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Abstract. We are concerned with bifurcations of steady states for a model system of phase
separation, which is introduced by Eguchi-Oki-Matsumura (EOM). The system consists of
coupled two evolution equations and admits steady state solutions with different energies.
We analyze the bifurcation phenomena of these steady states with respect to the principal
parameter, which is related to the temperature.

1. Introduction

Phase separation phenomena observed in a variety of physical sciences are challenging as
well as interesting topics for research since mid-20th century. For example, we recall cer-
tain polymer mixtures and binary alloys such as Fe-Al. Mathematical analysis of these
fascinating pattern dynamics customarily rests on evolution models, which include, among
other things, the famous Cahn-Hilliard equation [3]. These models now form an important
class of equations, so-called the equations of pattern formation [23]. Much attention has
been paid and extensive studies have been performed so far concerning these equations both
from the mathematical and computational point of view. We refer to [1][5][6][9][10][11][12]
[16][17][20][22][24] and the references cited therein.

In 1984, Eguchi, Oki, and Matsumura (EOM), with the aim of a better understanding
as to such phenomena, introduced a coupled system of evolution equations for the local
concentration and the local degree of order [8]. Based on the so-called continuum approach,
this motion law is derived from the first principles of thermodynamics of irreversible process
under certain assumptions on the free energy; the system extends and links the Cahn-Hilliard
equation and the Ginzburg-Landau equation. The principal parameter involved in the EOM
system is related to the temperature (see §2 for details). As the temperature decreases from
above to below the critical temperature, this parameter increases from negative to positive
and gradually unstabilizes the system. Since phase separation phenomena are observed to
emerge below the critical temperature, in the EOM model the investigation within positive
principal parameters is important.

We have to recall at this point that a similar coupled system is introduced by J.W. Cahn
and A. Novick-Cohen [4] by a different methodology; namely, the so-called discrete approach
is employed in [4]. The derived dynamics is then called as an Allen-Cahn/Cahn-Hilliard
system. Compared to the EOM system, the former may involve degenerate mobility and
thus poses various challenging problems. Existence of solutions, the long time behavior,
possible triple-junction motion, and etc. are investigated so far [2][7][19][21].

Returning to the EOM system, in our previous work which is restricted to the one space
dimension case, we have established that there are infinitely many steady state solutions
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according to the largeness of the principal temperature and the total concentration [14]. See
Theorem 1 in §2. Therefore the stability analysis, or preferably, the bifurcation analysis
on these steady state solutions in terms of the principal parameter is indispensable to well
understanding of the model itself, and as a result, we may deepen our knowledge on the
mechanisms of phase separation.

The aim of the present article is thus as follows: We undertake the bifurcation analysis on
steady state solutions of the EOM system with respect to the principal parameter primarily
from the analytical point of view. Our main results are addressed in Theorem 2 in §2,
whose proofs are given in §3 and §4. Our observations substantially illustrates a complicated
structure of bifurcations and the important role of the principal parameter.

2. Eguchi-Oki-Matsumura model

First we recall the Eguchi-Oki-Matsumura model for phase separation, and our findings
concerning this dynamics.

In one space dimension, under a suitable scaling of parameters, the EOM system in [8] is
expressed as follows [14][15].

(1)


ut = −ε2uxxxx + ((a + v2)u)xx in 0 < x < l, t > 0

vt = vxx + (b− u2 − v2)v in 0 < x < l, t > 0

ux = uxxx = vx = 0 at x = 0 and l, t > 0

u|t=0 = u0, v|t=0 = v0 on 0 ≤ x ≤ l,

where u = u(x, t), v = v(x, t) denote the local concentration and the local degree of order,
respectively. The constants a, b are assumed to be positive. Here b ∈ R is the principal
parameter explained in §1; phase separation are regarded as what occur within positive b.
The parameter ε depends on the ratio of the surface energy between the original u and v. It
is easily noticed that the equation for u is Cahn-Hilliard type while the one for v is Ginzburg-
Landau type. A direct calculation shows that the total concentration of u is conserved under
the evolution; namely, for any solution (u, v) to (1), there holds

1

l

∫ l

0

u(x, t) dx = m,

where m is a positive constant. Here and hereafter, the solution are understood to be
classical. Given initial data u0, v0 should satisfy required compatibility conditions:

(u0)x = (u0)xxx = (v0)x = 0 at x = 0, l, and
1

l

∫ l

0

u0(x) dx = m.

System (1) takes its rise in a gradient flow of the total free energy

(2) F [u, v] :=

∫ l

0

(
ε2

2
u2

x +
1

2
v2

x +
a

2
u2 +

1

4
v4 − b

2
v2 +

1

2
u2v2) dx.

Indeed one easily show that

d

dt
F [u, v](t) = −

∫ l

0

{−ε2uxxx + ((a + v2)u)x}2 dx−
∫ l

0

v2
t dx ≤ 0,

which means that F serves as Lyapunov functional of the system.
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Here one realizes the reason why b plays a critical role in the EOM model system from the
form of the potential energy in the free energy (2). Precisely stated, we write the potential
as

(3) f(u, v) :=
a

2
u2 +

1

4
v4 − b

2
v2 +

1

2
u2v2,

so that F [u, v] =
∫ l

0
(2−1ε2u2

x+2−1v2
x+f(u, v))dx. It is easy to see that the origin (u, v) = (0, 0)

is saddle point with f(0, 0) = 0 and (u, v) = (0,±
√

b) are local minimum with f(0,±
√

b) =
−b2/4. As b increases, the potential (3) thus accordingly looks like double well.

Utilizing the non-increasing property of the total free energy (2), we show in [14] that
every element of the ω-limit set of (1) consists of steady state solutions. We recall that
steady state solutions are given by ut = vt ≡ 0 in (1); that is,

(4)


−ε2uxxxx + ((a + v2)u)xx = 0 in 0 < x < l

vxx + (b− u2 − v2)v = 0 in 0 < x < l

ux = uxxx = vx = 0 at x = 0 and l

(1/l)
∫ l

0
u dx = m.

Furthermore, the solution (u, v) to system (4) is constructed as a critical point of the func-
tional (2) in the function space

A := {(u, v) ∈ (H1(0, l))2 | 1
l

∫ l

0

u dx = m}.

We recall that (u, v) = (m, 0) and (m,±
√

b−m2) if b > m2 are referred to as trivial solutions.
One of main achievements in [14] is that the structure of steady state solutions is rather rich
enough; to be specific, the next properties is established in [13][14].

Theorem 1. ([14]) There is at least one monotone non-trivial steady state solution of (4)
if we assign suitably large b and m2. Moreover, for any integer k ≥ 2 and for appropriately
chosen large b and m2 depending on k, (4) has at least one non-monotone non-trivial steady
state solution, each of whose derivatives changes sign exactly (k − 1)-times.

The focus of the current paper is to investigate how this compound structure of steady
states develop as the principal parameter b increases; in other words, we are concerned with
a bifurcation problem in terms of b. As a first step the case of trivial steady state is treated.
We believe that this is an essential issue for better appreciation of the phase separation
model governed by the EOM system.

Our main contributions now read as follows.

Theorem 2. (I) For any integer j = 1, 2, · · · , (u, v; b) = (m, 0, m2 +(jπ/l)2) is a bifurcation
point of the steady state system (4) for the Eguchi-Oki-Matsumura model. There exists a one-
parameter family of nontrivial steady state solutions (m+ ū(x, s), s cos(jπx/l)+ v̄(x, s); b(s))
|s| < δ with sufficiently small δ such that

ū(x, 0) = v̄(x, 0) = ūs(x, 0) = v̄s(x, 0) = 0

b(s) = m2 +
(jπ

l

)2

+ λj(s),
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where λj(s) is a smooth function of s verifying

λj(s) =
(3

4
− m2

4

1

(2jπ/l)2ε2 + a

)
s2 + O(s3) as s → 0.

(II) Suppose b > m2 > a/2. For any integer j satisfying

(5) j <

√
2l(2m2 − a)/π√

2m +
√

a + 2ε2(2m2 − a)
,

(u, v; b) = (m,±
√

b(j; +)−m2; b(j; +)), (m,±
√

b(j;−)−m2; b(j;−)) are bifurcation points
of (4), where

b(j;±) =
1

4

{
8m2 − 2a− (1 + 2ε2)

(jπ

l

)2

±
√

(1− 2ε2)2
(jπ

l

)4

− 4{2m2 + a + 2ε2(2m2 − a)}
(jπ

l

)2

+ 4(2m2 − a)2
}

.

Then there exists a one-parameter family of nontrivial steady state solutions

u(x; s) = m− (α2
j + 2X2)s cos

jπx

l
+ ū(x, s)

v(x; s) = ±X ± 2mXs cos
jπx

l
+ v̄(x, s)

b(s) = m2 + (X + λj(s))
2,

for |s| < δ with appropriately small δ such that

ū(x, 0) = v̄(x, 0) = ūs(x, 0) = v̄s(x, 0) = 0.

Here λj(s) is a smooth function of s with

λj(s) =
X

4m2(jπ/l)2 − ((jπ/l)2 + 2X2)2

[
− 3m2{2m2X2 − ((jπ/l)2 + 2X2)2}

+
1

12(jπ/l)2{(1 + 2ε2)X2 + a + 5ε2(jπ/l)2}

{
24m2X2(m2 − (jπ/l)2 − 2X2)·

· {4X4 + 8(jπ/l)2X2 − (jπ/l)2(4m2 − 3(jπ/l)2)}

+ {4m2((jπ/l)2 −X2)− ((jπ/l)2 + 2X2)2}D(m, ε, a, j)
}]

s2 + O(s3) as s → 0,

where D(m, ε, a, j) denotes

D(m, ε, a, j)

:= −2(14m2 + (jπ/l)2(1− 2ε2) + 2a)X4 + {8m4 − 4((1 + 7ε2)(jπ/l)2 + 3a)m2

+ ((1 + 8ε2)(jπ/l)2 + 2a)((−1 + 2ε2)(jπ/l)2 + 2a)}X2

+ (jπ/l)2(4ε2(jπ/l)2 + a)(4m2 − (1− 2ε2)(jπ/l)2 + 2a),

(6)

and X is given as any one of real two roots of

2X4 − (4m2 − 2a− (1 + 2ε2)(jπ/l)2)X2 + (a + ε2(jπ/l)2)(jπ/l)2 = 0.
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In the part II, we remark that the next condition is fulfilled.

(7) b(i; +) 6= b(j;−) for every i, j = 1, 2, · · · , satisfying (5),

which is crucial to the application of the general theorem of bifurcation.
The signification of the above theorem is illuminating; from the steady state (u, v) =

(m, 0), there bifurcate one parameter families of nontrivial steady state solutions for un-
bounded sequence of b. While from the steady state (u, v) = (m,±

√
b−m2), the bifurcation

points of b, which are indexed by j satisfying (5), are bounded from above.

3. Trivial steady state – Part 1

We begin with the proof of Theorem 2 (I) in the case of trivial steady state solution (u, v) ≡
(m, 0) in (4). We perform a translation u → u + m, v → v so that (4) turns into

(8)


−ε2uxxxx + ((a + v2)(u + m))xx = 0 in 0 < x < l

vxx + (b−m2 − u2 − 2mu− v2)v = 0 in 0 < x < l

ux = uxxx = vx = 0 at x = 0 and l

(1/l)
∫ l

0
u dx = 0.

Trivial steady state solution (u, v) = (m, 0) is then given by (u, v) = (0, 0). We linearize
system (4) or (8) around this steady state to obtain

Lb

(
U

V

)
:=

(
−ε2Uxxxx + aUxx

Vxx + (b−m2)V

)
=

(
0

0

)
,(9)

where U = U(x), V = V (x) are defined on 0 ≤ x ≤ l with verifying Ux = Vx = 0 at x = 0, l

and
∫ l

0
Udx = 0. It is easy to see that the U(x) ≡ 0 and V (x) = s cos(jπx/l) (s ∈ R) if and

only if bj := m2 + (jπ/l)2 (j = 1, 2, · · · ) which are bifurcation points.
We want to apply a standard method of bifurcation theory. Confer Chapter 3 in [18] for

example. We define a Hilbert space

E := Span{cos
πx

l
, cos

2πx

l
, · · · } × Span{1, cos

πx

l
, cos

2πx

l
, · · · } 3

(
U

V

)
.

The linear operator Lb maps E into E and there holds

KerLbj
= Span

(
0

cos(jπx/l)

)
= CokerLbj

.

Therefore a well-known bifurcation theorem (see Theorem 3.2.2. in [18], where other condi-
tions are also certified) implies that there exists a bifurcating solution to (8) of the form

u(x; s) =
∞∑

n=1

pn(s) cos
nπx

l

v(x; s) = s cos
jπx

l
+

∞∑
n=0,n6=j

qn(s) cos
nπx

l

b(s) = bj + λj(s),

(10)

where {pn(s)}, {qn(s)} are smooth functions with respect to a parameter s (|s| ≤ δ with
small δ) and fulfill

pn(0) = qn(0) = p′n(0) = q′n(0) = 0.
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We wish to determine the behavior of λj(s) as s → 0, which is also a smooth function
of s. To do so the use of Lyapunov-Schmidt bifurcation equation (see for instance (2.18) in
[18]) is made. Of course if we admit the expression (10) of solutions then this is merely a
condition on certain component. At any rate the equation in this case is∫ l

0

cos
jπx

l

{
vxx +

((jπ

l

)2

+ λj(s)− u2 − 2mu− v2
)
v
}

dx = 0.

Since pn(s) = O(s2) and qn(s) = O(s2) (n 6= j) as s → 0, we find that

λj(s) =
3

4
s2 + mp2j(s) + O(s3) as s → 0.

The profile of p2j(s) as s → 0 can be obtained from the equation for u in (8). Multiply by
cos(2jπx/l) and integrate it over the interval (0, l) so that we are led to∫ l

0

cos
2jπx

l
{−ε2uxx + (a + v2)(u + m)}dx = 0,

from which we infer that

p2j(s) = −m

2

s2

(2jπ/l)2ε2 + a
+ O(s3) as s → 0.

In summary, at the bifurcation point (u, v; b) = (0, 0; m2 + (jπ/l)2) of (8) there is a one-
parameter family of nontrivial solution of the form (10) with |s| ≤ δ such that

λj(s) =
(3

4
− m2

4

1

(2jπ/l)2ε2 + a

)
s2 + O(s3) as s → 0.

This completes the proof of the first part of the theorem.

4. Trivial steady state – Part 2

Next we turn our attention to the case of steady state (u, v) ≡ (m, ±
√

b−m2) in (4). We
carry out a preliminary translation u → u + m, v → v ±

√
b−m2 so that (4) is reduced to

(11)


−ε2uxxxx + ((a + b−m2 + v2 ± 2

√
b−m2v)(u + m))xx = 0 in 0 < x < l

vxx − (u2 + 2mu + v2 ± 2
√

b−m2v)(v ±
√

b−m2) = 0 in 0 < x < l

ux = uxxx = vx = 0 at x = 0 and l

(1/l)
∫ l

0
u dx = 0.

Trivial steady state solution (u, v) = (m,±
√

b−m2) is then given by (u, v) = (0, 0). This
tiny modifications will help us to avoid possible complications and to argue transparently.
The linearization of (4) or (11) around this solution becomes

(12) Lb−m2

(
U

V

)
:=

(
−ε2Uxxxx + (a + b−m2)Uxx ± 2m

√
b−m2Vxx

Vxx − 2(b−m2)V ∓ 2m
√

b−m2U

)
=

(
0

0

)
,

where U , V fulfill the same conditions as in (9). System (12) is coupled and the bifurcation
analysis is not so immediate.
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We first deduce that
∫ l

0
V dx = 0 on an integration of the equation for V . We thus integrate

twice the equation for U with null constant. The result can be expressed as

(13)
d2

dx2

(
U

V

)
=

(
(a + b−m2)/ε2 ±2m

√
b−m2/ε2

±2m
√

b−m2 2(b−m2)

) (
U

V

)
.

We intend to examine the sign of the characteristic exponents µ± for the coefficient matrix
of (13). To simplify the notation we put X =

√
b−m2.

We compute

(14) µ± :=
1

2ε2

{
a + (1 + 2ε2)X2 ±

√
(a + (1 + 2ε2)X2)2 − 8ε2X2(a + X2) + 16m2ε2X2

}
.

It is clear that µ± are real and µ+ > 0. We need a criterion such that for certain j = 1, 2, · · · ,

(15) µ− = −
(jπ

l

)2

=: −α2
j .

We first assert that in order to attain (15) the condition

(16) −X2(a + X2) + 2m2X2 > 0 ⇐⇒ 2m2 > a + X2

is required. Furthermore after a calculation of (14)(15), that is,√
(a + (1 + 2ε2)X2)2 − 8ε2X2(a + X2) + 16m2ε2X2 = a + (1 + 2ε2)X2 + 2ε2α2

j ,

we infer that X2 should satisfy

(17) 2X4 − (4m2 − 2a− (1 + 2ε2)α2
j )X

2 + (a + ε2α2
j )α

2
j = 0.

The quadratic equation (17) is easily solved:

(18) X(j;±)2 =
1

4
{4m2−2a− (1+2ε2)α2

j ±
√

(4m2 − 2a− (1 + 2ε2)α2
j )

2 − 8(a + ε2α2
j )α

2
j ,

which are real and positive provided the next condition holds true.

(19) 4m2 − 2a− (1 + 2ε2)α2
j > 2αj

√
2(a + ε2α2

j ).

We note that if (19) is verified then the requirement (16) automatically follows with regard to
the solution X(j;±)2 of (18). It is also noticed that the condition (19) serves as a restriction
for j; precisely stated we estimate

α2
j

2
<

(2m2 − a)2

2m2 + a + 2ε2(2m2 − a) + 2
√

2am2 + 4ε2m2(2m2 − a)

=
(2m2 − a)2

(
√

2m +
√

a + 2ε2(2m2 − a))2
.

(20)

The fact that the other option is discarded by the positivity of the left hand side of (19) is
easily ascertained by

(1 + 2ε2)α2
j >

4m2(1 + 2ε2)2 + 2a(1− 4ε4) + 4(1 + 2ε2)
√

2am2 + 4ε2m2(2m2 − a)

(1− 2ε2)2

> 4m2 + 2a.

In any case we have a rough bound α2
j ≤ O(m2) as m2 →∞.
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Consequently for any integer j with (20), b = m2 + X(j; +)2 and b = m2 + X(j;−)2 are
bifurcation points. Here we note that the next property holds true.

(21) X(i; +) 6= X(j;−) for any integer i, j = 1, 2, · · · , satisfying (20),

which corresponds to (7) and whose demonstration will be provided at the end of the prof.
Therefore we find that

KerLb−m2 = Span

(
−α2

j − 2X(j;±)2

±2mX(j;±)

)
cos(jπx/l)

= Span

(
±2mX(j;±)

−ε2α2
j − (a + X(j;±)2)

)
cos(jπx/l) = CokerLb−m2 .

We advance our analysis in the spirit of appealing to a general bifurcation theory as in
§4. This time we are just left to check the last part of Theorem 3.2.2 (iv) in [18]. In other
words we have to show〈

∂Lb−m2

∂b

(
−α2

j − 2X(j;±)2

±2mX(j;±)

)
cos(jπx/l),

(
−α2

j − 2X(j;±)2

±2mX(j;±)

)
cos(jπx/l)

〉
6= 0,

which amounts to an algebraic condition

4α2
jX(j;±)4 − 4(α4

j + m2)X(j;±)2 + α2
j (α

4
j − 2m2(α2

j + 1)) 6= 0

and we are done.
Now there exists a bifurcating solution to (11) of the form

u(x; s) = −(α2
j + 2X2)s cos

jπx

l
+ 2mXrj(s) cos

jπx

l
+

∞∑
n=1,n6=j

pn(s) cos
nπx

l

v(x; s) = ±2mXs cos
jπx

l
± (α2

j + 2X2)rj(s) cos
jπx

l
+

∞∑
n=0,n6=j

qn(s) cos
nπx

l√
b(s)−m2 = X + λj(s),

(22)

where we have put X = X(j; +) and/or X = X(j;−) for simplicity. It is noted that in
(22) we avoid troublesome formulation of b(s) = m2 + X2 + λj(s). Smooth functions rj(s),
{pn(s)}, {qn(s)} (|s| ≤ δ) likewise satisfy

rj(0) = pn(0) = qn(0) = r′j(0) = p′n(0) = q′n(0) = 0.

We then compute the bifurcation equation, which enables us to handle the rj(s) terms as
higher order terms.∫ l

0

−(α2
j + 2X2) cos

jπx

l
{ε2uxx − (a + (X + λj(s))

2 + v2 ± 2(X + λj(s))v)(u + m)}

± 2mX cos
jπx

l
{vxx − (u2 + 2mu + v2 ± 2(X + λj(s))v)(v ± (X + λj(s)))}dx = 0.

After a little tedious calculation it follows that

λj(s) =
1

4m2α2
j − (α2

j + 2X2)2

[
− 3m2X{2m2X2 − (α2

j + 2X2)2}s2

+ 2mX{m2 − (α2
j + 2X2)}p2j(s)∓

1

2
{4m2(α2

j −X2)− (α2
j + 2X2)2}q2j(s)

]
+ O(s3)

(23)
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as s → 0. We need to bring out the behavior of p2j(s) and q2j(s) as s → 0.
To approach this we observe that∫ l

0

cos
2jπx

l
{ε2uxx − (a + (X + λj(s))

2 + v2 ± 2(X + λj(s))v)(u + m)}dx = 0∫ l

0

cos
2jπx

l
{vxx − (u2 + 2mu + v2 ± 2(X + λj(s))v)(v ± (X + λj(s)))}dx = 0,

which lead respectively to

(4ε2α2
j + a + X2)p2j(s)± 2mXq2j(s) = −2mX2(m2 − (α2

j + 2X2))s2 + O(s3)

2mXp2j(s)± 2(2α2
j + X2)q2j(s) =

X

2
{4m2(α2

j −X2)− (α2
j + 2X2)2}s2 + O(s3).

As a result we have, after a calculation with employing (17),

p2j(s) =
mX2{4X4 + 8α2

jX
2 − α2

j (4m
2 − 3α2

j )}
α2

j{(1 + 2ε2)X2 + a + 5ε2α2
j}

s2 + O(s3)

q2j(s) =
±XD(m, ε, a, j)

6α2
j{(1 + 2ε2)X2 + a + 5ε2α2

j}
s2 + O(s3),

where D(m, ε, a, j) is defined in (6). Inserting these expressions back in (23) and arranging
them, we finish the proof of the second assertion of the theorem. We may safely omit the
details.

We are left with the verification of (21). We rearrange the equation (17) as the one for α2
j .

ε2α4
j + (a + (1 + 2ε2)X2)α2

j + 2X4 − 2(2m2 − a)X2 = 0,

which implies that

α2
j =

−{a + (1 + 2ε2)X2}+
√
{a + (1 + 2ε2)X2}2 + 8ε2X2(2m2 − a−X2)

2ε2

=: s(B) with B := X2.

It is easy to check that

s(0) = s(2m2 − a) = 0, s′(0) > 0, s′(2m2 − a) < 0.

Moreover by a computation we have s′′(B) < 0. Consequently we infer that

0 < X(1;−)2 < X(2;−)2 < · · · < X(J ;−)2 < X(J ; +)2 < · · · < X(1; +)2 < 2m2 − a,

where J denotes the largest integer j satisfying (20). This proves the condition (21) and the
proof of the theorem is finally completed.

5. Discussions

The bifurcation problem of steady state solutions for a model system of phase separation,
which is introduced by Eguchi-Oki-Matsumura (EOM), is analyzed. In particular, bifurca-
tions with respect to the principal parameter b, which characterize the system in this model,
is examined. One of striking features of the EOM system is that the dynamics is heavily
influenced by the single principal parameter; therefore the present bifurcation analysis is
indispensable to understanding the model properly.
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As to the steady state solution (u, v) = (m, 0), bifurcation takes place at b = m2 +
(jπ/l)2 for every j = 1, 2, · · · . There exists a one-parameter family of nontrivial steady state
solutions of the form

(u, v; b) = (m+O(s2), s cos
jπx

l
+O(s2); m2 +

(jπ

l

)2

+
(3

4
− m2

4

1

(2jπ/l)2ε2 + a

)
s2 +O(s3))

as s → 0. The corresponding bifurcation point is pitch-fork type and if j2 < (m2− 3a)/12ε2

it is sub-critical, while if j2 > (m2 − 3a)/12ε2 it is super-critical.
On the other hand the situation is much involved for the steady state solution (u, v) =

(m,±
√

b−m2). The mode j where bifurcation occurs is bounded above by (5); the bound
for j is O(m2) as m2 →∞. Although there also exists a one-parameter family of nontrivial
solutions, their asymptotics as s → 0 are rather complicated. We may conclude that the
EOM system has a rich enough set of solutions.

There remain several questions to be considered. One of these issues includes the possible
interface motion. Because of no degeneracy in the mobility of the EOM model, surface
diffusion may not be expected; we are anxious to know answers how the interface really
develops. To be a bit precise, what should be the relation between the two different dynamics;
interphase boundaries and antiphase boundaries [4][19]. The dependence on the principal
parameter, if it is dominant, would be worth investigating forward. We will revisit these
topics in the near future.
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