i)

t (d», m) be the i-th derivatives of ut(d») and et(d», m) with respect to d».

Then, similarly to Lemmas B 4 and B 5, we obtain the following lemmas.

Lemma B 7. ST
t�1 u(1)

t (d») u(1)
t (d»)�/T�ST

t�1e
(1)
t (d», m)e(1)

t (d», m)�/T � 0, a.c., and ST
t�1 u(i)

t (d»)

ut(d»)/T�ST
t�1e

(i)
t (d», m) et(d», m)/T � 0, a.c., i�1, 2, as T � � uniformly in d»�Ds

1, 1.

Lemma B 8. ST
t�1 u(1)

t (d») u(1)
t (d»)�/T� E[u(1)

t (d») u(1)
t (d»)�]�s2I(d») a.c., and ST

t�1 u(i)
t (d») ut(d»)/

T � E[u(i)
t (d») ut(d»)], a.c., i�1, 2, as T � � uniformly in d»�Ds

1, 1.

We omit the proofs since these results are obtained in the same way as those in Lemmas

B 4 and B 5. Note that I(d») is continuous on Ds
i, j and I(d)�Id.

Lemmas B 4 to B 8 concentrate on the case of d», d�Ds
1, 1. However, the next lemma shows

that these results hold even if d», d�Ds
i, j for i, j�1, 2, 3.

Lemma B 9. Lemmas B 4 - B 8 still hold if Ds
1, 1 is replaced by Ds

i, j for i, j�1, 2, 3.

Proof. For the case of d», d�Ds
2, 1, rewrite et(d») and ut(d») as

et(d»)�S
t�1

j�0

pj(d»0	
1

4
, d»s) S

t�j�1

k�0

yk(d0	
1

4
, ds)et�j�k�S

t�1

j�0

pj(d»0	
1

4
, d»s)et�j(d0	

1

4
, ds),

ut(d»)�et(d»)	S
t�1

j�0

pj(d»0	
1

4
, d»s)v�t�j(d0	

1

4
, ds)	S

�

j�t

pj(d»0	
1

4
, d»s)vt�j(d0	

1

4
, ds),

where

vt(a, b)�S
�

k�0

yk(a, b)et�k�S
t�1

k�0

yk(a, b)et�k	S
�

k�t

yk(a, b)et�k�et(a, b)	v�t (a, b), (say)

and we have used the fact that St�1
j�0St�j�1

k�0 ak, j�St�1
j�0Sj

k�0 ak, j�k and pj(a	b, c	d)�Sj
k�0pk(a, c)

pj�k(b, d). Using the proof of Lemma B 2, we again establish the absolute summable sequences

{p�j, i	k(t)} such that �(i	kpj(d»0	1/4, d»s)/((di
0 (dk

s )��p�j, i	k(t) and p�j, i	k(t)�O((log j)i	k

j�t�1) for i	k�0, ..., 3 because d»0	d»s	1/4, d»s�(t, 1/2�t). It follows that the rest of the

proof relating to Ds
2, 1 is obtained in the same way as those in Lemmas B 4 to B 8. Since other

Ds
i, js can be treated similarly, we omit the proof. �

The following lemma implies that strong consistency and order in probability of sample

mean, x̄�ST
t�1 xt/T, such as Lemma 9 of Leipus and Viano (2000) are una#ected if xt�m�et

�0, for all t�0.

Lemma B 10. Under the Assumption 1, it holds that, as T � �,

x̄ �
a.c.

m and E(x̄�m)2�O(T2(d0	ds)�1). (33)

Proof. We assume that )(z)�1 for simplicity. Since ST
t�1(xt�m)�ST

t�1S
t�1
j�0yj(d0, ds)et�j�

ST
t�1S

T�t
j�0 yj(d0, ds)et, we have, by Lemma A 1,
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E(x̄�m)2� s2

T2 S
T

t�1

�
��
� S

t�1

j�0

yj(d0, ds)
�
��
	

2

�O
�
��
�

1

T2 S
T

t�1

t2(d0�ds)
�
��
	
�O(T2(d0�ds)�1),

as T��. The general case can be treated similarly because )(1) converges absolutely by our

assumptions. It follows from Lemma B 3 that x̄ �
a.c.

m. �

Finally, we consider lemmas for the weak uniform law of large numbers relating to et(d»)

�et(d», x̄).

Lemma B 11. (i) ST
t�1e

(1)
t (d»)e(1)

t (d»)�/T�ST
t�1e

(1)
t (d», m)e(1)

t (d», m)�/T �
p

0, and ST
t�1e

(i)
t (d»)et(d»)/

T�ST
t�1e

(i)
t (d», m)et(d», m)/T �

p

0, i�0, 1, 2, as T � � uniformly in d»�Ds
j, k for j, k�1, 2, 3.

(ii) Lemmas B 4, B 6, B 7 and B 9 still hold in probability if et(d», m) is replaced by et(d»).

Proof. (i) First we consider ST
t�1e

2
t (d»)/T�ST

t�1e
2
t (d», m)/T. Since et(d»)�et(d», m)�(x̄�m) St�1

j�0

pj(d»0, d»s), it is su$cient to show that

(x̄�m)2sup
d»

1

T S
T

t�1

�
��
� S

t�1

j�0

pk(d»0, d»s)
�
��
	

2

�
p

0, as T � �. (34)

By Lemma A 1, there exists a number a
0 such that �St�1
j�0pj(d»0�a, d»s)�	� uniformly in d»

�Ds
j, k (i.e., d»0�d»s�a�(0, 1/2)). Similar to the proof of Lemma B 9, the RHS of

S
t�1

j�0

pj(d»0, d»s) � S
t�1

i�0

pi(�a, 0) S
t�i�1

j�0

pj(d»0�a, d»s)�S
t�1

i�0

�pi(�a, 0)� S
t�i�1

j�0

pj(d»0�a, d»s)

is O(St�1
i�0�pi(�a, 0)�)�O(ta), as t � �. Therefore, by Lemma B 10,

(x̄�m)2sup
d»

1

T S
T

t�1

�
��
�S

t�1

j�0

pk(d»0, d»s)
�
��
	

2

�Op(T2(d0�ds�a)�1)

and (34) holds. Other cases can be treated similarly because each derivative of St�1
j�0pj(d»0�a,

d»s) is bounded by Weierstrass’s Double Series Theorem, which establishes (i). Using triangle

inequality and (i), we immediately obtain (ii). �

Proof of Theorem 1. For simplicity we focus on the proof of Theorem 1 with )(z)�1.

First, we prove weak consistency of d«by showing (29). Using Lemmas B 6, B 9, B 11, and

1

T S
T

t�1

et(d»)2�E[ut(d»)]2 � 1

T S
T

t�1

et(d»)2� 1

T S
T

t�1

et(d», m)2 � 1

T S
T

t�1

et(d», m)2�E[ut(d»)]2 ,

the condition (29) is established.

For ŝ2�ST
t�1e

2
t (d«)/T. Since E[u2

t (d»)] is continuous on Ds
i, j, by Lemma B 11, as T � �,

�ŝ2�s2�� S
T

t�1

e2
t (d«)/T�E[u2

t (d«)] � E[u2
t (d«)]�s2

�sup
d»

S
T

t�1

e2
t (d»)/T�E[u2

t (d»)] � E[u2
t (d«)]�s2 �

p

0.

We now establish the asymptotic normality of the estimates. For d* on the line segment joining

d«and d we have
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�
��

(S(d«)

(d
�0� �

��
(S(d)

(d
�
�
��
�

1

T

(2 S(d*)

(d(d�
�
��
	
�� (d«�d), (35)

in probability. Since I(d») is continuous on Ds
i, j, by Lemma B 11, we have, as T � �,


S(2) (d*)/T�Id
�
S(2) (d*)/T�Q(2) (d*)/T
�
Q(2) (d*)/T�I(d*)
�
I(d*)�Id


�sup
d»

S(2) (d»)/T�Q(2) (d»)/T
�sup

d»

Q(2) (d»)/T�I(d»)
�
I(d*)�Id
 �

p

0.

Therefore T�1(2 S(d*)/((d(d�)� Id in probability, as T��. Since et(d)�et(d, m)�(x̄�m)

St�1
j�0pj(d0, ds),

(x̄�m)2S
T

t�1

�
��
�S

t�1

j�0

pj(d0, ds)
�
��
	

2

�Op(1) and (x̄�m)2S
T

t�1
S
t�1

j�0

(pj(d0, ds)

(d

2

�Op((log T)2)

(36)

by the same argument as in the proof of Lemma B 11, Lemmas A 1 and B 10, we have, as T

� �,

�
��

(S(d)

(d
� �
�� �� S

T

t�1

et(d, m)
(et(d, m)

(d
�op(1). (37)

Therefore, as T � �, we can rewrite (35) as:

�
�� �� S

T

t�1

et(d, m)
(et(d, m)

(d
�Id�� (d«�d)�op(1).

Since the process et(d, m) {(et(d, m)/((d)} is a martingale di#erence, the central limit theorem

follows from the central limit theorem for martingale di#erences, which proves the theorem

[see, e.g., Fuller (1996, Theorem 5.3.4 and Theorem 5.5.1)]. Now the first derivative of

et(d, m) with respect to d is given by (7) and each element of {dk} is defined as follows:

(et(d, m)

(d0

�log(1�L) et��S
�

k�1

1

k
Lket,

(et(d, m)

(ds

�log(1�Ls)et��S
�

k�1

1

k
Lkset��S

�

k�1

sk Lket,

(et(d, m)

(fj

��f�1(L) Lj et��LjS
�

k�1

f�k Lket��S
�

k�j

f�k�j L
ket for j�1, ..., p,

(et(d, m)

(qj

��q�1(L) Lj et��LjS
�

k�0

q�k Lket��S
�

k�j

q�k�j L
ket for j�1, ..., q,

(et(d, m)

(Fj

��F�1(Ls) Ljs et��Ljs S
�

k�0

F�k Lket��S
�

k�js

f�k�js L
ket for j�1, ..., ps,

(et(d, m)

(Qj

��Q�1(Ls) Ljs et��Ljs S
�

k�0

Q�k Lket��S
�

k�js

Q�k�js L
ket for j�1, ..., qs, (38)
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where sj�s/j for j�s, 2s, ..., ;�0 otherwise, f�j , q�j , F�j and Q�j are the coe$cients in the

expansions f�1(z)�S�j�0f
�
j zj and q�1(z)�S�j�0q

�
j zj, F�1(zs)�S�j�0F

�
j zj and Q�1(zs)�S�j�0Q

�
j zj,

respectively and f�j�q�j�F�j�Q�j�0 for j�0. The second derivatives can be obtained

similarly, which establish Id.

Remark 1. If m is known and x̄ of et(d»)�et(d», x̄) is replaced by m, then d« is a strongly

consistent estimator because Lemmas B 6 and B 9 hold and E[ut(d»)]2 reaches its minimum at

d simiarly to (29) [see, e.g., Fuller (1996, Lemma 5.5.2)]. It implies strong consistency of ŝ2

and asymptotic normality of (6) similarly to the proof of Theorem 1.

Section III considers (un)constrained estimators in order to study the behaviour of test

statistics for the testing problems about d0 and ds under local alternatives. The following

remarks show the proof of strong consistency of estimators under local alternatives.

Remark 2. for the local model, (1�L)dT, 0(1�Ls)dsxt�et, t�1, dT, 0�d0�q and q�c/�� , if the

CSS estimator d«s is given by evaluating the residual, e�t (d»s)�St�1
j�0pj(d0, d»s) xt�j in place of et(d»,

x̄), the property of strong consistency of d«s is immediately obtained.

For the case of Ds
1, 1, let u�t (d»s)�S�j�0pj(d0, d»s)v�t�j where {v�t } is given by v�t�

S�j�0yj(dT, 0, ds)et�j. Then by the proof of Lemma B 4, we have ST
t�1 u�t (d»s)

2/T�ST
t�1e

�
t (d»s)

2/T

� 0 a.c. uniformly in d»s. Now rewrite u�t (d»s) as

u�t (d»s)�(1�L)d0(1�Ls)d»sv�t�(1�L)d0(1�Ls)d»s(1�L)�(d0�q)(1�Ls)�dset

�(1�L)�q(1�Ls)�(ds�d»s)et�(1�L)�q wt(d»s)

where wt(d»s)�(1�Ls)�(ds�d»s)et . By a Taylor expansion around q�0, we have

u�t (d»s)�wt(d»s)�
�
�� S

�

k�1

w�t�k(d»s)

k
�wt(d»s)�

�
��

zt(d»s), (say)

where w�t (d»s)�(1�L)�q* wt(d»s) and q* is on the line segment joining q and 0. Note that

absolute value of coe$cients of expanded series of (1�Ls)d»s are dominated by absolute

summable sequences {pj, 0(t)} as in the proof of Lemma B 2, which do not depend on d»s. It

follows that there exists a number T0�0, t�	(0, t), and for all T�T0,

�wt(d»s)���(1�Ls)d»s(1�Ls)�dset��S
�

j�0

pj, 0(t)�(1�Ls)�dset�j�,

�zt(d»s)���log(1�L)(1�L)�q*(1�Ls)�(ds�d»s)et�

��(1�L)d»s�q*(1�L)d»s P
s/2�1

j�1

(1�2 cos(2pj/s) L�L2)d»s{log(1�L)(1�Ls)�dset}�

�S
�

j�0

pj, 0(t�)�log(1�L)(1�Ls)�dset�j�,

where t��t�q and 1/2�t�q�1/2�t�. Therefore, the RHS of

1

T S
T

t�1

u�t (d»s)
2� 1

T S
T

t�1

wt(d»s)
2 � c2

T2 S
T

t�1

zt(d»s)
2� ��
��� S

T

t�1

zt(d»s) wt(d»s)

is bounded by some nondegenerate random variable, zT(t, t�), say, which does not depend on
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d»s and q*, and as T � �, zT(t, t�) � 0 almost certainly by pointwise ergodic theorem. It

follows that, as T � �, ST
t�1 u�t (d»s)

2/T�ST
t�1 wt(d»s)

2/T � 0 a.c. uniformly in d»s, and hence

ST
t�1e

�
t (d»s)

2/T�ST
t�1 wt(d»s)

2/T � 0 a.c. uniformly in d»s.

An almost certain convergence of ST
t�1 wt(d»s)

2/T is shown similarly to the proofs of

Lemmas B 5 and B 9. Therefore, ST
t�1e

�
t (d»s)

2/T � E[wt(d»s)]2 a.c. uniformly in d»s, which

implies strong consistency of d«s similarly to the proof of Theorem 1.

When d«s is given by evaluating the residual, et((d0, d»s)
�, x̄), a weak consistency of d«s is

obtained from Lemma B 11.

Remark 3. For the model defined in Remark 2, in order to estimate the true parameter d�
(dT, 0, ds)

�, if the CSS estimator d �(d T, 0, d s)
� is given by evaluating the residual et(d»)�

Sk�0
t�1 pk(d»0, d»s) xt�k similarly to Section III, the property of strong consistency of d is obtained

by modifying Remark 2.

For the case of Ds
1, 1, let ut(d»)�S�k�0pk(d»0, d»s)vt�k(d), vt(d)�S�k�0yk(dT, 0, ds)et�k, and

wt(d»)�S�j�0yj(d0�d»0, ds�d»s)et�j. Then by a straightforward extension of the method used by

Lemmas B 4 and B 5, we have ST
t�1e

2
t (d»)/T�ST

t�1 u2
t (d»)/T� 0 and ST

t�1 w2
t (d»)/T� E[w2

t (d»)]

a.c. as T � � uniformly in d»�Ds
1, 1. Using the argument as in u�t (d»s), wt(d»s), and zt(d»s) of

Remark 2, we again establish that ST
t�1 u2

t (d»)/T�ST
t�1 w2

t (d»)/T� 0 and E[ut(d»)]2�E[wt(d»)]2

� 0 a.c. as T�� uniformly in d»�Ds
1, 1. It follows that ST

t�1e
2
t (d»)/T�E[ut(d»)]2 � 0 a.c. as

T � � uniformly in d»�Ds
1, 1. Hence, by Gallant and White (1988, Theorem 3.3), the proof

of strong consistency of d is obtained easily by the fact that�S�k�1pk(dT, 0, ds) vt�k(d) uniquely

determines the best linear predictor of vt(d) on the basis of the mean squared error based on

the infinite past vt�1(d), vt�2(d), ....

When d is given by evaluating the residual, et(d», x̄), a weak consistency of d«s is obtained

from Lemma B 11.

The asymptotic normality of the estimates is obtained in the same way as those in

Theorem 1. Therefore, as T � �, �� (d �d) �
d

N(0, I�1
d ),

�� (d T, 0�dT, 0) �
d

N(0, sd0

�2 ), and �� sd0
(d T, 0�d0) �

d

N(csd0
, 1), (39)

where sd0

2�(p2/6)(1�s�2). The case of general SARFIMA model (3) can be treated similarly.

C. Asymptotic Results Relating to Residual Autocorrelation Functions

We prove the following lemma that is needed to prove Theorems 2 to 4.

Lemma C1. Let w1, T, j, w2, T, j, and w3, T, j, j�1, 2, ..., T be triangular array of random variables

such that ST
j�1 w2

1, T, j�Op(T1/2), ST
j�1 w2

2, T, j�Op(1), and ST
j�1 w2

3, T, j�Op(1) as T�� and let {aj}

be positive sequences such that aj�O( j�1) as j � �. Then

lim
m � �

lim sup
T � �

Pr
�
��
�

T�1/2 S
T�1

k�m�1

ak S
T

j�k�1

v1, T, j�k v2, T, j �e
�
��
	
�0

for every e�0, where(v1, T, j, v2, T, j)�(w1, T, j, w2, T, j), (w2, T, j, w1, T, j), (w2, T, j, w3, T, j).

Proof. By using the Cauchy-Schwarz inequality and the fact that S�k�m�1 k�1�a
a�1 m�a for

any a�0, there exists a number T0�0 and for all T�T0,
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�
�� S

T�1

k�m�1

ak S
T

j�k�1

w1, T, j�k w2, T, j�
�
�� S

T�1

k�m�1

ak

�
��
� S

T

j�k�1

w2
1, T, j�k

�
�	



1/2�
��
� S

T

j�k�1

w2
2, T, j

�
�	



1/2

�Op

�
��
�

T�1/4 S
T�1

k�m�1

ak

�
�	


�Op

�
��
� S

�

k�m�1

k�1/4 ak

�
�	


�Op(m�1/4),

�
�� S

T�1

k�m�1

1

k S
T

j�k�1

w2, T, j�k w3, T, j�
�
�� S

T�1

k�m�1

ak

�
��
� S

T

j�k�1

w2
2, T, j�k

�
�	



1/2�
��
� S

T

j�k�1

w2
3, T, j

�
�	



1/2

�Op

�
��
�

�
�� S

T�1

k�m�1

ak

�
�	


�Op

�
��
� S

�

k�m�1

k�1/2 ak

�
�	


�Op(m�1/2),

as m � �. The case of (v1, T, j, v2, T, j)�(w2, T, j, w1, T, j) can be treated similarly. �

For any fixed m �1, let r̂�(r̂(1), ..., r̂(m))� be the m-dimensional vector of residual

autocorrelations using the CSS estimator and let r�(r(1), ..., r(m))�, r( j)�ST�j
t�1etet�j/ST

t�1e
2
t ,

j�1, ..., m.

Proof of Theorem 2. An outline of the proof is due to Tanaka (1999, Theorem 3.3).

Strong consistency of x« is given by Remark 2 in Appendix B. First, we consider the

limiting distribution of x«�x. Let x�(ds, )�)��(x1, ..., xP)
�, p�q�ps�qs�1�P and the CSS

function be S(a0, x). Then, as T � �, we have

�
��

(S(0, x«)

(xi

�0� �
��

(S(a0, x)

(xi

� c

T

(2 S(a�0 , x*)

(a0(xi

� 1

T S
P

j�1

(2 S(a�0 , x*)

(xi(xj

�� (x«j�xj)

for i�1, ..., P where�(a�0 , x*�)��(a0, x�)����(0, x«�)��(a0, x�)��. It follows from Lemma

B 11 and (37) that, as T � �,

�� (x«�x)�
�
��
�
� 1

T

(2 S(a0, x)

(x(x�
�
�	



�1�
��
�

�
��

(S(a0, x)

(x
� c

T

(2 S(a0, x)

(a0(x

�
�	


�op(1)

�
d

N(I�1
x Ia0x c, I�1

x )

where Ix��limT��T�1 E[(2 S(a0,x)/((x(x�)] and Ia0x��limT � �T�1 E[(2 S(a0,x)/((a0(x)].

For r̂, since r̂(i) consists of x«and a0�0, by a Taylor series expansion, we have, as T � �,

�� (x«�x)

�� r̂�
�
��
�

(r

(x�
Im

�
�	



�


��
�

�
�
��
�
�c

(r

(a0

�op(1)

�� r

�� (x �x) cI�1
d Ia0x

�(�Jmx Im)

�


��
�

�
�
�
�
�

�
�
�
	


�
�
�
�
�
�

�
�
�
	



�
�
��
�
�Jma0

c�op(1),

�� r 0

Jm�
�
��
�

1

i
� si � f�i�j � q�i�j � F�i�js � Q�i�js

�
�	



m

1 1 p q ps qs

�(Jma0
Jmx),
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where Jm is the m�(P�1) matrix, Jmx is an m�P matrix with the first column vector of Jm

removed, Jma0
is an m-vector defined by the first column vector of Jm, x is the unrestricted CSS

estimator of x under HA, 1, and 0 is an m�1 zero vector. By the argument in Appendix B, it

follows that, as T��, �� r̂�
d

N(0, Im�Jmx I�1
x J�mx)�(Jma0

�Jmx I�1
x Ia0x) c. Hence �� Jma0

� r̂ is

asymptotically normal with mean Jma0

� (Jma0
�Jmx I�1

x Ia0x) c and variance Jma0

� (Im�Jmx I�1
x J�mx)

Jma0
. Using, as m��, Jma0

� Jma0
� p2/6, Jma0

� Jmx � Ia0x
� , we obtain the asymptotic distribution

of (13).

Finally, we will show that

lim
m � �

lim sup
T � �

Pr
�
��
�
�� S

T�1

k�m�1

1

k
r̂(k) �e

�
��
	
�0 (40)

by Brockwell and Davis (1991, Proposition 6.3.9). We assume that x�0 and m�0 are known

for simplicity. Since êj�ej�(c/�� ) Sj�1
k�1ej�k/k�Op(1/T) and ST

j�1 ê2
j /T �

p

s2, as T � �, we

have, as T � �,

�� S
T�1

k�m�1

1

k
r̂(k)��� S

T�1

k�m�1

1

k

�
�
� S

T

j�k�1

êj�k êj/S
T

j�1

ê2
j

�
�
�

� ���� S
T�1

k�m�1

1

k

�
�
� S

T

j�k�1

êj�k êj/T
�
�
�
�op(1)

� �
���� S

T�1

k�m�1

1

k S
T

j�k�1

ej�kej�
c

s2 T
S
T�1

k�m�1

1

k S
T

j�k�1
S

j�k�1

l�1

1

l
ej�k�lej

� c

s2 T
S
T�1

k�m�1
S
T

j�k�1
S
j�1

l�1

1

l
ej�lej�k�Op

�
��
�

1

T3/2 S
T�1

k�m�1

1

k S
T

j�k�1

1
�
��
	
�op(1)

�AT, m�BT, m�CT, m�DT, m�op(1), (say).

For AT, m,

E[AT, m]2� 1

Ts4 E


�
� S

T�1

k�m�1

1

k S
T

j�k�1

ej�kej



�
�

2

� 1

T S
T�1

k�m�1
S
T

j�k�1

1

k2 �C1 S
�

k�m�1

1

k2 �
C2

m
.

It follows from Chebyshev’s inequality that there exists a number T0�0 and for all T�T0,

AT, m�Op(m�1/2), as m��. Proofs of other cases can be obtained by using Lemma C 1. For

a proof of the general case, since ej((d0, x«�)�, x̄)�ej((d0, x«�)�, m)�(x̄�m) Sj�1
k�0pk((d0, x«�)�),

ej((d0, x«�)�, m)�ej�(�c/�� , (x«�x)�) S
j�1

k�0

dkej�k�Op

�
��
�

1

T

�
��
	

,

(x̄�m) S
j�1

k�0

pk((d0, x«�)�)�(x̄�m) S
j�1

k�0

pk((d0, x�)�)�(x̄�m)(x«�x)� S
j�1

k�0

(pk(d*)

(x
,

where 	d*�d	�	(�c/�� , (x«�x)�)��d	 and (x«�x)�Op(T�1/2), it can be treated

similarly by Lemma B 11, (36), and Lemma C 1. 


Proof of Theorem 4. First, we consider weak consistency of least-squares estimates and CSS

estimates. Let et()»)�)»(L)�1{ ỹt�* t. b«}�)»(L)�1 x̃t(a)�)»(L)�1* t.(b«�b)�et, 1()»)�et, 2()»).
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To prove consistency, it is su$cient to check that

sup
)»

1

T S
T

t�1

{et, 2()»)}2�Op

�
��
�

1

T

�
��
	

and Var[DT(b«�b)]�O(1), as T � �, (41)

because the strong uniform law of large numbers of ST
t�1 {et, 1 ()»)}2/T is obtained by using the

same argument of Remark 2. By (d) in Assumption 2 and DT(b«�b)�DT(F�F)�1 DT D�1
T F�

x(a), if Var[D�1
T F�x(a)]�O(1), then Var[DT(b«�b)]�O(1). Let )(z)�S�j�0)j z

j, ut�)(L)et

�S�j�0)jet�j�S�j�t)jet�j�ut, 1�ut, 2, then, by a Taylor series expansion of x̃t(a) around a�0,

we have

x̃t(a)�(1�L)�a0(1�Ls)�asut�ut�
��
��

�
��
�

log(1�L)

log(1�Ls)

�
��
	

ut�Op

�
��
�

1

T

�
��
	
�ut�u�t, T, (say),

E[u�t, T]2�O(T�1) for t�1, 2, ..., T as T � �, and ith element of D�1
T F�x(a) is d�1

Tii ST
t�1* t, i

x̃t(a)�d�1
Tii ST

t�1* t, i(ut, 1�ut, 2�u�t, T). By the proof of Theorem 9.3.1 of Fuller (1996),

E[d�1
Tii ST

t�1* t, i ut, 1]
2�O(1). By using the Cauchy-Schwarz inequality, E[ST

t�1 u2
t, 2]�O(ST

t�1 at)

�O(1) for some a�(0, 1) and ST
t�1E(u�t, T)2�O(1), E(d�1

Tii ST
t�1* t, i ut, 2)

2
(d�2
Tii ST

t�1* 2
t, i)

E(ST
t�1 u2

t, 2)�O(1) and E(d�1
Tii ST

t�1* t, i u
�
t, T)2
(d�2

Tii ST
t�1* 2

t, i){ST
t�1E(u�t, T)2}�O(1). It follows that

Var[D�1
T F�x(a)]�O(1). Let )»(z)�1�S�j�0)»j z

j, then

S
T

t�1

{et, 2()»)}2�S
T

t�1
S
t�1

i, j�0

)»i)»j(b«�b)�DT D�1
T * t�i.

�* t�j. D�1
T DT(b«�b)



�
��
�S

T

i�0

�)»i�
�
��
	

2

sup
0
i, j
T

S
T

t�1

�(b«�b)�DT D�1
T * t�i.

�* t�j. D�1
T DT(b«�b)��Op(1) (42)

because, by Assumption 2 and * t�0 for t
0, S�i�0�)»i� is uniformly convergent, each element

of the r�r matrix ST
t�1 D�1

T * �t�i.* t�j. D�1
T is less than one in absolute value for any 0
i, j
T,

and Var[DT(b«�b)]�O(1), which establishes (41).

Next, we consider the asymptotic distribution of )«�). Let the CSS function

S((d0, ds, )»�)�, s2) be S(a, )»), et(a, )»)�(1�L)a0(1�Ls)aset, 1()»)�(1�L)a0(1�Ls)aset, 2()»)

�et, 1(a, )»)�et, 2(a, )»), and et()»)�et(0, )»). Then, as T � �, we have

�
��

(S(0, )«)

()
�0� �

��
(S(a, ))

()
� (2 S(a*, )*)

()(a�
c

T
� 1

T

(2 S(a*, )*)

()()�
�� ()«�)),

(43)

where 	a*�0	
	a�0	 and 	)*�)	
	)«�)	. Let 	a*	
	a	 and�aj��
O((log j)kja�1) for some k
0 and 0�a�1/2, then

et, 2(a, ))�et, 2())� ��
��

�
��
�

log(1�L)

log(1�Ls)

�
��
	

et, 2(a*, )),

(et, 2(a, ))

(a
�
�
��
�

log(1�L)
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�
��
	

et, 2(a, )),

(et, 2(a, ))

()
�(1�L)a0(1�Ls)as

(et, 2())

()
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where the last equation follows from (42). It follows from (42) and (44) that

�
��

(S(a, ))

()
�� �

�� ��S
T

t�1

et(a, ))
(et(a, ))

()
�� �

�� ��S
T

t�1

et, 1(a, ))
(et, 1(a, ))

()
�op(1)

as T��. Using (41) and (44), we find that, as T��, each term of the RHS of (43) divided

by T is una#ected by et, 2(a, )») in probability uniformly in )»�D). The rest of the proof of

asymptotic distributions of �� ()«�)) is obvious from the proof of Theorem 2. Hence, we

omit the proof.

Finally, we will prove (40) to derive asymptotic distribution of ST. Since ej()«)�ej, 1()«)�
ej, 2()«), ej, 1()«)�ej�(�c�/�� , ()«�))�)Sj�1

k�0dkej�k�Op(1/T), and )«�)�Op(T�1/2), it can

be treated similarly to the proof of Theorem 2 by Lemma C 1 and (41).
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