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Abstract. We present a class of self-similar solutions of the kinematic model equation,
introduced by V.A. Davydov, A.S. Mikhailov, and V.S. Zykov. This equation is designed to
describe the dynamics of spiral waves in excitable media. In this model the sharply located
spiral fronts are regarded as planar curves. If the tip neither grows nor retracts in the
tangential direction and if their normal velocity (with the eikonal approximation) is assumed
to possess no driving force, then the kinematic equation admits self-similar solutions with
nonzero curvature. We show the global structure of both forward and backward self-similar
solutions, which implies mathematically the existence of various types of spiral waves.

1. Introduction

Spiral waves are commonly observed in a variety of nonlinear sciences. We recall [7][13], for
instance, rotating spiral waves in the Belousov-Zhabotinskii reagent, in cardiac arrhythmias,
and in the aggregation of slime mold amoeba. These fascinating patterns are customary
modeled by a sharp transition layer in the theory of reaction-diffusion systems on excitable
media [4]. The system is typically referred to as “excitable” if a small stimulus is provoked
to advance a long excursion and then returned to the resting state. Mathematically such
character is incorporated into the singular perturbation analysis of the reaction-diffusion
system, and in this picture, rotating spiral arms may be treated as traveling waves in excitable
media [14].

On the other hand, ignoring the thickness of the interface and regarding it as a single curve,
one may consider the motion of curves in order to explain theoretically such spiral pattern
dynamics. Indeed, V.A. Davydov, A.S. Mikhailov, and V.S. Zykov introduced the following
so-called kinematic model equation for curves (cf. [2][11][12] and §2 for the derivation):

(1.1) κt + vxx +

(
κ

∫ x

0

κvdξ

)
x

+ Gκx = 0, x > 0, t > 0,

where x is the arc length parameter, κ(x, t) is the curvature, v(x, t) is the normal velocity,
and G := G(t) is the tangential velocity of the tip (with x = 0) for each time t.

If the eikonal approximation (i.e., v = c − Dκ) is applied to the normal velocity and
assume that the tip neither grows nor retracts in the tangential direction (i.e., G(t) ≡ 0),
then the equation (1.1) is reduced to

κt − Dκxx +

(
κ

∫ x

0

κ(c − Dκ) dξ

)
x

= 0, x > 0, t > 0,

supplemented by the initial and boundary conditions. Physical constants c and D stand for
the constant velocity of the solitary planar front and the diffusion coefficient of the trigger
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variable, respectively. For further information and other related topics, we refer additionally
to [8][9][10] and the references cited therein.

In this paper, we shall confine ourselves to the case when c = 0; that is, the normal
velocity is assumed to contain no driving force term (see also [5]). By a re-scaling, we may
also assume that D = 1. Hence we shall study the equation

(1.2)
∂κ(x, t)

∂t
=

∂2κ(x, t)

∂x2
+

∂

∂x

(
κ(x, t)

∫ x

0

κ(ξ, t)2 dξ

)
, x > 0, t > 0.

We are interested in seeking for some special exact nonzero solutions of (1.2). Since the
equation (1.2) has the scaling invariance that if κ(x, t) solves (1.2) then λκ(λt, λ2x) for
λ > 0 also does, it is expected that (1.2) admits self-similar type solutions. For example,
κ(x, t) := (T − 2t)−1/2 gives rise to a blowing-up self-similar solution (see Fig. 1), where T
is an arbitrarily given positive constant. Hereafter we assume that κ is positive without loss
of generality, since the equation (1.2) is invariant under the transformation κ → −κ.

0

0

Figure 1. A self-similar blowing-up solution

We employ a usual self-similar change of variables. We put

y = x(T − 2t)−1/2, τ = −1

2
log(T − 2t),(1.3)

k(y, τ) = (T − 2t)1/2κ(x, t)(1.4)

for backward type and

y = x(1 + 2t)−1/2, τ =
1

2
log(1 + 2t),(1.5)

k(y, τ) = (1 + 2t)1/2κ(x, t)(1.6)

for forward type. We obtain that k satisfies

(1.7)
∂k(y, τ)

∂τ
=

∂2k(y, τ)

∂y2
+

∂

∂y

(
k(y, τ)

∫ y

0

k(ξ, t)2 dξ

)
∓ ∂

∂y
(yk(y, τ)), y > 0,
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where the − sign (resp., + sign) denotes the backward (resp., forward) self-similar version.
The steady state of (1.7), namely, the solution with ∂k/∂τ ≡ 0 is called self-similar solution.

We want to classify all self-similar positive solutions of the kinematic equation (1.2).
Precisely stated, we are seeking for positive global solutions (for y ∈ [0,∞)) of the following
ordinary differential equation

(1.8) k′′(y) +

(
k(y)

∫ y

0

k(ξ)2 dξ

)′
∓ (yk(y))′ = 0, y > 0.

Then for any global solution k of (1.8), the corresponding self-similar solution of (1.2) is
given by

(1.9) κ(x, t) := (1 + 2t)−1/2k(x(1 + 2t)−1/2), x ≥ 0, t ≥ 0,

for the forward case and

(1.10) κ(x, t) := (T − 2t)−1/2k(x(T − 2t)−1/2), x ≥ 0, 0 ≤ t < T/2,

for the backward case, respectively. Our main results, which are principally mathematical
nature, are formulated in Theorems 4.1, 4.2, 5.1, 5.2 and 5.7, according to the classification
of equation types. Their implications to the real phenomena will be discussed in §6.

The study of nonlinear pattern formations often reveals that certain ubiquitous self-similar
structures prevail in the phenomena. In terms of mathematical models, they are connected
with the self-similar solutions, since characteristic behaviors of breakdown are asymptoti-
cally provided by these solutions, and therefore self-similar solutions form important classes
of exact solutions [1]. In addition to the mathematical interest, we thus believe that the
investigation of the structure of self-similar solutions to the kinematic model equation is
worth publishing.

It turns out that our (1.8) is similar to the so-called steadily rotating spiral wave equation
of (1.1), which is studied in [3][6], and makes it possible in part parallel treatments. However,
they are indeed not the same equations nor present similar phenomena. The previous studies
[3][6] are concerned with the case ∂κ/∂t ≡ 0 in (1.2); namely, the steadily rotating spiral
waves. While the present study is concerned with exact solutions of the full equation of (1.2);
they are not steady state. Furthermore, from the mathematical viewpoint, the behavior of
the nonlinear source terms is different between (1.8) and the one in [3][6]; we refer to the
remark made just after (3.8) in §3.

This paper is organized as follows. In §2 we briefly review the derivation of the kinematic
equation (1.1). Preliminaries as to the transformation of (1.8) are illustrated in §3. Then
§4 is devoted to the analysis of the forward type equation and §5 to the backward type; the
treatments are made along the similar lines of [3] with necessary modifications. We conclude
the paper with discussions.

2. Derivation of Equation (1.1)

Here we quickly recall the derivation of the kinematic model equation (1.1). Although the
equation is already treated in [2][11][12] for example, we make a brief review for the reader’s
convenience.

Let z = z(x, t) denotes a family of curves in the plane evolving with time t, where x is the
arc length. Assume that these curves are moving with curvature flow: v = v(κ), where v is
the normal velocity and κ is the curvature.
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Recall that the normal velocity v and the tangent vector T are given by

v = zt · n, T = zx,

where the (left) normal vector n is defined by n := izx. Recall also the Frenet-Serret Theorem
in the plane that (

T
n

)
x

=

(
0 −κ
κ 0

) (
T
n

)
.

Then from vx = ztx · n + zt · nx it follows that

vxx = ztxx · n + 2ztx · nx + zt · nxx.

Since zxx = Tx = −κn and using n · nt = 0, we have

(2.1) ztxx · n = (−κn)t · n = −(κtn + κnt) · n = −κt.

Similarly, we have

(2.2) ztx · nx = Tt · (κT) = 0

and

zt · nxx = zt · (κT)x = zt · (κxT + κTx)

= (zt · T)κx + zt · (−κ2n) = (zt ·T)κx − κ2v.(2.3)

Hence we deduce that

(2.4) vxx = −κt − κ2v + (zt · T)κx.

On the other hand, we compute that

(zt · T)x = ztx · T + zt · Tx = Tt · T + zt · (−κn) = −κv.

Therefore, we obtain that

(2.5) (zt ·T)(x, t) = (zt · T)(0, t) −
∫ x

0

κ(ξ, t)v(ξ, t)dξ.

Now, we define the tangential velocity of the tip (denoted by G) by G := −(zt · T)(0, t).
Then we obtain from (2.4) the following relation:

(2.6) κt + vxx + κ2v + κx

(∫ x

0

κvdξ

)
+ Gκx = 0,

or equivalently

(2.7) κt + vxx +

(
κ

∫ x

0

κvdξ

)
x

+ Gκx = 0.
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3. Preliminaries

In this section, we transform the nonlocal equation (1.8), namely,

(3.1) k′′(y) +

(
k(y)

∫ y

0

k(ξ)2 dξ

)′
∓ (yk(y))′ = 0

to a local equation so that the standard ODE theory can be easily applied.
First, integration of (3.1) once yields

(3.2) k′ + k

∫ y

0

k2 dξ ∓ yk = −η,

where η := −k′(0). Multiply (3.1) by k and (3.2) by k′, respectively, we have

kk′′ + kk′
∫ y

0

k2 dξ + k4 ∓ k2 ∓ ykk′ = 0,

(k′)2 + kk′
∫ y

0

k2 dξ ∓ ykk′ = −ηk′,

from where we deduce that

(3.3) kk′′ − (k′)2 + k4 ∓ k2 = ηk′

after subtracting each other.
Now, by the assumption that k is positive, the next change of variable is made:

(3.4) k(y) = ew(y),

which leads to

(3.5) w′′ + g∓(w) = ηe−ww′, w′(0) = −η/ exp(w(0)),

where g∓(w) := e2w ∓ 1. We further define

E∓[w](y) :=
1

2
(w′(y))2 + G∓(w(y)),(3.6)

G∓(w) :=
1

2
e2w ∓ w.(3.7)

It is easy to verify that G′
∓(w) = g∓(w) and

(3.8)
d

dy
E∓[w](y) = ηe−w(y)(w′(y))2.

We shall see that the sign of η plays a crucial role in describing the profile of w.
We remark that the difference between the current cases and the work of [3], which will

be useful in successive sections. Here the nonlinear source terms g∓(w) → ∓1 as w → −∞,
while gprev(w) := e2w − aew → 0 as w → −∞ (a := c/D) in [3][6]. Moreover the potential
G∓(w) → ±∞ as w → −∞, while Gprev(w) := 2−1e2w − aew → 0 as w → −∞ (see Fig. 2).

Now the classification of self-similar solutions is reduced to that of the nonlinear oscillation
(3.5). We shall denote the solution w of (3.5) with w(0) = ln b by w(y; b). Let [0, R) be the
maximal existence interval of w. Note that R = R(b) and R > 0 (R = ∞ if w is global). Set

α := lim
y→R−

E[w](y).

Then α always exists by virtue of (3.8).
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Figure 2. Graphs of potential functions for (a) Gprev; (b) G+; and (c) G−.

4. Forward type

In this section, we deal with the forward type self-similar solution of (1.2), i.e., the plus
sign in (3.5). Note that the function G+(w) = 2−1e2w + w is unbounded as w → ±∞. Also,
g+(w) = e2w + 1 > 1 for all w. Let [0, R) be the maximal existence interval of w. We have
the following result.

Theorem 4.1. Suppose w = w(y) is a solution of

(4.1) w′′ + g+(w) = ηe−ww′, w′(0) = −η/ exp(w(0)),

where g+(w) = e2w + 1. Then the following assertions hold.

(1) If η < 0, then w has exactly one critical point in [0, R); that is, w′ has exactly one
zero in [0, R). Moreover, R = ∞ and w(y) → −∞ as y → ∞.

(2) If η = 0, then w = w(y) is globally monotone decreasing and w(y) ∼ −2−1y2 as
y → ∞.

(3) If η > 0, then w is monotone decreasing to −∞.

Proof. First, we deal with the case when η < 0. Note that w′(0) > 0. Suppose for
contradiction that w′ > 0 in [0, R). Then R = ∞. Otherwise, if R < ∞, then w(y) → ∞
and w′(y) → ∞ as y → R−. This is impossible, since

(4.2) w′′ = ηe−ww′ − g+(w) < −1.

We see that R = ∞. Set l := limy→∞ w(y) and L := limy→∞ w′(y). Note that l, L exist such
that l > −∞ and L ∈ [0,∞). If l ∈ (−∞,∞), then L = 0. This contradicts (4.2). On the
other hand, if l = ∞, then w′′(y) → −∞ as y → ∞. This is also impossible, since we assume
that w′ > 0 in [0,∞). Notice that w′′ < 0 if w′ = 0. We conclude that w has exactly one
critical point y0 in [0, R) and w′ < 0 in (y0, R).
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Suppose that R < ∞. Then it is clear that w(y) → −∞ as y → R−. Since α exists and
w′ < 0 in (y0, R), the limit L := limy→R− w′(y) exists and L ≤ 0. If L < 0, then it follows
from (4.1) that w′′(y) → ∞ as y → R−, a contradiction. If L = 0, then w is bounded in
[0, R), a contradiction again. We conclude that R = ∞.

Set l := limy→∞ w(y). Then l < ∞. If l > −∞, then there is a sequence {yn} such that
yn → ∞ and w′(yn) → 0 as n → ∞. Since the limit limy→∞ E[w](y) exists, it follows that
L := limy→∞ w′(y) = 0. Then w′′(y) → −g(l) as y → ∞. This is a contradiction with L = 0,
since −g(l) < −1. Thus we obtain that l = −∞.

Next, suppose that η = 0. Then w′′ = −g+(w) < −1. Hence w′ < 0 in (0, R), since
w′(0) = 0. If R < ∞, then w(y) → −∞ as y → R− and so w′′(y) → −1 as y → R−. Thus w′

is bounded in [0, R), a contradiction. Therefore, R = ∞. It is trivial that w(y), w′(y) → −∞
and w′′(y) → −1 as y → ∞. This implies that w(y) ∼ −2−1y2 as y → ∞.

Finally, we study the case when η > 0. Note that w′ = 0 implies that w′′ < 0. Hence
w′ < 0 in [0, R). Since w′′ < −1 in [0, R), it is easy to see that w(y) → −∞ as y → R−. �

Now we want to determine whether w is global or not for any η > 0. Suppose that w is
a solution of (4.1) with η > 0. Note that w′ < 0 and w′′ < −1 in [0, R). Hence the limit
L := limy→R− w′(y) exists and L < 0 (L may be −∞).

Theorem 4.2. Suppose that η > 0.Then R < ∞.

Proof. For contradiction we suppose that R = ∞ for a solution w of (4.1) with η > 0.
Note that from (4.1) it follows that w′′(y) → −∞ as y → ∞. Also, by differentiating the
ode in (4.1) once, we can also derive that w′′′(y) → −∞ as y → ∞.

Applying the L’Hôpital’s rule, we obtain that

lim
y→∞

y3 exp[w(y)] = lim
y→∞

y3

exp[−w(y)]

= lim
y→∞

3y2

− exp[−w(y)]w′(y)

= lim
y→∞

6y

− exp[−w(y)]w′′(y) + exp[−w(y)][w′(y)]2

= lim
y→∞

6

−e−w(y)w′′′(y) + 3e−w(y)w′(y)w′′(y) − e−w(y)[w′(y)]3

= 0.

Hence there is y0 sufficiently large such that

(4.3) exp[w(y)] ≤ y−3, ∀y ≥ y0.

Now, from (4.1) it follows that

w′(y) + ηe−w(y) +

∫ y

y0

g+(w(s))ds = A := w′(y0) + ηe−w(y0)

and so

ew(y)w′(y) + η + ew(y)

∫ y

y0

g+(w(s))ds = Aew(y).

By an integration again we end up with

(4.4) ew(y) − ew(y0) + η(y − y0) +

∫ y

y0

{
ew(ξ)

∫ ξ

y0

g+(w(s))ds

}
dξ = A

∫ y

y0

ew(s)ds.
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Note that |g+(w(s))| ≤ 2 for all s ≥ y0. Then it is easy to show that the integrals in (4.4)
are uniformly bounded for all y ≥ y0. This leads a contradiction by letting y → ∞. The
proposition follows. �

Hence we conclude that any solution w of (4.1) is non-global for any η > 0. In summary,
the forward self-similar solutions of (1.2) exist if and only if η ≤ 0. Note that κx(0, t) =
−η(1 + 2t)−1 and κ(0, t) = exp(w(0))(1 + 2t)−1/2.

5. Backward type

In this section, a backward type, namely, the minus sign in (3.5), is handled. In this case,
the function G−(w) = e2w/2 −w is bounded below by 1/2. Let w = w(y) be the solution of

(5.1) w′′ + g−(w) = ηe−ww′, w′(0) = −η/ exp(w(0)),

where g−(w) = e2w − 1.

5.1. The case for η ≤ 0. First, for the case η < 0, we have

Theorem 5.1. If η < 0, then w = w(y) enjoys the damped oscillation; precisely stated,
w is a global solution such that w′(y) changes sign infinitely many times and w(y) → 0
exponentially as y → ∞.

Next, for the case η = 0, we obtain

Theorem 5.2. Let η = 0. Then w ≡ 0 is the unique solution for (5.1) with w(0) = 0. For
w(0) �= 0, the solution w = w(y) is a periodic function with the period

√
2

∫ w+

w−

dw√
E[w](0) − G−(w)

,

where w± (w+ > w−) satisfy G−(w±) = E[w](0).

These two theorems are easy to see; an elementary application of the theory of nonlinear
oscillation suffices. See [3][6]. We may safely omit the proof. Note that the blowing-up
self-similar solution κ(x, t) := (T − 2t)−1/2 is corresponding to the case when η = 0 and
w(0) = 0.

5.2. The case for η > 0. For notational convenience, we shall drop the subscripts of g and
G. From now on, we set

G(w) =
1

2
e2w − w, g(w) = e2w − 1.

We let w = w(y) be the solution of the following initial value problem (P):

w′′ + g(w) = ηe−ww′,(5.2)

w(0) = ln b, w′(0) = −η/b.(5.3)

We shall denote the solution by w(y), w(y; η), w(y; η, b), w(y; b) to specify the dependence of
the parameter if it is necessary. As before, let [0, R) be the maximal existence interval of w.

First, we have the following lemma.

Lemma 5.3. Let η > 0. Suppose that the limit l := limy→R− w(y) exists. Then l = −∞.
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Proof. First, by an integration of (5.2) from 0 to y we obtain the identity

(5.4) w′(y) + η exp{−w(y)} = −
∫ y

0

g(w(s))ds.

Suppose that R = ∞ and l is finite. Then there is a sequence {yn} such that yn → ∞ and
w′(yn) → 0 as n → ∞. Hence w′(y) → 0 as y → ∞, since the limit α := limy→∞ E[w](y)
exists. Since α > E[w](0) > 1/2, we see that l �= 0. This implies that w is monotone
ultimately. Hence there is a fixed sign for g(w(s)) for all s sufficiently large and so the
right-hand side of (5.4) tends to +∞ or −∞ as y → ∞. But, the left-hand side of (5.4)
remains bounded as y → ∞, a contradiction. Thus we obtain that l ∈ {±∞}.

If l = ∞, then w′(y) > 0 for all y sufficiently large and so the left-hand side of (5.4) is
positive for all y large enough. On the other hand, the right-hand side of (5.4) tends to −∞
as y → ∞. This is again a contradiction. Therefore, we conclude that l = −∞.

Suppose that R < ∞. Then either l = ∞ or l = −∞. Assume that l = ∞. Then
w′(y) → ∞ as y → R− and so the left-hand side of (5.4) tends to ∞. On the other hand, by
assumption there is y0 ∈ (0, R) such that w(y) > 0 for all y ∈ (y0, R). Then

−
∫ y

0

g(w(s))ds = −
∫ y0

0

g(w(s))ds−
∫ y

y0

g(w(s))ds

< −
∫ y0

0

g(w(s))ds < ∞.

This is a contradiction. Hence we must have l = −∞. �

Set v = w′. Then the problem (P) is equivalent to the following first order system (Q):

w′ = v,

v′ = ηe−wv − g(w)

with the initial condition (w, v)(0) = (ln b,−η/b) for b > 0.
We define the initial curve Γ by

Γ := {(w, v) | v = −ηe−w}.
Let D1 and D2 denote the region above and below the curve Γ, respectively. Then it is easy
to see that the vector field on Γ is pointed into D2 if w > 0 and is pointed into D1 if w < 0.

The nullcline of the system (Q) is given by

N := {(w, v) | v = f(w) := (e3w − ew)/η}.
It is easy to see that f(−∞) = 0, f ′(w) < 0 if w < w0, f ′(w) > 0 if w > w0, where
w0 := − ln(

√
3). Set v0 := f(w0) = −2/(3

√
3η) and c0 := v2

0/2 + G(w0).
Recall that E(w, v) := v2/2 + G(w). The level set of Γc := {E = c} is nonempty if and

only if c ≥ 1/2. Moreover, for any c > 1/2 the level set Γc is a bounded closed curve, is
symmetric with respect to the w-axis, and has two intersections with the w-axis (Fig. 3).

Let γ := {(w, v) | w = w0, v ≤ v0} and let the region A is defined by the region below the
nullcline N and to the left of γ. Then we have the following positively invariance property
for the region A.

Lemma 5.4. The region A is positively invariant for the system (Q).
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Figure 3. Nullcline and contours of energy level sets.

Proof. Since w′ < 0, v′ = 0 on N ∩ {w ≤ w0} and w′ < 0 on γ, the region A is
positively invariant. �

We say that w is oscillatory if w′ has infinitely many zeros in [0, R). Otherwise, we say
that w is non-oscillatory.

In the sequel, we shall consider solutions of (5.2) with more general initial data not just
on Γ = {v = −ηe−w} defined above. We should keep in mind that the solutions which are
interested in are those solutions with initial data on Γ.

Lemma 5.5. Suppose that η > 0. Then any solution w of (5.2) is non-oscillatory. Hence
w(y) → −∞ as y → R− for any solution w of (5.1).

Proof. Suppose that there is a solution w of (5.2) such that w is oscillatory.
We first claim that α := limy→R− E[w](y) = ∞. For contradiction, we assume that α < ∞.

Set c := α. Then Γc ∩ {v = 0} = {m, M} for some constants −∞ < m < M < ∞. By
assumption, there is a sequence {yn} with yn → R− such that w′(yn) = 0 for all n and
w(yn) → M as n → ∞, since G(w(yn)) = E[w](yn) → α as n → ∞.

Now we consider the set

Ic := {(d, 0) | E[wd](y) ≥ c for some y ≥ 0},
where wd is the solution of (5.2) with initial condition wd(0) = d, w′

d(0) = 0. It follows from
the theory of continuous dependence on initial data that the set Ic is open. Here we used the
fact that the energy is strictly increasing in y. Since (M, 0) ∈ Ic, there is a positive constant
δ such that (M − δ, M + δ)×{0} ⊂ Ic. Hence (w(yn), w

′(yn)) ∈ Ic for all n sufficiently large.
This leads a contradiction, since the limit of the energy for any trajectory starting at Ic must
be strictly bigger than c. We conclude that α = ∞.
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Next, since w is oscillatory, there are sequences {yn} and {zn} with yn, zn → R− such
that w′(yn) = w′(zn) = 0 for all n and w(yn) → ∞ and w(zn) → −∞ as n → ∞. Here we
have used the fact that G(w) → ∞ as w → ±∞. From the above observation, we can also
find a sequence {xn} tending to R− such that w(xn) = w0 and w′(xn) < 0 for all n. Since
α = ∞, we see that w′(xn) → −∞ as n → ∞. Therefore, the trajectory of w will reach the
line γ at xn for n sufficiently large. Then this trajectory stays in the region A after xn for n
sufficiently large, by Lemma 5.4. This is a contradiction. Thus the lemma is proved. �

We set L̃ := lim supy→R− w′(y). Note that L̃ always exists and L̃ ≤ 0 (L̃ may be −∞),

since w′(y) < 0 for all y sufficiently close to R. We also remark that L̃ plays an equivalent
role to the quantity limy→R− E(y) exploited in [3] (this quantity is denoted by L there).

Proposition 5.6. Suppose that η > 0 and L̃ < 0. Then R < ∞.

Proof. Suppose that there is a global solution w with L̃ < 0. Then there is a positive
constant σ such that w′(y) < −σ for all y sufficiently large. This implies that w′′(y), w′′′(y) →
−∞ as y → ∞. Following the proof of Theorem 4.2, we reach a contradiction. Hence R < ∞.
The proposition follows. �

Conversely, if R < ∞, then L (recall that L := limy→R− w′(y)) exists and L = −∞. To
see this, we first observe that g(w(y)) → −1 as y → R−. Hence the limit

lim
y→R−

∫ y

0

g(w(s))ds

exists and is finite, since R < ∞. Therefore, it follows from (5.4) and Lemma 5.5 that L
exists and L = −∞. Consequently, w is global if and only if L̃ = 0.

We conclude that there are only two different types solutions: one is global with L̃ = 0
and the other is non-global with L̃ < 0 (and so L = −∞). We shall call the global one as
a Type I solution; and the non-global one as a Type II solution. Note that E[w](y) → ∞ as
y → R− in any case.

5.3. Solution structure for η > 0. To study the structure of solutions of (5.1) for a given
η > 0, we follow the method of [3] and divide our discussion into the following steps.

1. Consider for a fixed η > 0 the problem (Q) with initial value (0,−a) for a > 0.
Denote the corresponding solution by wa. We prove that for each η ∈ (0, 1) there is a unique
α = α(η) > 0 such that wa is of Type I if and only if a = α.

2. Vary η and study the solution wη of the problem (Q) with initial value (0,−η) for
η > 0. Determine η0 so that (5.1) has a Type I solution if and only if η ≤ η0.

3. Define the sequence ηm (m ≥ 1), which distinguishes the multiplicity of Type I solutions
to (5.1), inductively as in [3].

We now state the main theorem of this section as follows.

Theorem 5.7. There exists a strictly decreasing sequence {ηm} with ηm → 0 as m → ∞
such that the problem (5.1) has exactly 2m + 1 solutions of Type I, if η = ηm; has exactly
2m solutions of Type I, if η ∈ (ηm, ηm−1). All other solutions are of Type II.

To prove Theorem 5.7, we first observe that for a given η > 0 the region

B := {(w, v) | w ≤ 0, v ≤ −1/η}
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is a positively invariant region for the system (Q). Then it is easily to see that w is of Type
II solution if and only if (w(y), w′(y)) ∈ B for some y ≥ 0. Hence the set J1 is open, where

J1 := {a > 0 | w′
a(y) < 0 for all y ≥ 0 and wa is of Type II}.

Clearly, the set

J2 := {a > 0 | w′
a(y) = 0 for some y ≥ 0}

is also open. If η < 1, then (0, δ) ⊂ J2 for some δ > 0, since (0, 0) is a spiral point. Also,
there holds [1/η,∞) ⊂ J1 for any η > 0. Then the number α = α(η) := inf J1 exists and
is positive. Note that the corresponding solution wα is strictly monotone decreasing. We
claim that wα is the unique (up to translations) Type I solution among all wa for all a > 0.
Indeed, if there is another a �= α such that wa if of Type I, then it is clear that a < α. For
convenience, we set w1 := wα, w2 := wa, vi := w′

i, i = 1, 2. By a translation, we may assume
that v2(y) < 0 for all y ≥ 0 and v2(0) = −a > −α. Since we can view vi as a function of w,
we have

(5.5)
dvi

dw
= ηe−w +

1 − e2w

vi
for w ≤ 0, i = 1, 2,

and v1(0) = −α, v2(0) = −a. Then v′
1(w)− v′

2(w) > 0 for all w < 0. By an integration from
w < 0 to 0, we obtain that

(5.6) v1(w) < v1(w) − v2(w) < v1(0) − v2(0) = a − α < 0

for any w < 0. Letting w → −∞ in (5.6), we reach a contradiction. Hence the uniqueness
follows.

Next, we vary η and denote the solution of (Q) with initial value (0,−η) by wη for η > 0.
Note that wη is of Type II, if η ≥ 1 (so that η ∈ [1/η,∞) ⊂ J1). We also note that the
trajectory of wη stays in B for any η ≥ 1. Consider the set

A1 := {η > 0 | w′
η(y) = 0 for some y > 0}.

As in [3] we can show that (0, δ) ⊂ A1 for some small positive number δ. On the other hand,
since A1 is bounded above by 1, the number η0 := sup A1 is well-defined and is positive.
Then, by a comparison principle (cf. Lemma 4.9 in [3]), the solution wη0 is the unique
monotone Type I solution among all wη. Note that we also have η0 = inf A2, where

A2 := {η > 0 | w′
η(y) < 0 for all y ≥ 0 and wη is of Type II}.

Since two different trajectories of an autonomous system cannot intersect each other, a
simple phase analysis gives that every solution of (5.1) is of Type II, if η > η0. Conversely,
a similar argument as of Theorem 1 in [3], we can show that there exists Type I solution for
(5.1), if η ≤ η0. Indeed, if wη is of Type I, then we are done. Otherwise, wη is of Type II and
the trajectory of wη only has finitely many intersections with γ0 := {(0,−d) | d > 0}, say,
at (0,−di), i = 1, . . . , N , N ≥ 2, with η := d1 < · · · < dN . Then dN−1 ∈ J2 and dN ∈ J1.
Therefore, there exists the unique solution wα of Type I with α ∈ (dN−1, dN). It is clear that
the trajectory of wα intersects the initial curve. This proves the existence of Type I solution
for (5.1), if η ≤ η0.

Finally, we define the sequence {ηm} inductively by ηm := inf Bm, where

Bm := {η < ηm−1 | wη has exactly 2m + 1 zeros and is of Type II}
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for m ≥ 1. To begin with the proof of Theorem 5.7, we consider the level curve Γc with
c = η2

0/2 + 1/2. Let (w0, 0) be the unique point on Γc with w0 < 0. Note that there is a
one-to-one correspondence of the trajectory connecting the segment {(0,−d) | 0 < d < η0}
and the half-line {(w, 0) | w ≤ 0}. Therefore, there exists an η̂ ∈ (0, η0) such that the
trajectory from (0,−η̂) will be connected to (w0, 0). By a simple phase plane analysis, wη

has exactly 3 zeros and is of Type II for any η ∈ (η̂, η0). This proves that the set B1 is
non-empty. It is clear that B1 is bounded below, since the smaller η is the more oscillations
wη has. This implies that η1 is well-defined and the corresponding trajectory has exactly 3
zeros and is of Type I.

The rest of the proof is similar to that of Theorem 2 in [3] and we safely omit it here. �
In summary, there are infinitely many backward self-similar solutions of (1.2) for η ≤ 0.

For η > 0, there is a positive constant η0 such that a backward self-similar solution of (1.2)
exists if and only if η ∈ (0, η0]. Moreover, the number of backward self-similar solutions of
(1.2) can be counted exactly for each η ∈ (0, η0]. Note that κx(0, t) = −η(T − 2t)−1 and
κ(0, t) = exp(w(0))(T − 2t)−1/2.

6. Discussions

We have investigated the structure of self-similar solutions of the kinematic equation, which
is introduced to model the dynamics of steadily rotating spiral waves in excitable media. Self-
similar solutions are known to exhibit a prototype behavior in various nonlinear sciences.
Under somewhat restrictive assumptions that there is no driving force in the normal velocity
(with the eikonal approximation) and the tip neither grows nor retracts in the tangential
direction, this kinematic equation has a family of self-similar solutions. Both forward and
backward types of self-similar equations admit solutions which realize spiral-shaped curves.

We give some explanations for the mathematical results which we obtained in Sections 4
and 5. In Section 4, we deal with the forward self-similar solutions in the form

κ(x, t) := (1 + 2t)−1/2 exp{w(x(1 + 2t)−1/2)}, x ≥ 0, t ≥ 0.

Recall that any solution of (4.1) is bounded above. Hence, as t → ∞, we have κ(x, t) → 0 for
any x ≥ 0. This means that the corresponding curves become flattening as t increases and
eventually become a flat half-line. Hence Theorem 4.1 gives us the existence of self-similarly
flattening solutions.

On the other hand, in Section 5, the self-similarly blowing-up solutions in the form

κ(x, t) := (T − 2t)−1/2 exp{w(x(T − 2t)−1/2)}, x ≥ 0, 0 ≤ t < T/2,

are obtained in Theorems 5.1, 5.2, 5.7. If we consider the curve for any specific time as a
snap-shot of camera, then the evolution of a backward self-similar solution can be seen as a
zoom-out process. Hence the blowing-up of curvature is corresponding to the shrinking of
the curves to a point.

Their whole structures, however, are complex enough and the relation with the physical
phenomena seems need further examinations. We point out several difficulties in interpreting
our results as real phenomena.

In many cases, both physically and chemically relevant spirals are Archimedean. We
recall that the Archimedean spiral is defined as a curve whose radius from the center is
proportional to the angle variable. This kind of spirals has a constant pitch, which reflects
a periodic movement of the reaction-diffusion system. In our previous paper [6] on steadily
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rotating spiral waves, a stress is placed on the existence of asymptotically Archimedean
spirals in the sense that limx→∞ κ(x)2x =constant. Here the current paper is concerned with
the self-similarly moving solution and the Archimedean property is not so clear.

Conversely, from the practical viewpoint, it is desirable to ask whether there exist occasions
in real world, which correspond to the behavior of self-similar spirals we proved, even if
approximately. This may be an experimentally interesting issue for research. Moreover, the
structure for the backward type with η > 0 happens to be similar as the one for the steadily
rotating spiral waves with η > 0 established in [3]. It may be also challenging to find out
what mechanism brings this coincidence.

Nevertheless we believe that our analysis, principally based on the mathematical stand-
point, may shed light on the validity and/or the limitation of the kinematic model equation.
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