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Abstract

The system GMM estimator in dynamic panel data models which combines two
moment conditions, i.e., for the differenced equation and for the model in levels,
is known to be more efficient than the first-difference GMM estimator. However,
an initial optimal weight matrix is not known for the system estimation procedure.
Therefore, we suggest the use of ‘a suboptimal weight matrix’ which may reduce the
finite sample bias whilst increasing its efficiency. Using the Kantorovich inequality,
we find that the potential efficiency gain becomes large when the variance of indi-
vidual effects increases compared to the variance of the idiosyncratic errors. (Our
Monte Carlo experiments show that the small sample properties of the suboptimal
system estimator are shown to be much more reliable than any other conventional
system GMM estimator in terms of bias and efficiency.

Keywords: Dynamic panel data; sub-optimal weighting matrix; KI upper bound

1 Introduction

It is generally known that using many instruments can improve the efficiency of various
IV and GMM estimators (Arellano and Bover, 1995; Blundell and Bond, 1998; Ahn
and Schmidt, 1995; etc.). Therefore, the system GMM estimator in dynamic panel data
models is more efficient than the first-difference GMM estimator.1 Despite the substantial
efficiency gain, using many instruments has two important drawbacks: increased bias
and unreliable inference (Newey and Smith, 2004; Hayakawa, 2005). In this paper, we
investigate how to decrease bias while increasing efficiency in the system GMM estimation.
Instead of adjusting the number of instrumental variables, we suggest an alternative way
of improving efficiency.

In general, an asymptotically efficient estimator can be obtained through the two-step
procedure in the standard GMM estimation. However, the estimated standard error can
be biased downwards quite severely for moderate sample sizes, N (Windmeijer, 1998).
It is obvious that the same problem persists even in the case of the two-step system
GMM estimation. In practice, therefore, we often rely on an inference based on the
less efficient one-step estimator, whose inference is much more reliable than that of the
two-step estimator. Under this constraint, it becomes important to choose the weight
matrix in the first step, especially in small samples. Unfortunately, the optimal weight
matrix for the system estimator is only available when the variance of individual effects is

∗Samsung Economic Research Institute, e-mail:hosungj.jung@samsung.com
†Department of Economics, Nihon University, e-mail:kwon@eco.nihon-u.ac.jp
1See Blundell and Bond (1998) for details.
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zero. Hence, we suggest using a suboptimal weight matrix which contains the estimated
variance ratio of the individual effects to that of the idiosyncratic error term. This yields
the suboptimal system GMM (SYSsub hereafter) estimation.2

To investigate the magnitude of the efficiency gain, KI upper bounds based on the
Kantorovich inequality (Windmeijer, 1998) are applied. We find that the efficiency gain
can potentially be large when the variance of individual effects increases. In addition,
we conduct Monte Carlo studies to confirm the efficiency gain from using the SYSsub

estimator when compared to the conventional system GMM estimation in Blundell and
Bond (1998). While the small-sample properties of the conventional system estimators
are heavily affected by the increase of the variance ratio, the SYSsub estimator is relatively
reliable. As an empirical example, we estimate the Cobb-Douglas production function of
a balanced panel of 1,002 Japanese manufacturing companies for the period 1991-2001.

The remainder of this paper is organized as follows. The next section presents the
model and reviews the conventional system GMM estimation. In Section 2, we propose
the SYSsub estimation and consider the efficiency gain against using the identity matrix as
an initial weight matrix. Section 3 reports the simulation results, while Section 4 present
an empirical application to a production function. Section 5 concludes. The notation is
fairly standard and self-explanatory: ‘→’ denotes convergence in probability while ‘∼’ or
‘⇒’ is used for convergence in distribution. The nonstochastic limit of a sequence is also
denoted by ‘→’ when the context makes the usage clear.

2 Models and the System GMM Estimator

To analyze the properties of the parameter estimators in the system GMM estimation,
we consider a simple dynamic panel model with an autoregressive specification and a
one-way error component, uit:

yit = αyit−1 + uit, |α| < 1. (1)

uit = µi + vit (i = 1, . . . , N ; t = 2, . . . , T ),

where µi ∼ iid
(
0, σ2

µ

)
and vit ∼ iid(0, σ2

v). To begin with, we assume that µi and vit have
the familiar error component structure in which

E(µi) = E(vit) = E(µivit) = 0 ∀ i, t (2)

and

E(vitvis) = 0. ∀ i, t 6= s (3)

The yit series are assumed to be stationary and the series can alternatively be written as

yit =
µi

1− α
+

∞∑

j=0

αjvi,t−j (4)

We define the variance ratio, ρi =
σ2

µ

σ2
v
, for later use. The system GMM estimator combines

moment conditions for the differenced equation with moment conditions for the model
in levels. Adopting the standard assumptions concerning the error components (i.e.,
the white-noise error vit), Blundell and Bond (1998) noted the validity of the following
ms = (T + 1)(T − 2)/2 linear moment restrictions for each i,

E [yi,t−j∆uit] = 0 for (j = 2, . . . , t− 1; t = 3, . . . , T ) (5)

E [∆yi,t−1uit] = 0 for (t = 3, . . . , T ). (6)
2As we need the first-step estimation to obtain the variance ratio, this estimation can be categorized

as a two-step GMM estimation. However, unlike the conventional two-step GMM estimation, we show
that SYSsub does not suffer from a downward bias of its estimated standard error.
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For convenience, the moment restrictions can be expressed more compactly as

E[fi(α0)] = E(Z ′
siqi) = 0 (7)

where

qi =

[
∆ui

ui

]
. (8)

Zsi is a 2(T − 2)×m block diagonal matrix given by

Zsi =

[
Zdi 0
0 Zli

]
(9)

where Zdi and Zli refer to the instruments in the first-differenced equation and the levels
equation, respectively. These are given by

Zdi =




[yi1] · · · 0

[yi1, yi2]
...

. . .

0 · · · [yi1, · · · , yiT−2]




(10)

and

Zli = diag[∆yi2, ∆yi3, . . . , ∆yi,T−1]. (11)

Let Zs be a 2N(T − 2) × ms matrix consisting of (Zs,1, . . . , Zs,N) and Y be a stacked
matrix Yi = (∆yi, yi). Then, the one-step system GMM estimator based on these moment
conditions (7) is

α̂s =
[
Y
′
−1ZsWNZ ′

sY−1

]−1 [
Y
′
−1ZsWNZ ′

sY
]

(12)

for some positive weight matrix WN . The efficient two-step system GMM estimator is
obtained in a similar way to the standard GMM procedure.

In panel data models, the estimated standard error can be substantially biased down-
ward; therefore, we often rely on inference based on the less efficient one-step estimator.
In this case, there is no one-step system GMM estimator that is asymptotically equivalent
to the two-step estimator, unless σ2

µ = 0. As a natural choice for WN to yield the initial
consistent estimator, Blundell and Bond (1998) used

WN =

[
1

N

N∑

i=1

Z ′
siHsZsi

]−1

, (13)

where

Hs =

[
Hd 0
0 IT−2

]
. (14)

While the submatrix Hd–a (T − 2) square matrix which has twos in the main diagonal,
minus ones in the first subdiagonals, and zeros otherwise is used for the first-differenced
equation, the identity matrix is used for the level estimation. This implies that the
variance–covariance structure of residuals from the level estimation is not considered in
the system estimation. Therefore, even if the weight matrix Hs works well for small
values of σ2

µ, there exists the potential for efficiency loss when σ2
µ gets large.
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3 A Suboptimal Weight Matrix

In large samples, the efficiency of the one-step system GMM estimator is not affected
by the choice of the weight matrix, as long as the matrix is positive definite. Therefore,
the efficiency gain for the two-step procedure may not be substantial asymptotically.
However, there is no one-step system GMM estimator that is asymptotically equivalent
to the two-step estimator, even in the special case of i.i.d. disturbances. Only in the case
of σ2

µ = 0 is an optimal weight matrix for the system GMM estimator given by

Hs =

[
Hd C
C IT−2

]
(15)

where C is a (T − 2) square matrix which has ones in the main diagonal, minus ones
in the first lower subdiagonals and zeros otherwise.3 Unless σ2

µ = 0, the identity matrix
IT−2 in Hs should be replaced by the matrix JT−2 to achieve optimality, where

JT−2 =




1 + ρ ρ ρ · · · ρ
ρ 1 + ρ ρ · · · ρ
ρ ρ 1 + ρ · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1 + ρ




, (16)

which yields the optimal weight matrix, Hso:

Hso =

[
Hd C
C JT−2

]
. (17)

Although the system estimator in Blundell and Bond (1998) performs well as long as ρ
is reasonably small, there are always cases where the variance of the individual effects,
µi, is substantially larger than that of the classical error term, vit. The use of the weight
matrix Hso, therefore, can be described as inducing cross-sectional heterogeneity through
ρ. Otherwise, using the matrix JT−2 can be explained as partially adopting a procedure
of GLS (generalized least squares) to the level estimation, which is not done in Blundell
and Bond (1998). However, since the variance ratio, ρ, is unknown in practice, we suggest
the estimate of the optimal weight matrix, Hso

Ĥso =

[
Hd 0

0 ĴT−2

]
, (18)

where a natural estimator for the variance ratio ρ̂ is readily available in the initial step
of the system estimation. To obtain ρ̂, we derive σ2

v from the first-difference GMM
estimation,

σ̂2
v =

∑N
i=1 ∆û

′
i∆ûi

2N(T − 2)
, (19)

while σ2
µ is given by

∑N
i=1

[
ũ
′
iũi −∆ũ

′
i∆ũi/2

]

N(T − 2)
, (20)

where ∆ûi and ũi are residuals from the first difference and the level equation, respectively.
Using this weight matrix, Ĥso, instead of the matrix Hs, may improve the efficiency of
the second-step system estimation when ρ becomes large.4

3Also see Windmeijer (1998) for details.
4If ρ is small, the potential efficiency gain gets smaller
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4 Efficiency Gains

To measure the efficiency gain, we use the KI upper bounds. Using the moment condition
(7), the system GMM estimator α̂s for α0 minimizes

α̂s = argminα0

[
1

N

N∑

i=1

fi(α)

]′
WN

[
1

N

N∑

i=1

fi(α)

]
(21)

where WN is a positive definite weight matrix that satisfies N→∞WN = W . Furthermore,
if we assume that

1√
N

fi(α0) → N (0, Ψ), (22)

where the regularity conditions are in place and Fα = E(∂fi(α)/∂α), F0 ≡ Fα0 , then√
N(α̂s − α0) has a limiting normal distribution,

√
N(α̂s − α0) → N (0, VW ), (23)

where VW = (F
′
0WF0)

−1F
′
0WΨWF0(F

′
0WF0)

−1. An optimal choice for W is Ψ−1, so
the asymptotic variance matrix is given by (F

′
0WF0)

−1. Clearly, the following inequality
holds for any positive matrix W :

(F
′
0Ψ

−1F0)
−1 ≤ (F

′
0WF0)

−1F
′
0WΨWF0(F

′
0WF0)

−1 (24)

According to Liu and Neudecker (1997), the following inequality also holds:

(F
′
0WF0)

−1F
′
0WΨWF0(F

′
0WF0)

−1 ≤ (λ1 + λp)
2

4λ1λp

(F
′
0Ψ

−1F0)
−1, (25)

and the KI upper bounds – KIub = (λ1+λp)2

4λ1λp
– are calculated, where λi > 0 (i = 1, . . . , p)

are the eigenvalues of the p× p matrix ΨW .5 If we use an initial weight matrix equal to
Ĥso, Ψ is obtained by

Ψ =
1

N

N∑

i=1

[
Z
′
iĤsoZi

]
, (26)

and the asymptotic variance matrix for using the suboptimal weighting matrix Ĥso then
is (F

′
0Ψ

−1F0)
−1. For T = 4, for example, with four overidentifying moment conditions,

the matrices Ψ and W1 are given by

Ψ =
1

N

N∑

i=1

[
Z
′
siHsoZsi

]

=




2σ2
y −σ2

y −δ 0 0
−σ2

y 2σ2
y 2δ 0 0

−δ 2δ 2σ2
y 0 0

0 0 0 2(1+ρ)σ2
v

1+α
−ρ(1−α)σ2

v

1+α

0 0 0 −ρ(1−α)σ2
v

1+α
2(1+ρ)σ2

v

1+α




(27)

and

W1 =
1

N

N∑

i=1

[
Z
′
siZsi

]−1

=




σ2
y 0 0 0 0
0 σ2

y δ 0 0
0 δ σ2

y 0 0

0 0 0 2σ2
v

1+α
0

0 0 0 0 2σ2
v

1+α




−1

, (28)

5Also see Liu and Neudecker (1997) for details
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where δ = σ2
y − σ2

v

1+α
. Hence,

ΨW1 =




2 −1 0 0 0
−1 2 0 0 0
− δ

σ2
y

0 2 0 0

0 0 0 (1 + ρ) −ρ(1−α)
2

0 0 0 −ρ(1−α)
2

(1 + ρ)




. (29)

We easily find that the eigenvalues of the upper block matrix in (29) are 1, 2 and 3,
which are fixed for any values of δ and σ2

y. The eigenvalues of the lower block matrix are
functions of ρ and α:

λlow =

[
(1 + ρ)∓ −ρ(1− α)

2

]

=
[
2 + 3ρ− αρ

2
,
2 + ρ + αρ

2

]
. (30)

If ρ ≤ 1.3̇, the eigenvalues of the lower block matrix in (29) are in [1,3] so that the
minimum and maximum of the eigenvalues of the whole matrix ΨW1 are 1 and 3, respec-
tively. This implies that the efficiency loss of the one-step system GMM estimator with
the identity matrix is around 30% compared to the suboptimal system GMM estimator.

5 Monte Carlo Experiments

This section illustrates the small-sample performance of the various system GMM esti-
mators. Monte Carlo experiments were carried out based on a data generating process
following Nerlove (1971) and Blundell and Bond (1998).

yit = αyit−1 + uit, (31)

for i = 1, 2, . . . , N and t = 2, 3, . . . , T . For the random-effects specification, we generate
uit = µi + vit, where µi ∼ iid(0, σ2

µ). All the innovations are independent over time and
are homoscedastic; that is, vit ∼ NID(0, 1). We generate the initial conditions yi1 as

yi1 =
µi

1− α
+ wi1, (32)

where wi1 is an NID(0, σw1) random variable, independent of both µi and vit with the
variance σw1 chosen to satisfy covariance stationarity.

The variance ratio, ρ, is characterized by
σ2

µ

σ2
v
, so it depends only on σ2

µ. Throughout the

experiments, eighteen parameter settings (i.e., α = 0.2, 0.5, 0.8 and ρ = 0, 0.5, 1, 2, 5, 10)
are simulated. To compare the small-sample performance, the five different system GMM
estimation procedures are considered according to their weight matrix. Specifically, ISYS
denotes the first-step estimator, which uses the identity matrix, while the one- and two-
step system GMM estimation in Blundell and Bond (1998) are named SYS1 and SYS2,
respectively. Furthermore, SYS3 uses the alternative suboptimal weighting matrix defined
in (15). SYSsub denotes the newly proposed suboptimal weight matrix (18), which uses
the estimated ρ, while TSYSsub uses the true ρ.6

Tables 1 and 2 present the estimation results for T = 5 and 10, respectively. Clearly,
the bias and the standard deviations of all the estimators are affected by the variance
ratio ρ. While the biases of ISYS, SYS1, SYS2 and SYS3 are negligible when ρ ≤ 1, they

6In one of the most widespread statistics programs, STATA, ISYS, SYS1 and SYS3 are derived by
choosing h(1), h(2) and h(3), which determine the first-step weight matrix from among three options.
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Table 1: Small-sample properties of various GMM estimators (T=5)

ρ ISYS SYS1 SYS2 SYS3 SYSsub TSYSsub

α = 0.2 Mean 0 0.1875 0.1960 0.1983 0.1970 0.1958 0.1960

0.5 0.1889 0.1980 0.2030 0.2127 0.1945 0.1948

1 0.1933 0.2076 0.2085 0.2287 0.1992 0.1991

2 0.2122 0.2238 0.2166 0.2572 0.2048 0.2029

5 0.2484 0.2688 0.2397 0.3254 0.2201 0.2112

10 0.3031 0.3251 0.2840 0.4149 0.2428 0.2173

Std. 0 0.0875 0.0764 0.0757 0.0700 0.0765 0.0764

0.5 0.0966 0.0851 0.0817 0.0839 0.0857 0.0850

1 0.0986 0.0941 0.0876 0.0947 0.0948 0.0933

2 0.1074 0.1059 0.0906 0.1152 0.1053 0.1027

5 0.1286 0.1270 0.1091 0.1496 0.1223 0.1168

10 0.1541 0.1556 0.1381 0.1877 0.1379 0.1249

α = 0.5 Mean 0 0.4740 0.4895 0.4927 0.4913 0.4890 0.4895

0.5 0.4824 0.5030 0.5053 0.5179 0.4959 0.4966

1 0.4984 0.5157 0.5155 0.5371 0.5018 0.5011

2 0.5227 0.5440 0.5372 0.5729 0.5180 0.5113

5 0.5898 0.6074 0.5877 0.6604 0.5590 0.5289

10 0.6664 0.6848 0.6604 0.7535 0.6217 0.5495

Std. 0 0.0981 0.0860 0.0816 0.0741 0.0861 0.0860

0.5 0.1099 0.1016 0.0960 0.0948 0.1048 0.1024

1 0.1182 0.1115 0.1043 0.1070 0.1164 0.1127

2 0.1313 0.1261 0.1150 0.1235 0.1323 0.1264

5 0.1458 0.1429 0.1359 0.1489 0.1558 0.1397

10 0.1555 0.1595 0.1589 0.1669 0.1823 0.1539

α = 0.8 Mean 0 0.7522 0.7786 0.7883 0.7867 0.7772 0.7786

0.5 0.7851 0.8116 0.8031 0.8305 0.7990 0.8003

1 0.8192 0.8429 0.8310 0.8649 0.8265 0.8210

2 0.8693 0.8869 0.8730 0.9086 0.8685 0.8486

5 0.9286 0.9408 0.9286 0.9531 0.9229 0.8837

10 0.9559 0.9681 0.9609 0.9739 0.9550 0.9058

Std. 0 0.1070 0.0954 0.0887 0.0789 0.0963 0.0954

0.5 0.1219 0.1123 0.1104 0.0939 0.1252 0.1147

1 0.1246 0.1148 0.1177 0.0999 0.1326 0.1178

2 0.1175 0.1094 0.1180 0.0932 0.1349 0.1158

5 0.0941 0.0916 0.1167 0.0821 0.1218 0.1078

10 0.0817 0.0697 0.0886 0.0625 0.0930 0.0956

Notes: (1) 5,000 replications with N = 100. (2) Std. refers to standard deviation.
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Table 2: Small-sample properties of various GMM estimators (T=10)

ρ ISYS SYS1 SYS2 SYS3 SYSsub TSYSsub

α = 0.2 Mean 0 0.1624 0.1935 0.1961 0.1991 0.1934 0.1935

0.5 0.1642 0.1981 0.1996 0.2354 0.1951 0.1952

1 0.1684 0.2038 0.2023 0.2658 0.1959 0.1958

2 0.1794 0.2172 0.2121 0.3187 0.1987 0.1980

5 0.2153 0.2561 0.2406 0.4391 0.2045 0.2010

10 0.2708 0.3100 0.2855 0.5602 0.2130 0.2039

Std. 0 0.0538 0.0419 0.0437 0.0375 0.0419 0.0419

0.5 0.0561 0.0470 0.0473 0.0475 0.0472 0.0470

1 0.0587 0.0493 0.0477 0.0565 0.0496 0.0490

2 0.0596 0.0518 0.0489 0.0758 0.0503 0.0493

5 0.0654 0.0622 0.0568 0.1015 0.0547 0.0523

10 0.0789 0.0761 0.0727 0.1142 0.0564 0.0519

α = 0.5 Mean 0 0.4368 0.4871 0.4913 0.4958 0.4870 0.4871

0.5 0.4452 0.4963 0.4983 0.5439 0.4907 0.4908

1 0.4601 0.5108 0.5084 0.5843 0.4960 0.4951

2 0.4910 0.5367 0.5278 0.6466 0.5045 0.5006

5 0.5634 0.6005 0.5834 0.7523 0.5265 0.5074

10 0.6465 0.6720 0.6539 0.8352 0.5600 0.5114

Std. 0 0.0589 0.0440 0.0446 0.0377 0.0441 0.0440

0.5 0.0650 0.0532 0.0506 0.0513 0.0541 0.0530

1 0.0669 0.0561 0.0530 0.0617 0.0574 0.0552

2 0.0711 0.0586 0.0549 0.0683 0.0601 0.0561

5 0.0799 0.0689 0.0680 0.0786 0.0690 0.0589

10 0.0890 0.0760 0.0798 0.0711 0.0821 0.0589

α = 0.8 Mean 0 0.7036 0.7770 0.7849 0.7939 0.7766 0.7770

0.5 0.7530 0.8097 0.8091 0.8641 0.7963 0.7947

1 0.7973 0.8387 0.8343 0.8976 0.8179 0.8081

2 0.8502 0.8777 0.8724 0.9329 0.8538 0.8250

5 0.9124 0.9310 0.9270 0.9673 0.9131 0.8474

10 0.9501 0.9599 0.9580 0.9828 0.9498 0.8613

Std. 0 0.0656 0.0476 0.0454 0.0351 0.0478 0.0476

0.5 0.0711 0.0577 0.0568 0.0412 0.0643 0.0576

1 0.0691 0.0564 0.0570 0.0397 0.0684 0.0581

2 0.0634 0.0533 0.0556 0.0361 0.0710 0.0578

5 0.0493 0.0419 0.0451 0.0287 0.0625 0.0562

10 0.0352 0.0318 0.0350 0.0215 0.0470 0.0534
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Table 3: Estimation Results of ρ
α ρ = 0 0.5 1 2 5 10

0.2 0.0099 0.5228 1.0167 1.9035 4.1814 6.9826

0.5 0.0223 0.5384 1.0126 1.7680 3.3160 4.6412

0.8 0.0514 0.6569 1.0037 1.2449 1.3974 1.3014

Notes: (1) 5,000 replications with T = 5, N = 100.

rapidly increase with ρ. The biases of SYSsub and TSYSsub show a much slower increase
due to an increase in ρ. Even in the case of α = 0.8, the two estimators show the smallest
increase in mean. On the other hand, SYSsub and TSYSsub in most cases have smaller
variance than any of the other estimators except SYS2.

7 Consequently, we conclude that
SYSsub outperforms the conventional system estimators in terms of bias and efficiency.
However, the advantage of the SYSsub estimator decreases as α grows to unity because a
high α leads to an unreliable estimate of ρ itself.

Table 3 presents the estimation results of ρ based on residuals from the first-step
system GMM estimator. The mean of the estimated ρ has substantial bias when α is
close to one, which yields no considerable improvement to using the suboptimal system
procedure. Even though the suggested estimator, SYSsub, depends on the results from
the first-step estimation of ρ, in most cases, SYSsub performs better than any of the other
conventional system estimators widely in use.

6 Empirical Application: Estimation of Production

Functions using Japanese Firm-level Panel Data

We apply the suboptimal system GMM estimation procedure (denoted SYSsub) to the es-
timation of production functions using firm-level balanced panel data for 1,002 Japanese
manufacturing firms. As highlighted by Griliches and Mairesse (1995), there are many
econometric problems involved in the estimation of production functions, including un-
observed heterogeneity between firms, simultaneity of the decisions about inputs and
output, and measurement errors in inputs. We compare our result with the results from
the different estimation approaches that have been proposed to deal with these problems,
such as OLS, LSDV, GMM and system GMM.

We estimate

yit = βmMit + βlLit + βkKit + γt + (µi + vit + mit) (33)

vit = αvi,t−1 + eit |α| < 1, (34)

where yit is the log of firm i’s sales in year t, Mit is the log of intermediate inputs, Lit is
the log of employment, Kit is the log of capital stock, and γt is a year-specific intercept
reflecting, for example, a common technology shock. As for the error components, µi is
an unobserved firm-specific effect, vit is a possibly autoregressive productivity shock, and
mit is measurement error. We assume that mit and eit are serially uncorrelated. As all
independent variables are potentially correlated with the individual-specific effects and
with productivity shocks, no valid moment conditions for specification (34) exist as long
as α 6= 0. However, this model has a dynamic common factor representation:

yit = αyi,t−1 + βmMit − αβmMi,t−1 + βlLit − αβlLi,t−1 + βkKit − αβkKi,t−1 (35)
7The two-step system estimators are known to have downward bias in the estimated standard errors.
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+(γt − αγt−1) + (µi(1− α) + eit + mit − αmi,t−1)

or

yit = π1yi,t−1 + π2Mit + π3Mi,t−1 + π4Lit + π5Li,t−1 + π6Kit + π7Ki,t−1 (36)

γ̇t + (µ̇i + wit),

subject to the three nonlinear common factor restrictions π3 = −π1π2, π5 = −π1π4

and π7 = −π1π6. On the other hand, the error term wit = eit + mit − αmi,t−1 is serially
uncorrelated if there are no measurement errors or wit ∼ MA(1) if there are measurement
errors in some of the series. Although consistent estimates of the unrestricted parameters,
π = (π1, . . . , π7), are possible in either case, we assume there is no measurement error,
i.e., mit = 0, for convenience. Using the suboptimal system GMM methods outlined in
the previous sections, we present the consistent estimates of π and var(π).

Table 4 presents the various estimation results. The key element we are interested in
is the sign of the coefficient estimates and their significance. Typically, the coefficients
of labor, capital, and intermediate inputs will tend to be biased upward in pooled OLS,
whereas the LSDV estimator controlled for unobserved heterogeneity provides very small
estimates of capital (see the survey by Griliches and Mairesse (1995)).
In the estimation results reported in Table 4, the value of the LSDV estimate of capital
is negative but significant. The low coefficient on capital may be caused by measure-
ment errors in the calculation of capital stocks and the difficulty of rapid adjustments
in response to exogenous shocks like demand shifts or productivity shocks. Our result
obtained by the LSDV estimator is consistent with previous findings by Blundell and
Bond (1998) and Black and Lynch (2001).
In order to control for these two problems, the first differences GMM (denoted GMM1)is
used in the estimation of the production function. Unfortunately, the first differences
GMM does not remedy the two distortions of the LSDV estimator, showing that the esti-
mated coefficient of capital is smaller than that of the LSDV estimation. Overidentifying
restrictions are also rejected. These findings result from the weak instruments problem
in dynamic models where regressors in first differences are weakly autocorrelated and
from the exacerbation of the measurement error problem caused by the elimination of
the cross-sectional variation through first differencing.
These findings indicate that the measurement error downward bias in capital is clearly in
excess of the upward bias caused by simultaneity. Blundell and Bond (2000) suggest an
alternative estimator that corrects these problems in the first differenced GMM estima-
tors, which they called the system GMM. Blundell and Bond (2000) and Alonso-Borrego
and Sanchez-Mangas (2001), using UK and Spanish data, respectively, show that the
system GMM estimation performs very well. In the system GMM estimation, the equa-
tion in differences is instrumented by lagged differences (while the equation in levels is
additionally instrumented by suitably lagged differences. A reason that the system GMM
works better than the first differenced GMM is that the second set of moment conditions
reduces weak instruments problems and the large measurement error in capital.
Table 4 also reports the coefficient estimates from three different methods of the sys-
tem GMM. When applying the system GMM using the one-step identity weight matrix
(ISYS), we obtained the result that the coefficients on the lagged dependent variable and
capital were larger than those of the first differenced GMM. The Sargan-statistic does
not reject the validity of the instruments. However, the coefficient on capital is not still
significant. Even when using SYS1, we still found a large coefficient on the lagged depen-
dent variable and an insignificant coefficient on capital, while the coefficient on labor was
considerably smaller than the result of ISYS, which is an unexpected result. By contrast,
the specification of SYS3 corrects for large measurement error in the differences of capital
while the test of the validity of the instruments and second order autocorrelation is not
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Table 4: Results of the Estimation of the Cobb-Douglas Production Function

REG OLS LSDV GMM1 ISYS SYS1 SYS3 SYSsub

coe. LogQ1 0.8782 0.3384 0.1765 0.3033 0.4070 0.6938 0.3808

LogM 0.7259 0.7495 0.7330 0.9078 0.9158 0.7954 0.8509

LogL 0.1887 0.1101 0.1118 0.2154 0.0853 0.1407 0.1013

LogK 0.0177 -0.038 -0.0273 0.0004 0.1060 0.1272 0.0588

LogM1 -0.6313 -0.1329 -0.0264 -0.2245 -0.3445 -0.5042 -0.2300

LogL1 -0.1693 -0.0574 -0.0627 -0.0718 -0.0576 -0.1037 -0.0272

LogK1 -0.0057 0.0307 0.0906 -0.0458 -0.0842 -0.1138 -0.1108

ste. LogQ1 0.0058 0.0084 0.0440 0.0359 0.0309 0.0152 0.0161

LogM 0.0044 0.0045 0.0057 0.0233 0.0278 0.0160 0.0123

LogL 0.0093 0.0088 0.0127 0.0413 0.0383 0.0223 0.0186

LogK 0.0086 0.0081 0.0123 0.0369 0.0363 0.0219 0.0178

LogM1 0.0062 0.0075 0.0324 0.0297 0.0293 0.0168 0.0159

LogL1 0.0093 0.0087 0.0136 0.0441 0.0415 0.0232 0.0172

LogK1 0.0087 0.0082 0.0123 0.0383 0.0386 0.0235 0.0167

t-val. LogQ1 151.770 40.437 4.010 8.440 13.440 45.610 23.620

LogM 165.393 165.922 128.450 39.010 31.690 49.610 71.824

LogL 20.190 12.443 8.780 5.210 4.200 6.300 5.444

LogK 2.057 -4.6703 -2.230 (0.010) (1.250) 5.800 3.297

LogM1 -102.015 -17.644 (-0.820) -7.550 -9.420 -29.930 -14.465

LogL1 -18.226 -6.616 -4.610 ( -1.630) ( -1.280) -4.470 ( -1.583)

LogK1 (-0.653) 3.753 7.380 (-1.200) -2.810 -4.850 -6.631

p-val. m1- 0.000 0.000 0.000 0.000 0.000

m2- 0.228 0.041 0.167 0.000 0.153

Sargan- 0.000 0.775 0.811 0.000 0.796

Notes: (1) The year dummy included in the estimation is not reported here. (2) 5%

critical values are used in the specification tests. (3) ISYS, SYS1 and SYS3 are based

on their one-step estimation. (4) The initially estimated value, ρ̂ = 3.6237, is used for

SYSsub. (5) LogQ1 refers to the lagged levels at t− 1.
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accepted. This indicates that the system GMM estimator using SYS3 will be inconsistent
The limitation of the system GMM is that it cannot obtain consistent estimates because
it does not consider the fixed effects in level equation.
The results show that the alternative estimation suggested in this paper helps to alleviate
the econometric problems in the estimation of production functions such as unobserved
heterogeneity, simultaneity, and measurement errors in intermediate inputs. For example,
the estimate of the coefficient on capital is positive and significant, while the coefficient on
inputs is quite realistic. The specification tests suggest that no second order correlation
in the error terms is present and that the instruments are valid. In sum, our estimation
results clearly show that the suboptimal system GMM estimator performs very well when
compared with the first differences GMM or the three other system GMM estimators.

7 Conclusion

The weak instruments problem may cause substantial small-sample biases when using
the first-difference GMM procedure to estimate autoregressive models for moderately
persistent series from short panels. (Also see Blundell and Bond,1998). However, these
biases could be reduced by incorporating more informative moment conditions that are
valid under quite general stationarity restrictions on the initial conditions. To this end,
the system GMM estimation using lagged first differences as instruments for equations
in addition to the usual lagged levels as instruments for the first differences equations is
suggested as an alternative in Blundell and Bond (1999).

To go one step further, we considered a suboptimal system GMM estimation in the
analysis of dynamic panel data sets with large cross-sectional variance. Since the small-
sample properties of the first-difference GMM estimators depend on the initial weighting
matrix, the performance of various system estimators with different weight matrices was
investigated. Our Monte Carlo results indicate that the conventional system estimators
are vulnerable to an increase in ρ. One of the most distinguishing features in these experi-
ments was that biases and standard deviations increase with ρ in most cases. To overcome
this deficiency, by inducing the variance of individual effects, µi, into the weight matrix,
the SYSsub estimation successfully weakens the increase of its biases and variances. Con-
sequently, we expect that the SYSsub estimation will provide useful parameter estimates
for the practitioner.

In the estimation of the Cobb-Douglas production function for the 1,002 Japanese
manufacturing firms, the suggested estimator provides the best parameter estimates in
terms of precision.
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The source of our data on Japanese manufacturing firms for the empirical application
is the DBJ database compiled by the Development Bank of Japan

Output: Firms’ total sales are used as a proxy for gross output. Total sales are
deflated by output deflators obtained from the SNA (System of National Accounts).

Intermediate inputs: Intermediate inputs are defined as (Cost of sales + Operating
costs) - (Wages + Depreciation costs) and are provided in the SNA.

Labor input: As labor input, we used the average of man hours between year t and
year t-1. Man hours are computed as each firms’ total number of workers multiplied by
the sectoral working hours obtained from the JIP.

The JIP 2006 Database was compiled as part of a RIETI research project. The
detailed results of this project are reported in Fukao et al. (2006). The database contains
annual information on 108 sectors, including 56 non-manufacturing sectors, from 1970 to
2002. These sectors cover the whole Japanese economy. The database includes detailed
information on factor inputs, annual nominal and real input-output tables, as well as
some additional statistics, such as capacity utilization rates, Japan’s international trade
by trade partner, inward and outward FDI, etc., at the detailed sectoral level. An Excel
file version of the JIP2006 Database is available on RIETI’s web site.
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