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Abstract

A new efficient simulation smoother and disturbance smoother are introduced
for asymmetric stochastic volatility models where there exists a correlation be-
tween today’s return and tomorrow’s volatility. The state vector is divided into
several blocks where each block consists of many state variables. For each block,
corresponding disturbances are sampled simultaneously from their conditional
posterior distribution. The algorithm is based on the multivariate normal ap-
proximation of the conditional posterior density and exploits a conventional sim-
ulation smoother for a linear and Gaussian state space model. The performance
of our method is illustrated using two examples (1) simple asymmetric stochas-
tic volatility model and (2) asymmetric stochastic volatility model with state-
dependent variances. The popular single move sampler which samples a state
variable at a time is also conducted for comparison in the first example. It is
shown that our proposed sampler produces considerable improvement in the mix-
ing property of the Markov chain Monte Carlo chain.

Key words: Asymmetric stochastic volatility model; Bayesian analysis; Distur-
bance smoother; Kalman filter; Markov chain Monte Carlo; Metropolis-Hastings
algorithm; Simulation smoother.

1 Introduction

It is well known in financial markets that return volatility changes randomly with a
high persistence. It has also long been recognized in stock markets that there is a
negative correlation between today’s return and tomorrow’s volatility (Black (1976)
and Christie (1982)). This phenomenon is called “leverage effect” or “asymmetry”.
We use the term “asymmetry” in this artcile since some researchers show that this
phenomenon cannot be attributed to financial leverage (Avramov et al. (2006)).
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tokyo.ac.jp.
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The asymmetric stochastic volatility model is well-known to describe these phe-
nomena for stock returns (alternative models are, e.g., GJR (Glosten et al. (1993)),
EGARCH (Nelson (1991)) and APGARCH (Ding et al. (1993)) models). This article
proposes an efficient Bayesian method using Markov chain Monte Carlo (MCMC) for
the estimation of asymmetric stochastic volatility models. In the previous literature,
simple estimation procedures are proposed. For example, Melino and Turnbull (1990)
use the GMM (generalized methods of moments) and Harvey and Shephard (1996)
use the QML (quasi-maximum likelihood method) via the Kalman filter for the es-
timation of asymmetric stochastic volatility models. However, they are less efficient
than the MCMC-based Bayesian method (Jacquier et al. (1994)).

This method requires us to sample state variables as well as parameters from their
joint posterior distribution, which is possible by using Gibbs sampler, i.e., sampling
them from their full conditional distributions iteratively. The most important is how
to sample the state variables from their full conditional distribution. A simple method
is the single-move sampler that generates a single state variable at a time given the
rest of the state variables and other parameters. It is usually easy to construct such
a sampler, but the obtained samples are known to be highly autocorrelated. This
implies that we need to generate a huge number of samples to conduct a statistical
inference and hence the sampler is inefficient.

Two methods have been proposed to reduce sample autocorrelations effectively.
One method is mixture samplers proposed by Kim et al. (1998) for a symmetric
stochastic volatility model and extended by Omori et al. (2007) for an asymmet-
ric stochastic volatility model. This method transforms the model into a linear
state-space model and approximates the error distribution by a mixture of normal
distributions (see e.g. Frühwirth-Schnatter and Frühwirth (2007) for the similar ap-
proximation in the logistic models). The mixture samplers is fast and highly efficient,
but instead its use is limited to the models that can be transformed into a linear
state-space form. For example, it is not applicable to the stochastic volatility model
with risk premium because it cannot be represented by a linear state-space model.

The other methods are block samplers (also called multi-move samplers) proposed
by Shephard and Pitt (1997) and Watanabe and Omori (2004), which generate a block
of state variables. This method can be applied to the model directly without trans-
forming into a linear state-space form. However, the block samplers proposed by
Shephard and Pitt (1997) and Watanabe and Omori (2004) assume that an observa-
tion vector and a state vector are conditionally independent. Thus they cannot be
applied to asymmetric stochastic volatility models.

In this article, we develop a block sampler for asymmetric stochastic volatility
models. First, we derive a recursive algorithm to find a posterior mode of the state
vector for a non-Gaussian measurement model with a linear state equation using
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Taylor expansion of the logarithm of the conditional posterior density for the dis-
turbances. Second we define an approximating linear and Gaussian measurement
equation based on the obtained posterior mode.

Since our method can be applied to more general models, we also apply our method
to an extended asymmetric stochastic volatility model where the variance of the dis-
turbance in the volatility equation is state-dependent. Stroud et al. (2003) considered
a block sampler for models with state-dependent variances (but without asymmetry)
using an auxiliary mixture model to generate a state proposal for Metropolis-Hastings
algorithms. The block samplers proposed by Shephard and Pitt (1997) and Watan-
abe and Omori (2004) cannot be applied to such a model because they assume that a
state equation is linear. For this model, we construct an auxiliary linear state equa-
tion to derive an approximating linear and Gaussian state space model. Then we
generate a candidate for a state variable in Metropolis-Hastings algorithm using this
approximating linear and Gaussian state space model.

We compare the performance of our method with the single move sampler which
samples a state variable at a time using a simple asymmetric stochastic volatility
model. We find that our proposed sampler produces considerable improvement in
the mixing property of the Markov chain Monte Carlo chain. We also estimate the
asymmetric stochastic volatility model with state-dependent variances using stock
returns data.

The organization of the article is as follows. In Section 2, we introduce a simple
asymmetric stochastic volatility model. Section 3 describes a simulation smoother
and a disturbance smoother for this model. Section 4 extends our method for an
asymmetric volatility model with state-dependent variance. In Section 5, we illustrate
our method using simulated data and stock returns data. Section 6 concludes the
article.

2 Asymmetric stochastic volatility model

In this article, we first consider the following asymmetric stochastic volatility model.

yt = εtσε exp(αt/2), t = 1, . . . , n, (1)

αt+1 = φαt + ηtση, |φ| < 1, t = 1, . . . , n− 1, (2)

α1 ∼ N(0, σ2
η/(1− φ2)), (3)(

εt

ηt

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
, (4)

where αt is the unobserved state variable, σε exp(αt/2) stands for the volatility of the
response, yt, and (ρ, σε, ση, φ) are parameters. We assume |φ| < 1 for the stationarity
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of αt. The state equation (2) is linear and Gaussian, while the measurement equation
(1) is nonlinear. (4) assumes that error terms εt and ηt follow a bivariate normal
distribution. A correlation between these errors is considered to explain asymmetry.
The symmetric stochastic volatility model (ρ = 0) has been widely used to explain
time varying variances of the response in the analysis of financial time series data
such as stock returns and foreign exchange rate data. However, it is well known in
stock markets that the fall of the stock return is followed by the high volatility (Black
(1976) and Christie (1982)). Thus we expect a negative correlation, ρ < 0, between
εt and ηt rather than ρ = 0 in stock markets.

Jacquier et al. (2004) considered a correlation between εt and ηt−1. Harvey and
Shephard (1996) and Yu (2005) point out that yt is a martingale difference sequence
if εt and ηt are correlated whereas it is not so and inconsistent with the efficient
market hypothesis if εt and ηt−1 are correlated. Moreover, Yu (2005) shows that the
model with the correlation between εt and ηt fits the data better than that with the
correlation between εt and ηt−1.

3 Block sampler and posterior mode estimation

In our block sampler, we divide (α1, . . . , αn) into K +1 blocks, (αki−1+1, . . . , αki)
′ for

i = 1, . . . , K +1, with k0 = 0 and kK+1 = n, where ki−ki−1 ≥ 2. Following Shephard
and Pitt (1997), we select K knots, (k1, . . . , kK), randomly (see Section 5.1.1 for
the detail). We sample the error term (ηki−1 , . . . , ηki−1) instead of (αki−1+1, . . . , αki)
simultaneously from their full conditional distribution.

Suppose that ki−1 = s and ki = s + m for the i-th block. Then (ηs, . . . , ηs+m−1)
are sampled simultaneously from the following full conditional distribution.

f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m)

∝
s+m∏
t=s

f(yt|αt, αt+1)
s+m−1∏

t=s

f(ηt), s + m < n, (5)

f(ηs, . . . , ηs+m−1|αs, ys, . . . , ys+m)

∝
s+m−1∏

t=s

f(yt|αt, αt+1)f(yn|αn)
s+m−1∏

t=s

f(ηt), s + m = n. (6)

The conditional distribution of yt given αt and αt+1 for t < n and that given αt for
t = n are normal with mean µt and variance σ2

t where

µt =

{
ρσεσ

−1
η (αt+1 − φαt) exp(αt/2), t < n,

0, t = n,
(7)

σ2
t =

{
(1− ρ2)σ2

ε exp(αt), t < n,

σ2
ε exp(αn), t = n.

(8)
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The logarithm of f(yt|αt, αt+1) or f(yn|αn) in equations (5) and (6) (excluding con-
stant term) is given by

lt = −αt

2
− (yt − µt)2

2σ2
t

. (9)

Then the logarithm of (5) or (6) is −∑s+m−1
t=s η2

t /2 + L (excluding a constant term)
where

L =

{ ∑s+m
t=s ls − (αs+m+1−φαs+m)2

2σ2
η

, s + m < n,
∑s+m

t=s ls, s + m = n.

Further define

d = (d′s+1, . . . , d
′
s+m)′, dt =

∂L

∂αt
, t = s + 1, . . . , s + m, (10)

Q = −E

[
∂2L

∂α∂α′

]
=




As+1 B′
s+2 O . . . O

Bs+2 As+2 B′
s+3 . . . O

O Bs+3 As+3
. . .

...
...

. . . . . . . . . B′
s+m

O . . . O Bs+m As+m




,

At = −E

[
∂2L

∂αt∂α′t

]
, t = s + 1, . . . , s + m, (11)

Bt = −E

[
∂2L

∂αt∂α′t−1

]
, t = s + 2, . . . , s + m, Bs+1 = O, (12)

where s ≥ 0 (t ≥ 1 for (11) and t ≥ 2 for (12)). As for the asymmetric stochastic
volatility model, the first derivative of L with respect to αt is given by

dt =
∂L

∂αt
=





−1
2

+
(yt − µt)2

2σ2
t

+
(yt − µt)

σ2
t

∂µt

∂αt
+

(yt−1 − µt−1)
σ2

t−1

∂µt−1

∂αt
,

t = s + 1, . . . , s + m− 1, or t = s + m = n,

−1
2

+
(yt − µt)2

2σ2
t

+
(yt − µt)

σ2
t

∂µt

∂αt
+

(yt−1 − µt−1)
σ2

t−1

∂µt−1

∂αt
+

φ(αt+1 − φαt)
σ2

η

,

t = s + m < n,

(13)

where

∂µt

∂αt
=





ρσε

ση

{
−φ +

(αt+1 − φαt)
2

}
exp

(αt

2

)
, t = 1, . . . , n− 1,

0, t = n,

(14)
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∂µt−1

∂αt
=





0, t = 1,
ρσε

ση
exp

(αt−1

2

)
, t = 2, . . . , n.

(15)

Taking expectations of second derivatives multiplied by −1 with respect to yt’s, we
obtain the At’s and Bt’s as follows.

At = −E

(
∂2L

∂α2
t

)
=





1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

,

t = s + 1, . . . , s + m− 1, or t = s + m = n,

1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

+ φ2σ−2
η ,

t = s + m < n,

Bt = −E

(
∂2L

∂αt∂αt−1

)
= σ−2

t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, t = 2, . . . , n.

Applying the second order Taylor expansion to (5) will produce the approximating
normal density f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) as follows (see Appendix
A1).

log f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m)

≈ const− 1
2

s+m−1∑
t=s

η′tηt + L̂ +
∂L

∂η′

∣∣∣∣
η=η̂

(η − η̂) +
1
2
(η − η̂)′ E

(
∂L2

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂)

= const− 1
2

s+m−1∑
t=s

η′tηt + L̂ + d̂′(α− α̂)− 1
2
(α− α̂)′Q̂(α− α̂) (16)

= const + log f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) (17)

where d̂, L̂, Q̂ denote d, L, Q evaluated at α = α̂ (or, equivalently, at η = η̂). The
expectations are taken with respect to yt’s conditional on αt’s We use an informa-
tion matrix for Q because we require that Q is everywhere strictly positive definite.
However, other matrices such as a numerical negative Hessian matrix may be used to
construct a positive definite matrix Q. Similarly, we can obtain the normal density
which approximates (6).

Posterior mode estimation. Next we describe how to find a mode, η̂, of the conditional
posterior density of η (see Appendix A2 for a derivation of Algorithm 1.1). We repeat
the following algorithm until η̂ converges to the posterior mode.

Algorithm 1.1 (Posterior mode disturbance smoother):

1. Initialize η̂ and compute α̂ at η = η̂ using (2) recursively.

2. Evaluate d̂t’s, Ât’s, and B̂t’s using (10)–(12) at α = α̂.
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3. Compute the following Dt, Jt and bt for t = s + 2, . . . , s + m recursively.

Dt = Ât − B̂tD
−1
t−1B̂

′
t, Ds+1 = Âs+1,

Jt = K−1′
t−1B̂t, Js+1 = O, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1,

where Kt denotes a Choleski decomposition of Dt such that Dt = KtK
′
t.

4. Define auxiliary variables ŷt = γ̂t + D−1
t bt where

γ̂t = α̂t + K
′−1
t J ′t+1α̂t+1, t = s + 1, . . . , s + m,

5. Consider the linear Gaussian state-space model given by

ŷt = Ztαt + Gtξt, t = s + 1, . . . , s + m, (18)

αt+1 = φαt + Htξt, t = s, s + 1, . . . , s + m, (19)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I),

where

Zt = I + K
′−1
t J ′t+1φ, Gt = K

′−1
t [I, J ′t+1ση], Ht = [O, ση].

Apply Kalman filter and a disturbance smoother (e.g. Koopman (1993)) to the
linear Gaussian system (18) and (19) and obtain the posterior mode η̂ and α̂.

6. Goto 2.

In the MCMC implementation, the current sample of η may be taken as an initial value
of the η̂. It can be shown that the posterior density of η∗t ’s obtained from (18) and (19)
is the same as f∗ in (17). Thus, applying Kalman filter and a disturbance smoother
to the linear Gaussian system (18) and (19), we first obtain a smoothed estimate of ηt

and then substitute it recursively to the linear state equation (2) to obtain a smoothed
estimate of αt. Then we replace η̂t, α̂t by obtained smoothed estimates. By repeating
the procedure until the smoothed estimates converge, we obtain the posterior mode
of ηt, αt. This is equivalent to the method of scoring to maximise the logarithm of the
conditional posterior density.

Fahrmeir and Wagenpfeil (1997) and Fahrmeir and Tutz (2001) proposed a closely
related algorithm for the non-Gaussian dynamic regression models assuming the expo-
nential family distribution for the measurement equations. However, their algorithm
assumed the independence between the measurement error εt and ηt, and hence can-
not be applied to the asymmetric stochastic volatility models. Our algorithm can be
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applied to the models with more general distribution family and correlated errors.

Sampling from the posterior density of η. To sample η from the conditional posterior
density, we propose a candidate sample from the density q(η) which is proportional to
min(f(ηy), cf∗(ηy)) and conduct the Metropolis-Hastings algorithm (see e.g. Tierney
(1994), Chib and Greenberg (1995)).

Algorithm 1.2 (Simulation smoother):

1. Given the current value ηx, find the mode η̂ using Algorithm 1.1. Since it is
enough to find an approximate value of the mode for a purpose of generating a
candidate, we usually need to repeat Algorithm 1.1 only several times.

2. Proceed Step 2–4 of Algorithm 1.1 to obtain the approximate linear Gaussian
system (18)–(19).

3. Propose a candidate ηy by sampling from q(ηy) ∝ min(f(ηy), cf∗(ηy)) using the
Acceptance-Rejection algorithm where the logarithm of c can be constructed
from a constant term and L̂ in (16).

(i) Generate ηy ∼ f∗ using the multimove simulation smoother (e.g. de Jong
and Shephard (1995), Durbin and Koopman (2002)) for the approximating
linear Gaussian state-space model (18)–(19).

(ii) Accept ηy with probability

min(f(ηy), cf∗(ηy))
cf∗(ηy)

.

If it is rejected, go back to (i).

4. Conduct the MH algorithm using the candidate ηy. Given the current value ηx,

we accept ηy with probability

min
{

1,
f(ηy)min(f(ηx), cf∗(ηx))
f(ηx)min(f(ηy), cf∗(ηy))

}
.

where a proposal density proportional to min(f(ηy), cf∗(ηy)). If it is rejected,
accept ηx as a sample.

Note that the independence between εt and ηt implies Bt = O for all t, and equations
(18) and (19) reduce to

ŷt = αt + K
′−1
t εt, εt ∼ N(0, I), t = s + 1, . . . , s + m,

αt+1 = φαt + σηηt, ηt ∼ N(0, I). t = s, s + 1, . . . , s + m,

where ŷt = α̂t + Â−1
t d̂t for t = s + 1, . . . , s + m− 1 and ŷs+m = α̂s+m.
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4 Extension

It is straightforward to extend our method for more general models. Thus, we also
consider an asymmetric stochastic volatility models with state-dependent variances.

Stroud et al. (2003) considered state-dependent variance models (but without
asymmetry) to explain such fat-tailed errors using a square-root stochastic volatility
model with jumps in the analysis of Hong Kong interest rates. We may instead
consider a simple extension of the asymmetric stochastic volatility model. Specifically,
we replace state equations (2) and (3) by

αt+1 = φαt + ηtση

{
1 +

1
1 + exp(−αt)

}
, |φ| < 1, t = 1, . . . , n− 1, (20)

α1 ∼ N(0, σ2
0), (σ2

0: known). (21)

The variance of the error in the state equation depends on the level of the state
variable. Thus the conditional variance tends to be larger for the large positive value
of the state variable, αt, while it becomes small for the negative value. We use this
model to illustrate a state equation which is a nonlinear function of αt and ηt.

Normal approximation of the conditional posterior density. To construct a proposal
density, we expand the logarithm of the conditional posterior density of η around
η̂ given αs, αs+m+1, as in the previous section, but further introduce the following
auxiliary linear state equation

βt+1 = T̂tβt + R̂tηt, ηt ∼ N(0, I), (22)

T̂t =
∂αt+1

∂α′t

∣∣∣∣
η=η̂

, R̂t =
∂αt+1

∂η′t

∣∣∣∣
η=η̂

, (23)

for t = s, . . . , s + m− 1 with an initial condition βs = β̂s. When the state equation is
linear and Gaussian, we have βt = αt for t = s+1, . . . , s+m and βs = αs. Otherwise,
we shall take βs = β̂s = 0 for convenience sake.

As for the state equation (20), T̂t and R̂t in the auxiliary state equation (22) are

T̂t = φ + ηtση
exp(−α̂t)

{1 + exp(−α̂t)}2
,

R̂t = ση

{
1 +

1
1 + exp(−α̂t)

}
,

t = 1, . . . , n− 1, R0 = σ0,

respectively. Given αt’s, yt follows normal distribution with mean µt and variance σ2
t
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(yt|α ∼ N(µt, σ
2
t )) where

µt = ρσεσ
−1
η (αt+1 − φαt)

{
1 +

1
1 + exp(−αt)

}−1

exp(αt/2), (24)

and σ2
t given by (8). The logarithm of conditional likelihood of yt (excluding constant

term) is the same as in (9).
To sample a block (αs+1, . . . , αs+m) given αs, αs+m+1 and other parameters, we

consider the log conditional posterior for ηt (t = s, s + 1, . . . , s + m − 1) given by
−∑s+m−1

t=s η2
t /2 + L (excluding a constant term) where

L =





∑s+m
t=s ls − log

{
1 + 1

1+exp(−αs+m)

}
− (αs+m+1−φαs+m)2

2σ2
η

n
1+ 1

1+exp(−αs+m)

o2 , if s + m < n,

∑s+m
t=s ls if s + m = n.

The dt, first derivative of the L, is the same as in (13) but replacing (14) and (15) by

∂µt

∂αt
=





∂µt

∂αt+1

[
−φ + (αt+1 − φαt)

{
1
2
− 1

3 + 2 exp(αt) + exp(−αt)

}]
,

t = 1, . . . , n− 1,

0, t = n,

(25)

∂µt−1

∂αt
=





0, t = 1,

ρσε

ση

{
1 +

1
1 + exp(−αt−1)

}−1

exp
(αt

2

)
, t = 2, . . . , n,

(26)

and the At’s and Bt’s are given by

At =
1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

, t = 1, . . . , n,

Bt = σ−2
t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, t = 2, . . . , n.

Let L =
∑s+m

t=s lt and η = (η′s, . . . , η′s+m−1)
′. Then

log f(η|αs, αs+m+1, ys, . . . , ys+m)

= const− 1
2

s+m−1∑
t=s

η′tηt + L + log p(αs+m+1|αs+m)

≈ const− 1
2

s+m−1∑
t=s

η′tηt + L̂ + d̂′(β − β̂)− 1
2
(β − β̂)′Q̂(β − β̂) + log p(αs+m+1|α̂s+m)

= const + log f∗(η|αs, αs+m+1, ys, . . . , ys+m) + log p(αs+m+1|α̂s+m), (27)

We separate the term log p(αs+m+1|αs+m) to construct the approximating normal
proposal density since its Hessian matrix ∂2 log p(αs+m+1|αs+m)/∂αs+m∂α′s+m may
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not be negative definite. However, when it is negative definite, we would include this
term in L as in Algorithm 1.1.

Posterior mode estimation. Algorithm 2.1 describes how to find a mode, η̂, of
L − 1/2

∑s+m−1
t=s η′tηt by repeating it until η̂ converges (see Appendix A2 for the

derivation).

Algorithm 2.1:

1. Initialize η̂.

2. Evaluate T̂t’s, R̂t’s in (23) at η = η̂ and compute α̂t’s and β̂t’s recursively.

α̂t+1 = φα̂t + η̂tση

{
1 +

1
1 + exp(−α̂t)

}
,

β̂t+1 = T̂tβ̂t + R̂tη̂t,

for t = s, s + 1, . . . , s + m− 1.

3. Evaluate d̂t’s, Ât’s, and B̂t’s using (10)–(12) at α = α̂.

4. Compute the following Dt, Jt and bt for t = s + 2, . . . , s + m recursively.

Dt = Ât − B̂tD
−1
t−1B̂

′
t, Ds+1 = Âs+1,

Jt = K−1′
t−1B̂t, Js+1 = O, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1,

where Kt denotes a Choleski decomposition of Dt such that Dt = KtK
′
t.

5. Define auxiliary variables ŷt = γ̂t + D−1
t bt, where

γ̂t = β̂t + K
′−1
t J ′t+1β̂t+1, t = s + 1, . . . , s + m,

6. Consider the linear Gaussian state-space model with the auxiliary state equation
given by

ŷt = Ztβt + Gtξt, t = s + 1, . . . , s + m, (28)

βt+1 = T̂tβt + Htξt, t = s, s + 1, . . . , s + m− 1, (29)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I),

where

Zt = I + K
′−1
t J ′t+1T̂t, Gt = K

′−1
t [I, J ′t+1R̂t], Ht = [O, R̂t].
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Apply Kalman filter and a disturbance smoother to the linear Gaussian system
(28) and (29) and obtain the posterior mode η̂.

7. Goto 2.

Note that the above algorithm produces the posterior mode of η when we include the
term log p(αs+m+1|αs+m) in L. If εt and ηt are independent, the approximating linear
Gaussian state-space model reduces to

ŷt = βt + K
′−1
t εt, εt ∼ N(0, I),

βt+1 = T̂tβt + R̂tηt, ηt ∼ N(0, I).

To generate η from the conditional posterior density, we conduct the Metropolis-
Hastings algorithm using a proposal density f∗(ηy).

Algorithm 2.2 (Simulation smoother):

1. Given the current value ηx, find the approximate value of mode, η̂, using Algo-
rithm 2.1.

2. Proceed Step 2–5 of Algorithm 2.1 to obtain the approximate linear Gaussian
system (28)–(29).

3. Generate a candidate ηy from f∗(ηy) using a simulation smoother for the ap-
proximating linear Gaussian state-space model (28)–(29). Given the current
value ηx, we accept ηy with probability

min
{

1,
f(ηy)f∗(ηx)
f(ηx)f∗(ηy)

}
.

If it is rejected, accept ηx as a sample.

5 Illustrative examples

We illustrate how to implement our block sampler of state variables αt’s using simu-
lated data and stock returns data. We show that our method attains a considerable
improvement in the estimation efficiency compared with results from using a single
move sampler (which samples one αt at a time given α−t = (α1, . . . , αt−1, αt+1, . . . , αn)).

12



5.1 Asymmetric stochastic volatility model

5.1.1 MCMC algorithm

Let y, Σ denote y = (y1, . . . , yn)′ and

Σ =

(
σ2

ε ρσεση

ρσεση σ2
η

)
,

respectively. We first initialize {αt}n
t=1, φ, Σ and proceed an MCMC implementation

in 3 steps.

1. Sample {αt}n
t=1|φ,Σ, y.

(a) Generate K stochastic knots (k1, . . . , kK) and set k0 = 0, kK+1 = n.

(b) Sample {αt}ki
t=ki−1+1|{αt|t ≤ ki−1, t > ki}, φ, Σ, y for i = 1, . . . , K + 1.

2. Sample φ|{αt}n
t=1, Σ, y.

3. Sample Σ|{αt}n
t=1, φ, y.

Step 1. We construct blocks by dividing (α1, . . . , αn) into K+1 blocks, (αki−1+1, . . . , αki)
′

using (k1, . . . , kK) with k0 = 0 and kK+1 = n where ki−ki−1 ≥ 2 for i = 1, . . . , K +1.

The K knots, (k1, . . . , kK), are generated randomly using

ki = int[n× (i + Ui)/(K + 2)], i = 1, . . . , K,

where Ui’s are independent uniform random variables on (0, 1) (see e.g. Shephard
and Pitt (1997), Watanabe and Omori (2004)) . As discussed in Shephard and Pitt
(1997), these stochastic knots have advantages to allow the points of conditioning to
change over the MCMC iterations and are expected to accelerate the convergence of
the distribution of MCMC samples to the posterior distibution. We control the single
tuning parameter K to obtain the efficient sampler. For each block, use Algorithm
1.1 and 2.1 to generate state variables (αki−1+1, . . . , αki

) i = 1, . . . , K + 1.

Step 2. Let π(φ) denote a prior probability density for φ. The logarithm of the
conditional posterior density for φ (excluding a constant term) is given by

log π(φ) +
1
2

log(1− φ2)− α2
1(1− φ2)

2σ2
η

−

n−1∑

t=1

{
αt+1 − φαt − ρσησ

−1
ε exp(−αt/2)yt

}2

2(1− ρ2)σ2
η

.

We propose a candidate for the MH algorithm using a truncated normal distribution
on (−1, 1), with mean µφ and variance σ2

φ (which we denote by φ ∼ TN(−1,1)(µφ, σ2
φ))
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where

µφ =
∑n−1

t=1 αt

(
αt+1 − ρσησ

−1
ε e−αt/2yt

)

ρ2α2
1 +

∑n−1
t=2 α2

t

, σ2
φ =

(1− ρ2)σ2
η

ρ2α2
1 +

∑n−1
t=2 α2

t

.

Given the current sample φx, generate φy ∼ TN(−1,1)(µφ, σ2
φ) and accept it with

probability

min





π(φy)
√

1− φ2
y

π(φx)
√

1− φ2
x

, 1



 .

Step 3. We assume that a prior distribution of Σ−1 follows Wishart distribution
(which we denote by Σ−1 ∼ W (ν0, Σ0)). Then the logarithm of the conditional
posterior density of Σ (excluding a constant term) is

− log ση − α2
1(1− φ2)

2σ2
η

− ν1

2
log |Σ| − 1

2
tr

(
Σ−1

1 Σ−1
)
,

where

ν1 = ν0 + n− 1, Σ−1
1 = Σ−1

0 +
n−1∑

t=1

xtx
′
t, xt = (yt exp(−αt/2), αt+1 − φαt).

We sample Σ using MH algorithm with a proposal Σ−1 ∼ W (ν1,Σ1). Given the
current value Σ−1

x , generate Σ−1
y ∼ W (ν1, Σ1) and accept it with probability

min





σ−1
η,y exp−α2

1(1− φ2)
2σ2

η,y

σ−1
η,x exp−α2

1(1− φ2)
2σ2

η,x

, 1





.

5.1.2 Illustration using simulated data

To simulate the daily financial data, we set φ = 0.97, σε = 1, ση = 0.1, ρ = −0.5 and
generate n = 1, 000 observations. We take a beta distribution with parameters 20 and
1.5 for the (1 + φ)/2 and hence the prior mean and standard deviation of φ are 0.86
and 0.11 respectively. For a prior distribution of Σ−1, we assume a less informative
distribution and take a Wishart distribution with ν0 = 0.01 and Σ−1

0 equal to the
true value of 0.01 × Σ. The computational results were generated using Ox version
4.04 (Doornik (2002)) throughout.

Estimation results. We set K = 40 so that each block contains 25 αt’s on the
average. The initial 5,000 iterations are discarded as burn-in period and the following
50, 000 iterations are recorded. Table 1 summarises the posterior means, standard
deviations, 95% credible intervals, inefficiency factors and p values of convergence
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diagnostic tests by Geweke (1992) for the parameters φ, σε, ση and ρ. The posterior
means are close to true values and true values of all parameters are covered in 95%
credible intervals. All p values of convergence diagnostic (CD) tests are greater than
0.05, suggesting that there is no significant evidence against the convergence of the
distribution of MCMC samples to the posterior distribution.

Number of blocks = 40
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.97 0.984 0.011 [0.957, 0.997] 260.1 0.94
σε 1.0 0.930 0.084 [0.756, 1.105] 279.0 0.13
ση 0.1 0.080 0.026 [0.040, 0.140] 432.7 0.83
ρ −0.5 −0.387 0.206 [−0.729, 0.058] 68.7 0.42

Table 1: Summary statistics. The number of MCMC iterations is 50,000, and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and
CD (p value of convergence diagnostic test).

The inefficiency factor is defined as 1 + 2
∑∞

s=1 ρs where ρs is the sample auto-
correlation at lag s, and are computed to measure how well the MCMC chain mixes
(see e.g. Chib (2001)). It is the ratio of the numerical variance of the posterior sam-
ple mean to the variance of the sample mean from uncorrelated draws. The inverse
of inefficiency factor is also known as relative numerical efficiency (Geweke (1992)).
When the inefficiency factor is equal to m, we need to draw MCMC samples m times
as many as uncorrelated samples.

Comparison with a single move sampler. To show the efficiency of our proposed
block sampler using inefficiency factors, we also conducted a single move sampler
which samples one αt at a time. We employ the algorithm of the single move sampler
proposed by Jacquier et al. (2004) with a slight modification since they modeled
the asymmetry in a different manner (where they considered the correlation between
εt and ηt−1). The initial 25,000 iterations are discarded as burn-in period and the
following 250, 000 iterations are recorded since obtained MCMC samples are highly
autocorrelated and a large number of draws need to be taken to obtain stable and
reliable estimation results.

Table 2 shows summary statistics of the experiment using a single move sampler.
The inefficiency factors of the sampler are between 100 and 3510, while those of the
block sampler are between 60 and 440. This implies that our proposed sampler reduces
sample autocorrelations considerably and that it produces more accurate estimation
results than the single move sampler.
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Single move sampler
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.97 0.973 0.015 [0.937, 0.994] 2199.2 0.30
σε 1.0 0.918 0.078 [0.763, 1.058] 103.1 0.39
ση 0.1 0.099 0.025 [0.060, 0.420] 3506.6 0.09
ρ −0.5 −0.324 0.172 [−0.595, 0.064] 1038.0 0.47

Table 2: Summary statistics for the single move sampler. The number of MCMC
iteration is 250,000 and sample size is 1,000. The bandwidth 25,000 is used to compute
the inefficiency factors and CD (p value of convergence diagnostic test).
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Figure 1: Sample autocorrelation functions of MCMC samples.
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Figure 2: Sample path of φ’s using first 50,000 MCMC samples.
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In Figure 1, we can see clear reductions in the sample autocorrelation functions
for the block sampler in all parameters. Figure 2 shows sample paths of φ’s using first
50,000 MCMC draws. The sample path of the single move sampler does not move
as fast as the block sampler in the state space. These results clearly show that our
method produces great improvement in the mixing property of MCMC chains.

Selection of a number of blocks. To investigate the effect of block sizes on the
speed of convergence to the posterior distribution, we repeated our experiments using
different number of blocks varying from 5 blocks to 200 blocks. The inefficiency factors
of MCMC samples are shown in Table 3. They tend to be larger as the number of
blocks increases from 40 to 200, while the small number of blocks such as 5 blocks
would also lead to high inefficiency factors. The latter is a result of low acceptance
rates in MH algorithm for the αt’s in the block sampler as shown in Table 4.

Parameter Number of blocks

5 10 20 30 40 50 100 200
φ 314.1 329.0 220.8 254.4 260.1 185.6 347.0 599.4
σε 526.7 153.8 312.3 449.4 279.0 680.9 684.4 1897.7
ση 465.3 538.9 394.6 452.6 432.7 322.5 524.7 687.4
ρ 172.8 178.7 266.6 251.5 68.7 301.7 235.3 193.4
α500 264.2 134.4 142.5 237.3 138.7 305.3 394.4 1183.3

Table 3: Inefficiency factors of MCMC samples using various number of blocks.

Parameter Number of blocks

5 10 20 30 40 50 100 200
α (AR) 0.820 0.878 0.926 0.946 0.954 0.964 0.981 0.990
α 0.817 0.886 0.935 0.955 0.962 0.972 0.986 0.993
φ 0.793 0.798 0.792 0.793 0.813 0.797 0.800 0.794
Σ 0.984 0.983 0.985 0.985 0.985 0.984 0.984 0.985

Table 4: Acceptance rates in MH algorithm. α(AR) corresponds to the acceptance
rate in acceptance-rejection algorithm.

When the number of blocks is equal to 5, the acceptance rate of αt’s is 81.7%.
This is relatively smaller than those obtained with larger number of blocks since high
dimensional probability density of αt would be more difficult to be approximated by
multivariate normal density. In this example, the optimal number of blocks with
small inefficiency factors would be between 20 and 40 where average block sizes are
between 25 and 50.
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5.1.3 Stock returns data

We next apply our method to the daily Japanese stock returns. Using TOPIX (Tokyo
Stock Price Index) from 1 August 1997 to 31 July 2002, the stock returns are computed
as 100 times the difference of the logarithm of the series. The times series plot is shown
in Figure 3 where the number of observations is 1,230.
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TOPIX Return 1997/8/1 − 2002/ 7/31

Figure 3: TOPIX return data. 1997/8/1 – 2002/7/31.

Number of blocks = 40
Parameter Mean Stdev 95% interval Inefficiency CD
φ 0.945 0.019 [0.902, 0.974] 118.2 0.24
σε 1.259 0.070 [1.121, 1.398] 20.8 0.06
ση 0.193 0.033 [0.138, 0.267] 206.7 0.32
ρ −0.442 0.103 [−0.630,−0.231] 92.7 0.89

Table 5: Summary statistics. The number of MCMC iteration is 50,000. The band-
width 5,000 is used to compute the inefficiency factors and CD.

The prior distribution of parameters, the number of blocks, the number of iter-
ations and the burn-in period are taken as in the simulated data example. Table 5
shows summary statistics of MCMC samples. The results are similar to those obtained
in the previous subsection. Since 95% credible interval for ρ is (−0.630,−0.231) with
the posterior mean −0.442, the posterior probability that ρ is negative is greater than
0.95. It shows the importance of asymmetry in the stochastic volatility model as we
expected. Although the acceptance rates of αt’s in Metropolis-Hastings algorithm are
relatively small as shown in Table 6, inefficiency factors of obtained samples are found
to be small. This is because the sample size is larger than that of previous examples
and the average block size becomes larger accordingly.
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Parameter Acceptance rates
α (AR) 0.852
α 0.856
φ 0.955
Σ 0.990

Table 6: TOPIX data. Acceptance rates in MH algorithm. α(AR) corresponds to the
acceptance rate in acceptance-rejection algorithm.
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Figure 4: Sample autocorrelation functions of MCMC samples.

Figure 4 shows sample autocorrelation functions, sample paths and the posterior
densities. The sample autocorrelations decay quickly and MCMC samples move fast
over the state space.

5.2 Asymmetric stochastic volatility model with state-dependent

variances

This subsection illustrates our method using simulated data generated by the stochas-
tic volatility model in (20) and (21). The MCMC algorithm proceed in 3 steps as
in Section 4.1. We use Algorithm 2.1 and 2.2 to generate (αs+1, . . . , αs+m) given

19



αs, αs+m+1 (αs when s + m = n) and other parameters. Then, given αt’s, we sample
from conditional posterior distribution of φ and Σ as in previous subsection.

We set φ = 0.95, σε = 1, ση = 0.1, ρ = −0.5 and generate n = 1, 000 observations.
The distribution of the initial state α1 is assumed to be N(0, 0.1). The prior distri-
bution of other parameters are taken as in the previous example. We set K = 30 and
the initial 20,000 iterations are discarded as burn-in period and the following 50, 000
iterations are recorded.

Table 7 summarises the posterior means, standard deviations, 95% credible inter-
vals, inefficiency factors and p values of convergence diagnostic tests for the parameters
φ, σε, ση and ρ. The posterior means are close to true values and true values of all pa-
rameters are covered in 95% credible intervals. All p values of convergence diagnostic
tests are greater than 0.05, suggesting that there is no significant evidence against
the convergence of the distribution of MCMC samples to the posterior distributions.

Number of blocks = 30
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.95 0.944 0.019 [0.900, 0.975] 192.9 0.55
σε 1.0 0.994 0.056 [0.887, 1.111] 86.2 0.32
ση 0.1 0.129 0.025 [0.088, 0.184] 332.4 0.53
ρ −0.5 −0.415 0.117 [−0.624,−0.172] 116.3 0.15

Table 7: Summary statistics. The number of MCMC iterations is 50,000 and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and
CD.

Table 8 shows the effect of block sizes on the mixing property of chains. As shown
in Section 4.1, the larger the number of blocks becomes (from 40 to 200), the larger
the inefficiency factors become. On the other hand, very small number of blocks such
as 5 blocks resulted in high inefficiency factors.

Parameter Number of blocks

5 10 20 30 40 50 100 200
φ 207.1 396.4 199.2 192.9 252.4 273.0 243.6 191.5
σε 94.6 47.0 80.3 86.2 60.2 132.3 71.5 267.8
ση 372.4 618.4 347.1 332.4 427.0 433.2 434.8 403.3
ρ 224.9 93.4 171.1 116.3 91.1 96.1 145.8 126.4
α500 15.1 10.0 15.0 12.1 14.2 20.5 8.7 36.0

Table 8: Inefficiency factors of MCMC samples using various number of blocks.
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In Table 9, acceptance rates of the Metropolis-Hastings algorithm are shown. The
acceptance rates of α are much smaller than those in the previous section due to
dropping the terms log p(αs+m+1|α̂s+m) in (27). The appropriate number of blocks
for this particular example would be from 20 to 40.

Parameter Number of blocks

5 10 20 30 40 50 100 200
α 0.307 0.383 0.428 0.450 0.460 0.470 0.501 0.534
φ 0.986 0.985 0.987 0.987 0.986 0.985 0.985 0.987
Σ 0.993 0.993 0.993 0.992 0.993 0.993 0.992 0.993

Table 9: Acceptance rates in MH algorithm. α(AR) corresponds to the acceptance
rate in acceptance-rejection algorithm.

6 Conclusion

In this article, we described a disturbance smoother and a simulation smoother for
asymmetric stochastic volatility models. The high performance of our proposed
method is shown in estimation efficiencies using illustrative numerical examples in
comparison with a single move sampler.

As mentioned in Section 1, Melino and Turnbull (1990) use the GMM and Har-
vey and Shephard (1996) use the QML via the Kalman filter for the estimation of
asymmetric stochastic volatility models. However, they are less efficient than the
MCMC-based Bayesian method. Bartolucci and De Luca (2003) propose the max-
imum likelihood estimation via the quadrature method for the estimation of asym-
metric stochastic volatility models, and Celeux et al. (2006) propose the population
Monte Carlo scheme. It would be interesting to compare our method with these
methods regarding the estimation efficiencies.

Although we concentrated on asymmetric stochastic volatility models in this ar-
ticle, our method can be applied to general non-Gaussian and nonlinear state-space
models with correlated errors (Omori and Watanabe (2007)). It is also worthwile
applying our method to other models. Watanabe, Yamada and Tanaka (2007) have
applied our method to the Cox-Ingersoll-Ross model of the term structure of interest
rates.
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Appendix A1

Suppose that a state equation is nonlinear such that

αt+1 = gt(αt, ηt), ηt ∼ N(0, I), t = s, . . . , s + m− 1,

(αs : given). Consider an auxiliary state equation given by

βt+1 = T̂tβt + R̂tηt, t = s, . . . , s + m− 1,

with βs = β̂s, where

T̂t =
∂αt+1

∂α′t

∣∣∣∣
η=η̂

, R̂t =
∂αt+1

∂η′t

∣∣∣∣
η=η̂

.

For a linear Gaussian state equation, we replace βt by αt and set αt+1 = Ttαt + Rtηt.

Using

∂L

∂η′j
=

s+m∑

t=j+1

∂L

∂α′t

∂αt

∂η′j
,

∂αt

∂η′j
=

{
∂αt

∂α′t−1
· · · ∂αj+2

∂α′j+1

∂αj+1

∂η′j
, t ≥ j + 1,

0 t ≤ j,

and

βt =
t−1∑

j=s

∂αt

∂η′j

∣∣∣∣∣
η=η̂

ηj + T̂t−1 · · · T̂sβs,

we obtain

∂L

∂η

∣∣∣∣
′

η=η̂

(η − η̂) =
s+m−1∑

j=s

s+m∑

t=j+1

∂L

∂α′t

∣∣∣∣
α=α̂

∂αt

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t=s+1

d̂′t(βt − β̂t) = d̂′(β − β̂). (30)

where α = (α′s+1, . . . , α
′
s+m)′, β = (β′s+1, . . . , β

′
s+m)′, On the other hand, the second

derivative of log likelihood is given by

∂L2

∂ηil∂ηjm
=

s+m∑

t2=j+1

p∑

k2=1




s+m∑

t1=i+1

p∑

k1=1

∂L2

∂αt1k1∂αt2k2

∂αt1k1

∂ηil

∂αt2k2

∂ηjm


 +

∂L

∂αt2k2

∂2αt2k2

∂ηil∂ηjm
,

and its expected value is

E

(
∂L2

∂ηil∂ηjm

)
=

s+m∑

t1=i+1

s+m∑

t2=j+1

p∑

k1=1

p∑

k2=1

E

(
∂L2

∂αt1k1∂αt2k2

)
∂αt1k1

∂ηil

∂αt2k2

∂ηjm
.

23



Thus the (i, j) block of the information matrix is

E

(
∂L2

∂ηi∂η′j

)
=

s+m∑

t1=i+1

s+m∑

t2=j+1

∂αt1

∂ηi
E

(
∂L2

∂αt1∂α′t2

)
∂αt2

∂η′j
.

Therefore, we obtain

(η − η̂)′ E
(

∂L2

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂)

=
s+m∑

t1=s+1

s+m∑

t2=s+1

t1−1∑

i=s

t2−1∑

j=s

(ηi − η̂i)′
∂αt1

∂ηi

∣∣∣∣
η=η̂

E

(
∂L2

∂αt1∂α′t2

)∣∣∣∣
η=η̂

∂αt2

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t1=s+1

s+m∑

t2=s+1

(βt1 − β̂t1)
′ E

(
∂L2

∂αt1∂α′t2

)∣∣∣∣
η=η̂

(βt2 − β̂t2)

= −(β − β̂)′Q̂(β − β̂). (31)

The results are obtained from equations (30) and (31).

Appendix A2

Since Q̂ is assumed to be a positive definite matrix, there exists a lower triangular
matrix U such that Q̂ = UU ′ using a Choleski decomposition where

U =




Ks+1 O O . . . O

Js+2 Ks+2 O . . . O

O Js+3 Ks+3
. . .

...
...

. . . . . . . . . O

O . . . O Js+m Ks+m




,

so that

Ât = JtJ
′
t + KtK

′
t, t = s + 1, . . . , s + m,

B̂t = JtK
′
t−1, t = s + 2, . . . , s + m,

and Bs+1 = Js+1 = O. Denote Ct = JtJ
′
t, Dt = KtK

′
t and we obtain

Ct = B̂t(Kt−1K
′
t−1)

−1B̂′
t = B̂tD

−1
t−1B̂

′
t,

Dt = Ât − Ct = Ât − B̂tD
−1
t−1B̂

′
t,

for t = s+2, . . . , s+m, and Ds+1 = Âs+1. The matrix Kt is a Choleski decomposition
of Dt and Jt = K−1′

t−1B̂t. Let K = diag(Ks+1, . . . , Ks+m), D = diag(Ds+1, . . . , Ds+m),
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b = KU−1d̂, γ = K
′−1U ′β, and γ̂ = K

′−1U ′β̂. Then

d̂′(β − β̂)− 1
2
(β − β̂)′Q̂(β − β̂) = b′(γ − γ̂)− 1

2
(γ − γ̂)′D(γ − γ̂)

= −1
2
(ŷ − γ)′D(ŷ − γ) (32)

where ŷ = γ̂ + D−1b, ŷt = γ̂t + D−1
t bt. On the other hand, since d̂ = UK−1b, and

γ = K
′−1U ′β,

γt = βt + K
′−1
t J ′t+1βt+1, t = s + 1, . . . , s + m, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, t = s + 2, . . . , s + m, bs+1 = ds+1.

Thus, given βt (t = s, s + 1, . . . , s + m), the equation (32) is a likelihood function for

ŷt = βt + K
′−1
t J ′t+1βt+1 + K

′−1
t εt = Ztβt + Gtξt, (33)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I).

where Zt = I + K
′−1
t J ′t+1T̂t and Gt = K

′−1
t [I, J ′t+1R̂t].
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