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ABSTRACT

In this paper, we propose a new approach to test the hypothesis of long-run Granger

non-causality in cointegrated systems. We circumvent the problem of singularity of

the variance-covariance matrix associated with the usual Wald type test by proposing

a generalized inverse procedure, and an alternative simple procedure which can be

approximated by a suitable chi-square distribution. A test for the ranks of submatrices

of the cointegration matrix and its orthogonal matrix plays a vital role in the former.

The relevant small sample experiments indicate that the proposed method performs

reasonably well in finite samples. As empirical applications, we examine long-run

causal relations among long-term interest rates of three and five nations.



1. Introduction

The Granger non-causality has been one of major concepts in time series analysis

of economic data for past three decades. In stationary vector autoregressive (VAR)

processes, it is based upon the least squares prediction of finite period ahead, usually

of the first period ahead. We may call it the ”short-run Granger non-causality.” See

Dufour and Renault (1998) for classification of the Granger non-causality for different

prediction horizons. Tests for the short-run Granger non-causality are straightforward

in a stationary framework.

In cointegrated systems, such tests become more complex, since the existence of

unit roots gives various complications in statistical inference. See, for example, Sims,

Stock, and Watson (1990), Park and Phillips (1989), Toda and Yamamoto (1995), and

in particular Toda and Phillips (1993, 1994). Further, in cointegrated systems, the

least squares prediction of infinte horizon becomes meaningful in the sense it converges

to finite values, contrary to stationary systems where the infinite horizon prediction

converges to zero (or sample mean of the process). Then, in cointegrated system, the

”long-run Granger non-causality” can be defined in addition to the usual ”short-run

Granger non-causality.” See, for example, Bruneau and Jondeau (1999).

As a closely related concept, the long-run neutrality has also been discussed. Con-

trary to the long-run causality, various definitions of the long-run neutrality have

been proposed. See, for example, Geweke (1986), Stock and Watson (1989), Fisher

and Seater (1993), Weber (1994), and Boschen and Mills (1995) among others, in

addition to Bruneau and Jondeau (1999).

In this paper, we generalize the definitions of the long-run causality and the long-

run neutrality given in Bruneau and Jondeau (1999), which are based upon the infinite

horizon least squares prediction derived from the vector error correction (VEC) rep-

resentation of cointegrated systems. Here, the term ”generalization” means that we

consider ”block causality”, that is, causal relation from a set of variables to a set of

variables, while they are concerned with ”single variable causality”, that is, causal

relation from one variable to one variable.

Inference on the long-run prediction in cointegrated system suffers the same com-

plictions due to unit roots discussed above, if T -asymptotics are considered where T
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is the sample size. In order to circumvent the difficulty, we confine our analysis to
√

T

-asymptotics in this paper. Then, we instead encounter degeneracy of the variance

covariance matrix of the estimator, which is vital in the derivation of the usual Wald

test statistic. This degeneracy problem has been noted or discussed in the context of

the long-run impact matrix, for example, in Johansen (1995) and specifically Paruolo

(1997). This problem is more likely to occur in the block causality, but it can happen

even in the single variable causality as empirical applications in section 5 show.

In this paper, we propose two procedures to escape the degeneracy problem for

testing the long-run block Granger non-causality in cointegrated systems. Needless

to say, the generalized inverse procedure is a standard way to circumvent such situa-

tions. However, in practice, its success crucially depends upon how we detect the true

(degenerated) rank of a matrix concerned. We show that it depends upon the ranks

of submatrices of the cointegrating matrix and its orthogonal matrix. In order to get

the necessary rank information, we resort to a newly developed testing procedure by

Kurozumi (2003) for testing those ranks. We also propose an alternative simple test

statistic which is practically free from such a rank information.

The remainder of the paper is organized as follows. In section 2 we introduce

the model and give the definitions of long-run Granger non-causality and long-run

neutrality, and testable conditions for them. In section 3 we first derive the asymptotic

distribution of the coefficient matrix of the infinite horizon prediction, and explain

why the usual Wald test statistic may fail. Then, we propose two test procedures,

one based upon the generalized inverse method and an alternative simple one, to

circumvent the degeneracy problem. In section 4, we examine finite sample properties

of two proposed test procedures. In section 5 we apply the test procedures to examine

causal relations among long-term interest rates in five nations; the U.S., Germany,

France, the Great Britain, and Japan. Finally, in section 6, we give a brief concluding

remarks.

2. Model, Assumptions, and Long-Run Non-Causality

We first define the block long-run non-causality, i.e. the non-causality from a set of

variables to a set of variables. Let {x = [xi]} be the m-element process, integrated of
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order one. Without loss of generality, we consider the case where the last p2 (p2 ≥ 1)

variables R∗
Rx do not cause the first p1 (p1 ≥ 1) variables RLx, where R∗

R and RL are

the choice matrices such that R∗
R = [0, Ip2], RL = [Ip1, 0] and Ik is the identity matrix

of rank k. Let xt be a set of past variables xt−k (k ≥ 0), and x∗
t be xt but without

R∗
Rxt−k (k ≥ 0). Then, the long-run non-causality is defined interms of the best (in

the sense of mean square error) linear predictions EL(RLxt+h|xt) and EL(RLxt+h|x∗
t )

where h is the prediction horizon.

Definition 1 (Long-Run Non-Causality)

R∗
Rx does not Granger cause RLx in the long-run if

lim
h→+∞

EL(RLxt+h | xt) = lim
h→+∞

EL(RLxt+h | x∗
t ),(1)

that is, the knowledge of the lagged variables R∗
Rxt−k (k ≥ 0) does not improve the

best linear prediction of RLxt+h.

Needless to say, the above definition is the straightforward generalization of Bruneau

and Jondeau (1999) where the long-run non-causality is defined as a causal relation

from one variable to one variable.

We now derive a testable condition of long-run non-causality. Consider m-vector

process {x = [xi]} generated by vector autoregressive (VAR) model of order p,

A(L)xt = d + ΘDt + εt ,(2)

where xt = [xit], A(L) = Im − A1L − · · · − ApL
p, L is the lag operator, d is the

m × 1 constant vector, {εt} is a Gaussian white noise process with mean zero and

nonsingular covariance matrix Σεε. The deterministic terms Dt can contain a linear

time, seasonal dummies, intervention dummies, or other regressors that we consider

fixed and non-stochastic. Suppose that we know the true lag length p. Following

Johansen (1988, 1991), we assume the following:

Assumption (Cointegration): System (2) satisfies

(i) |A(z)| = 0 has its all roots outside the unit circle or equal to 1.

(ii) Π = αβ ′, where Π = −A(1), α and β are m× r matrices of rank r, 0 < r < m,

and rank{Π} = r. Without loss of generality, it will be assumed that β is

orthonormal.
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(iii) rank{α′
⊥Γβ⊥} = m − r, where α⊥ and β⊥ are m × (m − r) matrices such that

α′
⊥α = 0, β ′

⊥β = 0, and Γ = −(∂A(z)/∂z)z=1 − Π .

These assumptions imply that each component of xt is I(1), and linear combina-

tions of β ′xt are stationary. The components of xt are cointegrated with the cointe-

grating matrix β and the cointegration rank r. Subtracting xt−1 from both sides of

(2) and rearranging the variables, we get Johansen’s (1991) vector error correction

(VEC) form of the process,

∆xt = αβ ′xt−1 +

p−1∑
j=1

Γj∆xt−j + d + ΘDt + εt ,(3)

where Γj = −∑p
i=j+1 Ai (j = 1, · · · , p− 1) . The differenced process has representa-

tion

∆xt = C(L)(d + ΘDt + εt) ,

where C(L) =
∑∞

i=0 CiL
i with C0 = Im. Further, the vector moving average (VMA)

representation of {xt} can be explicitly expressed as

xt = C

t∑
i=1

εi + C1(L)εt + τt + C(L)Φ

t∑
i=1

Di + x0 − s0 ,(4)

where C = [cij ] = C(1) = β⊥(α′
⊥Γβ⊥)−1α′

⊥, C1(L) = (C(L)−C(1))/(1−L), τ = Cd,

and s0 = C1(L)ε0 such that β ′x0 = β ′s0.

In the above representation (4), C is often called the long-run impact matrix.

Next, we derive the least squares prediction of the process. Consider the com-

panion form of the system (2) in order to express the prediction of h-period ahead

explicitly.

Xt = ĀXt−1 + Ξt ,(5)

where X ′
t = [x′

t, x
′
t−1, · · · , x′

t−p+1] ,

Ξ′
t = [ε′t, 0, · · · , 0] ,
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Ā =

[
A· · · · · · · · · · · · · · ·

I(p−1)m
... 0

]

=




A1 A2 · · · Ap−1 Ap

Im 0 · · · 0 0
0 Im · ·
· · · · ·
· · · · ·
· · · 0 ·
0 · · · 0 Im 0




,

and A1 = Im + αβ ′ + Γ1, Ai = Γi − Γi−1 (i = 2, · · · , p − 1), Ap = −Γp−1. The h-th

period ahead best linear prediction of xt+h given Xt is given by

xt+h | t = M ′ĀhXt ≡ BhXt ,

where Bh = M ′Āh, and M ′ = [Im, 0, · · · , 0]. The long-run prediction is defined as

the least squares prediction of infinite horizon, that is, when h goes to infinity. It is

known that Bh converges to a non-zero finite matrix as h goes to infinity. (See, for

example, Phillips (1998).) The coefficient matrix of the long-run prediction is defined

as

B̄ = [B̄1, B̄2, · · · , B̄p] = lim
h→∞

Bh .(6)

Then, the hypothesis of long-run Granger non-causality is given in the following

proposition.

Proposition 1: Let xt be the stochastic process generated by the VAR model (2).

Then, R∗
Rx does not Granger cause RLx in the long-run, if and only if

RLB̄R′
R = 0 , or equivalently(7)

RLB̄iR
∗′
R = 0 , (i = 1, 2, · · · , p),

where RR = Ip ⊗ R∗
R.

In what follows we take the condition (7) as the null hypothesis H0 for testing the

long-run Granger non-causality. Proposition 1 of Bruneau and Jondeau (1999) gives

a similar result for the case of p1 = p2 = 1. Our result gives an alternative expression

of testable restrictions for the case where p1 and/or p2 are greater than unity. Since

expressions of testable restrictions in (7) and in Bruneau and Jondeau (1999) are quite
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different, their equivalence is shown in Appendix A for completeness. It is easily seen

that we have

B̄ =
[
B̄1, B̄2, · · · , B̄p

]
= C [Im,−Γ1, · · · ,−Γp−1] ,(8)

where C is the long-run impact matrix defined in (4). (See, for example, Chigira

(2003).)

While there are various definition of long-run neutrality in the literature, we here

adopt that of Bruneau and Jondeau (1999), which is defined in terms of the long-run

impact matrix as follows:

Definition 2 (Long-Run Neutrality)

Let xt be the stochastic process generated by the VAR model (2). Then, R∗
Rx is

neutral to RLx in the long-run if

RLB̄R′
R,N = 0 , or equivalently(9)

RLCR∗′
R = 0 ,

where RR,N = e′p ⊗ R∗
R, and ep is the p × 1 vector such that ep = [1, 0, · · · , 0]′.

In what follows, we take the condition (9) as the null hypothesis H0N for testing the

long-run neutrality. Needless to say, the long-run neutrality is a necessary condition

of the long-run Granger causality.

3. Tests for Long-Run Non-Causality

3.1. Asymptotic Distribution and Wald-Type Test Statistics

In this subsection, we first derive the asymptotic distribution of coefficient matrix of

the best linear prediction, and then we show that the usual Wald-type test is generally

not feasible for the test of long-run non-causality. In order to test the hypothesis (7),

we first estimate the VEC form (3) of the process by the ML method. See, for example,

Johansen (1988,1991) for ML estimation. It is important to note that the model should

be estimated in the VEC form (3) by ML rather than the levels VAR form (2), since,

as Phillips (1998) points out, the latter cannot give the consistent estimate of the

coefficients for the long-run prediction. Here, the coefficients of the levels VAR form
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(2) are derived from the VEC estimates. The asymptotic distributions of coefficient

matrices of the h-period ahead prediction B̂h and the long-run prediction ˆ̄B are given

in the following Proposition.

Proposition 2: Let Assumption holds and let B̂h be estimates of the least squares

prediction matrix Bh obtained from the ML estimates on the VEC representation (3).

(i) For fixed h, we have

(a) B̂h
p−→ Bh , and

(b)
√

T vec(B̂h − Bh)
d−→ N(0, Σh),

where vec( · ) is the row-stacking operator, Σh = FhΣvecF
′
h, Σvec = Σεε ⊗ Σ−1

ξξ , Σξξ =

E[ξtξ
′
t], ξt = [(β ′xt−1)

′, ∆x′
t−1, · · · , ∆x′

t−p+1]
′, Fh =

h−1∑
i=0

Ci ⊗ Ā′h−1−iK ′−1Gξ, Ci =

M ′ĀiM is the i-th impulse response matrix,

Gξ =

[
β 0
0 I(p−1)m

]
, and

K−1 =




Im

Im −Im 0
·

· ·
· ·

0 · ·
Im −Im




.

(ii) If h → ∞ as T → ∞ with either h = fT or h/T → 0 where f > 0 is a fixed

fraction of the sample, we have

(a) ˆ̄B h
p−→ B̄ , and

(b)
√

T vec( ˆ̄B − B̄)
d−→ N(0, Σ),

where Σ = FΣvecF
′, F = C ⊗ P = C ⊗ K ′−1GL(I(p−1)m+r − E ′

22)
−1

[
Ir 0
0 Ip−1 ⊗ H ′

]
,

G = Ip ⊗ H , H = [β⊥, β], L′ = [0, I(p−1)m+r], and E22 is defined in Appendix B.

Proof: See Appendix B.

Before proceeding, it should be noted that, in closely related results of Phillips

(1998, Ths. 2.3 and 2.9), there is an important misprint in the expression of the cru-

cial asymptotic distribution. In his notation, Ni =
i−1∑
j=0

Θi−1−j ⊗ M ′C ′jK−1 in Theo-
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rems 2.3 and 2.9 should be Ni =
i−1∑
j=0

Θi−1−j ⊗ M ′C ′jK ′−1. That is, K−1 should be

transposed. Actually, it is correctly derived in the 14th line from the bottom of p.50

in his article, but is misprinted in the theorems.

From (ii)(b) above, we have, under H0,

√
T R vec{b̂ − b} =

√
T R vec(b̂)(10)

d−→ N(0, RΣR′) ,

where b = vec(B̄), b̂ = vec( ˆ̄B ), and R = RL ⊗RR . It should be noted that the usual

Wald type test statistic, under H0,

W = T{Rb̂}′(RΣR′)−1{Rb̂} ,(11)

is generally infeasible, because RΣR′ is degenerate. The degeneracy of RΣR′ comes

from that of Σ

Σ = FΣvecF
′(12)

= CΣεεC
′ ⊗ PΣ−1

ξξ P ′ .

We may note that both CΣεεC
′ (m × m) and PΣ−1

ξξ P ′ (mp × mp) are degenerate,

because C = β⊥(α′
⊥Γβ⊥)−1α′

⊥ with rank m − r, and P is the mp × {(p − 1)m + r}
matrix. For example, if p = 1 and r = 1, then Σξξ is a scalar and rank(PΣ−1

ξξ P ′) = 1.

3.2. Generalized Inverse Procedure

It is a usual practice to resort a generalized inverse procedure when we have invert a

degenerate matrix. That is, we have, under H0,

W− = T (Rb̂)′(RΣR′)−Rb̂ ∼ χ2
s ,(13)

where (RΣR′)− is the generalized inverse of RΣR′, χ2
s is the chi-square distribution

with s degrees of freedom, and s = rank(RΣR′). See, for example, Rao and Mitra

(1971, Th. 9.2.2).

As a special case, it is easy to obtain the test statistic, say W−
N , for the null

hypothesis of long-run neutrality H0N , since (9) is a subset of (7).

W−
N = T (RN b̂)′(RNΣR′

N )−RN b̂ ,(14)
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where RN = RL ⊗RR,N , and RR,N is defined in (9). Obviously, W−
N is asymptotically

distributed as χ2
s where s = rank(RNΣR′

N ).

In practice, it is important to obtain the information on the rank of RΣR′ (or

RNΣR′
N ). We have the following result.

Proposition 3: The rank of RΣR′ in (10) is given by

rank(RΣR′) = rank(RLβ⊥) × {rank(R∗
Rβ) + (p − 1)p2}(15)

Proof: See Appendix C.

Remark 1: Since RΣR′ is the pp1p2×pp1p2 matrix, it is easily seen that the necessary

and sufficient condition for RΣR′ to be of full rank is

rank(RLβ⊥) = p1 and rank(R∗
Rβ) = p2 .

Remark 2: When rank(RLβ⊥) = 0, we have that rank(RΣR′) = 0. In this case, we

also have

RLB̄RR = RLC[Im,−Γ1, · · · ,−Γp−1]RR

= 0 [Im,−Γ1, · · · ,−Γp−1]RR

= 0 .

The second equality in the above comes from the fact that rank(RLβ⊥) = 0 means that

RLβ⊥ = 0 and thus RLC = RLβ⊥(α⊥Γβ⊥)−1α′
⊥ = 0. In sum, when rank(RLβ⊥) = 0,

it automatically indicates that R∗
Rxt does not Granger cause RLxt in the long run.

(See, for example, Chigira (2003).)

When p1 > m − r or p2 > r, we immediately notice that RΣR′ is degenerate by

order condition. When p1 ≤ m − r or p2 ≤ r, we have to detect rank(RLβ⊥) or

rank(R∗
Rβ), respectively. For that purpose, we resort to a newly proposed testing

procedure by Kurozumi (2003). He develops the test procedures for

H0r : rank(β1) = f v.s. H1r : rank(β1) > f , and

H0r⊥ : rank(β∗
⊥,1) = g v.s. H1r⊥ : rank(β∗

⊥,1) > g ,

where 0 ≤ f < min(p2, r), 0 ≤ g < min(p1, m − r), β1 = R∗
Rβ, β⊥,1 = R∗

Rβ⊥,

β∗
1 = RLβ, and β∗

⊥,1 = RLβ⊥. Then, we have

9



Theorem: Suppose that there is no trend but d 
= 0 in the model (3). Let µ̂1 ≥ µ̂2 ≥
· · · ≥ µ̂p2 and µ̂∗

1 ≥ µ̂∗
2 ≥ · · · ≥ µ̂∗

p1
be the ordered characteristic roots of∣∣∣β̂1Ψ̂β̂ ′

1 − µ̂Φ̂
∣∣∣ = 0 , and∣∣∣β̂⊥,1

ˆ̈Ψβ̂ ′
⊥,1 − µ̂∗ ˆ̈Φ

∣∣∣ = 0 ,

where Ψ̂ = α̂′Σ̂−1
εε α̂, ˆ̈Ψ = {L′(Υ′

T S+
11ΥT )−1L}−1,

¯̂
β⊥ = β̂⊥(β̂ ′

⊥β̂⊥)−1, S+
11 = T−1

∑T
t=1 R1tR

′
1t,

R1t being the regression residual of x+
t−1 on ∆xt−1, · · · , ∆xt−p+1, x+

t−1 = [x′
t−1, 1]′, “ ˆ ”

indicates the maximum likelihood estimate of the corresponding parameter, L and ΥT

are (m − r + 1) × (m − r) and (m + 1) × (m − r + 1) matrices defined by

L =

[
Im−r

0

]
, ΥT =

[
T−1/2 ¯̂

β⊥ 0
0 1

]
,

Φ̂ = β̂1(β̂
′β̂)−1β̂ ′

1 + β̂⊥,1(β̂
′
⊥β̂⊥)−1L′(Υ′

T S+
11ΥT )−1L(β̂ ′

⊥β̂⊥)−1β̂ ′
⊥,1 ,

and
ˆ̈Φ = β̂∗

⊥,1(β̂
′
⊥β̂⊥)−1β̂∗′

⊥,1 + β̂∗
1(β̂

′β̂)−1(α̂′Σ̂−1
εε α̂)−1(β̂ ′β̂)−1β̂∗′

1 .

Then, under H0r and H0r⊥, we have

L = T 2

p2∑
i=f+1

µ̂i
d−→ χ2

(p2−f)(r−f) , and

L⊥ = T 2

p1∑
i=g+1

µ̂∗
i

d−→ χ2
(p1−g)(m−r−g) ,

respectively.

Proof: See Theorems 3 and 4 in Kurozumi (2003).

The above theorem specifically concerns with the case where the constant term d

in (3) is such that d = αρ0 where ρ0 is the r × 1 vector, and the model (3) can be

rewritten as

∆xt = αβ+′x+
t−1 +

p−1∑
j=1

Γj∆xt−j + ΘDt + εt ,(16)

where β+ = [β ′, ρ0]
′. This specification of d corresponds to empirical applications

discussed in section 5. For different specifications of d, the test statistics should be

slightly modified. See Kurozumi (2003) for detail.

We conduct the above test sequentially. For example, we first test H0r : f = 0

against H1r : f > 0. If it is accepted, we conclude that f = 0. If it is rejected, we
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proceed to test H0r : f = 1 against H1r : f > 1, and continues the process until H0r is

accepted. If H0r : f = min(p2, r) − 1 is rejected, it is judged that R∗
Rβ is of full rank.

A similar sequential procedure is used for testing H0r⊥.

Remark 3: When the cointegration rank is found to be one, i.e. r = 1, H0r :

rank(R∗
Rβ) = 0 is equivalent to the exclusion hypothesis H ′

0r : R∗
Rβ = 0, and the

testing procedure by Johansen (1991) or Johansen and Juselius (1990) may be used,

instead of Kurozumi’s test.

3.3. An Alternative Test Statistic and Its Approximate Dis-

tribution

In this subsection, we propose an alternative test statistic

W+ = T (Rb̂)′(Rb̂) ,(17)

that is, the sum of squares of restricted coefficient estimates, Rb̂. It will be shown

that its asymptotic distribution is approximated by a suitable chi-square distribution.

The following approximation was applied, for example, in Kunitomo and Yamamoto

(1986) in a different context, namely the development of a test statistic for the variance

decomposition, but it is given here for completeness. First, we need the following

lemma,

Lemma: Suppose that U is the m×1 vector such that U ∼ N(0, G), where rank(G) =

s ≤ m. Let λj > 0 (j = 1, 2, · · · , s) be distinct characteristic roots of G. Then,

U ′U ∼
s∑

j=1

λjX
2
j ,(18)

where {Xj}s
j=1 are i.i.d. N(0, 1).

Proof: Let tj (j = 1, · · · , s) be characteristic vectors corresponding to λj (j =

1, 2, · · · , s), that is,

GT1 = T1Λ1 ,

where Λ1 = diag{λj}, T1 = [tj ] and T ′
1T1 = Is. Since rank(G) = s, there exists

T2 = [t∗1, · · · , t∗m−s] such that

GT2 = 0 , T ′
2T2 = Im−s , and T ′

1T2 = 0 .
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Then, we can define the m × 1 vector X = [Xi] as

X =

[
XI

XII

]
=

[
XI

0

]
= Λ− 1

2 T ′U ∼ N

(
0,

[
Is 0
0 0

])
,

where T = [T1, T2] and

Λ =

[
Λ1 0
0 0

]
, Λ−1/2 =

[
Λ

−1/2
1 0
0 0

]
.

Then, we have

U ′U = (X ′Λ
1
2 T ′)(TΛ

1
2 X) = X ′ΛX

= X ′
IΛ1XI Q.E.D.

Next, we consider the distribution of

Y =
s∑

j=1

λjX
2
j ,(19)

where {Xj}s
j=1 are i.i.d. N(0, 1) and λj > 0 for all j. In general, the exact distribution

of Y depends on the nuisance parameter λj and it may be tedious to derive it for a

practitioner. Instead, we approximate the distribution of Y by aχ2
f , as discussed in

Chapter 29 of Johnson and Kotz (1970) and Satterthwaite (1941), where a and f

chosen to make the first two moments in agreement with those of Y . These moments

can be easily calculated and given by

E[Y ] =

s∑
j=1

λj , V ar[Y ] = 2

s∑
j=1

λ2
j ,

E[aχ2
f ] = af , V ar[aχ2

f ] = 2a2f .

Then, we have

a =

∑s
j=1 λ2

j∑s
j=1 λj

, f =

(∑s
j=1 λj

)2

∑s
j=1 λ2

j

.(20)

If we regard
√

TRb̂ in (13) as U and the characteristic roots of RΣR′ as λj (j =

1, 2, · · · , s) in the above lemma, we have, under H0,

W+ = T (Rb̂)′Rb̂ ∼
approx.

aχ2
f .(21)
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We also derive the test statistic for the long-run neutrality as a special case of W+ as

follows:

W+
N = T (RN b̂)′(RN b̂) ,(22)

where RN is defined in (14). It is easily seen that, under H0N , W+
N can be approxi-

mated by aχ2
f , where a and f are calculated from (20) with λi’s being the characteristic

roots of RNΣR′
N .

Note that, in general, the degrees of freedom, f , is fractional. Significance points

for χ2 with degrees of freedom differing by 0.2 are given in Pearson and Hartley (1976).

Further, the computer package GAUSS has a convenient built-in function “cdfchinc”

which returns a p-value for a chi-square distribution with the fractional degrees of

freedom. We will use it in the experiments and applications later.

Finally, it should be noted that, contrary to the generalized inverse procedure in

the previous subsection, the choice of s for rank(RΣR′) is not so crucial in the present

procedure as long as we take s to be large enough. Because, adding redundant λi’s

does not increase (19) so much, since they should be negligibly small by definition.

3.4. Proposed Test Procedures

Obviously, we should use W in (11) when RΣR′ is of full rank, whereas we should use

W− in (13) or W+ in (21) when RΣR′ is degenerate. Thus, we propose the following

test procedures which consist of thee steps.

Step 1 : Determine the cointegration rank r by the Johansen procedure (1991),

estimating the VEC model by the maximum likelihood method.

Step 2 : Given the cointegration rank r, determine the rank of RΣR′, s, by testing

rank(R∗
Rβ) and rank(RLβ⊥) with the Kurozumi procedure (2003).

Step 3 : Test the long-run Granger no-causality with W when RΣR′ is found to

be of full rank, and with W− or W+ with an appropriate rank s when RΣR′

is degenerate. The combination of W and W−, which is denoted here as com−,

and that of W and W+ as com+, are the ultimate test statistics proposed in

this paper.
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4. Finite Sample Experiments

In this section, we examine and compare the finite sample properties, namely, em-

pirical size and (size corrected) empirical power of test statistics, com+ and com−

proposed in Section 3.4. See also our earlier study (Yamamoto and Kurozumi (2001))

for preliminary finite sample experiments on W+ .

Model and Design of Experiment

We examine a simple model with m = 4, p = 2, and r = 2, which can be described in

the following VEC form,

∆xt = αβ ′xt−1 + Γ1∆xt−1 + εt ,

where {εt} is i.i.d. N(0, I4).

We are concerned with the hypothesis that x3 and x4 do not cause x1 and x2 in

the long-run. Namely, we test the hypothesis H0 in (7) with

RL = [I2, 0], and R∗
R = [0, I2] .

We consider two particular cases for the above model.

Case 1:

α =




0 0
0 0

−0.5 0.2
−0.5 0.5


 , β =




0.5 −1
−0.5 0

1 1
1 0.3


 , Γ1 =




0.3 −0.5 0 0
0.5 −0.5 δ 0
−0.1 0.1 −0.3 0.3
−0.1 0.1 −0.3 0.6




α⊥ =




1 0
0 1
0 0
0 0


 , and β⊥ =




1 0.3
3 2.3
1 0
0 1


 .

Case 2:

α =




0 0
0 0

−0.5 0.2
−0.5 0.5


 , β =




0.5 −1
−0.5 0

1 1
0.5 0.5


 , Γ1 =




0.3 −0.5 0 0.1
0.5 −0.5 δ 0
−0.1 0.1 −0.3 0.3
−0.1 0.1 −0.3 0.6




α⊥ =




1 0
0 1
0 0
0 0


 , and β⊥ =




1 0.5
3 1.5
1 0
0 1


 .
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In Case 1, R∗
Rβ and RLβ⊥ are both of full rank, whereas in Case 2, they are both

degenerate, i.e., rank(R∗
Rβ) = rank(RLβ⊥) = 1. In both cases, we set δ = 0.0, 0.1,

and 0.2. The case of δ = 0.0 corresponds to the experiment for empirical size and

those of δ = 0.1 and 0.2 to empirical power. The sample size T is taken to be 100,

200, and 400, and the number of replication is 5,000 throughout the experiment. All

computations are done on GAUSS.

Notation for Tables from 1a to 2b

We first explain the notation in Tables from 1a to 2b. The column “r” indicates a

possible cointegration rank to be selected by the trace test in Johansen (1988) at 1%

significance level. The column “%” next to it shows an empirical distribution of the

selected cointegration rank. The critical value is drawn from Table 0 of Osterwald-

Lenum (1992). Note that the row for r = 0 is omitted from the table, since there are

virtually no occurrence. The row for r = 4 is added for completeness. While r = 4 is

selected in Tables 2a and 2b, there are no entries. When r = 4, the system is purely

stationary and there should be no long-run relations in the system.

The column “rank” indicates the rank of RΣR′ selected by the Kurozumi pro-

cedure (2003) at 1% significance level: “full” means that RΣR′ is of full rank, i.e.,

rank(RΣR′) = pp1p2, and “deg” means that RΣR′ is degenerate, i.e., 0 < rank(RΣR′) <

pp1p2. Further, “null” means that rank(RΣR′) = 0, which corresponds to the case of

no causality as described in Remark 2 in Section 3.2. Thus, there should be no entries

in the row “null”. The column “%” next to “rank” shows an empirical distribution

of rank(RΣR′) for a given r.

The columns “W”, “W +” and “W−” show rejection percentages for testing H0 in

(7) at 5% significance level for a given rank(RΣR′). We employ the usual W statistic

when RΣR′ is of full rank, and W+ or W− when it is degenerate.

The column “com+” shows a weighted sum of the corresponding rejection percent-

ages in columns “W” and “W +”. The column “com−” is a similar weighted sum of

the corresponding columns “W” and “W−”. As explained earlier, com+ and com−

represent the proposed procedures for testing the long-run Granger non-causality in

the present paper.

Finally, the row “total” in each sample size shows an appropriate weighted average
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of rejection percentages for each test statistic.

Results of Experiment: Case 1

Table 1a shows the empirical size for Case 1, where the true RΣR′ is of full rank.

When, the correct cointegration rank, 2, is selected, the rank of RΣR′ is correctly

detected for all sample sizes. In this case, the usual Wald statistic W is employed.

However, it appears that the empirical size is much greater than the nominal size of

5% when T = 100, although it decreases to a reasonable level of 7.3% when T = 400.

When r = 1 or r = 3, that is, when an incorrect cointegration rank is selected,

W+ or W− is exclusively selected. Their absolute size distortion generally smaller

than that of W , and they are conservative when T = 200 and 400. The combined

statistics com+ and com− show essentially similar results as W , but slightly less size

distorted than W , because of the contribution of conservative W+ and W−.

Table 1b shows the empirical power for Case 1 when δ = 1 and 2. It appears that

the empirical powers of com+ and com− increases smoothly as δ or T increases. But

it should be noted that their seemingly good power performance actually come from

a large weight on W when r = 2.

Results of Experiment: Case 2

Table 2a shows the empirical size for Case 2, where the true RΣR′ is degenerate. There

are a few disturbing results. The usual Wald statistic W shows 100% rejection when

r = 2 and RΣR′ is of full rank, and W− shows 40% or more rejection when r = 3 and

RΣR′ is degenerate, for all sample sizes. However, fortunately these disturbing results

do not contribute to severe size distortion in combined statistics com− and com+,

because their weights are relatively small. Other entries show relatively conservative

results. Overall size performance of com+ and com− are relatively liberal, while the

size distortion is slightly smaller for com+. It may be noted that we now have a

positive percentage in ”null” case described in Remark 2 in Section 3.2.

We can examine the empirical size property of the Kurozumi procedure (2002) in

this particular specification. Given that the correct cointegration rank, 2, is selected,

we expect that the selection of full rank to be 1%. We find that they are 6%, 2.9%,

and 1.6% when T = 100, 200, and 400, respectively. Thus, while the size distortion

is relatively large when the sample size is small, say T = 100, it quickly diminishes as
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T increases.

Table 2b shows the empirical power of Case 2 for δ = 1 and 2. It appears that the

empirical power of com+ does not increases in comparison with that of com−, when δ

or T increases. This is because the power of W+ does not increase smoothly and its

weight is high in calculating com+.

Summary of the Experiments

From the above results, we can see that both com+ and com− show similar and

reasonable size performance when the sample size is large, say, T = 400. In terms of

empirical power, com− appears to be more powerful than com+ as shown in Case 2.

Thus, we recommend the use of com− in practice in samples with about T = 400 or

more. If we use it in smaller samples, we should be reminded that the test is rather

liberal.

5. Empirical Applications

We examine the long-run Granger causality among long-term interest rates among

several countries.

5.1. Three Country Case

We first examine a three country model studied by Bruneau and Jondeau (1999)

with the same dataset. The dataset consists of 10-year benchmark interest rates for

the US dollar (USD), the Deutschmark (DEM), and the French franc (FRF). The

sample covers weekly data from January 5, 1990 to June 27, 1997 with the sample

size T = 391. Following Bruneau and Jondeau (1999), dummy variables are used for

92:09:04, 94:06:17, 94:07:29, 94:09:30, and 97:01:17.

Main estimation and test results are given in Table 3. In Tables 3 and 4, super-

scripts a, b, and c indicate that statistics are statistically significant at 1%, 5% and

10% level, respectively. Panel (A) of Table 3 gives the results of the ADF test for

a unit root and the Leybourne and McCabe (1994) test for stationarity. They both

strongly suggest the existence of a unit root in every series. The VEC model is fitted

by Johansen’s (1991) maximum likelihood method. The optimal lag length is selected
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as 4 by the Hannan and Quinn (1979) criterion (Panel (B)). Panel (C) gives the results

of the Johansen (1991) likelihood ratio statistic of testing for a trend in the system. It

indicates that it is accepted that there is no trend in the system. Given this result, the

estimates based upon the VEC model (16) is adopted. Panel (D) gives the results of

the Johansen (1991) tests for the cointegration rank, where “Eig” denotes the ordered

eigen values, “trace” the trace test statistic, and “l-max” the maximum eigen value

test statistic. We conclude that the cointegration rank is one at 5% significance level.

Here, the critical value for the test is drawn from Table 1 in Osterwald-Lenum (1992).

The above results are all conformable with those of Bruneau and Jondeau (1999).

Panels (E) and (F) give estimates of the loading vector α and the cointegrating vector

β, respectively where the last element in β is an estimate of a constant term in the

cointegrating vector.

Panel (G) gives the results of the test for the long-run Granger non-causality.

Here, we resort to the com− procedure because it was shown to be more powerful

than com+ in the previous section. Figure 1 depicts the long-run Granger causality

which is statistically significant at 5% significance level. In the top figure, the single

variable causality is depicted. We may note that H0r : rank(R∗
Rβ) = 0 is not rejected

for USD by Kurozumi’s test at 5% significance level, although Bruneau and Jondeau

(1999) found that USD is not excluded from the cointegrating vector. Thus, we use the

test statistic W− in testing causality from USD to DEM or to FRF. It is interesting to

note that there is no causal relation between USD and FRF, but there are feedbacks

between USD and DEM and between DEM and FRF. These results are generally

conformable with those of Bruneau and Jondeau (1999), except two relatively minor

differences. Namely, they found causality from USD to FRF at 10% significance level

but we find no such causality, and they found causality from FRF to DEM at 10%

significance level but we find it at 1% siginificance level. These differences may come

from the fact that we explicitly take into account the degeneracy problem. In the

bottom figure, FRF and DEM are grouped. In this case, we find feedback between

USD and a group of FRF and DEM. We may note that, since the cointegration rank

is one, the test statistic W− must be used for testing causality from a group of FRF

and DEM to USD.
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5.2. Five Country Case

We next examine a five country case by adding interest rates of the Great Britain

pound (GBP) and Japanese yen (JPY) to those examined above. The sample covers

weekly data from January 5, 1990 to October 2, 1998 with the sample size T = 457,

which is slightly longer than the three country case.

Main estimation and test results are given in Table 4. Panel (A) of Table 4 shows

again that the results of the ADF test for a unit root and the Leybourne and McCabe

(1994) test both strongly suggest the existence of a unit root in every series. The

optimal lag length of a VEC model is selected as 3 by the Hannan and Quinn (1979)

criterion (Panel(B)). Panel (C) gives the results of the Johansen (1991) likelihood ratio

statistic of testing for a trend in the system. It again indicates that it is accepted that

there is no trend in the system. Panel (D) gives the results of the Johansen (1991)

tests for the cointegration rank. We conclude that the cointegration rank is one at

1% significance level. Panels (E) and (F) give estimates of the loading vector α and

the cointegration vector β, respectively, where the last element in β is an estimate of

a constant term in the cointegration vector.

Panel (G) gives the results of the test for the long-run Granger non-causality. “D-

F-G” denotes a group of Germany, France and the Great Britain. Figure 2 depicts

the long-run Granger causality which is statistically significant at 5% significance

level. In the top figure, the single variable causality is depicted. We may note that

H0r : rank(R∗
Rβ) = 0 is not rejected for USD and for GBP by Kurozumi’s test at

5% significance level. Again, we use the test statistic W− in testing causality from

USD or GBP to others even in the single variable causality. It is interesting to note

that GBP causes all other nations but not caused by them . On the other hand,

USD causes only DEM, but caused by the other countries. The feedbacks are only

between USD and DEM and between JPY and FRF. The rest are unidirectional

causalities. In the middle and the bottom figures, countries are grouped according to

their regions. It is interesting to note that the long-run feedbacks are more evident

between sets of nations rather than the unidirectional causalities observed between

individual countries. As in the previous three country case, since the cointegration

rank is one, we have to use the test statistic W− when testing for causality from a set
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of variables to others in the middle and the bottom figures.

6. Conclusion

In this paper, we proposed two procedures to test the hypothesis of long-run Granger

non-causality between sets of variables in cointegrated systems; one based on the gen-

eralized inverse procedure and the other on the direct sum of squares of restricted

coefficient estimates. They circumvent the problem of possible degeneracy of the

variance-covariance matrix associated with the usual Wald type test statistic. In or-

der to detect the degeneracy, the testing procedure by Kurozumi (2003) plays an

important role. The relevant finite sample experiments suggested that the former test

procedure, denoted here as com− is preferable, because it turned out to be more power-

ful in finite samples. In empirical applications, we examined long-run causal relations

among long-term interest rates of three and of five nations. We found that there are

many cases where the degeneracy happens, even in the single variable causality, and

the proposed procedure appears to be useful.
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Appendix A

In this appendix, we prove the equivalence of definitions of long-run non-causality

in Bruneau and Jondeau (1999) and in this paper. Their Proposition 1 concerns only

with a variable to a variable non-causality, but it is easily generalized to non-causality

between two sets of variables and is written, in terms of our notation, as follows:

RLB̄1A(L)RR = 0 .(A.1)

This is specifically rewritten as

RLB̄1R
∗
R = 0 and RLB̄1AiR

∗
R = 0 (i = 1, 2, · · · , p) .(A.2)

In what follows, we show that (A.2) is equivalent to (7).

Proposition A1: Condition (7) is necessary and sufficient for (A.2).

Proof: We first note that, since B̄ is the limit of Bh = M ′Āh as defined in (6), we

have

B̄ = B̄Ā .(A.3)

By the structure of Ā, it implies the following relations.

B̄i = B̄1Ai + B̄i+1 (i = 1, 2, · · · , p − 1) , and

B̄p = B̄1Ap .
(A.4)

(Necessity) Suppose that (A.2) holds. We proceed RLB̄iR
∗
R backward from i = p

to i = 1. When i = p, RLB̄pR
∗
R = 0 is immediate from the last relation in (A.4). For

i = p − 1, it is immediate from RLB̄pR
∗
R = 0 and (A.2).

RLB̄p−1R
∗
R = RLB̄1Ap−1R

∗
R + RLB̄pR

∗
R = 0 + 0 = 0 .

A similar argument continues to hold until i = 1.

(Sufficiency) Suppose that (7) holds. The relations in (A.3) can be rearranged as

follows:

B̄1Ai = B̄i+1 − B̄i (i = 1, 2, · · · , p − 1) , and

B̄1Ap = B̄p .
(A.5)

It is immediately seen that (7) implies (A.2).
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Appendix B Proof of Proposition 2

Proof of (i)(a): Since the ML estimates [α̂, Γ̂1, · · · , Γ̂p−1] is consistent, the result

immediately follows.

Proof of (i)(b): The following result is a straightforward generalization of Lütkepohl

and Reimers (1992) and Phillips (1998) who deal with the asymptotic distribution of

the estimate of impulse response matrix. We first note that the asymptotic distribu-

tion of vec{[α̂, Γ̂1, · · · , Γ̂p−1]} is given, for example in Johansen (1995, Th.13.2),

√
Tvec

{
[α̂, Γ̂1, · · · , Γ̂p−1] − [α, Γ1, · · · , Γp−1]

}
d−→ N(0, Σvec) .

(B.1)

The coefficients in a levels VAR model are related to those in a VEC model as follows:

A = [Im + αβ ′ + Γ1, Γ2 − Γ1, · · · , Γp−1 − Γp−2,−Γp−1]

= [αβ, Γ1, · · · , Γp−1]K
−1 + [Im, 0, · · · , 0]

= [α, Γ1, · · · , Γp−1]G
′
ξK

−1 + [Im, 0, · · · , 0] .

Then, we have

∂ vec[A]

∂{vec[α, Γ1, · · · , Γp−1]}′ = Im ⊗ K ′−1Gξ ,(B.2)

and

√
Tvec[Â − A]

d−→ N(0, ΣA) ,(B.3)

where ΣA = (Im ⊗ K ′−1Gξ)Σvec(Im ⊗ K ′−1Gξ)
′ = Σεε ⊗ K ′−1GξΣ

−1
ξξ G′

ξK
−1 .

Finally, we note that

∂ vec[Bh]

∂{vec[A]}′ =
∂ vec[M ′Āh]

∂{vec[A]}′

=
h−1∑
i=0

M ′Āi ⊗ Ā′h−1−i

[
∂ vec[Ā]

∂{vec[A]}′
]

(B.4)

=

h−1∑
i=0

M ′Ā′ ⊗ Ā′h−1−i[M ⊗ Imp]

=

h−1∑
i=0

Ci ⊗ Ā′h−1−i .
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Thus, we have

Σh =

(
h−1∑
i=0

Ci ⊗ Ā′h−1−i

)
ΣA

(
h−1∑
i=0

Ci ⊗ Ā′h−1−i

)′

= FhΣvecF
′
h ,

(B.5)

where Fh =

h−1∑
i=0

Ci ⊗ Ā′h−1−iK ′−1Gξ. This completes the proof of (i)(b).

Proof of (ii): The following proof is a simple generalization of Arai and Yamamoto

(2000) which originally heavily draws upon results in Phillips (1998, Appendix). Here,

we are concerned with Bh = M ′Āh, whereas Arai and Yamamoto and Phillips are

concerned with the first m columns of Bh, namely Ch = M ′ĀhM which is the h-th

impulse response matrix.

Proof of (ii)a: By estimating the VEC representation (2) by the ML method, we

can construct the estimate of Bh as in (A.4) of Phillips (1998, Appendix), namely

B̂h = M ′KD̂hK−1(B.6)

where D = K−1ĀK, is the companion matrix associated with an error correction form

(2), D̂ is its estimate

D =




Im + αβ ′ Γ1 Γp−1

αβ ′ Γ1 Γp−1

0 Im 0
· ·
0 Im 0


 , and

K =




Im 0 · · · 0
Im −Im · · · 0
· · · · · ·

Im −Im · · · −Im


 .

We further express B̂h in terms of Ê that is the estimated companion matrix associated

with the I(1)/I(0) VAR representation − see Phillips (1998, Appendix A.1) for the

I(1)/(0) VAR representation.

B̂h = M ′KD̂hK−1 = M ′KĜÊhĜ′K−1 ,(B.7)
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where

E = G′DG =




Is β ′
⊥α Γ̄1 · · · Γ̄p−1

0 Ir + β ′α
0 β ′

⊥α Γ̄1 · · · Γ̄p−1

0 β ′α
0 0 Im 0

· · · . . .

0 · 0 Im 0




,(B.8)

=

[
Is E12

0 E22

]
(say) ,

where E12 =
[
β ′
⊥α,

··
Γ1, · · · ,

···
Γp−1

]
,

E22 =




Ir + β ′α
···
Γ1

···
Γp−1

β ′
⊥α Γ̄1 Γ̄p−1

β ′α

Im 0 · · · 0

0
. . .

· . . .

0 0 Im 0




,

and Γ̄i = H ′ΓiH = [
··
Γ ′

i,
···
Γ ′

i]
′,

··
Γi = β ′

⊥ΓiH , and
···
Γi = β ′ΓiH (i = 1, 2, · · · , p − 1). It

is known (e.g. Phillips (1998, Appendix A.2)) that E22 corresponds to the stationary

part of the system and has only stable roots. Note further that we assume here that

H is orthonormalized without loss of generality, namely, H ′H = Im and G′G = Imp .

Now, we are in the position to consider the case where h → ∞ as n → ∞ with

either h = fn or h/n. Noting that α̂, β̂⊥ and Γ̂i (i = 1, 2, · · · , p − 1) are consistent

estimates, we have

Êh =

[
Is Ê12(Im(p−1)+r + Ê22 + Ê2

22 + · · ·+ Êh−1
22 )

0 Êh
22

]
(B.9)

p−→
[

Is E12(I − E22)
−1

0 0

]
.

Thus we have

B̂h = M ′KĜÊiĜ′K−1 p−→ M ′KG

[
Is E12(I − E22)

−1

0 0

]
G′K−1
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= β⊥β ′
⊥M ′ + β⊥E12(I − E22)

−1L′G′K−1(B.10)

= B̄ (say) ,

where L′ = [0, I(p−1)m+r]. It gives the required results of (ii)(a).

Proof of (ii)(b): Since Ā = KDK−1 = KGEG′K−1, we have Āk = KGEkG′K−1.

Then, Fh in (B.5) is alternatively given as

Fh =

h−1∑
k=0

Ch−1−k ⊗ K ′−1GE ′kG′Gξ .(B.11)

Note that, by partitioning G as

G =

[
β⊥ β 0
0 0 Ip−1 ⊗ H

]
=

[
β⊥ G12

0 G22

]
(say) ,

we have

G′
ξGEkG′K−1 =

[
β ′ 0
0 Im(p−1)

] [
β⊥ G12

0 G22

] [
Is E12(I + E22 + · · ·+ Ek−1

22 )
0 Ek

22

]
×G′K−1

=

[
0 β ′G12

0 G22

] [
Is E12(I + E22 + · · ·+ Ek−1

22 )
0 Ek

22

]
G′K−1(B.12)

=

[
0
0

(
β ′G12

G22

)
Ek

22

]
G′K−1

=

[
β ′G12

G22

]
Ek

22L
′G′K−1

=

[
Ir 0
0 Ip−1 ⊗ H

]
Ek

22L
′G′K−1 .

Thus Fh can be written in terms of E22

Fh =
h−1∑
k=0

Ch−1−k ⊗ K ′−1GLEk′
22

[
Ir 0
0 Ip−1 ⊗ H ′

]
.(B.13)

Since E22 corresponds to the coefficient matrix for the stationary components, this

representation implies the convergent property of Fh.

With regard to deriving the asymptotic distributions of ˆ̄B , it is enough to show

that Fh → F as h → ∞. From the equation (B.13),

Fh =

h−1∑
k=0

Ch−1−k ⊗ K ′−1GLEk′
22

[
Ir 0
0 Ip−1 ⊗ H ′

]
(B.14)

→ C ⊗ K ′−1GL(I − E ′
22)

−1

[
Ir 0
0 Ip−1 ⊗ H ′

]
.
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This completes the proof of (ii)(b) of the Proposition.

Appendix C Proof of Proposition 3

We first note that Σ in (12) can be conveniently decomposed as follows:

Σ = CΣεεC
′ ⊗ PΣ−1

ξξ P ′(C.1)

= β⊥(α⊥Γβ⊥)−1α′
⊥Σεεα⊥(α⊥Γβ⊥)−1′β ′

⊥ ⊗ K ′−1GLUL′G′K−1

= β⊥V β ′
⊥ ⊗ ḠUḠ′ ,

where Ḡ = K ′GL, V = (α′
⊥Γβ⊥)−1α′

⊥Σεεα⊥(α⊥Γβ⊥)−1′, and

U = (I(p−1)m+r − E ′
22)

−1

[
Ir 0

0 Ip ⊗ H ′

]
Σ−1

ξξ

[
Ir 0

0 Ip ⊗ H

]
(I(p−1)m+r − E ′

22)
−1′ .

Obviously, V and U are symmetric matrices and they are both full rank. Then we

can decompose RΣR′ as

RΣR′ = (RLβ⊥V β ′
⊥R′

L) ⊗ (RRḠUḠ′R′
R) .(C.2)

We have

rank(RΣR′) = rank(RLβ⊥V β ′
⊥R′

L) × rank(RRḠUḠ′R′
R)

(C.3)
= rank(RLβ⊥) × rank(RRḠ)

The second equality in the above comes from the fact that V and U are both full

rank. We further note that

RRḠ =




R∗
Rβ R∗

R 0 . . . 0
0 −R∗

R R∗
R 0

... −R∗
R

. . .
...

. . . R∗
R

0 0 −R∗
R


 ≡

[
Ḡ∗

11 Ḡ∗
12

Ḡ∗
21 Ḡ∗

22

]
(say).(C.4)

Then, we have

rank(RRḠ) = rank(Ḡ∗
11) + rank(Ḡ∗

22)

(C.5)
= rank(R∗

Rβ) + (p − 1)p2 .

Inserting it into (C.3), we have the desired result.
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Table 1a Case 1: Empirical Size

T r % rank % W W+ W− com+ com−

1 4.0 full 0.0 . . . 5.4 7.4
deg 100 . 5.4 7.4

2 94.4 full 100 13.1 . . 13.1 13.1
100 deg 0.0 . . .

3 1.5 full 0.0 . . . 1.3 6.7
deg 100 . 1.3 6.7

4 0.1 . . . . . .
total 13.1 4.3 7.2 12.6 12.8

1 0.0 full . . . . . .
deg . . . .

2 98.4 full 100 9.9 . . 9.9 9.9
200 deg 0.0 . . .

3 1.5 full 0.0 . . . 0.0 0.0
deg 100 . 0.0 0.0

4 0.1 . . . . . .
total 9.9 0.0 0.0 9.7 9.7

1 0.0 full . . . . . .
deg . . . .

2 98.8 full 100 7.2 . . 7.2 7.2
400 deg 0.0 . . .

3 1.1 full 0.0 . . . 1.8 1.8
deg 100 . 1.8 1.8

4 0.1 . . . . . .
total 7.2 1.8 1.8 7.2 7.2

For explanation of the notation, see subsection Notation for Tables from 1a to 2b

in section 4.
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Table 1b Case 1: Empirical Power

δ T r % rank % W W+ W− com+ com−

1 3.5 full 0.0 . . . 12.6 18.3
deg 100 . 12.6 18.3

2 95.0 full 100.0 17.1 . . 17.1 17.1
100 deg 0.0 . . .

3 1.4 full 0.0 . . . 5.4 6.8
deg 100.0 . 5.4 6.8

4 0.1 . . . . . .
total 17.1 10.4 14.9 16.8 17.0

1 0.0 full . . . . . .
deg . . . .

2 98.4 full 100.0 36.7 . . 36.7 36.7
0.1 200 deg 0.0 . . .

3 1.5 full 0.0 . . . 8.1 20.3
deg 100.0 . 8.1 20.3

4 0.1 . . . . . .
total 36.7 8.1 20.3 36.2 36.4

1 0.0 full . . . . . .
deg . . . .

2 98.8 full 100.0 75.6 . . 75.6 75.6
400 deg 0.0 . . .

3 1.1 full 0.0 . . . 8.6 31.0
deg 100.0 . 8.6 31.0

4 0.1 . . . . . .
total 75.6 8.6 31.0 74.9 75.1
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Table 1b (continued)

δ T r % rank % W W+ W− com+ com−

1 3.1 full 0.0 . . . 43.3 71.3
deg 100 . 43.3 71.3

2 95.3 full 100.0 65.1 . . 65.1 65.1
100 deg 0.0 . . .

3 1.5 full 0.0 . . . 5.4 17.6
deg 100.0 . 5.4 17.6

4 0.1 . . . . . .
total 65.1 31.2 54.1 63.5 64.6

1 0.0 full . . . . . .
deg . . . .

2 98.5 full 100.0 96.9 . . 96.9 96.9
0.2 200 deg 0.0 . . .

3 1.4 full 0.0 . . . 17.4 33.3
deg 100.0 . 17.4 33.3

4 0.1 . . . . . .
total 96.9 17.4 33.3 95.8 96.0

1 0.0 full . . . . . .
deg . . . .

2 98.8 full 100.0 100.0 . . 100.0 100.0
400 deg 0.0 . . .

3 1.1 full 0.0 . . . 28.8 44.1
deg 100.0 . 28.8 44.1

4 0.1 . . . . . .
total 100.0 28.8 44.1 99.2 99.3
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Table 2a Case2: Empirical Size

T r % rank % W W+ W− com+ com−

1 0.5 full 0.0 . . . 100.0 100.0
deg 100 . 100.0 100.0

2 96.9 full 6.2 100.0 . . 9.9 10.1
100 deg 93.7 . 3.9 4.1

3 2.5 full 0.0 . . . 1.9 48.1
deg 84.6 . 1.9 48.1

(null) 15.4 . . .
4 0.1 . . . . . .

total 100.0 4.3 5.6 10.2 11.4
1 0.0 full . . . . . .

deg . . . .
2 98.0 full 2.9 100.0 . . 7.5 7.0

200 deg 97.1 . 4.8 4.2
3 1.9 full 0.0 . . . 2.5 43.8

deg 85.1 . 2.5 43.8
(null) 14.9 . . .

4 0.2 . . . . . .
total 100.0 4.7 4.9 7.5 7.6

1 0.0 full . . . . . .
deg . . . .

2 98.5 full 1.6 100.0 . . 6.9 6.5
400 deg 98.4 . 5.4 4.9

3 1.4 full 0.0 . . . 3.1 41.5
deg 94.2 . 3.1 41.5

(null) 5.8 . . .
4 0.1 . . . . . .

total 100.0 5.4 5.4 6.9 6.9
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Table 2b Case 2: Empirical Power

δ T r % rank % W W+ W− com+ com−

1 0.6 full 0.0 . . . 35.7 10.7
deg 100 . 35.7 10.7

2 97.3 full 6.7 7.7 . . 7.4 54.3
100 deg 93.3 . 7.4 57.7

3 2.0 full 0.0 . . . 3.4 11.2
deg 88.1 . 3.4 11.2

(null) 11.9 . . .
4 0.1 . . . . . .

total 7.7 7.5 56.5 7.5 53.3
1 0.0 full . . . . . .

deg . . . .
2 98.3 full 3.2 7.7 . . 7.4 85.8

0.1 200 deg 96.8 . 7.4 88.3
3 1.5 full 0.0 . . . 4.9 21.3

deg 80.3 . 4.9 21.3
(null) 19.7 . . .

4 0.2 . . . . . .
total 7.7 7.4 87.5 7.4 85.0

1 0.0 full . . . . . .
deg . . . .

2 98.7 full 1.5 5.4 . . 9.4 97.9
400 deg 98.5 . 9.4 99.3

3 1.2 full 0.0 . . . 7.8 9.8
deg 85.0 . 7.8 9.8

(null) 15.0 . . .
4 0.1 . . . . . .

total 5.4 9.4 98.3 9.4 97.0
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Table 2b (continued)

δ T r % rank % W W+ W− com+ com−

1 0.5 full 0.0 . . . 73.9 60.9
deg 100 . 73.9 60.9

2 97.6 full 7.0 16.1 . . 11.0 90.0
100 deg 93.0 . 10.6 95.6

3 1.8 full 0.0 . . . 6.8 16.4
deg 81.1 . 6.8 16.4

(null) 18.9 . . .
4 0.1 . . . . . .

total 16.1 10.9 94.2 11.3 88.8
1 0.0 full . . . . . .

deg . . . .
2 98.5 full 3.3 16.0 . . 12.1 97.1

0.2 200 deg 96.7 . 12.0 99.9
3 1.4 full 0.0 . . . 10.0 31.7

deg 83.3 . 10.0 31.7
(null) 16.7 . . .

4 0.1 . . . . . .
total 16.0 12.0 99.0 12.1 96.3

1 0.0 full . . . .
deg . . . .

2 98.7 full 1.5 22.4 . . 22.4 98.8
400 deg 98.5 . 22.4 100.0

3 1.2 full 0.0 . . . 19.2 44.2
deg 89.7 . 19.2 44.2

(null) 10.3 . . .
4 0.1 . . . . . .

total 22.4 22.3 99.4 22.3 98.2
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Table 3 Long-Run Causality Between Long-Term Interest Rates: Three Country Case

(A) Test for Non-Stationarity of Interest Rates

ADF test L-M test
USD −1.630 13.125a

DEM −0.584 29.757a

FRF −0.771 10.759a

(B) Estimated lag length of VAR 4

(C) Test statistics for α′
⊥µ = 0 2.423

(D) Test for the number of cointegrating vectors
Eig. 0.058 0.030 0.008
H0 r = 0 r ≤ 1 r ≤ 2

trace 38.503b 15.178 3.290
lmax 23.325b 11.888 3.290

(E) Standardized adjustment coefficients α′

−0.092 0.062 −0.130

(F) Standardized cointegrating vectors β ′

0.487 0.154 −0.719 0.471

(G) Test statistics for long-run Granger non-causality

from: to: USD DEM FRF
USD . 15.578a 4.983
DEM 11.553b . 90.612a

FRF 4.097 11.239b .

from: DEM FRF to: USD 16.920b

from: USD to: DEM FRF 8.328b
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Table 4 Long-Run Causality Between Long-Term Interest Rates:

Five Country Case

(A) Test for Non-Stationarity of Interest Rates

ADF test L-M test
USD −0.951 16.919a

DEM 0.699 6.670a

FRF −0.096 16.206a

GBP −1.081 32.298a

JPY 0.081 36.415a

(B) Estimated lag length of VAR 3

(C) Test statistics for α′
⊥µ = 0 5.636

(D) Test for the number of cointegrating vectors

Eig. 0.109 0.058 0.034 0.014 0.007
H0 r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4

trace 104.839a 52.606 25.256 9.733 3.373
lmax 52.234a 27.350 15.522 6.360 3.373

(E) Standardized adjustment coefficients α′

−0.193 0.107 −0.204 0.063 −0.146

(F) Standardized cointegrating vectors β ′

0.711 0.177 −0.568 0.337 −0.114 0.118
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Table 4 (continued)

(G) Test statistics for long-run Granger non-causality

from: to: USD DEM FRF GBP JPY
USD . 17.152a 4.679c 4.149 3.944
DEM 16.875a . 85.080a 6.684c 23.024a

FRF 14.020a 2.135 . 4.71739 12.932a

GBP 14.895a 11.843a 14.752a . 13.067a

JPY 18.697a 7.149c 13.388a 4.116 .

from: to: USD D-F-G JPY
USD . 9.154c 3.944

D-F-G 21.140a . 25.483a

JPY 18.697a 28.179a .

from: DEM FRF GBP to: USD JPY 20.726a

from: USD JPY to: DEM FRF GBP 43.615a

38



USD

DEM FRF

�
�
�
��� �
�

�
���

�
�

USD
DEM
FRF

�
�

Figure 1 The long-run Granger causality at 5% significance level: Three Country Case
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Figure 2 The long-run Granger non-causality at 5% significance level: Five Country Case
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