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Abstract 

 
 

 This paper estimates the contribution of R&D spillovers to productivity growth Japanese 

manufacturing industry by estimating two alternative measures of productivity growth and two 

different types of R&D spillovers. The results suggest that TFP growth is affected neither by rent 

R&D spillovers nor by knowledge R&D spillovers. However, knowledge R&D spillovers were 

found to have an effect on technical change.  
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1. Introduction  

 

  A large number of theoretical and empirical studies have demonstrated the importance 

of R&D spillovers as a source of productivity growth and long-run sustained economic growth.1 

Examining the manufacturing sector in Japan, Odagiri (1985) and Goto and Suzuki (1989) were 

able to show that rent R&D spillovers through intermediate goods and investment goods had a 

positive effect on productivity growth. Goto and Suzuki also found that knowledge R&D 

spillovers through the diffusion of new knowledge from the electronics industry had a 

significant positive effect on productivity growth. The results of these studies suggest that rent 

R&D spillovers and knowledge R&D spillovers between industries contributed to productivity 

growth in Japan. However, despite the considerable number of studies on R&D spillovers – not 

only in Japan, but also elsewhere –, neither the mechanism nor the effects of R&D spillovers are 

yet fully understood.  

For example, as indicated by Atella and Quintieri (2001), one problem of these studies 

has been that they used TFP growth derived from standard growth accounting procedures as the 

dependent variable. This measure requires very restrictive assumptions, such as constant returns 

                                                  
1 See surveys by Nadiri (1993) and Mohnen (1996) 



  

to scale, competitive factor markets, etc. If scale economies are present, then TFP growth 

overstates the true rate of technical change even if the assumption of competitive factor markets 

is imposed. The use of TFP growth as the dependent variable may generate biases that can alter 

the relationship between productivity growth and its main determinants.  

This study attempts to resolve the problems of previous empirical studies and to 

broaden our understanding of the contribution of R&D spillovers to productivity growth. 

Long-run level data from the Japanese manufacturing industry are used for the analysis. This 

chapter has three objectives. The first objective is to construct technical change adjusted scale 

economies as well as TFP growth, such as are used in previous studies. The second objective is 

to identify whether the effect on TFP growth or technical change of the diffusion of knowledge 

differs from that of the flows of intermediate goods. For this purpose, we calculate two different 

types of R&D spillovers: rent spillovers and knowledge spillovers. That is, our analysis 

considers the different contributions of two different forms of R&D spillovers to productivity 

growth. The final objective of this study of to examine whether R&D spillover effects exist or 

not, can still be shown to exist, even after IT investment, human capital, and capital utilization 

are controlled for.  

   The remainder of this paper is organized as follows. In section 2, we explain our 

measures of TFP growth and technical change. Section 3 presents our measurement of two 



  

different types of R&D spillovers, while section 4 introduces our econometric model. Section 5 

describes the data, reports the estimation results, and discusses their implications. Finally, 

section 6 concludes. 

 

  2. The measures of productivity growth2 

 

   In this section, we will derive the two dependent variables that are used in order to 

estimate the R&D spillover effects. We begin by measuring conventional total factor 

productivity (TFP) growth. The Tornqvist rate of TFP growth is calculated as:3 
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The calculation of Tornqvist TFP growth requires a number of assumptions: returns to 

scale are constant, and firms are profit maximizing and operate in competitive input and output 

markets. Tornqvist TFP is convenient for estimating productivity growth without estimating 

econometrically the production technology, but the TFP growth obtained using the Tornqvist 

                                                  
2 This section owes much to the exposition in Michael, Melvyn, and Leonard (1981) 
 
3 The dot over variables represents their rate of growth. 
 
 



  

index might be biased by the existence of returns to scale.  

We will derive technical change, which is considered as a proportionate shift in the 

production function over time using the theory of production. Assume that there exists a 

production function given as:  

  ),...( 1 tXXFQ n=   (3) 

Equation (3) is differentiated by time as follows:  
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We obtain equation (5) by dividing equation (4) by output.  
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The last term on the right hand side of equation (5) denotes the contribution of technical change 

to output, 
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Equation (5) can be rewritten as follows:  
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where 
iXQ,η is the elasticity of output with respect to input X.  

If we assume the firm minimizes its cost of production, then the first-order condition for 

minimizing production costs subject to a given level of output yields: 
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Substituting (7) into (5) and rearranging, we obtain the expression for the proportionate rate of 

technical change 
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where QC ,ε  is the elasticity of cost with respect to output. Define 
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rate of growth of aggregate inputs. 

We can then compare the measure of technical change with the total factor 

productivity measure as follows: 
...

FQTFP −= . Using this definition of TFP and rearranging 

equation (8) yields 
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With non-constant returns to scale, the growth in measured TFP can be decomposed into a shift 

in the production function (technical change) and a movement along the production function 

(scale economies). Consequently, TFP growth in conventional growth accounting is not 

identical to technical change as represented by a shift in the production function unless CQε =1 

(the production process is characterized by constant returns to scale). If the technology is 

characterized by increasing (decreasing) returns to scale, then output increases (decreases) may 



  

simply be the result of changes in the scale of operations that have nothing to do with technical 

change.   

In order to separate the scale effects from technical change, we need information on 

the cost elasticity with respect to output. We estimate the translog cost function as follows:  

(11) 

QPatPaQtaQa

PPataQaPataDaaC

iiQiittQQQ

jiijttQiitkk

lnlnlnln])(ln

lnln)[2/1(lnlnln
2

2
0

∑∑
∑∑∑∑

+++

+++++++=
 

where C is total cost, iP  represents input prices, Q is output, t is a simple time trend, and 

kD represents industry-specific dummies. 

Using Shephard’s lemma, we obtain the share functions as follows:  
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We estimate a system of two cost shares equation and a total cost function by means of 

seemingly unrelated regression (SUR), using panel data. The materials share equation must be 

dropped before estimation to avoid singularity. Industry dummies are interacted with output so 

as to capture inter-industry differences in the cost elasticity parameters. Using the estimation 

results, we may write the elasticity of cost with respect to output as follows:  
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The rate of technical change in equation (8) depends on the parameter estimates in equation (11). 

The estimation result of the cost function is presented in appendix 2. 



  

  The cost elasticity with respect to output derived from the estimation of the translog 

cost function suggests a very strong presence of scale economies for most Japanese 

manufacturing sectors. The cost elasticity with respect to output is presented in table 5-2.  

   

3. The measurement of R&D spillovers 

 

   As pointed out by Griliches (1979), there are two different concepts of R&D 

spillovers: rent spillovers and knowledge spillovers.4 Rent spillovers accrue because producers 

of knowledge and innovations are unable to charge the full quality price because they cannot 

perfectly price-discriminate due to competition. Klette et al. (2000) have claimed that this 

spillover is not true spillover, but measurement errors. Knowledge spillover occurs because of 

the public goods characteristic of knowledge. This spillover is not embodied in particular 

products. The extent and level of the diffusion of knowledge depends on the technical 

relatedness of industries. It is this kind of spillover, they argue, that can produce both 

endogenous growth and endogenous technical change.     

  The R&D spillover is constructed as a weighted sum with weights representing 

industry’s ability to internalize pieces of R&D stock from other industries:  

                                                  
4 In reality, the distinction between rent spillovers and knowledge spillovers is blurred.  
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where Ti is the R&D spillover stock of industry i, ωij represents the weights and Rj is the R&D 

stock of industry j. N denotes the number of industries. In previous studies, the weights have 

been calculated in a number of ways. According to the survey by Mohnen (1996), candidates for 

weights are product fields, types of R&D, patent classes, input-output flows, investment flows, 

and patent flows.  

The methodology for computing weights depends on the concept of spillovers. The 

concept of rent spillovers implies that the lower the price at which an industry can purchase 

intermediate goods, the more it obtains of the other industries’ research efforts. Consequently, 

rent spillovers occur through market interactions. To compute the stock of rent R&D spillover 

derived from economic transactions, Terleckyj (1980) used first-order input-output transaction 

matrices, calculating inputs used directly to produce a given vector of outputs. Since he wrote 

his paper, rent spillovers have been traced using weight based on intermediate goods flows. 

Following Terleckyj’s methodology, we measure R&D rent spillover using the sum of the flows 

of R&D embodied in intermediate goods from originating industry i to using industry j. The 

amount of R&D obtained through rent spillover is measured by a weighted sum of R&D 

expenditures by other industries. In this study, the rent spillovers stock, RDSPI, is constructed in 

the following way: 
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Equation (15) represents the flow of R&D embodied in the intermediate goods from 

industry j to industry i. jib  is the proportion of sales to industry i relative to the total sales of 

industry j, and jR  is the R&D stock of industry j. 

In contrast, knowledge R&D spillovers occur through non-market transactions. 

Therefore, the weights of knowledge R&D spillovers can be calculated by using the 

technological proximity between industries. One indicator of this technological proximity was 

introduced by Jaffe (1986). His measure of technological proximity between firm i and firm j is 

the uncentered correlation between the two vectors iF  and jF  representing the share of a 

particular patent class in the total of patents granted to firms i and j in a certain period. The 

R&D proximity weight suggested by Jaffe is given as  
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The value of ijP  is bounded between 0 and 1. If the distribution of patents perfectly 

coincides between firm i and firm j, ijP  takes the value 1; if they do not overlap at all, it is 0. 

Goto and Suzuki (1989) used the distribution of R&D expenditures across research fields in 

order to measure the proximity between Japanese manufacturing industries instead of filling the 

vector with patent data.  

  We measure the knowledge R&D spillovers between Japanese industries using 



  

technological proximity calculated by the input coefficient vector.5 The knowledge spillover 

stock, RDSPK, is constructed in the following way: 

   j
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  As is well known, the input coefficient represents the technology of the corresponding 

industry. The input coefficient, representing the amounts of the various inputs required to 

produce one value unit of the output of that industry, is termed the technical coefficient. 

Therefore, similarity measures of production technologies between industries can be derived 

from input coefficient vectors. Nelson and Winter (1982) also suggest that new technologies 

which are “close” to the one already in use are assumed to be implemented with a higher 

probability than technologies which are “distant”, even if the performance of the latter were 

superior. They define technologically “close” and “distant” industries in terms of whether they 

have “similar input structures” or “different input structures”. Therefore, an R&D proximity 

weight between two industries can be calculated using input coefficient vectors. This is a less 

direct measure of the nature of innovation activity than the patent profile, the distribution of 

R&D expenditures across research fields or patent information classifications. However, it has 

the advantage that the necessary data are easily available. 

To evaluate the quality of measure used in this chapter, we compute two knowledge 

                                                  
5 This method was first suggested by Los (2000). 



  

R&D spillovers using the R&D expenditure profiles and input coefficient vectors of 19 

industries in 1990. The correlation value between the two computed knowledge R&D spillover 

measures is 0.4184 (significant at the 10%-level). This means that the linear association 

between the two variables is relatively weak and positive.  

 

4. The Empirical Model 

 

Following Griliches (1998), we modify the standard, reduced-form R&D productivity 

growth equation to test whether productivity growth is a function of R&D and R&D spillovers. 

We also take account of IT investment, capital utilization, and quality of labor. The following 

productivity growth equation will be estimated:6  

jt
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t
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Where GPsj, denotes productivity growth in sector j. Productivity growth is measured 

both as TFP growth (TFPG) using the Tornqvist index and as the more general technical change 

(TCG) adjusted by returns to scale. RDOWNj, denotes the ratio of the net increase in R&D stock 

to gross output in sector j. RDSPIj, and RDSPKj denote the ratio of the net increase in rent R&D 

                                                  
6 In equation (18), we assume that R&D expenditures and IT investments are exogenous. We 
should note that if there exists a feedback effect from high TFP growth to R&D expenditures 
and IT investments, our estimates will underestimate the importance of R&D and IT 
investments. Because of the lack of appropriate instrumental variables, we could not take this 
problem into account.  



  

spillover and knowledge R&D spillover to gross output in sector j. 

m
jZ  denotes other factors which might affect productivity growth. We used the ratio 

of the net increase in IT (information technology) capital stock to gross output in sector j to 

examine the contribution made by IT investment. We also used the change in capital utilization 

and the growth in the quality of labor. Dt is a year dummy to capture general business cycles. 

      

5. Data Sources and Empirical Results 

 

  Table 5–1 lists the variables used in the estimation. The variables can be derived from 

the JIP database.7 The JIP database contains annual information on 84 sectors, including 49 

non-manufacturing sectors, from 1970 to 1998. It contains detailed information on factor inputs, 

annual input-output tables, relatively reliable deflators, and some additional statistics, such as IT 

stock, R&D stock, international trade statistics, etc. at a detailed sector level. The R&D stock is 

calculated using the perpetual inventory method. We obtained data on sector R&D investment 

flows using the IO tables and the Report on the Survey of Research and Development, 

Management and Coordination Agency. The R&D deflator is taken from the JIP database. 

Assuming that R&D investment increased at a constant rate (g) and is depreciated at a constant 

                                                  
7 See Fukao et al. (2003) for a detailed discussion of the JIP database. 



  

rate (δ), then the R&D stock in the benchmark year (1970) can be computed as Rt=It/(g+δ). 

The rate of obsolescence is taken from Science and Technology Agency (1985) and g is the 

actual average growth rate during the sample period. 

(Insert Table 5–1) 

We estimated the contribution of R&D spillover for 34 manufacturing sectors in Japan. 

A list of the 34 manufacturing sectors and some summary statistics are presented in table 5–2. 

Appendix 1 presents summary statistics and the correlation matrix for the variables. 

(Insert Table 5–2) 

  To take account of possible heteroscedasticity across sectors and the presence of 

autocorrelation within sectors, we estimated equation (18) using Feasible GLS. The results of 

estimating equation (18) using the two different dependent variables are summarized in tables 

5–3 and 5–4. 

(Insert Table 5–3)  

(Insert Table 5–4)  

The key parameters of our estimation are the coefficients on RDOWN, RDSPI, and 

RDSPK. The coefficient on RDOWN is large and highly significant in TFPG. This result is 

consistent with previous studies. The effect of RDOWN on TCG is smaller and of lower 

significance than effect on the TFPG. 



  

  Contrary to expectations, the rent R&D spillover through intermediate goods is 

negatively related with TFPG and TCG. The negative effect of rent R&D spillovers is large, but 

insignificant in most specifications. The contribution of rent R&D spillover to technical change 

is significant in specifications with knowledge R&D spillover. These estimation results are not 

consistent with most previous studies, though Yamada et al. (1991) obtained a similar result. 

Quite interestingly, the estimated coefficients on RDSPK are positive and statistically 

significant in TCG while they are insignificant in TFPG. These results suggest that knowledge 

R&D spillover through the diffusion of knowledge plays a more important role in true 

productivity growth. These results are consistent with endogenous growth theory, which 

emphasizes the role of technology diffusion in sustained economic growth. 

   The regression results showed that R&D spillover which occur through transactions in 

intermediate goods and the diffusion of knowledge do not have an effect on TFP growth, 

whereas knowledge R&D spillovers, that is the diffusion of knowledge, contributed to true 

productivity growth. This finding indicates that rent spillovers and knowledge spillovers may 

affect productivity growth through different mechanisms. 

   Productivity growth is also explained by other factors: IT investment, quality of labor, 

and capital utilization. Therefore, we first examine the effects of IT investment on TFPG and 

TCG. As noted by Bernstein (2000), IT investment has led to a significant transformation of 



  

production techniques by the existence of network externalities and spillovers through R&D 

embodied information technology. This transformation has the potential to effectively reduce 

production costs and significantly increase productivity growth. This implies that the IT 

investment will affect productivity growth not only directly through its impact on the production 

process, but should do so also indirectly via its external effects. Unfortunately, the coefficients 

on ITOWN are large and positive, but statistically insignificant in TFPG. The magnitude of the 

coefficient is similar to that found in recent work using growth accounting methods to examine 

the subject. Jorgenson and Motohashi (2003) observed that the contribution of information 

technology on TFP growth was 24% during 1975–90. The impact of IT investment on TCG is 

also insignificant and negative. There is no evidence that IT investment is significantly linked to 

productivity growth in Japanese manufacturing industries. 

Instead, the most important contribution to productivity growth was made by 

improvements in the quality of labor: the relationship between the two is highly significant and 

stable, regardless of which of the dependent variables we look at. This indicates that 

productivity growth in Japanese manufacturing industry was achieved primarily by 

accumulation of the human capital. This result is consistent with the growth accounting analysis 

at the macro level carried by Ito and Fukao (2003), who found that, compared with the US, 

Japan’s economic growth until 1990 was relatively more dependent on labor quality growth. 



  

We also examined industry-specific business cycles fluctuations, which we proxied by 

changes in capital utilization. As expected, the estimation results reveal a significant positive 

relationship between changes in capital utilization and productivity growth. This indicates that 

to some extent productivity growth is due to an increase in the utilization of existing capital. 

    

6. Conclusion 

 

  In this paper, we examined the contributions of R&D spillovers on productivity 

growth in Japanese manufacturing industry. The main findings of this study can be summarized 

as follows: first, we found that the effects of the two R&D spillovers types in the 

R&D-productivity model differ depending on which measure of productivity growth is used as 

the dependent variable. The technical change in Japanese manufacturing industry is affected not 

by rent R&D spillovers but knowledge R&D spillovers. Unfortunately, we did not find a 

statistically significant relationship between rent R&D spillovers and productivity growth.  

Second, we were able to show that knowledge R&D spillover contributes to technical change 

even when controlling for IT investment, labor quality, and capital utilization. Third, IT 

investment has not raised productivity growth in Japanese industry like it seems to have done in 

the USA. However, productivity growth is positively and significantly related to labor quality 



  

and capital utilization. 

  According to these results we can conclude that technical change in Japanese 

manufacturing industry is affected not by rent R&D spillovers but by knowledge R&D 

spillovers. We also see that the quality of labor and capital utilization play a significant role in 

technical change and TFP growth in Japanese manufacturing industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

References 

[1] Atella, V. and B. Quintieri, (2001) “Do R&D Expenditures really Matter for TFP?,” Applied 

Economics 33:1385–89. 

 

[2] Bernstein, J. (2000) “Canadian Manufacturing, U.S. R&D Spillover, and Communication 

Infrastructure,” Review of Economics and Statistics 82:608–15. 

 

[3] Fukao, K., T. Miyagawa, H. Kawai, T. Inui (2003) “ Sangyo Betsu Seisansei to Keizai Seicho: 

1970-1998,” (in Japanese), Keizai Bunseki, no. 170, Economic and Social Research Institute, 

Cabinet Office, Government of Japan, Tokyo.  

 

[4] Goto, A. and K. Suzuki (1989) “R&D capital, Rate of Return on R&D Investment and 

Spillover of R&D in Japanese Manufacturing Industries,” Review of Economics and Statistics 

71:555–64. 

 

[5] Griliches, Z. (1979) “Issues in Assessing the Contribution of R&D to Productivity Growth,” 

Bell Journal of Economics 10:92–116. 



  

 

[6] Griliches, Z. (1998) R&D and Productivity: The Econometric Evidence. Chicago: University 

of Chicago Press.  

 

[7] Ito, K. and K. Fukao (2003) “Vertical Intra-Industry Trade and the Division of Labor in East 

Asia,” the Paper prepared for the NBER Fourteenth Annual East Asian Seminar on Economics, 

International Trade, September 5–7, Taipei.   

  

[8] Jaffe, A. (1986) “Technological Opportunity and Spillover of R&D: Evidence from Firms’ 

Patents, Profits, and Market Value,” American Economic Review 76:984–1001. 

 

[9] Jorgenson, D.W. and K. Motohashi (2003) “Economic Growth of Japan and the United 

States in the Information Age,” RIETI Discussion Paper Series, no. 03-E-015.    

 

[10] Klette, T., J. Moen, and Z. Griliches (2000) “Do Subsides to Commercial R&D Reduce 

Market Failures? Microeconometric Evaluation Studies,” Research Policy 29:471–95   

 

[11] Los, B. (2000) “The Empirical Performance of New Inter-Industry Technology Spillover  

Measure,” in P. Saviotti and B. Nooteboom (eds), Technology and Knowledge, Cheltenham, 



  

UK: Edward Elgar. 

 

[12] Michael, D., F. Melvyn, and W. Leonard (1981) “The Measurement and Interpretation of 

Total Factor Productivity in Regulated Industries with an Application to Canadian 

Telecommunication,” in G. Cowing and R. Stevenson (eds), Productivity Measurement in 

Regulated Industries, New York: Academic Press.  

 

[13] Mohnen, P. (1996) “R&D Externalities and Productivity Growth,” STI Review 18:39–66. 

  

[14] Nadiri, M. I. (1993) “ Innovation and Technological Spillovers,” NBER Working Paper no. 

4423. 

 

[15] Nelson, R.R. and S.G. Winter (1982) An Evolutionary Theory of Economic Change, 

Cambridge, MA: Harvard University Press. 

 

[16] Odagiri, H. (1985) “Research Activity, Output Growth, and Productivity Increase in 

Japanese Manufacturing Industries, Research Policy 14:117–30.  

 

[17] Terleckyj, N. (1980) “Direct and Indirect Effects of Industrial Research and Development 



  

on the Productivity Growth of Industries,” in J. Kendrick and B. Vaccara (eds), New 

Developments in Productivity Measurement and Analysis, Chicago: University of Chicago 

Press.   

 

[18] Yamada, T., T. Yamada, and G. Liu (1991) “Labor Productivity and Market Competition in 

Japan,” NBER Working Paper, no. 3800.  

  



Table 5-1. Definition of variables

ITOWNj  IT intensity: Ratio of net increase in IT stock to gross output in industry j.                                                                          [+]

RDSPKj    knowledge R&D spillovers intensity: Ratio of the net increase knowledge R&D spillover to gross output in industry j.           [+]

CUj   Growth rate of  capital utilization  in industry j                                                                                                                          [+]

Dependent variables

TFPGj   Growth rate of TFP in industry j

TCGj     Growth rate of technical change in industry j

Independent variables                                                                                                                    [Expected sign of coefficients]

Humanj      Growth rate of  labor quality  in industry j                                                                                                                      [+]

RDOWNj  R&D intensity: Ratio of net increase in R&D stock to gross output in industry j                                                               [+]

RDSPIj  rent R&D spillovers intensity: Ratio of the net increase rent R&D spillover to gross output in industry j.                                [+]



JIP classification TFPG(%) TCG(%) RDOWN(%) RDSPI(%) RDSPK(%) ITOWN(%) CU(%) Human(%)
Cost

elasticities
w.r.t Output

Livestock products 0.514 0.427 0.173 0.027 2.171 0.054 -0.437 0.416 0.963
Processed marine products 0.957 0.774 0.051 0.021 2.830 0.026 0.480 0.781 0.718

Rice polishing, flour milling 0.228 1.559 -0.045 0.005 5.548 0.012 -0.779 0.271 0.454
Other foods 0.251 0.389 0.235 0.045 0.988 0.077 -0.940 0.519 1.085
Beverages 0.230 0.569 0.367 0.093 5.718 0.054 -1.764 1.074 1.146

Silk 0.607 1.826 -3.540 0.058 9.340 0.116 -0.530 0.805 0.782
Spinning 0.054 1.597 -1.185 0.240 5.687 0.156 -0.555 0.342 0.709

Fabrics and other textile products 0.471 1.277 0.121 -0.337 1.861 0.113 -0.555 0.847 0.740
Apparel and accessories 0.886 0.809 0.116 0.021 0.555 0.078 -0.530 1.448 0.916

Lumber and woods products 0.414 0.525 -0.639 0.067 2.077 0.040 -0.500 0.433 0.936
Furniture 0.701 0.662 0.150 -0.002 4.937 0.068 -1.220 0.744 0.969

Pulp, paper, paper products 0.601 0.377 0.118 0.019 1.633 0.132 0.382 0.769 0.872
Publishing and printing -0.443 -0.041 0.069 0.083 1.636 0.346 -1.122 0.857 1.204

Leather and leather products 0.373 0.342 0.066 0.066 10.012 0.057 -0.935 0.956 0.942
Rubber products 0.371 0.436 0.888 0.184 16.023 0.108 -0.561 1.198 1.032
Basic chemicals 0.839 0.865 0.595 0.055 2.895 0.267 -0.571 0.773 1.024
Chemical fiber 1.678 2.356 0.792 0.283 48.951 0.304 -0.373 1.218 0.538

Other chemicals 2.111 0.773 2.555 0.144 2.627 0.172 -0.527 1.260 0.737
Petroleum products 0.267 -0.123 0.221 0.018 2.378 0.083 -0.625 1.129 0.592

Coal products -0.385 -0.370 0.185 0.045 5.518 0.013 -0.475 0.895 1.059
Stone, clay & glass products 0.711 0.620 0.667 0.053 2.717 0.114 -0.688 0.731 0.857

Steel manufacturing 0.410 0.388 0.309 0.061 0.900 -0.051 -1.191 0.899 0.897
Other steel 0.426 0.212 0.247 0.104 0.949 0.214 -1.267 0.899 0.778

Non-ferrous metals 0.737 0.495 0.601 0.030 3.277 0.089 -0.001 0.819 0.906
Metal products 0.599 0.516 0.183 0.127 2.400 0.093 0.040 0.713 0.967

General machinery equipment 0.603 0.073 0.581 0.190 1.222 0.343 -1.276 0.812 0.851
Electrical machinery 0.884 0.688 0.858 0.286 12.944 0.874 -0.533 0.968 0.946

Equipment and supplies for household use 1.348 0.810 0.679 0.427 5.221 0.615 -1.070 1.409 0.865
Other electrical machinery 3.338 1.468 3.608 0.121 1.863 0.671 -0.950 1.400 0.827

Motor vehicles 0.247 0.235 1.144 0.227 0.731 0.135 -0.720 0.962 0.988
Ships -1.497 -1.011 0.103 0.348 33.551 0.806 -0.563 0.601 0.666

Other transportation equipment 0.000 -0.067 1.006 0.235 10.761 0.183 -1.060 0.665 0.985
Precision machinery & equipment 2.037 1.520 1.328 0.196 11.101 0.803 0.339 1.080 0.835

Other manufacturing 0.606 0.470 0.334 0.155 3.530 0.225 -1.272 1.030 0.955

Table 5-2. Mean values of variables for Japanese manufacturing industries, 1970–1998



(1) (2) (3) (4) (5) (6)

RDOWN 0.615 0.597 0.619 0.249 0.213 0.265
(5.56) *** (5.50) *** (5.59) *** (2.21) ** (1.94) * (2.36) **

RDSPI -0.753 -0.807 -1.256 -1.797
(-0.97) (-1.00) (-1.47) (-2.04) **

RDSPK 0.000  0.004 0.025 0.033
(0.01) (0.28) (1.70) * (2.22) **

Constant 0.019 0.019 0.019 0.017 0.016 0.016
(3.58) *** (3.56) *** (3.57) *** (3.20) *** (3.04) *** (3.10) ***

No. of obs 952 952 952 952 952 952
No. of groups 34 34 34 34 34 34

             4) In each estimation, we assumed a model with heteroscedasticity across groups and first-order autocorrelation,
                 where the correlation is the same for all groups.

             2) All regressions include year dummies. 
             3)  *P=.10, **P=.05, ***P=.01   (two-tailed test)

Dependent VariablesIndependent
Variables

Table 5-3. The impact of R&D spillovers on TFP growth (I)

TFPG TCG

Note:     1) The numbers in parentheses are z-statistics.



(1) (2) (3) (4) (5) (6)

RDOWN 0.554 0.537 0.557 0.217 0.210 0.243
(4.98) *** (4.88) *** (5.00) *** (1.84) * (1.80) * (2.06) **

RDSPI -0.974 -0.985 -1.242 -1.742
(-1.26) (-1.23) (-1.41) (-1.93) *

RDSPK -0.003 0.001 0.025 0.033
(-0.22) (0.09) (1.69) * (2.14) **

ITOWN 0.320 0.245 0.312 -0.132 -0.335 -0.227
(0.96) (0.74) (0.93) (-0.39) (-0.99) (-0.66)

CU 0.112 0.113 0.112 0.064 0.063 0.063
(4.72) *** (4.73) *** (4.71) *** (2.59) *** (2.56) ** (2.56) **

Human 0.291 0.278 0.288 0.300 0.277 0.298
(2.50) ** (2.40) ** (2.48) ** (2.32) ** (2.13) ** (2.30) **

Constant 0.015 0.015 0.015 0.013 0.012 0.012
(2.77) *** (2.80) *** (2.78) *** (2.27) ** (2.20) ** (2.19) **

No. of obs 952 952 952 952 952 952
No. of groups 34 34 34 34 34 34

             4) In each estimation, we assumed a model with heteroscedasticity across groups and first-order autocorrelation
                 where the correlation is the same for all groups

             2) All regressions include year dummies. 
             3)  *P=.10, **P=.05, ***P=.01   (two-tailed test)

Table 5-4. The impact of R&D spillovers on TFP growth (II)

TFPG TCG
Dependent Variables

Independent
Variables

Note:     1) The numbers in parentheses are z-statistics.



Variable Obs Mean Std. Dev. Min. Max.
TFPG 952 0.006 0.056 -0.426 0.391
TCG 952 0.006 0.069 -0.554 0.394

RDOWN 952 0.004 0.012 -0.082 0.050
RDSPI 952 0.001 0.002 -0.010 0.006
RDSPK 952 0.066 0.114 -0.070 0.862
ITOWN 952 0.002 0.005 -0.008 0.045

CU 952 -0.007 0.054 -0.292 0.226
Human 952 0.009 0.009 -0.031 0.043

TFPG TCG RDOWN RDSPI RDSPK ITOWN CU Human
TFPG 1
TCG 0.9047* 1

RDOWN 0.0851* 0.0075 1
RDSPI -0.0148 -0.0278 0.1846* 1
RDSPK -0.0477 0.0007 -0.003 0.4134* 1
ITOWN -0.013 -0.044 0.2082* 0.3617* 0.3464* 1

CU 0.1539* 0.0688* 0.0148 0.0077 0.0076 -0.0094 1
Human 0.0578* 0.0352 0.1360* -0.0466 -0.1287* -0.1555* -0.0960* 1

Note) *significant at the 10% level.

Appendix 1a. Summary statistics

Appendix 1b. Correlation matrix



Parameter Estimate z-statistic Parameter Estimate z-statistic
al 0.6453 9.52 aQ12 -0.0301 -0.39
ak -0.0049 -0.15 aQ13 0.3487 5.17
at -0.0530 -5.62 aQ14 -0.1815 -1.75
all 0.1375 10.02 aQ15 -0.0746 -1.16
akk 0.0511 8.5 aQ16 -0.1876 -2.42
aQQ -0.1293 -4.31 aQ17 -0.6372 -6.05
att 0.0002 2.03 aQ18 -0.1398 -2.81
alQ -0.0083 -3.29 aQ19 -0.2901 -2.07
alk -0.0500 -7.71 aQ20 0.0897 0.51
alt -0.0045 -7.67 aQ21 -0.0632 -0.48
akQ -0.0180 -14.81 aQ22 0.2876 1.63
atQ 0.0022 4.68 aQ23 0.0100 0.08
akt 0.0040 14.63 aQ24 0.0095 0.14
aQ 2.7310 6.13 aQ25 0.1590 2.04
aQ2 -0.2169 -2.17 aQ26 0.1359 1.77
aQ3 -0.4742 -4.8 aQ27 0.0836 1.48
aQ4 0.2662 3.34 aQ28 -0.0749 -1.47
aQ5 0.2021 3.3 aQ29 -0.0064 -0.12
aQ6 -0.4117 -4.79 aQ30 0.2588 3.68
aQ7 -0.5409 -5.3 aQ31 -0.3956 -5.99
aQ8 -0.1647 -1.84 aQ32 0.1139 1.09
aQ9 -0.0157 -0.19 aQ33 -0.1619 -3.2
aQ10 -0.0998 -0.86 aQ34 0.1219 2.01
aQ11 -0.0543 -0.52 a0 -10.3327 -3.15

Labor share Capital share
all 0.1375 10.02 akk 0.0511 8.5
alQ -0.0083 -3.29 akQ -0.0180 -14.81
alk -0.0500 -7.71 alk -0.0500 -7.71
alt -0.0045 -7.67 akt 0.0040 14.63
a0l 0.7188 11.37 a0k 0.0078 0.26

Appendix 2. SUR results for translog cost function 

Factor share equations

Note: Regression includes industry dummies.




