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Abstract. We are concerned with a model for asset prices introduced by Koichiro Takaoka,
which extends the well known Black-Scholes model. For the pricing of contingent claims,
partial differential equation (PDE) is derived in a special case under the typical delta hedging
strategy. We present an exact pricing formula by way of solving the equation.

1. Introduction

Over the last forty years, mathematical finance has developed into a research area rich in both
the theoretical structure and powerful real-world applications. A principal breakthrough, as
is well known, was made in 1973 by F. Black and M. Scholes [3] and R.C. Merton [10]. These
articles were based on stochastic methodology, which involve, among other things, a Wiener
process, Ito’s Lemma, and the Markov property of diffusions. Celebrated Black-Scholes
pricing formula for European call options has played a fundamental role since then. For
more information and other background materials, we refer to [2][8][9][11][14] for instance
and the references cited therein.

We recall that the basic Black-Scholes model consists of one random security and a risk-
less cash account bond, whose prices, denoted respectively by St and Bt, are assumed to
follow

St = S0 exp(σWt + µt),

Bt = ert.
(1)

Here Wt stands for the one-dimensional Brownian motion with W0 = 0 and S0 is a nonneg-
ative constant; fixed constants r, σ, and µ are the risk-less interest rate, the stock volatility,
and the stock drift, respectively.

It has been criticized, however, that discrepancies are observed between real markets
and what the Black-Scholes depicts. Major deficiencies stem from the assumption that the
volatility σ is kept fixed in (1), and much effort has been paid to remedy such situation. See
[2][6][9] for example and also [5].

On the other hand, Koichiro Takaoka, in his recent work [13], introduced a new model in
order to well describe the behavior of real continuous process. His model assumes

St = S0e
rt

∫ ∞

0

exp(σ(Wt + Ct)− σ2

2
t)f(σ)dσ,

Bt = ert,

(2)
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where C denotes a constant. A nonnegative weight function f(σ) is defined on [0,∞) and
assumed to satisfy ∫ ∞

0

f(σ)dσ = 1,

∫ ∞

0

σf(σ)dσ < ∞.

We remark that the second condition on f is imposed from technical reasons. If we allow
f(σ) = δ(σ−σ̄) where δ represents the Dirac delta function, then we have St = ert exp(σ̄(Wt+
Ct)− (σ̄2t/2)) and we recover the Black-Scholes model (1) with the volatility σ̄ by adjusting
C properly; in other words, our new model (2) extends the basic Black-Scholes model (1).

The extended model (2) has various nice properties; the process St induces a complete
market, it is Markov, and so on. A closed pricing formula for the European call option for
example is also valid; however, exact explicit formula needs further specialization.

In this paper we deal with the case f(σ) = 2−1(δ(σ − σ̄ + ε) + δ(σ − σ̄ − ε)) (|σ̄| > |ε|) so
that (2) is reduced to

St = S0e
rt exp(σ̄(Wt + Ct)− σ̄2 + ε2

2
t) cosh(ε(Wt + (C − σ̄)t)),

Bt = ert.
(3)

We are concerned with the exact pricing formula for contingent claims under the process (3).
T. Sakaguchi [12] made a preliminary treatment of this problem based on the theory of partial
differential equations (PDEs); in the current paper we put forward an investigation along
this direction. The main observation of this article, which is stated in §3, claims that there
is a class of explicit exact solutions for these PDEs. These explicit solutions are interpreted
to be written on newly defined stochastic variable. We also show that the pricing formula is
possible without introducing such variable, which is formulated in somewhat abstract way.

The organization of the paper is as follows: In §2 we recall the PDE which the price
of contingent claims obeys. §3 is devoted to deduce the explicit exact formula under this
framework. We solve the PDE with single varible of (3) in §4 and provide an abstract pricing
formula. Discussions are given in §5.

2. Prices for contingent claims

In this section we wish to derive partial differential equations which contingent claims follow
under the process governed by (2). Although the derivation is rather well known we present
it here for the readers’ convenience.

First we introduce an auxiliary stochastic variable defined by

(4) At = S0e
rt exp(σ(Wt + Ct)− σ2 + ε2

2
t) sinh(ε(Wt + (C − σ)t))

Here and in (3) we drop the bar on σ. Then it is easy to verify that the next stochastic
differential equation holds.

dSt = ((r + σC)St + εCAt)dt + (σSt + εAt)dWt

dAt = ((r + σC)At + εCSt)dt + (σAt + εSt)dWt.
(5)
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Let us denote by V (t, St, At) the no-arbitrage price of an option. As is performed in §3.5
of [14] we construct a portfolio of one option and a number ∆1, ∆2 of the underlying asset
St, At, respectively. The value Π of this contingent claim is

Π := V (t, St, At)−∆1St −∆2At.

We compute, removing the subscript t,

dΠ = dV −∆1dS −∆2dA

=
∂V

∂t
dt +

(∂V

∂S
−∆1

)
dS +

(∂V

∂A
−∆2

)
dA

+
1

2

∂2V

∂S2
(σS + εA)2dt +

∂2V

∂S∂A
(σS + εA)(σA + εS)dt +

1

2

∂2V

∂A2
(σA + εS)2dt,

where the use of (dW )2 = dt has been made. Putting ∆1 = ∂V/∂S and ∆2 = ∂V/∂A, that
is, we employ a standard delta hedging strategy, we discover that the portfolio Π follows the
random-free process, which should be agreed with risk-less assets with a growth of rΠdt. As
a result we arrive at a partial differential equation

∂V

∂t
+

1

2
(σS + εA)2∂2V

∂S2
+ (σS + εA)(σA + εS)

∂2V

∂S∂A
+

1

2
(σA + εS)2∂2V

∂A2

− r
(
V − S

∂V

∂S
− A

∂V

∂A

)
= 0 in t < T, S > 0, A ∈ R.

(6)

We note that a similar equation can be found in (2.4) of [1].
Now our intention is to solve (6) in any way with suitable maturity as well as boundary

conditions.

3. Exact explicit pricing formula

We intend to show that there exists at least one exact explicit solution for (6) under appro-
priate conditions. For this purpose we try to find a solution of the form V = V (t, Z) with
Z := A/S. We observe that (6) becomes

∂V

∂t
+

1

2
(σ + εZ)2

(
Z2∂2V

∂Z2
+ 2Z

∂V

∂Z

)
− (σ + εZ)(σZ + ε)

(
Z

∂2V

∂Z2
+

∂V

∂Z

)
+

1

2
(σZ + ε)2∂2V

∂Z2
− rV = 0 in t < T, |Z| < 1,

and hence we obtain

(7)
∂V

∂t
+

ε2

2
(1− Z2)2∂2V

∂Z2
− ε(1− Z2)(εZ + σ)

∂V

∂Z
− rV = 0.

At this point we make the following transformations

U(τ, Z) := ekτV (t, Z), τ :=
ε2

2
(T − t), k :=

r

ε2/2
, η :=

σ

ε
,

which implies that
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∂U

∂τ
= (1− Z2)2∂2U

∂Z2
− 2(1− Z2)(Z + η)

∂U

∂Z
in t < T, |Z| < 1.

Now we further make a change of variables

u(τ, x) := U(τ, Z), Z =: tanh(x + 2ητ).

We then finally discover that the typical heat equation emerges.

∂u

∂τ
=

∂2u

∂x2
in τ > 0, −∞ < x < ∞.

It is standard to express the solution in terms of the heat kernel for a wide class of initial
and boundary conditions. As a result, the next theorem, which is our principal observation
of the current paper, is easily seen to follow.

Theorem 1. For any bounded continuous maturity data H(Z) for |Z| < 1, there exists a
unique solution V (t, Z) to (7) with V |t=T = H. The explicit form of the solution is given by

V (t, Z) =
e−r(T−t)√

2πε2(T − t)

∫ ∞

−∞
H(tanh y) exp

[
−(tanh−1 Z − εσ(T − t)− y)2

2ε2(T − t)

]
dy

=
e−r(T−t)√

2πε2(T − t)

∫ 1

−1

H(Y )

1− Y 2
exp

[
−(tanh−1 Z − εσ(T − t)− tanh−1 Y )2

2ε2(T − t)

]
dY.

As an example of the theorem we resolve (7) supplemented by European call type condition
V |t=T := max{Z −K, 0} with 0 < K < 1. Since u(0, x) = max{tanh x−K, 0} in this case,
we assert that

u(τ, x) =
1√
4πτ

∫ ∞

−∞
max{tanh y −K, 0} exp

[
−(x− y)2

4τ

]
dy

=
1√
2π

∫ ∞

(tanh−1 K−x)/
√

2τ

(tanh(
√

2τy + x)−K) exp
[
−y2

2

]
dy

=
1√
4πτ

∫ ∞

tanh−1 K

exp
[
−(x− y)2

4τ

]
dy −KN

(x− tanh−1 K√
2τ

)
,

where N(d) := (2π)−1/2
∫ d

−∞ e−y2/2dy = (2π)−1/2
∫∞
−d

e−y2/2dy is the cumulative function for
a normal distribution. Returning to the original variable we deduce that

V (t, Z) =
e−r(T−t)√

2πε2(T − t)

∫ 1

K

Y

1− Y 2
exp

[
−(tanh−1 Z − εσ(T − t)− tanh−1 Y )2

2ε2(T − t)

]
dY

−KN
(tanh−1 Z − εσ(T − t)− tanh−1 K√

2ε2(T − t)

)
.
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4. Existence theorem

Here we include the pricing formula for contingent claims written on S. To be specific we
derive a PDE with single variable S and solve the equation.

Since the mapping x 7→ S0e
rt exp(σ(x + Ct) − 2−1(σ2 + ε2)t) cosh(ε(x + (C − σ)t)) is

monotone if |σ/ε| > 1, which is ascertained by the assumption, we are able to represent Wt

by St as the inverse function of (3); namely,

Wt = F−1(t, St),

where F (t,Wt) := S0e
rt exp(σ(Wt+Ct)−2−1(σ2+ε2)t) cosh(ε(Wt+(C−σ)t)). This inversion

technique is suggested by the referee. We then deduce that

At = S0e
rt exp(σ(F−1(t, St) + Ct)− σ2 + ε2

2
t) sinh(ε(F−1(t, St) + (C − σ)t))

=: G(t, St),

which yields

dSt = ((r + σC)St + εCG(t, St))dt + (σSt + εG(t, St))dWt.

Similar reasoning as in §2 applied to the no-arbitrage value V (t, St) then leads to

(8)
∂V

∂t
+

1

2
(σS + εG(t, S))2∂2V

∂S2
+ r

(
S

∂V

∂S
− V

)
= 0 in t < T, S > 0.

Taking into account that G(t, St) is sufficiently regular, we see that (8) is well-posed for
uniformly continuous maturity data with moderate, say polynomial, growth condition. We
refer to [4][7] for the details. In a summary we obtain the next theorem.

Theorem 2. For uniformly continuous data H(S) (S > 0) with polynomial growth, there
exists a unique solution V (t, S) to (8) with V |t=T = H.

5. Discussions

We have determined a class of exact solutions to a model for asset prices introduced by
Takaoka [13], which extends the basic Black-Scholes model [3]. Although our results are
of mathematical nature, we believe that our established formula is worth publishing, since
exact explicit resolution is somehow hardly known to be common in mathematical finance. In
addition there would exist a possible usage as test problems in order to check the effectiveness
of new numerical schemes.

One reason why our exact solutions written on Z have little interpretation as economics
is that the hedging strategy is too elaborate to perform in practice. The deltas ∆1 and
∆2 defined in §2 are artificial and they are not expressed as the asset price S only. On
the other hand the delta ∆ := ∂V/∂S of §4 is given by the single variable S; however,
the computation involves an inverse function F−1 and the explicit form is a little obscure,
although the numerical implementation is possible.

There remain many questions unanswered. To examine the existence of other family of
exact solutions under different kind of conditions is an important step. Moreover and in
particular free boundary type conditions, which are peculiar to American type or other
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types options, are challenging issues. These would be our future topics for researches and
works are now in progress.
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