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Département de Sciences Economiques and CIREQ
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Abstract

We examine the maximal-element rationalizability of choice functions with arbitrary do-

mains. While rationality formulated in terms of the choice of greatest elements according

to a rationalizing relation has been analyzed relatively thoroughly in the earlier litera-

ture, this is not the case for maximal-element rationalizability, except when it coincides

with greatest-element rationalizability because of properties imposed on the rationalizing

relation. We develop necessary and sufficient conditions for maximal-element rationaliz-

ability by itself, and for maximal-element rationalizability in conjunction with additional

properties of a rationalizing relation such as reflexivity, completeness, P -acyclicity, quasi-

transitivity, consistency and transitivity. Journal of Economic Literature Classification

No.: D11.

Keywords: Choice Functions, Maximal-Element Rationalizability.



1 Introduction

The notion of rational choice as optimizing choice dates at least as far back as Robbins

(1932; 1935, p. 93), who asserted that “there is a sense in which the word rationality can be

used which renders it legitimate to argue that at least some rationality is assumed before

human behaviour has an economic aspect—the sense, namely, in which it is equivalent to

‘purposive’. . ..” The elaborate edifice of revealed preference theory à la Samuelson (1938;

1947, Chapter V; 1948; 1950) and Houthakker (1950) was the first formal treatment of

this notion of rational choice. The strong axiom of revealed preference due to Houthakker

was meant to be a sufficient condition for the demand function of a competitive consumer

to be derived by means of the optimization of an underlying preference ordering or utility

function. This line of research has been further explored by Arrow (1959), Richter (1966;

1971), Hansson (1968), Sen (1971), Suzumura (1976; 1977; 1983, Chapter 2), Bossert,

Sprumont and Suzumura (2001; 2002), and many others. Note, however, that the opti-

mization of a single underlying preference ordering or utility function is not the only way

of giving substance to the Robbinsian notion of ‘purposive behaviour.’ An alternative

model of purposive behavior may require that there exist multiple preference orderings

such that an alternative chosen from an option set is obtained by means of the maximiza-

tion of the intersection of these underlying preference orderings. If these orderings may

be construed as the individual preference orderings, the set of chosen options are nothing

other than the set of Pareto-efficient options. Alternatively, the underlying preference

orderings may be construed as potential preference orderings which a decision-maker may

have in the future. In this case, the set of chosen options consists solely of those options

which will never be rejected whichever potential preference ordering may materialize in

the future. These examples will suffice to illustrate that the exploration of the Robbinsian

notion of rational choice in terms of the maximal elements according to an underlying

preference relation (which is not necessarily complete) is a worthwhile and important

subject to be explored. See Schwartz (1976) and Sen (1997) for further motivation of ex-

ploring maximal-element rationalizability rather than greatest-element rationalizability.

This paper is devoted to this issue. The analysis of necessary and sufficient conditions for

maximal-element rationalizability by general relations and on arbitrary domains has, so

far, not been explored thoroughly.

There are three identifiable domains of a choice function of historical importance. The

first of these presupposes that the universal set is the commodity space (the non-negative

orthant of some finite-dimensional Euclidean space) and requires that the domain of a
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choice function consists of all budget sets (all non-degenerate subsets of the non-negative

orthant whose northeastern boundary is a hyperplane with a positive normal). Samuel-

son (1938; 1947, Chapter V; 1948; 1950) and Houthakker (1950) developed a revealed

preference theory for a competitive consumer under this domain restriction. Secondly,

capitalizing on an acute observation by Georgescu-Roegen (1954, p. 125; 1966, p. 222),

Arrow (1959) and Sen (1971) explored a new domain that includes all two-element sets

and all three-element sets. The theory of rational choice thus developed served as one of

the building blocks of non-binary social choice theory. See, for example, Sen (1977) and

Suzumura (1983, Chapter 3). The third domain, which was introduced by Richter (1966;

1971) and Hansson (1968), imposes no extraneous restriction whatsoever on the class of

feasible sets of options, thereby enabling the general theory of rational choice functions to

be pursued. Along with Suzumura (1976; 1977; 1983, Chapter 2) and Bossert, Sprumont

and Suzumura (2001; 2002), this paper attempts to explore the theory of rational choice

functions on this general domain. As opposed to those earlier contributions, however, we

focus on maximal-element rationalizability rather than greatest-element rationalizability.

The only restrictions we impose throughout are that the domain be non-empty and that

choices be decisive—that is, the set of chosen elements is always non-empty.

After formalizing alternative concepts of rationalizability in Section 2, we begin our

analysis in Section 3 by examining the logical relationships which hold between the dif-

ferent notions of maximal-element rationalizability. These different versions of rational-

izability are obtained if (combinations of) additional properties such as reflexivity, com-

pleteness, P -acyclicity, quasi-transitivity, consistency (in the sense of Suzumura, 1976; see

Section 2 for a formal definition) and transitivity are imposed on rationalizing relations.

For each notion of maximal-element rationalizability, we provide a set of necessary and

sufficient conditions. In particular, Section 4 presents complete characterizations of those

notions of maximal-element rationalizability that are weaker than full rationalizability

(that is, rationalizability by an ordering, in which case maximal elements and greatest el-

ements coincide). Because of the different nature of full rationalizability (and the different

nature of the characterizing conditions involved), this form of rationalizability is analyzed

in a section of its own. In Section 5, we provide a new characterization that is formulated

in a framework analogous to that used in the previous section. This result provides an

important link between our approach and the earlier analysis of full rationalizability (in

particular, the axiomatization due to Richter, 1966), and it serves to illustrate how our

contribution fits into the existing literature. Section 6 shows how the result of Section 5

can be simplified if the choice function is single-valued. Section 7 concludes with remarks
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on some further problems to be explored.

2 Alternative Concepts of Rationalizability

The set of positive integers is denoted by N. Let X be a universal non-empty set of

alternatives. X is the power set of X excluding the empty set. A choice function is

a mapping C: Σ → X such that C(S) ⊆ S for all S ∈ Σ, where Σ ⊆ X with Σ 6= ∅
is the domain of C. Note that C maps Σ into the set of all non-empty subsets of X.

Thus, according to Richter’s (1971) terminology, the choice function C is decisive. No

restrictions other than non-emptiness are imposed on the universal set X, or on the

domain of the choice function Σ. The alternatives x0, . . . , xK ∈ X with K ∈ N are said

to form a revealed preference chain of order K if there exist S1, . . . , SK ∈ Σ such that

xk−1 ∈ C(Sk) and xk ∈ Sk for all k ∈ {1, . . . , K}.
Let R ⊆ X × X be a (binary) relation on X. The asymmetric factor P (R) of R

is defined by (x, y) ∈ P (R) if and only if (x, y) ∈ R and (y, x) /∈ R for all x, y ∈ X.

The symmetric factor I(R) of R is defined by (x, y) ∈ I(R) if and only if (x, y) ∈ R

and (y, x) ∈ R for all x, y ∈ X. The non-comparable factor N(R) of R is defined by

(x, y) ∈ N(R) if and only if (x, y) /∈ R and (y, x) /∈ R for all x, y ∈ X. The diagonal

relation on X is given by Rd = {(x, x) | x ∈ X}.
A relation R ⊆ X × X is (i) reflexive if, for all x ∈ X, (x, x) ∈ R; (ii) complete

if, for all x, y ∈ X such that x 6= y, (x, y) ∈ R or (y, x) ∈ R; (iii) P -acyclical if, for

all K ∈ N \ {1} and for all x0, . . . , xK ∈ X, (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}
implies (xK , x0) /∈ P (R); (iv) quasi-transitive if, for all x, y, z ∈ X, [(x, y) ∈ P (R) and

(y, z) ∈ P (R)] implies (x, z) ∈ P (R); (v) consistent if, for all K ∈ N \ {1} and for all

x0, . . . , xK ∈ X, (xk−1, xk) ∈ R for all k ∈ {1, . . . , K} implies (xK , x0) /∈ P (R); (vi)

transitive if, for all x, y, z ∈ X, [(x, y) ∈ R and (y, z) ∈ R] implies (x, z) ∈ R.

Note that reflexivity is equivalent to the set inclusion Rd ⊆ R. Furthermore, a tran-

sitive relation is consistent, and a consistent relation is P -acyclical. Transitivity implies

quasi-transitivity which, in turn, implies P -acyclicity. The reverse implications are not

true in general. However, the discrepancy between transitivity and consistency disappears

if the relation is reflexive and complete. See Suzumura (1983, p. 244). Consistency and

quasi-transitivity are independent. A reflexive, complete and transitive relation is called

an ordering.

The transitive closure of a relation R ⊆ X×X is denoted by R, that is, for all x, y ∈ X,

(x, y) ∈ R if there exist K ∈ N and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ R for
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all k ∈ {1, . . . , K} and xK = y. Clearly, R is transitive and, because we can set K = 1,

it follows that R ⊆ R.

For a set S ∈ Σ and a relation R ⊆ X × X, the set of R-maximal elements in S is

M(S, R) = {x ∈ S | (y, x) /∈ P (R) for all y ∈ S}.

A choice function C is maximal-element rationalizable, M -rationalizable for short, if there

exists a relation R on X, to be called an M -rationalization of C, such that C(S) =

M(S, R) for all S ∈ Σ.

Even though this paper is primarily concerned with maximal-element rationalizability,

a by-product of our analysis pertains to greatest-element rationalizability. Thus, we also

define the set of R-greatest elements in S as

G(S, R) = {x ∈ S | (x, y) ∈ R for all y ∈ S},

and a choice function C is greatest-element rationalizable, G-rationalizable for short, if

there exists a relation R on X, to be called a G-rationalization of C, such that C(S) =

G(S, R) for all S ∈ Σ. Note that G(S, R) ⊆ M(S, R) holds for all S ∈ Σ and for any

relation R, where the set inclusion must be satisfied with an equality if R is reflexive and

complete.

Depending on the additional properties that we might want to impose on a ratio-

nalization (if any), different notions of rationalizability can be defined. For simplicity

of presentation, we use the following terminology. M stands for maximal-element ratio-

nalizability by an arbitrary M -rationalization, and R-M (respectively C-M; RC-M) is

maximal-element rationalizability by means of a reflexive (respectively complete; reflex-

ive and complete) M -rationalization. A-M (respectively RA-M; CA-M; RCA-M) is

maximal-element rationalizability by a P -acyclical (respectively reflexive and P -acyclical;

complete and P -acyclical; reflexive, complete and P -acyclical) M -rationalization, and

Q-M (respectively RQ-M; CQ-M; RCQ-M) is maximal-element rationalizability by a

quasi-transitive (respectively reflexive and quasi-transitive; complete and quasi-transitive;

reflexive, complete and quasi-transitive) M -rationalization. Furthermore, S-M (respec-

tively RS-M; CS-M; RCS-M) represents maximal-element rationalizability by a con-

sistent (respectively reflexive and consistent; complete and consistent; reflexive, com-

plete and consistent) M -rationalization. Analogously, T-M (respectively RT-M; CT-

M; RCT-M) denotes maximal-element rationalizability by a transitive (respectively re-

flexive and transitive; complete and transitive; reflexive, complete and transitive) M -

rationalization. Finally, RC-G (respectively RCT-G) is greatest-element rationaliz-
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ability by a reflexive and complete (respectively reflexive, complete and transitive) G-

rationalization. In particular, we refer to RCT-G (and all notions that are equivalent to

it) as full rationalizability. All weaker rationalizability requirements are collected under

the term weak rationalizability.

3 Logical Relationships

We begin our analysis by providing a full description of the logical relationships which hold

between the different notions of maximal-element rationalizability that can be defined,

depending on which additional properties are imposed on an M -rationalization. For

convenience, a diagrammatic representation is employed: all axioms that are depicted

within the same box are equivalent, and an arrow pointing from one box b to another box

b′ indicates that the axioms in b imply those in b′, and the converse implication is not

true without further assumptions regarding the domain of C.

Theorem 1 Suppose Σ is an arbitrary non-empty domain. Then

CS-M, RCS-M, CT-M, RCT-M

↓
Q-M, RQ-M, CQ-M, RCQ-M, T-M, RT-M

↓
A-M, RA-M, CA-M, RCA-M, S-M, RS-M

↓
M, R-M, C-M, RC-M

Proof. The proof is organized as follows. In Step 1, we prove the equivalence of all

axioms that appear in the same box. In Step 2, we show that all implications depicted in

the theorem statement are valid. In Step 3, we provide examples demonstrating that no

further implications are true without additional assumptions.

Step 1 For each of the four boxes, we show that all axioms listed in the box are

equivalent.

1.a To establish the equivalence of the axioms in the top box, it is sufficient to show

that CS-M implies RCT-M. Suppose R is a complete and consistent M -rationalization

of C. Let R′ = R∪Rd. Clearly, R′ is reflexive. Furthermore, R′ is complete because R is.

Because consistency is equivalent to transitivity for a reflexive and complete relation, R′ is
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transitive. That R′ is an M -rationalization of C follows immediately from the assumption

that R is, given the definition of maximal-element rationalizability.

1.b The equivalences in the second box are established in Bossert, Sprumont and

Suzumura (2001).

1.c Now consider the third box. Clearly, it is sufficient to prove that RS-M implies

RCA-M and that A-M implies RS-M.

To prove the first implication, suppose R is a reflexive and consistent rationaliza-

tion of C. As is straightforward to verify, the relation R′ = R ∪ N(R) is reflexive and

complete. Furthermore, because P (R′) = P (R), it follows immediately that R′ is an

M -rationalization of C.

Now suppose R is a P -acyclical M -rationalization of C. Defining R′ = (R\I(R))∪Rd,

it follows immediately that R′ is a reflexive and consistent M -rationalization of C.

1.d The equivalence of the properties in the fourth box is established by showing that

M implies RC-M. Suppose R is an M -rationalization of C. Let R′ = R ∪ N(R). As

in Step 1.c, in view of P (R′) = P (R), it follows immediately that R′ is a reflexive and

complete M -rationalization of C.

Step 2 The strict implications depicted by the arrows in the theorem statement are

straightforward to verify.

Step 3 Given the equivalences established in Step 1, the examples defined in Steps

3.a to 3.c suffice to complete the proof of the theorem.

3.a T-M does not imply CT-M.

Example 1 Let X = {x, y, z} and Σ = {{x, y}, {x, z}, {y, z}}. Define the choice function

C by letting C({x, y}) = {x, y}, C({x, z}) = {z} and C({y, z}) = {y, z}. This choice

function is M-rationalizable by the transitive M-rationalization

R = {(z, x)}.

Suppose C is M-rationalizable by a complete and transitive M-rationalization R′. By

definition of maximal-element rationalizability, we must have (z, x) ∈ P (R′) because x /∈
C({x, z}). Completeness of R′ implies, together with the definition of maximal-element

rationalizability, that we must have (x, y) ∈ I(R′) and (y, z) ∈ I(R′). By transitivity of

R′, it follows that (x, z) ∈ I(R′), a contradiction.

3.b S-M does not imply T-M.

Example 2 Let X = {x, y, z} and Σ = {{x, y}, {x, z}, {y, z}}, and define C({x, y}) =

{x}, C({x, z}) = {x, z} and C({y, z}) = {y}. This choice function is M-rationalizable
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by the consistent M-rationalization

R = {(x, y), (y, z)}.

Suppose R′ is a transitive M-rationalization of C. Because z ∈ C({x, z}), the definition

of maximal-element rationalizability implies (x, z) /∈ P (R′). Again using the definition

of maximal-element rationalizability, we must have (x, y) ∈ P (R′) because y /∈ C({x, y})
and (y, z) ∈ P (R′) because z /∈ C({y, z}). The transitivity of R′ implies (x, z) ∈ P (R′), a

contradiction.

3.c M does not imply S-M.

Example 3 Let X = {x, y, z} and Σ = {{x, y}, {x, z}, {y, z}}, and define C({x, y}) =

{x}, C({x, z}) = {z} and C({y, z}) = {y}. This choice function is M-rationalizable by

the M-rationalization

R = {(x, y), (y, z), (z, x)}.

Suppose R′ is an M-rationalization of C. Because y /∈ C({x, y}), the definition of

maximal-element rationalizability implies (x, y) ∈ P (R′). Analogously, x /∈ C({x, z})
implies (z, x) ∈ P (R′), and z /∈ C({y, z}) implies (y, z) ∈ P (R′). This implies that R′ is

not consistent.

4 Weak Forms of M-Rationalizability

We now provide characterizations of the three weakest notions of M -rationalizability

identified in Theorem 1. In addition, we prove a result that employs the remaining

combination of the axioms considered in this section.

As as auxiliary step in formulating various sets of necessary and sufficient conditions,

we introduce some further definitions. Let

AC = {(S, y) | S ∈ Σ and y ∈ S \ C(S)}

and

FC = {f :AC → X | f(S, y) ∈ S for all (S, y) ∈ AC}.

The set AC contains all pairs consisting of a feasible set and an element that belongs to

the set but is not chosen by C. The only case where AC is empty occurs if C(S) = S
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for all S ∈ Σ, that is, all feasible elements are chosen in each and every choice situation.

The functions in FC also have an intuitive interpretation. They assign a feasible element

to each pair of a feasible set and an alternative that is not chosen therefrom. Within

our framework of maximal-element rationalizability, the intended interpretation is that

f(S, y) is an alternative in S that can be used to prevent y from being chosen. Clearly,

the existence of such an alternative for each (S, y) in AC is a necessary condition for

maximal-element rationalizability.

The following properties of a function f ∈ FC will be of importance in formulating

our conditions.

A For all (S, y) ∈ AC , for all T ∈ Σ and for all x ∈ X,

[f(S, y) = x and x ∈ T ] ⇒ y /∈ C(T ).

A For all K ∈ N, for all (S1, x1), . . . , (SK, xK) ∈ AC , for all S0 ∈ Σ and for all x0 ∈ S0,

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K} ⇒ xK /∈ C(S0).

B For all (S, y), (T, x) ∈ AC ,

f(S, y) = x ⇒ f(T, x) 6= y.

B For all K ∈ N, for all (S0, x0), . . . , (SK, xK) ∈ AC ,

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K} ⇒ f(S0, x0) 6= xK .

The properties A and A impose restrictions on the relationship between C and f , whereas

B and B are concerned with avoiding contradictory behavior of the function f itself.

Clearly, A implies A and B implies B by definition.

These properties enable us to introduce several axioms which completely characterize

various concepts of M -rationalizability. The AB-axiom below is introduced for complete-

ness of the analysis to be carried out in this section. Although it does not characterize

any of the rationalizability requirements introduced so far in this paper, it is worthwhile

to examine its consequences by characterizing all choice functions that satisfy the axiom.

For simplicity of exposition, we only mention one rationalizability property out of

each set of equivalent properties; clearly, additional equivalence results are obtained by

applying Theorem 1.

To begin with, the following axiom is necessary and sufficient for maximal-element

rationalizability on an arbitrary domain.
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AB-axiom: If AC 6= ∅, then there exists f ∈ FC satisfying A and B.

We obtain the following characterization result.

Theorem 2 C satisfies M if and only if C satisfies the AB-axiom.

Proof. Step 1 We first prove that M implies the AB-axiom. Let R be an M -rationalization

of C. If AC = ∅, the AB-axiom is obviously satisfied.

Now suppose AC 6= ∅. To define a function f :AC → X with the desired properties,

consider any (S, y) ∈ AC . By definition, S ∈ Σ and y ∈ S \ C(S). The assumption that

R maximal-element rationalizes C implies the existence of x ∈ S such that (x, y) ∈ P (R).

Define f(S, y) = x. Clearly, f(S, y) ∈ S for all (S, y) ∈ AC by definition and, thus,

f ∈ FC . We show that the function f satisfies A and B.

To establish A, suppose (S, y) ∈ AC , T ∈ Σ and x ∈ X are such that f(S, y) = x

and x ∈ T . By the above definition of f , we obtain (x, y) ∈ P (R). Because R is an

M -rationalization of C, it follows that y /∈ C(T ).

To establish B, let (S, y), (T, x) ∈ AC and suppose f(S, y) = x. The definition of f

again implies (x, y) ∈ P (R). If f(T, x) = y, the same reasoning yields (y, x) ∈ P (R), a

contradiction. Thus, f(T, x) 6= y, establishing B.

Step 2 The proof is completed by establishing that the AB-axiom implies M. Suppose

C satisfies the AB-axiom. We construct an M -rationalization R of C. If AC = ∅, any

relation R such that P (R) = ∅ is an M -rationalization of C.

If AC 6= ∅, the AB-axiom implies the existence of a function f ∈ FC satisfying A and

B.

Define R = {(f(S, y), y) | (S, y) ∈ AC}. It remains to be shown that R is an M -

rationalization of C. Let S ∈ Σ and x ∈ S.

Suppose x ∈ C(S). If there exists y ∈ S such that (y, x) ∈ P (R), it follows from the

definition of R that there exists T ∈ Σ such that (T, x) ∈ AC and f(T, x) = y. But this

contradicts A and, therefore, x is R-maximal in S. Hence, C(S) ⊆ M(S, R).

Now suppose x /∈ C(S). Let y = f(S, x). By definition of R, we obtain (y, x) ∈ R.

By way of contradiction, suppose we also have (x, y) ∈ R. Then there exists T ∈ Σ such

that (T, y) ∈ AC and f(T, y) = x. But this contradicts B. Therefore, (x, y) /∈ R and thus

(y, x) ∈ P (R). Hence, x is not R-maximal in S, and we obtain M(S, R) ⊆ C(S).

The following corollary is an immediate consequence of Theorem 2.

Corollary 1 C satisfies RC-G if and only if C satisfies the AB-axiom.
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To establish this corollary to Theorem 2, we have only to recollect that M(S, R) = G(S, R)

holds for all S ∈ Σ if R is reflexive and complete. Simple though this corollary is, it

solves a perennial problem left open by Richter (1971, p. 36).1 Thus, our study of M -

rationalizability casts some light on the theory of G-rationalizability as a by-product.

Back, then, to the theory of M -rationalizability. The following condition characterizes

M -rationalizability by a P -acyclical M -rationalization.

AB: If AC 6= ∅, then there exists f ∈ FC satisfying A and B.

We now obtain

Theorem 3 C satisfies A-M if and only if C satisfies the AB-axiom.

Proof. Step 1 We first prove that A-M implies the AB-axiom. Let R be a P -acyclical

M -rationalization of C. If AC = ∅, the proof of Step 1 is complete.

Now suppose AC 6= ∅. To define a function f :AC → X with the desired properties,

consider any (S, y) ∈ AC . By definition, S ∈ Σ and y ∈ S \ C(S). The assumption that

R maximal-element rationalizes C implies the existence of x ∈ S such that (x, y) ∈ P (R).

Define f(S, y) = x. Again, it is clear that f(S, y) ∈ S for all (S, y) ∈ AC. That A is

satisfied by the function f follows as in the proof of Theorem 2.

To establish B, suppose K ∈ N and (S0, x0), . . . , (SK, xK) ∈ AC are such that

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}. By definition of f , we obtain (xk−1, xk) ∈ P (R)

for all k ∈ {1, . . . , K}. If f(S0, x0) = xK , it follows that (xK , x0) ∈ P (R). If K = 1, this

contradicts the hypothesis (x0, xK) ∈ P (R) and if K > 1, we obtain a contradiction to

the P -acyclicity of R. Therefore, f(S0, x0) 6= xK .

Step 2 The proof is completed by establishing that the AB-axiom implies A-M.

Suppose C satisfies the AB-axiom. If AC = ∅, we are done.

If AC 6= ∅, the AB-axiom implies the existence of a function f ∈ FC satisfying A and

B.

Define R = {(f(S, y), y) | (S, y) ∈ AC}. That R is an M -rationalization of C follows

as in the proof of Theorem 2. To show that R is P -acyclical, suppose K ∈ N \ {1} and

x0, . . . , xK ∈ X are such that (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}. By definition of R,

this implies that there exist S1, . . . , SK ∈ Σ such that (Sk, xk) ∈ AC and xk−1 = f(Sk, xk)

1Richter’s (1971, p. 36) Theorem 7 shows that a G-rational choice function with a complete G-
rationalization also has a complete and reflexive G-rationalization. However, he also observed that “[i]t
would be nice to have a behavioral characterization of [G-rational choice function with complete G-
rationalizations], but this remains an open problem.” Our Corollary 1 is a solution of this open problem.
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for all k ∈ {1, . . . , K}. If (xK , x0) ∈ P (R), there exists S0 ∈ Σ such that (S0, x0) ∈ AC

and xK = f(S0, x0). But this contradicts B.

Likewise, transitive M -rationalizability is characterized by the following axiom.

AB-axiom: If AC 6= ∅, then there exists f ∈ FC satisfying A and B.

The corresponding characterization result is stated in the following theorem.

Theorem 4 C satisfies Q-M if and only if C satisfies the AB-axiom.

Proof. Step 1 We first prove that Q-M implies the AB-axiom. Let R be a transitive

M -rationalization of C. If AC = ∅, the proof of Step 1 is complete.

Now suppose AC 6= ∅. To define a function f :AC → X with the desired properties,

consider any (S, y) ∈ AC . By definition, S ∈ Σ and y ∈ S \ C(S). The assumption that

R maximal-element rationalizes C implies the existence of x ∈ S such that (x, y) ∈ P (R).

Define f(S, y) = x. Again, it is clear that f(S, y) ∈ S for all (S, y) ∈ AC .

To show that f satisfies A, suppose K ∈ N, (S1, x1), . . . , (SK, xK) ∈ AC , S0 ∈ Σ

and x0 ∈ S0 are such that f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}. By definition,

(xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}. By quasi-transitivity of R, (x0, xK) ∈ P (R).

Because R is an M -rationalization of C, it follows that xK /∈ C(S0).

To prove B, suppose K ∈ N and (S0, x0), . . . , (SK, xK) ∈ AC are such that f(Sk, xk) =

xk−1 for all k ∈ {1, . . . , K}. By definition of f , we obtain (xk−1, xk) ∈ P (R) for all

k ∈ {1, . . . , K}. Because R is quasi-transitive, we obtain (x0, xK) ∈ P (R) and hence

(xK , x0) /∈ P (R). By definition of f , this implies f(S0, x0) 6= xK .

Step 2 The proof is completed by establishing that the AB-axiom implies Q-M.

Suppose C satisfies the AB-axiom. If AC = ∅, we are done.

If AC 6= ∅, the AB-axiom implies the existence of a function f ∈ FC satisfying A and

B.

Define R = {(f(S, y), y) | (S, y) ∈ AC} and consider the transitive closure R of R. We

show that R is an M -rationalization of C. Let S ∈ Σ and x ∈ S.

Suppose x ∈ C(S). If there exists y ∈ S such that (y, x) ∈ P (R), it follows that

there exist K ∈ N and (S1, x1), . . . , (SK, xK) ∈ AC such that, with x0 = y and xK = x,

xk−1 = f(Sk, xk) for all k ∈ {1, . . . , K}. Letting S0 = S, we obtain a contradiction to A

and, thus, x is R-maximal in S. Hence, C(S) ⊆ M(S, R).

Finally, suppose x /∈ C(S). Let y = f(S, x). By definition of R and the transitive

closure of a relation, this implies (y, x) ∈ R ⊆ R. Suppose (x, y) ∈ R. Then there
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exist K ∈ N and (S0, x0), . . . , (SK, xK) ∈ AC such that (S0, x0) = (S, x), xK = y and

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}. By B, f(S0, x0) = f(S, x) 6= xK = y, a

contradiction. Therefore, (x, y) /∈ R and hence (y, x) ∈ P (R). Thus, x is not R-maximal

in S and, therefore, M(S, R) ⊆ C(S).

We conclude this section by characterizing all choice functions such that there exists

a function f ∈ FC satisfying A and B whenever AC is non-empty. We say that a choice

function satisfies U-M if it possesses an M -rationalization R such that, for all K ∈ N,

for all x1, . . . , xK ∈ X, for all S0 ∈ Σ and for all x0 ∈ S0,

(xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K} ⇒ xK /∈ C(S0).

Furthermore, we define the following AB-axiom.

AB-axiom: If AC 6= ∅, then there exists f ∈ FC satisfying A and B.

We conclude this section with a characterization of U-M.

Theorem 5 C satisfies U-M if and only if C satisfies the AB-axiom.

Proof. Step 1 We first prove that U-M implies the AB-axiom. Let R be an M -

rationalization of C satisfying the property in the definition of U-M. If AC = ∅, the

proof of Step 1 is complete.

Now suppose AC 6= ∅. To define a function f :AC → X with the desired properties,

consider any (S, y) ∈ AC . By definition, S ∈ Σ and y ∈ S \ C(S). The assumption that

R maximal-element rationalizes C implies the existence of x ∈ S such that (x, y) ∈ P (R).

Define f(S, y) = x. It follows that f(S, y) ∈ S for all (S, y) ∈ AC.

To prove that f satisfies A, suppose K ∈ N, (S1, x1), . . . , (SK, xK) ∈ AC , S0 ∈ Σ

and x0 ∈ S0 are such that f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}. By definition,

(xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}. By U-M, it follows that xK /∈ C(S0). That B

is satisfied follows as in the proof of Theorem 2.

Step 2 The proof is completed by establishing that the AB-axiom implies U-M.

Suppose C satisfies the AB-axiom. If AC = ∅, we are done.

If AC 6= ∅, the AB-axiom implies the existence of a function f ∈ FC satisfying A and

B.

Define R = {(f(S, y), y) | (S, y) ∈ AC}. That R is an M -rationalization of C follows

as in the proof of Theorem 2. To complete the proof, we have to establish the property

in the definition of U-M. Suppose K ∈ N, x1, . . . , xK ∈ X, S0 ∈ Σ and x0 ∈ S0 are such
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that (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}. By definition, there exist S1, . . . , SK ∈ Σ

such that (Sk, xk) ∈ AC and xk−1 = f(Sk, xk) for all k ∈ {1, . . . , K}. By A, xK /∈ C(S0).

5 Full Rationalizability

In general, the crucial feature of maximal-element rationalizability is to establish instances

of strict preference which prevent non-chosen alternatives to be maximal elements. As

is easy to verify, maximal-element rationalizability coincides with greatest-element ratio-

nalizability if a rationalization is required to be reflexive and complete. If transitivity is

imposed in addition (and, thus, full rationalizability is considered), instances of indiffer-

ence are important in addition to strict preferences; see Houthakker (1950) and Suzumura

(1977) for discussions. In our present context, it is therefore clear that the functions in

FC—the interpretation of which is concerned exclusively with strict preferences—are no

longer sufficient to provide an adequate framework for the formulation of necessary and

sufficient conditions for full rationalizability. However, we may preserve the general nature

of our approach and work with the following modifications of the analytical framework in

the previous section. Let

BC = {(S, y) | S ∈ Σ and y ∈ S}

and

GC = {g:BC → X | g(S, y) ∈ C(S) for all (S, y) ∈ BC}.

The set BC contains all pairs consisting of a feasible set S and an alternative y that is in

S—y may or may not be in C(S). It follows that BC is non-empty because the domain of

C is non-empty and contains only non-empty subsets of X. Each of the functions in GC

assigns a chosen alternative to each pair of a feasible set and a feasible alternative. The

intended interpretation is that g(S, y) ∈ S represents a selection from C(S) that cannot

be prevented from being chosen by the presence of y.

Due to the more demanding nature of full rationalizability, the two separate types of

properties used in the previous section coincide and can be expressed in terms of a single

condition. We define the following restriction on g.

D For all K ∈ N and for all (S0, x0), . . . , (SK, xK) ∈ BC ,

[g(Sk, xk) = xk−1 for all k ∈ {1, . . . , K} and g(S0, x0) = xK ] ⇒ xK /∈ C(S0).
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Rather than merely the existence of a function in GC with this property, a necessary and

sufficient condition for full rationalizability requires all functions in GC to satisfy D; again,

this is an immediate consequence of the more demanding nature of M -rationalizability

by an ordering and its equivalence to G-rationalizability.

D-axiom: For all g ∈ GC , g satisfies D.

In the proof of our next characterization result, we make use of Richter’s (1966) char-

acterization of full rationalizability.2 Richter (1966) shows that the congruence axiom

is necessary and sufficient for greatest-element rationalizability by an ordering. In our

setting, congruence can be expressed as follows.

Congruence: For all K ∈ N and for all (S0, x0), . . . , (SK, xK) ∈ BC ,

[xk−1 ∈ C(Sk) for all k ∈ {1, . . . , K} and xK ∈ C(S0)] ⇒ x0 ∈ C(S0).

This property can be used to prove our characterization of full rationalizability.

Theorem 6 C satisfies CS-M if and only if C satisfies the D-axiom.

Proof. By Richter’s (1966) result and the observation that RCT-G is equivalent to

the axiom in the theorem statement, it is sufficient to establish the equivalence of the

congruence axiom and the D-axiom.

Step 1 We first prove that the congruence axiom implies the D-axiom. Suppose C sat-

isfies the congruence axiom. Let g ∈ GC and suppose that K ∈ N and (S0, x0), . . . , (SK, xK) ∈
BC are such that g(Sk, xk) = xk−1 for all k ∈ {1, . . . , K} and g(S0, x0) = xK . Because

g ∈ GC , it follows that xk−1 ∈ C(Sk) for all k ∈ {1, . . . , K} and xK ∈ C(S0). By the

congruence axiom, x0 ∈ C(S0) and, thus, g satisfies D.

Step 2 To prove the reverse implication, suppose that C satisfies the D-axiom. That

is, every g ∈ GC satisfies D. Suppose K ∈ N and (S0, x0), . . . , (SK, xK) ∈ BC are such

that xk−1 ∈ C(Sk) for all k ∈ {1, . . . , K} and xK ∈ C(S0). Let g ∈ GC be such that

g(Sk, xk) = xk−1 for all k ∈ {1, . . . , K} and g(S0, x0) = xK . Clearly, such a function g

exists. By the D-axiom, g satisfies D. Therefore, it follows that x0 ∈ C(S0) and hence

the congruence axiom is satisfied.

2See Hansson (1968) and Suzumura (1977; 1983, Chapter 2, Appendix A) for two alternative charac-
terizations.
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6 Single-Valued Choice Functions

In the case of single-valued choice functions (that is, choice functions such that |C(S)| = 1

for all S ∈ Σ, where |C(S)| is the cardinality of C(S)), our characterization of full

rationalizability can be simplified considerably. Note, however, that this is not the case

for weaker notions of M -rationalizability. This difference is due to the observation that

weak M -rationalizabilty merely requires every feasible element y, that is not chosen in a

set S, to be dominated (in the sense of strict preference) by an element x in S, where x

need not be chosen itself. Thus, the assumption that C(S) contains a single element only

does not simplify matters as far as the identification of necessary and sufficient conditions

for M -rationalizable choice is concerned.

To characterize full rationalizability in the single-valued setting, our first modifica-

tion is to restrict attention to those functions f that map into C(S); due to the full-

rationalizability assumption, any element that is not chosen must be dominated by some

element in the chosen set, given that the rationalization is an ordering. We define

HC = {f :AC → X | f(S, y) ∈ C(S) for all (S, y) ∈ AC}.

Our necessary and sufficient condition is the following E-axiom.

E-axiom: If AC 6= ∅, then there exists f ∈ HC satisfying A.

We now prove our final characterization result. As in the previous section, we make use of

Richter’s (1966) result and show that the congruence axiom is equivalent to the E-axiom

if C is single-valued.

Theorem 7 Suppose C is single-valued. C satisfies CS-M if and only if C satisfies the

E-axiom.

Proof. We assume that C is single-valued and prove the equivalence of congruence and

the E-axiom.

Step 1 Suppose C satisfies the congruence axiom. If AC = ∅, the result is immediate.

Now suppose AC 6= ∅. We define a function f ∈ HC and show that, for that function, A

is satisfied. For all (S, y) ∈ AC and for all x ∈ X, let f(S, y) = x if and only if x ∈ C(S).

Because C is single-valued, f is well-defined and unique. To prove that the E-axiom is

satisfied, suppose K ∈ N, (S1, x1), . . . , (SK, xK) ∈ AC, S0 ∈ Σ and x0 ∈ S0 are such that

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}.
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By way of contradiction, suppose xK ∈ C(S0). Because AC ⊆ BC , it follows that

(S1, x1), . . . , (SK, xK) ∈ BC . Furthermore, by assumption, (S0, x0) ∈ BC . The congruence

axiom implies x0 ∈ C(S0) and, because C is single-valued, we must have x0 = xK .

Therefore, xK = x0 = f(S1, x1) and, if K > 1, xk−1 = f(Sk, xk) for all k ∈ {2, . . . , K}.
By definition of f , this implies xK ∈ C(S1) and x1 ∈ S1 \ C(S1) and, furthermore,

xk−1 ∈ C(Sk) and xk ∈ Sk \ C(Sk) for all k ∈ {2, . . . , K}. This is a contradiction to the

congruence axiom, which completes Step 1.

Step 2 Suppose C satisfies the E-axiom. To show that the congruence axiom is

satisfied, let K ∈ N and (S0, x0), . . . , (Sk, xK) ∈ BC be such that xk−1 ∈ C(Sk) for all

k ∈ {1, . . . , K} and xK ∈ C(S0). If x0 = xK , the result is immediate.

Now consider the case x0 6= xK . Suppose there exist k, j ∈ {0, . . . , K} such that k 6= j

and xk = xj. Without loss of generality, suppose that k < j. If j = K, it follows that

xk = xK ∈ C(S0); if j < K, we obtain xk = xj ∈ C(Sj+1). In either case, a revealed

preference chain of a lower order is obtained because the elements xk, . . . , xj−1 can be

omitted. Because K is finite and x0 6= xK , this argument can be repeated sufficiently many

times to obtain a revealed preference chain of some order where all elements are distinct.

Thus, we can without loss of generality assume that xk 6= xj for all k, j ∈ {0, . . . , K} such

that k 6= j.

Because all elements in this revealed preference chain are distinct, single-valuedness

implies that xk ∈ Sk\C(Sk) for all k ∈ {1, . . . , K} and, therefore, (S0, x0), . . . , (SK, xK) ∈
AC . This implies AC 6= ∅ and, by the E-axiom, there exists f ∈ HC satisfying A. Because

C is single-valued and f(S, y) ∈ C(S) for all (S, y) ∈ AC by definition, it follows that

f(Sk, xk) = xk−1 for all k ∈ {1, . . . , K}. Because xK ∈ C(S0), we obtain a contradiction

to A. Hence the case x0 6= xK cannot occur and the proof is complete.

7 Concluding Remarks

The classical notion of rational choice as purposive behavior has been extensively ex-

plored in the literature by interpreting purposive behavior as ‘optimizing behavior’ with

respect to some underlying preference relation or utility function. This paper analyzes

an alternative interpretation of purposive behavior as maximizing behavior with respect

to some underlying preference relation that need not be reflexive and complete. Within

the class of choice functions which are maximal-element rationalizable, we identify several

important sub-classes and characterize them in terms of intuitive axioms. No restrictions

on the domain of a choice function are imposed other than the non-emptiness of the do-
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main, and the decisiveness of choice. As a by-product of our analysis of maximal-element

rationalizability, we shed further light on a problem left open in the classical study by

Richter (1971) on greatest-element rationalizability.

Except for the case of full rationalizability (rationalizability by an ordering), our char-

acterizations involve existential clauses. This is sometimes seen as a shortcoming but it

seems to us that this objection, by itself, does not stand on solid ground: there is nothing

inherently undesirable in an axiom involving existential clauses. If the argument is that

existential clauses are difficult to verify in practice, this is easily countered by the observa-

tion that universal quantifiers are no easier to check algorithmically (at least, in the case

of existential clauses, a search algorithm can terminate once one object with the desired

property can be found). Thus, in this respect, our conditions compare rather favorably

with those that are required for many forms of greatest-element rationalizability where

universal quantifiers play a dominant role.

We suspect that a major reason behind the reluctance to accept existential clauses in

the context of rational choice may be that conditions involving existential requirements

are seen as being ‘too close’ to the rationalizability property itself because the desired

property is expressed in terms of the existence of a rationalization. This is (except for

obvious cases) a matter of judgement, of course. Our view is that the combinations of the

axioms employed in the characterizations of the weak forms of rationalizability represent

an interesting and insightful way of separating the properties involved in maximal-element

rationalizability. Furthermore, the axioms we use appear to be rather clear and the roles

they play in the respective results have very intuitive interpretations. By definition of

maximal-element rationalizability, existential clauses appear naturally and it is therefore

not surprising that this feature is reflected in our conditions as well. Finally, we should

observe that the mathematical structures encountered are similar to those appearing in

dimension theory and, consequently, closely related complexities cannot but arise. In

fact, existential clauses appear in many of the characterization results in that area; see,

for example, Dushnik and Miller (1941).3

In concluding this paper, some remarks on further problems to be explored are in

order. Because we do not impose any restrictions on the domain of a choice function

(other than non-emptiness), our results are extremely general. As a result, our theorems

can be of relevance in whatever context of rational choice as purposive behavior we may

care to specify, which is an obvious merit of our general approach. Note, however, that our

3Dimension theory addresses the question of how many orderings are required to express a quasi-
ordering as the intersection of these orderings.
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approach may overlook some meaningful further directions to explore by being insensitive

to the structural properties of the domain which make perfect sense in the specific contexts

on which we are focussing. Two representative examples may be worthwhile to mention.

The first structural property of the domain is finite additivity stating that, for any two

sets in the domain, their set-theoretical union is also a member of the domain. The second

structural property of the domain is coveredness: for any two sets in the domain, there

exists a member of the domain which contains the set-theoretical union of the two sets we

have started from. Note that the former structural property of the domain is not satisfied

by the Samuelson-Houthakker domain which consists of the budget sets in a commodity

space, whereas the latter structural property of the domain is. Indeed, the second property

can be construed as a generalization of the first; it is also a property which is satisfied by

the Arrow-Sen domain with a finite universal set. We suggest that the exploration of the

theory of rational choice under one or the other of these restrictions (or yet others not

mentioned here) is a worthwile direction of future research in the specific context of our

discourse.
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Dushnik, B. and E.W. Miller (1941), “Partially ordered sets,” American Journal of

Mathematics 63, 600–610.

Georgescu-Roegen, N. (1954), “Choice and revealed preference,” Southern Economic

Journal 21, 119–130.

Georgescu-Roegen, N. (1966), Analytical Economics: Issues and Problems, Harvard

University Press, Cambridge.

Hansson, B. (1968), “Choice structures and preference relations,” Synthese 18, 443–458.

18



Houthakker, H.S. (1950), “Revealed preference and the utility function,” Economica

17, 159–174.

Richter, M.K. (1966), “Revealed preference theory,” Econometrica 34, 635–645.

Richter, M.K. (1971), “Rational choice,” in J. Chipman, L. Hurwicz, M. Richter

and H. Sonnenschein (eds.), Preferences, Utility, and Demand, Harcourt Brace Jo-

vanovich, New York, pp. 29–58.

Robbins, L. (1932; second ed. 1935), An Essay on the Nature and Significance of Eco-

nomic Science, Macmillan, London.

Samuelson, P.A. (1938), “A note on the pure theory of consumer’s behaviour,” Eco-

nomica 5, 61–71.

Samuelson, P.A. (1947), Foundations of Economic Analysis, Harvard University Press,

Cambridge.

Samuelson, P.A. (1948), “Consumption theory in terms of revealed preference,” Eco-

nomica 15, 243–253.

Samuelson, P.A. (1950), “The problem of integrability in utility theory,” Economica

17, 355–385.

Schwartz, T. (1976), “Choice functions, “rationality” conditions, and variations on the

weak axiom of revealed preference,” Journal of Economic Theory 13, 414–427.

Sen, A.K. (1971), “Choice functions and revealed preference,” Review of Economic Stud-

ies 38, 307–317.

Sen, A.K. (1977), “Social choice theory: A re-examination,” Econometrica 45, 53-89.

Sen, A.K. (1997), “Maximization and the act of choice,” Econometrica 65, 745–779.

Suzumura, K. (1976), “Remarks on the theory of collective choice,” Economica 43,

381–390.

Suzumura, K. (1977), “Houthakker’s axiom in the theory of rational choice,” Journal

of Economic Theory 14, 284–290.

Suzumura, K. (1983), Rational Choice, Collective Decisions and Social Welfare, Cam-

bridge University Press, New York.

19


